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Abstract

In this paper, we present a delayed size-reduction technique for speeding up the LLL
algorithm. It can significantly speed up the LLL algorithm without sacrificing the quality
of the results. Our experiments have shown that for problems of size 80, our algorithm can
be twice as fast as the LLL algorithm. For larger size problems, the speed up is greater.
Moreover, our algorithm provides a starting point for parallel LLL algorithms.

Keywords Lattice, lattice basis reduction, LLL algorithm.

1 Introduction

The LLL algorithm authored by Lenstra, Lenstra, and Lovász [11] is a lattice basis reduction
method. The problem of reducing a lattice basis has wide applications: factorization of polyno-
mials with rational coefficients [11], cryptography [3], integer programming [12], number theory
[12], and digital communications [1, 9], just to name a few. Although it does not guarantee a
best reduced lattice basis, the LLL algorithm can efficiently produce reasonably good results.
Thus the LLL algorithm is widely used in wireless communications to improve the performance.
For example, it is used in lattice-reduction-aided MIMO detection [4, 5, 6, 16, 18], where lattice
basis reduction is used as a preprocessing. In time critical situations such as delay-constrained
MIMO detection [8], speed is crucial. Thus the LLL algorithm has been modified to improve its
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Figure 1: The columns of A (1) and B (2), two bases for the lattice L.

speed without sacrificing the quality of the reduced basis produced by the algorithm [7, 8, 17].
In this paper, we propose a technique, called delayed size-reduction, to speed up the LLL algo-
rithm. The modified algorithm can significantly speed up the LLL algorithm without sacrificing
the quality of the results. Our experiment results have shown the for problems of size 80, our
algorithm can be twice as fast as the LLL algorithm. For larger size problems, the speed up is
greater.

This paper is organized as follows. In Section 2, we introduce the concepts of lattice bases
and reduced bases. Then we briefly describe the LLL algorithm in Section 3. Our delayed
size-reduction technique and the modified algorithm is presented in Section 4. A complexity
analysis of the modified algorithm is provided in Section 5. Finally, in Section 6, we show our
experiment results.

2 Lattice Bases

Let A be an m-by-n, m ≥ n, real matrix of full column rank. Thus the columns of A are linearly
independent. Each integer linear combination of the columns of A represents a lattice point, or
lattice vector. In other words, a lattice generated by A is defined by the set:

L = {Az | z ∈ Z
n},

where Z
n denotes the set of integer n-vectors. The columns of A form a basis for the lattice L.

For example, the points in Figure 1 form a lattice generated by

A := [a1 a2] =

[

2.0 2.7
0 0.7

]

. (1)

A lattice can have more than one basis. For example, the columns of

B := [b1 b2] =

[

−0.7 1.3
−0.7 −0.7

]

(2)

also form a basis for the lattice L generated by A in (1), as shown in Figure 1. In this example,
the basis {b1, b2} (2) is more desirable than {a1, a2} (1), since it consists of shorter and “more
orthogonal” vectors than the basis {a1, a2}. We say that {b1, b2} is a reduced basis for L.

Given a basis for a lattice, a lattice reduction method produces a reduced basis for the lattice.
For details of lattices, bases, and reduced bases, see [2, 10].
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3 The LLL Algorithm

The LLL algorithm is a lattice basis reduction method. It consists of two stages. Given an
m-by-n lattice generator matrix A, the first stage triangularizes it using the Gram-Schmidt
process. In terms of matrices, it computes the D and U matrices in the decomposition

A = QD1/2U, (3)

where Q is m-by-n with orthonormal columns, D = diag(d1, d2, ..., dn) with positive diagonal,
and U = [ui,j ] upper triangular with a unit diagonal, that is ui,i = 1, i = 1, 2, · · · , n. In [11], a
basis formed by the columns of A is called reduced if D and U in the decomposition (3) satisfy
the conditions

|ui,j | ≤
1

2
, 1 ≤ i < j ≤ n, (4)

and
di + di−1u

2
i−1,i ≥ ωdi−1, (5)

where 1/4 < ω < 1 is a parameter that controls the rate of convergence of the algorithm. The
condition (4) requires small off-diagonal elements, thus short column lengths. This condition is
often called size-reduced condition [15]. The second condition (5) imposes a loosely increasing
order on the diagonal elements di. By pushing up small diagonal elements and enforcing the
size-reduced condition (4), the column lengths are expected to be shortened.

When A is an integer or rational matrix, the LLL algorithm can be performed in exact
arithmetic in polynomial time [11]. In 2008, Luk and Tracy [14] presented a floating-point
version of the algorithm for real lattice basis matrices. In this paper, we consider the real case
and adopt the floating-point version in [14]. However, the technique proposed in this paper can
be readily applied to the integer case. Corresponding to the conditions (4) and (5), a basis
formed by the columns of a real lattice basis matrix A is called reduced if the upper triangular
factor R in the QR decomposition

A = QR (6)

of A, where Q has orthonormal columns and R is upper triangular, satisfies the conditions

2|ri,j | ≤ |ri,i|, 1 ≤ i < j ≤ n, (7)

and
r2
i,i + r2

i−1,i ≥ ωr2
i−1,i−1. (8)

The QR decomposition (6) can be obtained in a number of ways [9]. If the Gram-Schmidt
orthogonalization is used, then D1/2U in (3) equals R in (6).

Given a lattice basis matrix, the LLL algorithm reduces it to another lattice basis matrix
that satisfies the conditions (7) and (8). To enforce the condition (7), if some |ri,j | > |ri,i|/2,
the following size-reduction procedure is applied.

Procedure 1 (Reduce(i, j)) Given R in (6), calculate γ = ⌈ri,j/ri,i⌋ (⌈a⌋ denotes an integer
that is closest to a), form Zij = In − γeie

T
j , where ei is the i-th unit vector, and apply Zij to

both R and A:
R← RZij and A← AZij .
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Thus if |ri,j| > |ri,i|/2 in the current R, then in the updated R, we have |ri,j| ≤ |ri,i|/2.
When the condition (8) is not satisfied, the following procedure is invoked.

Procedure 2 (SwapRestore(i)) Given R in (6), where 2|ri−1,i| ≤ |ri−1,i−1|, swap the columns
i− 1 and i of R and A, find a Givens reflection Gi such that

GT
i

[

ri−1,i ri−1,i−1

ri,i 0

]

=

[

r̂i−1,i−1 r̂i−1,i

0 r̂i,i

]

,

and apply Gi to R:

R←





Ii−2

Gi

In−i





T

R.

Thus the above procedure swaps the columns i and i− 1 and then restores the upper triangular
structure of R. It can be verified that if the current R does not satisfy the condition (8), then
after the application of Procedure 2, the updated R satisfies the condition.

Now, we present the floating-point LLL algorithm.

Algorithm 1 (LLL) Given an m-by-n, m ≥ n, lattice basis matrix A, this algorithm overwrites
it with a reduced one.

QRD Compute the R in the decomposition (6);
k ← 2;
while k ≤ n

C1a if 2|rk−1,k| > |rk−1,k−1|
R1 Reduce(k − 1, k);

endif
C2 if r2

k,k + r2
k−1,k < ωr2

k−1,k−1

SR SwapRestore(k);
k ← max(k − 1, 2);

else
for i = k − 2 down to 1

C1 if 2|ri,k| > ri,i|
R2 Reduce(i, k);

endif
endfor
k ← k + 1;

endif
endwhile

Note that by the definition in [11], a reduced basis satisfies both conditions (7) and (8), thus in
the algorithm, before checking the condition (8) for i = k, the condition (7) for i = k − 1 and
j = k is enforced.
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4 Delaying Size-reductions

In this section, we present our new algorithm. First, we give a simple example to illustrate our
ideas by tracing Algorithm 1. Let

A =





4 6 5
2 10

1/
√

2





be the lattice basis matrix. In Algorithm 1, since A is upper triangular, the QR decomposition
in line QRD produces R = A. Then k is initialized to 2. Since the condition in line C1a is true,
Reduce(k − 1, k) in line R1 is called, producing

R =





4 −2 5
2 10

1/
√

2



 .

Now, the condition C2 is true, SwapRestore in line SR updates R

R =





2
√

2 −2
√

2 5/
√

2

2
√

2 15/
√

2

1/
√

2



 .

Then k is reset to 2. Again, C1a is true and R1 gives

R =





2
√

2 0 5/
√

2

2
√

2 15/
√

2

1/
√

2



 .

Note that in this step, the (1, 2)-entry of U is reduced. Now, both C2 and C1 are false, so k is
incremented by 1 to 3. The condition C1a is true and R1 reduces R:

R =





2
√

2 0 5/
√

2

2
√

2 −1/
√

2

1/
√

2



 .

Now, since C2 is true, SR updates R:

R =





2
√

2 5/
√

2 0
1 −2

2



 .

Note that in this step, the previously reduced (1, 2)-entry, whose value is 0, of R is swapped to
(1, 3). Then, k is decremented by 1 to 2. Now, C1a is true and R1 gives

R =





2
√

2 1/
√

2 0
1 −2

2



 .
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Again, C2 is true. After SR, we have

R =





√
3/
√

2 2
√

2/
√

3 −2
√

2/
√

3

4/
√

3 2/
√

3
2



 .

Note that in this step the value of the (1, 3)-entry, which was moved from the previously reduced
(1, 2)-entry, is modified from 0 to −2

√
2/
√

3, whose absolute value is larger than |r1,1|/2 =√
3/(2
√

2). Now k is decremented by 1 to 2. The condition C1a is true and R1 produces

R =





√
3/
√

2 1/
√

6 −2
√

2/
√

3

4/
√

3 2
√

3
2



 .

Then both C2 and C1 are false and k is incremented to 3. Finally, both C1a and C2 are false,
but C1 is true when i = 1 and k = 3, thus R2 reduces the (1, 3)-entry of R:

R =





√
3/
√

2 1/
√

6 −1/
√

6

4/
√

3 2/
√

3
2



 .

Recalling that this (1, 3)-entry was moved from the previously reduced (1, 2)-entry. If it was not
previously reduced, it would be reduced by now anyway. This means that some size-reductions
can be saved by delaying them until a later stage. However, not all the size-reductions can be
delayed. In particular, the condition (8) assumes that ri−1,i is size-reduced, that is 2|ri−1,i| ≤
|ri−1,i−1|. Thus we propose the following condition by integrating the two conditions:

r2
i,i + (ri−1,i − γri−1,i−1)

2 ≥ ωr2
i−1,i−1, where γ = ⌈ri−1,i/ri−1,i−1⌋. (9)

Note that ri−1,i − γri−1,i−1 is the reduced ri−1,i. Accordingly, we integrate the procedures
Reduce(i− 1, i) and SwapRestore(i) into the following procedure.

Procedure 3 (ReduceSwapRestore(i)) Given R in (6), calculate γ = ⌈ri−1,i/ri−1,i−1⌋, con-
struct

Zi =

[

1 −γ
0 1

] [

0 1
1 0

]

=

[

−γ 1
1 0

]

, (10)

and update R and A:

R← R





Ii−2

Zi

In−i



 and A← A





Ii−2

Zi

In−i



 .

Then find a Givens reflection Gi such that

GT
i

[

ri−1,i − γri−1,i−1 ri−1,i−1

ri,i 0

]

=

[

r̂i−1,i−1 r̂i−1,i

0 r̂i,i

]

, (11)

and apply Gi to R:

R←





Ii−2

Gi

In−i





T

R.
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Note that the matrix Zi is a size-reduction followed by a swap.
We delay all the other size-reductions until the end. Thus we have the following LLL algo-

rithm with delayed size-reduction.

Algorithm 2 (LLL with delayed size-reduction) Given an m-by-n, m ≥ n, lattice gener-
ator matrix A, this algorithm overwrites it with a reduced one.

QRD Compute the R in the decomposition (6);
k ← 2;
while k ≤ n

γ = ⌈rk−1,k/rk−1,k−1⌋;
C3 if r2

k,k + (rk−1,k − γrk−1,k−1)
2 < ωr2

k−1,k−1

RSR ReduceSwapRestore(k);
k ← max(k − 1, 2);

else
k ← k + 1

endif
endwhile
for k = 2 to n

for i = k − 1 down to 1
C1 if 2|ri,k| > |ri,i|
R2 Reduce(i, k);

endif
endfor

endfor

The number of executions of ReduceSwapRestore in this algorithm is the same as the number
of executions of SwapRestore in Algorithm 1, because the Reduce in the line R2 of Algorithm 1
has no effect on the two-by-two diagonal blocks, which are operated by SwapReduce. This will
be verified in our numerical experiments.

The above algorithm can improve the performance of Algorithm 1 in three ways: First, by
integrating the two conditions C1a and C2 in Algorithm 1 into one condition C3 in Algorithm 2,
the number of conditional statements is reduced; Second, by integrating the two procedures R1
and SR in Algorithm 1 into one procedure RSR in Algorithm 2, it is more efficient; Third, by
delaying some size-reductions, the total number of size-reductions can be reduced.

Let us trace Algorithm 2 using the above example. Again, since A is upper triangular, after
the QR decomposition, we have R = A. Then k is initialized to 2. The condition C3 is true,
after RSR, we have

R =





2
√

2 −2
√

2 5/
√

2

2
√

2 15/
√

2

1/
√

2



 .

Now that C3 is false for k = 2, k is incremented to 3 and C3 is true and RSR gives

R =





2
√

2 21
√

2 −2/
√

2
1 −2

2



 .
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Then k is decremented to 2. Since C3 is true, RSR produces

R =





√
3/
√

2 2
√

2/
√

3 −4
√

2/
√

3

4/
√

3 −2/
√

3
2



 .

Now, all the diagonal 2-by-2 blocks satisfy the condition (9), we start the delayed size-reductions.
Specifically, the last part of the algorithm reduces the (1, 2)- and (1, 3)-entries of R, resulting a
reduced R:

R =





√
3/
√

2 1/
√

6 1/
√

6

4/
√

3 −2/
√

3
2



 .

To compare the two algorithms, the number of calls to RSR in Algorithm 2 is three and the
number of calls to R2 is two. If we count one call to RSR in Algorithm 2 as one R1 and one
SR in Algorithm 1, then it is equivalent to three calls to SR, three calls to R1, and two calls
to R2. The trace of Algorithm 1 shows that Algorithm 1 makes three calls to SR, four calls to
R1, and two calls to R2. Moreover, Algorithm 2 checks the condition C3 three times and the
condition C1 six times, a total of nine times. Whereas, Algorithm 1 checks C1a six times, C2
six times, and C1 one time, total of 13 times. Also note that the final reduced R produced by
both algorithms are essentially the same up to some signs.

5 Complexity

In this section, we analyze the complexity of Algorithm 2. As we know, the complexity of the
QR decomposition in the first stage is O(mn2) [9]. The rest of the algorithm consists of two
parts: A while-loop and a nested for-loop. In the second part, each Reduce(i, k) in the nested
for-loop costs O(n). Thus the complexity of the second part is O(n3). In the first part, in
each iteration of the while-loop, k is either incremented by 1 or decremented by at most 1 after
the procedure call ReduceSwapRestore(k) (RSR). Thus, if RSR is executed K times, then the
number of iterations of the while-loop is at most K + n − 1, since k is initialized to 2 and the
while-loop terminates when k > n. We claim that K = O(n2 logω−1 ‖A‖2). Thus the complexity
of the first part is O(n3 logω−1 ‖A‖2), since the cost of the execution of RSR is O(n). Therefore,
the complexity of Algorithm 2 is O(n3 logω−1 ‖A‖2), assuming m is of the magnitude order of at
most n logω−1 ‖A‖2.

In the following, we show that the number of executions of RSR is K = O(n2 logω−1 ‖A‖2).
Consider the products

pi =

i
∏

j=1

r2
j,j, i = 1, 2, ..., n − 1

and

P =

n−1
∏

i=1

pi.

Initially, after the QR decomposition, Pinit is a product of n(n− 1)/2 squared diagonal elements
r2
i,i of R in the QR decomposition (3) of A. Let ρ(A) denote the spectral radius of A, then

Pinit ≤ (ρ(A)2)n(n−1)/2 = ‖A‖n(n−1)
2 .
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On the one hand, during the execution of the while-loop in Algorithm 2, when the condition
C3 is true, that is, r2

k,k + (rk−1,k − γrk−1,k−1)
2 < ωr2

k−1,k−1, Procedure 3 is called, in which the
Givens reflection Gi (11) updates rk−1,k−1:

r2
k−1,k−1 ← r̂2

k−1,k−1 = r2
k,k + (rk−1,k − γrk−1,k−1)

2, (12)

implying that
r̂2
k−1,k−1 < ωr2

k−1,k−1, (13)

that is, dk−1 is at least reduced by a factor of ω. Also, from Procedure 3, the two-by-two diagonal
block

[

rk−1,k−1 rk−1,k

0 rk,k

]

is postmultiplied by Zk (10) and premultiplied by a Given reflection. Since |det(Zk)| = 1 and
|det(Gk)| = 1, we have

r̂2
k−1,k−1r̂

2
k,k = r2

k−1,k−1r
2
k,k. (14)

That is the product r2
k−1,k−1r

2
k,k remains unchanged. It then follows that each execution

of ReduceSwapRestore(k) reduces pk−1 by at least a factor of ω while the other products
p1, ..., pk−2, pk, ..., pn−1 remain unchanged. Consequently, each execution of RSR reduces P
at least by a factor of ω. Thus, after RSR is executed K times

P ≤ ωKPinit ≤ ωKρ(A)n(n−1) = ωK‖A‖n(n−1)
2 . (15)

On the other hand, denoting Ai as the submatrix of A consisting of its first i columns and
Ri the ith leading principal submatrix of R, we have

pi =

i
∏

j=1

r2
j,j = det(RT

i Ri).

Again, Procedure 3 applies Zi (10) and the Givens reflection. Since |det(Zi)| = 1, we have
det(RT

i Ri) = det(AT
i Ai). When A is an integer matrix of full column rank, det(AT

i Ai) is a
positive integer. It then follows that det(RT

i Ri) ≥ 1. Therefore, through out the execution of
the while-loop, P ≥ 1, which, from (15), shows that

1 ≤ ωK‖A‖n(n−1)
2 .

It then follows that RSR is executed at most K ≤ logω−1 ‖A‖n(n−1)
2 times.

In conclusion, we have the following proposition.

Proposition 1 Let A be an m-by-n integer lattice basis matrix, then the complexity of Algo-
rithm 2 is O(n3 logω−1 ‖A‖2), assuming m is of the magnitude order of at most n logω−1 ‖A‖2.

For real lattice basis matrices, we have the following results.

Proposition 2 Let A be an m-by-n real lattice basis matrix, then the complexity of Algorithm 2
is O(n3 logω−1 cond2(A)), assuming m is of the magnitude order of at most n logω−1 cond2(A).
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Proof. Let
mi = min

i
(r2

i,i) and Ma = max
i

(r2
i,i).

From (13) and ω < 1, we have r̂2
i−1,i−1 < r2

i−1,i−1. On the one hand, from (12), we have

r̂2
i−1,i−1 ≥ r2

i,i. Then

m1 ≤ r2
i,i ≤ r̂2

i−1,i−1 < r2
i−1,i−1 ≤ m2.

Also, from (14) and r̂2
i−1,i−1 < r2

i−1,i−1, we have r̂2
i,i = r2

i,i(r
2
i−1,i−1/r̂

2
i−1,i−1) > r2

i,i. On the other

hand, from (11), r̂2
i,i = r2

i−1,i−1 − r̂2
i−1,i ≤ r2

i−1,i−1. Thus

m1 < r2
i,i < r̂2

i,i ≤ r2
i−1,i−1 ≤ m2.

It then follows that through out the execution of the while-loop in Algorithm 2, the squared
diagonal elements of R remain in the range [mi,Ma]. Thus the product P in (15) always satisfies

P ≥ m
n(n−1)/2
i .

Recalling that
Pinit ≤Mn(n−1)/2

a ,

if Procedure 3 is called K times, then we have we have

ω−K <
Pinit

P
≤

(

Ma

mi

)n(n−1)/2

≤ cond2(R)n(n−1) = cond2(A)n(n−1),

which completes the proof.
In particular, the expectation of the 2-norm condition number of a matrix A of order n with

normally distributed entries is

E(log(cond2(A)) = O(log n),

which leads to the following corollary.

Corollary 1 Let A be an m-by-n random lattice basis matrix with normally distributed entries,
then the complexity of Algorithm 2 is O(n3 logω−1 n), assuming m is of the magnitude order of
at most n logω−1 n.

In summary, the complexity of Algorithm 2 depends on the parameter ω and the condition
number cond2(A) in addition to the problem size n, if m is not much larger than n.

6 Experiment Results

We programed Algorithms 1 and 2 in Octave and ran our tests in Mac OS X. The QR decom-
position in both algorithms can be implemented in several ways, for example, the norm-induced
ordering [7], the sorted-QR decomposition [17], and the joint sorting and reduction [8], to speed
up the LLL algorithm. To exclude the effect of different implementations of the QR decom-
position, in our test, we generated upper triangular lattice basis matrices whose entries are
uniformly distributed between 0 and 1. Thus the QR decomposition was not performed in both

10



n 20 40 80 160

LLL 0.07123 0.2328 0.9795 4.483

Delay 0.05108 0.1319 0.4564 1.744

Table 1: The cpu times of the LLL algorithm and the LLL algorithm with delayed size-reduction
when ω = 0.75. Each entry is an average of five matrices of order n.

n 20 40 80 160

LLL 0.06774 0.3346 1.520 7.689

Delay 0.04836 0.1781 0.5992 2.123

Table 2: The cpu times of the LLL algorithm and the LLL algorithm with delayed size-reduction
when ω = 0.99. Each entry is an average of five matrices of order n.

algorithms. Tables 1 and 2 show the cpu times when the parameter ω was set to 0.75 and 0.99
respectively. Each entry in the tables is an average of five matrices of order n. We can see that
for problems of size 80, our algorithm is twice as fast as the LLL algorithm. For larger problems,
the speed-up is greater.

Tables 3 and 4 list the numbers of executions of condition checks and procedures when the
parameter ω was set to 0.75 and 0.99 respectively. Again, each entry is an average of five
matrices of order n. The tables show that

• the number nC2 of the condition C2 checks in Algorithm 1 is the same as the number nC3
of the condition C3 checks in Algorithm 2

• the number nSR of the executions of the procedure SR in Algorithm 1 is the same as
the number nRSR of the executions of the procedure RSR in Algorithm 2, as pointed out
earlier

• the number nC1 of the condition C1 checks is greatly reduced in Algorithm 2 comparing
with nC1 in Algorithm 1

• if we count one RSR in Algorithm 2 as one SR and one R1 in Algorithm 1, the sum of nR2
and nRSR in Algorithm 2 is much smaller than the sum of nR1 and nR2 in Algorithm 1.
That means the number of size-reductions is significantly reduced.

Conclusion

In this paper, we present a techique called delayed size-reduction to improve the performance of
the LLL algorithm. The speed-up is achieved by reducing the number of conditional instructions,
integrating size-reduction and swap-restore procedures, and eliminating redundant size-reduction
operations. For problems of size as small as 80, our algorithm can be twice as fast as the
original LLL algorithm. For larger size problems, the speed-up is greater. Further speed-up
can be achieved by incorporating other techniques [7, 8, 17] in the QR decomposition stage.

11



LLL Delay
n nC1 nC2 nR1 nR2 nSR nC1 nC3 nR2 nRSR

20 559 124 56.6 214.6 53.4 190 124 145 53.4

40 2696.8 251.8 115.2 1145.8 106.6 780 251.8 646.8 106.6

80 12018 532.8 244.2 5825.6 227.4 3160 532.8 2769.8 227.4

160 61545 1335.4 599 34168 588.8 12720 1335.4 11939 588.8

Table 3: The numbers of the condition checks and executions of the procedures in the LLL
algorithm and the LLL algorithm with delayed size-reduction when ω = 0.75. Each entry is an
average of five matrices of order n.

LLL Delay
n nC1 nC2 nR1 nR2 nSR nC1 nC3 nR2 nRSR

20 1151 264.8 91.8 272.6 123.4 190 264.8 143.6 123.4

40 4242.6 437.2 171.4 1304.8 200 780 437.2 637.2 200

80 22790 1136.2 393.8 7986 530.4 3160 1136.2 2806.2 530.4

160 100636 2463.2 847.6 38396 1153 12720 2463.2 11916 1153

Table 4: The numbers of the condition checks and executions of the procedures in the LLL
algorithm and the LLL algorithm with delayed size-reduction when ω = 0.99. Each entry is an
average of five matrices of order n.

Moreover, our algorithm produces same reduced basis matrices as the LLL algorithm up to
signs. Our analysis show that the complexity of our algorithm depends on the parameter ω and
the condition number of the original lattice basis matrix in addition to the problem size. Our
new algorithm also provides a starting point for parallel LLL algorithms [13].
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