
FORMAL LANGUAGES AND SYSTEMS

Authors:

Heinrich Herre
Universität Leipzig
Intitut für Informatik
Germany

Peter Schroeder-Heister
Universität Tübingen
Wilhelm-Schickard-Institut für Informatik
email: psh@informatik.uni-tuebingen.de

Draft (1995) of a paper which appeared 1998 in the Routledge Encyclopedia of Philosophy

Herre & Schroeder-Heister “Formal Languages and Systems” p. 1



FORMAL LANGUAGES AND SYSTEMS

Keywords:

Consequence relation
Deductive system
Formal grammar
Formal language
Formal system
Gentzen-style system
Hilbert-style system
Inference operation
Logical calculus
Rule-based system
Substructural logics

Herre & Schroeder-Heister “Formal Languages and Systems” p. 2



FORMAL LANGUAGES AND SYSTEMS

Formal languages and systems are concerned with symbolic structures considered under

the aspect of generation by formal (syntactic) rules, i.e. irrespective of their or their

components’ meaning(s). In the most general sense, a formal language is a set of

expressions (1). The most important way of describing this set is by means of grammars

(2). Formal systems are formal languages equipped with a consequence operation yielding

a deductive system (3). If one further specifies the means by which expressions are built

up (connectives, quantifiers) and the rules from which inferences are generated, one

obtains logical calculi (4) of various sorts, especially Hilbert-style and Gentzen-style

systems.

1 Expressions

2 Grammars

3 Deductive systems

4 Logical calculi

1 Expressions

A formal language is a set L of expressions. Expressions are built up from a finite set Σ

of atomic symbols or atoms (the alphabet of the language) by means of certain

constructors. Normally one confines oneself to linear association (concatenation) ◦ as

the only constructor, yielding strings of atoms, also called words (over Σ), starting with

the empty word ε. Mathematically, the structure obtained is the semigroup freely

Herre & Schroeder-Heister “Formal Languages and Systems” p. 3



generated by the alphabet Σ. When a1◦a2◦ . . . ◦an with atoms a1, a2, . . . , an is written in

the usual way as a1a2 . . . an, it is assumed that the decomposition of this expression into

atoms is unique. It should be noted, that languages based on more than one constructor

may well be considered. An example would be Frege’s two-dimensional Begriffsschrift,

which may be viewed as a formal language based on constructors for horizontal and

vertical alignment. However, since any constructor can be written linearly as a function

symbol applied to arguments, the notion of formal languages as based on linear

concatenation is sufficiently general. The atomic symbols which form the basis of a

formal language are themselves abstract entities, in contrast to the tokens which

constitute their individual realisations.

2 Grammars

A formal language L can be investigated from various points of view. One possibility is

to specify a device A that recognizes exactly those words over Σ which belong to L, i.e.

which enters a certain state if and only if a word of L is given as an input to A. When

this occurs we say that A accepts L. Such a device is called an ‘automaton’ (in the

mathematical, not in the physical sense). The relationship between languages and

automata accepting them is studied in automata theory. A formal grammar G for L

describes a way to generate the words of L by means of formal rules, beginning with a

special start symbol S. A rule (also called ‘production’) has the form u→v, which

expresses that in any word of the form w1uw2 the part u may be replaced by v yielding

w1vw2. In addition to the atoms of the alphabet Σ under consideration (which are called

‘terminals’ in formal language theory), rules may contain variables (called

Herre & Schroeder-Heister “Formal Languages and Systems” p. 4



‘non-terminals’), among which S is distinguished. For example the grammar

S → ASA

S → a

A → b

generates all words b . . . bab . . . b over the alphabet {a, b} with equally many b’s on the

left and right side of a. Formal languages may be classified by the types of grammars

generating them. For example, a language L is called context-free if L can be generated

by a context-free grammar, which is a grammar whose productions always have just a

single variable as its left side (as in the example). Context-free grammars play a

distinguished role in the construction of artificial languages (such as programming

languages). However, for the study of (fragments of) natural languages more

complicated (‘context-sensitive’) types of grammars have to be considered. Formal

grammars have the same expressive power as computable functions: The computation

by a Turing machine can be described by means of a formal grammar, and the

generation of words in a formal grammar can be simulated by a Turing machine.

3 Deductive systems

A formal system is based on a formal language L, endowing it with a consequence

operation C. This operation C can be specified at different levels of abstraction. In the

most general sense C is just an arbitrary function transforming subsets of L into subsets

of L (2L→2L). C is said to be an inference operation if the set of consequences of a set

X comprises at least X:

X ⊆ C(X) (inclusion) .

Herre & Schroeder-Heister “Formal Languages and Systems” p. 5



The pair 〈L, C〉 is then called an inferential system. It is called a closure system if

furthermore

C(C(X)) ⊆ C(X) (idempotence)

and

X ⊆ Y ⇒ C(X) ⊆ C(Y ) (monotonicity)

are fulfilled. It is called a deductive system, if the consequences of a set X can be

obtained from a finite subset of X, i.e., if in addition to the three conditions mentioned,

C(X) ⊆
⋃
{C(Y ) : Y ⊆ X, Y finite} (compactness)

holds. Equivalently, formal systems can be described by a consequence relation X `A

between subsets of L and expressions of L. The four conditions mentioned then become

X ∪ {A} `A

X `A ⇒ X ∪ Y `A

(X `A for all A ∈ Y and Y ∪ Z `B) ⇒ X ∪ Z `B

X `A ⇒ Y `A for some finite Y ⊆ X .

If we confine ourselves to consequences from finite sets X, Y, Z, which in the case of

deductive systems is appropriate, these conditions are equivalent to

{A} `A (identity)

X `A ⇒ X ∪ {B} `A (thinning)

(X `A and {A} ∪ Z `B) ⇒ X ∪ Z `B (cut) ,

which are the basic structural (= logic-free) principles of Gentzen-style sequent systems.

Herre & Schroeder-Heister “Formal Languages and Systems” p. 6



Deductive systems can be given by means of a set ∆ of inference rules R, where

an inference rule is an (n + 1)-ary relation R ⊆ Ln × L. Any (A1, . . . , An, B) ∈ R (also

written as A1, . . . , An⇒B) is called an instance of R, and A1, . . . , An are said to be the

premisses and B the conclusion of that instance. If n = 0 then the rule ⇒A is called an

axiom. If we define C∆(X) to be the smallest set of expressions in L containing X and

closed under the rules in ∆ (i.e., if {A1, . . . , An} ⊆ C∆(X), then A ∈ C∆(X) for any

instance A1, . . . , An⇒B of a rule in ∆), then 〈L, C∆〉 is a deductive system, called the

rule-based system with respect to ∆. Conversely, the consequence relation of any

deductive system defines a set of rules with respect to which this system can be viewed

as a rule-based system. Like grammars, rule-based systems are as powerful as Turing

machines, i.e. they can be used to express any algorithm.

4 Logical calculi

In logic one considers deductive systems over a language L whose expressions, called

formulas, are built up from certain basic expressions by means of function symbols,

predicate symbols and logical operators. In propositional logic, which for reasons of

simplicity is considered in the following, formulas are built up from a subset P of L (the

set of ‘propositional letters’ or ‘propositional variables’) and a finite set S of symbols of

the alphabet Σ of L (the set of ‘propositional connectives’). Prominent connectives are

‘not’ (∼), ‘and’ (∧), ‘or’ (∨) and ‘implies’ (⊃). The two principal ways of specifying a

consequence operation C for such a system is (1) by presenting it as a rule-based system

and (2) by formally describing its consequence relation `. Other approaches modify or

extend the notion of consequence by considering (3) multiple consequences, (4)

Herre & Schroeder-Heister “Formal Languages and Systems” p. 7



consequence relations with restricted structural principles (‘substructural logics’) and

(5) the fine structure of proofs.

(1) For a rule-based system a set of axioms which one can start with and a set of

inference rules transforming formulas into other formulas are given. Axioms for a

fragment of propositional logic based on conjunction and implication (the so-called

‘positive implication-conjunction logic’) are, for example, all formulas of the form

A⊃(B⊃A)

(A⊃(B⊃C))⊃((A⊃B)⊃(A⊃C))

(A⊃(B⊃C))⊃((A∧B)⊃C)

((A∧B)⊃C)⊃(A⊃(B⊃C))

and inference rules all instances of the schema

A, A⊃B ⇒ B (modus ponens) .

Rule-based systems of this kind are often called Frege-Hilbert-style systems. Typically,

they contain a relatively long list of axioms and just a few inference principles (in

ordinary propositional logic just modus ponens). The consequence relation ‘X `CA’

corresponding to the consequence operator C is called ‘derivability from assumptions’.

(2) In contradistinction to this approach, Gentzen-style sequent-systems formulate

the desired properties of a consequence relation ‘X `CA’ as formal rules of inference. In

a sequent system of propositional logic based on the connectives ∧ and ⊃ they would

typically postulate the rules above of identity, thinning and cut as logic-free structural

Herre & Schroeder-Heister “Formal Languages and Systems” p. 8



rules, and as logical rules the following ones:

X ∪ {A} `B ⇒ X `A⊃B (⊃− introduction right)

X `A , X ∪ {B} `C ⇒ X ∪ {A⊃B} `C (⊃− introduction left)

X `A , X `B ⇒ X `A∧B (∧ − introduction right)

X ∪ {A, B} `C ⇒ X ∪ {A∧B} `C (∧ − introduction left) .

Formally, this is just a specification of a rule-based system with respect to a more

complicated language. Rather than a set of formulas L over P and S one considers a

language L′, whose expressions are ‘sequents’ of the form ‘X `A’, where A ∈ L with X

finite. The deductive system C ′ over L′ is then given by the rules stated. (Actually, to

capture the idea of finite sets X in expressions ‘X `A’, one has to consider lists instead

and to add special inference rules.) Intuitively, however, 〈L′, C ′〉 states features of the

relation `C which are intended to describe properties of the connectives of S. So a

Gentzen-style sequent-system is a rule-based system with a consequence relation `C ′

that can be viewed as a description of a deductive system with a consequence relation

`C such that X `CA if and only if ∅ `C ′(X `A).

(3) However, in the Gentzen tradition more complicated types of consequence

relations ‘`’ have been investigated that do not completely fit the pattern described.

One such approach is to consider consequence relations with a set of formulas appearing

on the right side of ‘`’ (multiple-conclusion logics, see MULTIPLE-CONCLUSION

LOGICS, sometimes also called Scott consequence relations). The intended reading of

such a set is disjunctive: ‘X `Y ’ means that under the assumptions X at least one

element of Y holds (although that cannot be formally derived!). Gentzen has proposed

this idea to formulate sequent calculi for classical logic in which each connective obtains

Herre & Schroeder-Heister “Formal Languages and Systems” p. 9



a ‘natural’ meaning via introduction rules for this connective on the right or left side of

the turnstile without having to consider special axioms or rules to guarantee the validity

of e.g. A∨∼A or ∼∼A⊃A. Negation and disjunction rules in this system can be

formulated as follows:

X ∪ {A} `Y ⇒ X `Y ∪ {∼A} (∼− introduction right)

X `Y ∪ {A} ⇒ X ∪ {∼A} `Y (∼− introduction left)

X `Y ∪ {A, B} ⇒ X `Y ∪ {A∨B} (∨ − introduction right)

X ∪ {A} `Y , X ∪ {B} `Y ⇒ X ∪ {A∨B} `Y (∨ − introduction left)

(Note the duality between these ∨-rules and the ∧-rules formulated above, the right and

left sides of the sequents being interchanged.) The tertium non datur { `A∨∼A} is then

obtained from {A} `{A} via `{A,∼A}. It is obvious that this notion of consequence

has strong elements of symmetry which are characteristic of classical logic.

(4) Another approach is to restrict the structural principles underlying deductive

systems. If in X `A we consider X no longer as a set but as a list of formulas, we may

discuss whether in all cases we want to assume that elements of X are permutable (i.e.,

X, A,B, Y `C ⇒ X, B, A, Y `C holds), or whether two identical formulas in X can be

contracted to a single one (i.e., X,A,A, Y `C ⇒ X, A, Y `C holds), or whether we want

to assume or reject the principle of thinning. Such considerations, which apply

analogously to the multiple-conclusion case lead to so-called substructural logics, which

have become important in Computer Science and Linguistics (but not only there), in

particular relevant logics (logics without thinning), contraction-free logics (the

multiplicity of formulas counts), linear logics (without thinning and contraction) and

Lambek logics (without thinning, contraction and permutation). If at the level of general

Herre & Schroeder-Heister “Formal Languages and Systems” p. 10



consequence relations we consider logics without monotonicity, we enter the general field

of non-monotonic logics which is of special interest in Artificial Intelligence, since it

helps to frame many common forms of reasoning.

(5) In proof theory (see PROOF THEORY) one is often interested in the structure

of the derivation that leads from a set of assumptions X to a conclusion A and in criteria

when two proofs of the same ‘derivability fact’ X `A are to be regarded identical, rather

than in whether X `A holds or not. Significant cases are calculi of natural deduction

(see NATURAL DEDUCTION). With respect to derivability, they can be described as

Gentzen sequent systems in the sense above. However, crucial features of the fine

structure of derivations such as the fact that different occurrences of the same formula

as an assumption may be treated differently, cannot be captured that way.

Nonetheless one should be aware that in cases (3) - (5) as well as in other cases, in

which extensions or modifications of the usual concept of a deductive system are

considered with respect to some ‘object logic’, the system in which this object logic is

described has itself the structure of a deductive system in the ordinary sense.

Sequent-calculi for a multiple conclusion consequence relation `, perhaps with

substructural features, are themselves rule-based systems. Even the structure of natural

deduction proofs can be characterized by a rule-based system, viz. a system of type

assignment for λ-terms. Therefore, it is not so much the specific type of consequence

relation studied which makes logical systems formal systems, but rather the fact that the

variety of logical systems can be described in terms of formal systems in the very

specific sense of a rule-based system.

Herre & Schroeder-Heister “Formal Languages and Systems” p. 11



References and further reading

Došen, K., Schroeder-Heister, P. (eds.) (1993) Substructural Logics, Oxford:

Clarendon Press. (Overview of logics with restricted structural rules.)

Frege, G. (1879) Begriffsschrift, eine der arithmetischen nachgebildete

Formelsprache des reinen Denkens. English translation in From Frege to

Gödel: A Source Book in Mathematical Logic (J. van Heijenoort, ed.),

Harvard University Press 1967. (The first formulation of a complete

axiom system for first-order logic.)

Gentzen, G. (1934/35) ‘Untersuchungen über das logische Schließen’, English

translation in The Collected Papers of Gerhard Gentzen (M.E. Szabo,

ed.), Amsterdam: North-Holland. (Gentzen’s doctoral thesis, in which he

created the notions of natural deduction and sequent calculi.)

Harrison, M.A. (1978) Introduction to Formal Language Theory, Reading

Mass: Addison Wesley. (Like Salomaa 1973 an advanced textbook of

formal language theory.)

Hopcroft, J.E., Ullman, J.D. (1979) Introduction to Automata Theory,

Languages and Computation, Reading Mass: Addison-Wesley.

(Elementary textbook of formal language theory.)

Kleene, S.C. (1952, 1974) Introduction to Metamathematics. Groningen etc.:

Wolters-Noordhoff et al. (Classic textbook of mathematical logic with

emphasis on logical calculi.)

Salomaa, A. (1973) Formal Languages, New York: Academic Press. (Like

Herre & Schroeder-Heister “Formal Languages and Systems” p. 12



Harrison 1978 an advanced textbook of formal language theory.)

Takeuti, G. (1975) Proof Theory. Amsterdam: North Holland. (Textbook of

Gentzen-style proof theory.)

Tarski, A. (1983) Logic, Semantics, Metamathematics. Papers from1923 to

1938, Indianapolis: Hackett. (Contains Tarski’s basic logical papers,

particularly the one of 1930 ‘On some fundamental concepts of

metamathematics’, in which he defined the abstract notion of

consequence for the first time.)

Wójcicki, R. (1988). Theory of Logical Calculi: Basic Theory of

Consequence Operations, Dordrecht: Kluwer. (A comprehensive

development of the theory of consequence relations.)

HEINRICH HERRE & PETER SCHROEDER-HEISTER

Herre & Schroeder-Heister “Formal Languages and Systems” p. 13


