
19Embedded Systems MAY 2000

B Y G E R A R D V I N K

D S P D E V E L O P M E N T

T
oday most DSP software used
in hand-held consumer applica-
tions is written in assembly. In
other DSP application areas

where power consumption and the
application’s footprint is of less interest,
the trend is that control code is written
in C and time-critical inner loops are
coded in assembly.

In the microcontroller market, C
gained favour over assembly-level pro-
gramming for well-known reasons. It
offered reduced development time,
portability and reuse of application code
and reduced maintenance cost. The
trade-offs were a limited penalty on code
size and run-time performance. As the
complexity and size of DSP applications
both continue to increase, the same
reasons that motivated the move from
assembly to C for microcontroller appli-
cations now apply to DSP.

There is, however, one major problem.
Standard C, as defined in C9X, is neither
designed nor suited to implement DSP
applications. DSPs use many hardware
architectural features to optimise system

performance and cost. Examples in-
clude:

� Support of multiple on-chip and
off-chip address spaces
� Special address modification types to
implement circular buffers and optimise
array indexing for FFT transformations
� Fixed-point arithmetic
� Accumulators with extended preci-
sion and saturation logic

Standard C supports none of the
above listed features. DSP C compiler
suppliers use two fundamentally differ-
ent approaches to give the C program-
mer access to these hardware features.
One group supports an extensive set of
intrinsic1 functions and pragmas2. The
other group introduces C-language ex-
tensions such as memory space
qualifiers, array and pointer qualifiers,
fixed-point data types and additional
keywords.

This article describes the basics of
both approaches and explains the pros
and cons with respect to the:

� Readability and maintainability of C
code
� Quality of error checking that can be
done by the compiler
� Effects on the debug process
� Portability of C code
� Effects on compiler technology and
code generation

DSP-C language extensions are ven-
dor specific, and no de-facto standard
exists. However, generally shared best-
practices are being created.

A formal specification of the DSP-C
language extensions can be downloaded
from www.tasking.com/specifications/
DSP-C.

This DSP-C derivative, an extension to
ISO/IEC IS 9899:1990 has been sub-
mitted to ISO/IEC as background
material for new functionality that can
be included in new versions of the C
standard. This article describes the
reasoning behind the introduction of a
subset of the DSP-C language extensions
in an informal ‘explain by example’
approach.

If you want high-performance code for digital signal processors, native C is

not the best choice. But it is possible to tune code through extensions to

the language. The extensions supported by tools on the market fall into two

camps and this article explores how the tools handle extensions and where

the pitfalls lie.

Programming DSPs
using C: efficiency
and portability trade-offs

Si vous recherchez un code performant pour les processeurs de signaux

numériques, le langage C natif n'est pas le choix qui s'impose. Mais il est

possible d'affiner ce code par l'ajout d'extensions au langage. Les

extensions supportées par les outils disponibles sur le marché peuvent

être rangées dans deux catégories ; cet article étudie la manière dont ces

outils traitent les extensions et quels sont les pièges à éviter.

Wenn ein besonders leistungsfähiger Code für digitale Signalprozessoren
gewünscht wird, stellt natives C nicht die beste Wahl dar. Es ist jedoch
möglich, den Code über Erweiterungen dieser Programmiersprache zu
optimieren. Die Erweiterungen, die von den am Markt befindlichen Tools
unterstützt werden, können in zwei Kategorien unterteilt werden. Dieser
Artikel untersucht, wie die Tools mit den Erweiterungen verfahren und wo die
Fallstricke liegen.

F
R

A
N

Ç
A

IS

D
E

U
T

S
C

H

20 MAY 2000 Embedded Systems

B Y G E R A R D V I N K

D S P D E V E L O P M E N T

Architectural features of DSPs
DSP-specific architectural features are
meant to allow high data throughput
while keeping the device costs low. When
we look at the historical enhancements
of DSP, we can consider device architec-
ture and device technology separately.
The basic DSP structures were designed
and well understood before the semi-
conductor technology was available to
support them.

DSP performance increases yearly,
due to improved device technology,
whereas the basic architecture of DSP
remains quite stable. The introduction
of very long instruction word (VLIW)
concepts to increase the level of instruc-
tion parallelism is one of the few recent
shifts in device architecture. However,
before we discuss DSP-C language
extensions, we have to understand the
differences in hardware architecture
between DSPs and general-purpose
processors. The most visible differences
are in the memory system, ALU design
and the address generation logic.

Typically, DSPs have very complex
memory systems. Based upon the organ-
isation of the memory system, computer
architectures are classified as either Von
Neumann or Harvard architectures. The
Von Neumann architecture is used by
most general-purpose processors, with
the exception of a few microcontrollers,
and does not have separate data memo-
ries. The Harvard architecture uses
separate memory spaces for the program
and the data. All early, and most current
DSPs are based on the Harvard archi-
tecture. This is because it allows a
program instruction and a data word
access at the same time.

In real-time signal processing, the
efficient flow of data into and out of the
processor is critical. The data memory is
often further subdivided into multiple
memory spaces to allow access to multi-
ple data words within one cycle. Memory
can be located either on-chip or off-chip.
Typically, high-speed on-chip memory
is limited in size and is used to store
instructions and data used by inner
loops that must meet hard real-time and
throughput criteria. Low-cost, relatively
slow off-chip memory contains the in-
structions and data associated with
control code to which less strict time

O
n a 16bit architecture, num-
bers are usually represented
in what is known as Q15
format. The number follow-

ing the Q represents the quantity of
fractional bits.

This implies that in Q15 format,
each number is represented by one

sign bit, 15 fractional bits and no inte-
ger bits.

The rules of forming fixed-point
numbers are easily understood by
studying the Figure 1, in which some
4bit Q3 numbers are shown. Q3, for
example, means that there is one sign
bit, 3 fractional bits and no integer bits.

Forming fixed-point numbers

constraints apply. In addition to the
various data spaces, there is often a
dedicated address space to which
peripheral registers are mapped.

If you browse through the data books
of DSP manufacturers, you will see a
division between fixed-point and float-
ing-point devices, and that the bulk of
the processors fall in the fixed-point cat-
egory. Fixed-point processors are often
16 or 24bit devices, whereas floating-
point processors are usually 32bit
devices. Fixed-point processors are
popular because they are far cheaper
than their floating-point counterparts
and most end-user applications can be
implemented using these devices. Low-
cost fixed-point processors are generally
priced at roughly 20% of the lowest cost
floating-point device.

Many inner loops of DSP algorithms
use calculations in the form
A+=B[N]*C[N], otherwise known as a
multiply-accumulate (MAC) operation.
Note that two source data items have to
be read simultaneously to execute this
operation in one cycle. Although the
data items B and C are typically single-
precision (often 16 or 24bit in size), the
intermediate value (A) is stored in a
dual-precision accumulator (32 or 48bit)
to avoid cumulative rounding errors
when successive MACs are processed in a
loop.

Typically, DSPs have a mechanism that
protects against overflow. An additional
number of so called guard bits and satu-
ration logic is added to the accumulator.
Guard bits provide additional precision
and, if overflow still occurs, the satura-
tion logic fills the accumulator to its
maximum or minimum value, but pre-
vents it from wrapping around through
zero in the way that a conventional gen-
eral-purpose processor would.

DSPs typically support different
address modification types for comput-
ing addresses. In addition to standard
linear addressing, modulo, and bit-
reversed3 addressing are supported.
Modulo addressing is used to efficiently
handle buffering of incoming and out-
going signals. In the digital world, a
signal is a data stream that has to be
stored in a buffer before and after it is
processed by the DSP. Modulo address-
ing allows you to define a fixed size
region of memory as a buffer. When the
modulo-buffer boundary is reached, the
address is wrapped-around without zero
computation overhead. The hardware
may place alignment restrictions on
buffers that are indexed using modulo
addressing to simplify the hardware.

The basic mathematical model for
processing digital signals is based on the
Z-transform (the digital version of the
Laplace transform) and the fast Fourier

Figure 1: Format of Q3 fixed-point numbers

MSB LSB

22 MAY 2000 Embedded Systems

B Y G E R A R D V I N K

D S P D E V E L O P M E N T

transform, which provides an efficient
method to determine the frequency
spectrum of any signal. An implementa-
tion of an FFT algorithm requires two
data tables, one for the input values,
the other for the output values. To
obtain the output of, say, a four-point
FFT in ascending order, the input values
input[N] must be loaded in the following
order:

N={0,2,1,3}.

Address calculations for a four-point
FFT introduce minimal computational
overhead, but this changes when com-
puting a 1024-point FFT. The initial
values are loaded in ascending order
(linear addressing), and bit-reversed
addressing is used to retrieve the values
in the required shuffled order.

DSP architectures typically place
alignment and size restrictions on
buffers that are accessed via bit-reversed
addressing. If a high-level programming
language supports modulo and bit-
reversed addressed buffers, then the
compiler (in conjunction with the loca-
tor) should properly align the buffers
in memory.

Assembly language versus C
Today, the majority of DSP applications
that ship in high volume are written in
assembly language. Programming in
assembly language has many advantages.
It allows you to implement optimised
memory-usage patterns to avoid the
need for off-chip memory or to reduce
the costs of off-chip memory.

You can tune DSP algorithms towards
the characteristics of any DSP architec-
ture of choice, which allows you to use a
cheaper derivative of the given architec-
ture. In cases where power consumption
is a concern, the structure of the assem-
bly code can be adjusted towards this re-
quirement. For example, to gain power

reductions, you will typically avoid
using external memory, keep variables
in registers, use hardware loop con-
structs, and tune your operating clock
frequency.

However, applications are increasing
in size. Three years ago, a typical
cellular phone contained mainly signal
processing-related code, whereas mod-
ern cell phones now support email
and Internet facilities. Assembly code
cannot be ported to new chip architec-
tures easily, which may be needed to
fulfil new customer requirements in
time. Generally speaking, it is more
difficult to maintain and add new
functionality to a program written in a
low-level language.

VLIW-based DSP architectures with
exposed pipelines are a challenge for the
assembly programmer. Writing legal in-
struction schedules that fully exploit the
parallelism offered by the hardware is a
nightmare. Typically, these processors
implement deep pipelines. As a result,
registers and memory locations are up-
dated a few cycles after an instruction is
in the execute stage and dependencies
between functional units limit the
combination of legal operations in one
instruction.

Because of the instruction-scheduling
complications, VLIW processors are de-
signed to be programmed using a high-
level language. Often, compiler and
hardware design are done in parallel,
and the hardware design may be adjusted
to bypass the restrictions in the available
compiler optimisation technology.

ANSI C and DSP extensions
We have seen that there are many archi-

tectural differences between a general-
purpose processor and a DSP. C was
designed in the 1970s, before the
first single-chip DSP was developed.
Although C was meant to be used to
implement applications that may inter-
act with the underlying hardware, such
as operating systems and device drivers,
it lacks support for many of the DSP
characteristics described above. The list
of missing features includes support for:
� Multiple memory spaces
� Fixed-point data types and arithmetic
� Saturation
� Data types that map on accumulators
with extended precision
� Circular buffers
� Bit reverse addressing

This section describes how the missing
features described above can be sup-
ported at the C programming level,
either by the introduction of C-language
extensions or via intrinsics.

Fixed-point types and saturation
C9X defines the integral data types
char, short, int, long and long long
in signed and unsigned format, and the
floating-point data types float, double
and long double. No data types are
defined to handle fixed-point arithmetic.

Various compiler vendors have solved
this problem by introducing new data
types: short _fract4, _fract, and
long_fract (see Listing 1). Unsigned
fixed-point types are normally not de-
fined, as these are of little use in DSP
algorithms and are therefore not sup-
ported by the instruction set of any DSP.
The unary operator ~ and the binary
operators &, ^ and | are not allowed in
fixed-point expressions. The _sat quali-
fier is introduced to specify that satura-
tion must be applied whenever a result is
stored in a variable of this type.

Note the new r suffix that is used in
Listing 1. The r suffix specifies that
the constants 0.625r and 0.875r are
fixed-point numbers. Without the r
suffix, the compiler would have assigned
data type double to the constants

Fixed-point arithmetic using language extensions

fract _sat sf;

_fract f;

f = 0.625r;

sf = 0.875r + f; // sf=1 due to saturation

L
IS

T
IN

G
: 1

Fixed point arithmetic using intrinsic functions

int sf, f;

f = 0x5000; // bit pattern that coresponds to 0.625

sf = _sadd(0x7000, f); // sf=1 due to saturation

L
IS

T
IN

G
: 2

25Embedded Systems MAY 2000

B Y G E R A R D V I N K

D S P D E V E L O P M E N T

0.625 and 0.875. This could result in additional type conver-
sions and possible loss of accuracy.

The alternative way to implement fixed-point arithmetic is to
store the data in a variable of an integral type and use intrinsic
functions to perform operations in fixed-point format. This is
shown in Listing 2.

Intrinsic function int _sadd(int src1, int src2) adds
src1 to src2 and saturates the result. The panel on creating
fixed-point numbers explains why the bit pattern of integer
value 0x5000 (hexadecimal) equals 0.625 in fixed-point format.

To reduce complexity, the language extensions versus
intrinsics approach will be compared on a one-by-one basis.
First, we focus on readability of the code. Given the variable
declarations in Listing 1, you know that expressions are evalu-
ated using fixed-point arithmetic and that saturation is applied
whenever a value is assigned to variable sf. In Listing 2, expres-
sions are evaluated using integer arithmetic; however, the _sadd
intrinsic specifies that fixed-point arithmetic is applied on
variables of type integer and that saturation is applied when the
result is returned. You have to read the whole function body
before you know whether integer or fixed-point arithmetic is
applied.

When the compiler parses the input file, it will search for
errors and for suspicious constructs that could result in run-
time errors and warn the programmer when necessary. Type
information plays an important role in the error checking
process. In Listing 2, the type information is not correct, as the
compiler assumes that the variables are of type integer,
whereas the programmer handles them as fixed-point types.
The compiler therefore cannot perform error checks as rigor-
ously as in Listing 1.

The debugger does not get the correct type information
either. For instance, if you inspect the value of variable f in
Listing 2, the debugger will show the value of integer f in
decimal format and print f=20480. You have to remember
that f represents fixed-point data and then convert the bit
pattern to a fixed-point number.

During the compilation of Listing 1, the compiler can place
the correct type information in the object file and the debugger
can select the appropriate display format based on the type
information. As a result, the value of f can be shown in the
correct format f=0.625.

Suppose you want to prototype your source code on a PC,
either under Microsoft Windows or Linux, using the native
Visual C or gcc compiler. These compilers do not support the
given language extensions, nor do they support the _sadd
intrinsic function.

To compile Listing 1 on the PC, you have to create two
defines. First, use #define _fract float to convert all fixed-
point arithmetic to floating-point. Second, use #define _sat to
let the pre-processor remove the _sat qualifier. Note that, due
to these modifications, the simulation on the PC is accurate, but
not bit-accurate.

If bit-accurate simulations are required, we can introduce
more complex type definitions and macros. This way the read-
ability of the code degrades to a quality-level equal to what is
shown in Listing 2. However, the compiler and debugger will

26 MAY 2000 Embedded Systems

B Y G E R A R D V I N K

D S P D E V E L O P M E N T

have correct type information, which will
ease the debug process.

To simulate Listing 2 on the PC, you
have to write code that implements the
functionality offered by the _sadd in-
trinsic and all other intrinsics that you
used (some DSP compilers offer over
100 intrinsic functions). This approach
will be successful if you have carefully
designed your code so that it will run
bit-accurate simulations on a PC. For ex-
ample, if you shift a fixed-point number
by writing f=f<<1 instead of calling the
appropriate intrinsic, your simulation

will no longer be bit-accurate. In addi-
tion, bit accuracy is only achieved for
fixed-point operations.

If you use a 24bit DSP, all integer
arithmetic in your simulations on a
host system will be done in 32bit
precision instead of 24bit. Also, the
simulation of floating point arithmetic
will not be exact, as the floating-point
library used by the DSP is typically
optimised to achieve maximum run-
time performance and will not be
fully compliant with the IEEE754
floating-point format used on the PC.

Some compiler vendors offer a fixed-
point data type that matches the size of
the accumulator including the guard
bits. This type is often named _accum. In
production code, you do not want to
copy the guard bits of the accumulator
to memory, simply because it would slow
down execution. However, if you are de-
bugging the software, the compiler is
often not allowed to apply all of its
optimisations. Therefore, intermediate
results may be copied to memory. How-
ever, if the guard bits are not copied to
memory in optimised code, the debug
version of the program may behave
differently from the production version.

Memory Spaces
Most DSPs have separate memory spaces
for code and data, and often the data
space is further subdivided to enable the
DSP to access multiple memory locations
simultaneously. The instruction set typi-
cally supports a limited set of instructions
and addressing modes to access data

Pointers to code and data space

char *rom = "in ROM" // pointer to code space

char *ram = {'i','n',' ','R','A','M','\0'};

// pointer to data space

printf("%s, %s", rom, ram);

L
IS

T
IN

G
: 3

28 MAY 2000 Embedded Systems

B Y G E R A R D V I N K

D S P D E V E L O P M E N T

stored in code space (ROM), whereas the
data memory (RAM) is supported by a
large set of instructions and addressing
modes. To minimise the amount of RAM
memory used by your application, it is
desirable to locate constants and string
literals in code space only.

In Listing 3, variable rom points to a
string literal that can be located in code
space. According to the C standard, a
string literal may be located in read-only
memory, but does it not have to be.
Variable ram points to a character array
located in data space. Again, according to
the C standard, it shall be possible to
assign new values to the initialised array.
Therefore, the array must be located in
read-write memory.

You see the problem here: two pointers
are passed to the printf() function. As
the pointers point to different memory
spaces, different instructions are re-
quired to retrieve the data from memory.
A generic pointer concept in which the
memory space is encoded in the value of
the pointer solves this problem. However,
you have to pay for this elegant concept
in terms of increased code size and data
size, and reduced run-time performance.

When a pointer is de-referenced, first
a test that identifies the memory space

the pointer addresses is required, fol-
lowed by a jump to the code fragment
that contains the appropriate instruc-
tions to retrieve the data from memory.
This overhead results in increased code
size. The data size of a pointer also
increases, as a pointer consists of two
fields: the memory space and the offset
within this space. An alternative solution
is that all constant data is copied to data

memory by the start-up code5. As a
result, the constant data is in memory
twice, so your application consumes
more data memory than strictly neces-
sary. However, compared to the generic
pointer concept, the overall memory
usage of the application decreases, as all
data pointers (in contrast to function
pointers) refer to data space only.

Memory-space qualifiers are used to
qualify a pointer to one particular mem-
ory space. In the FIR filter shown in List-
ing 4, two arrays are defined.

The samples array is located in mem-
ory space _X, the coeffs array is located
in memory space _Y. The advantage of
locating the arrays in different memory
spaces is that the DSP can access both
spaces at the same time, minimising the
processor stalls due to memory latencies.

If the compiler does not implement
memory space qualifiers as shown in
Listing 4, the compiler may provide a
pragma for this purpose.

Alternatively, a pragma may be avail-
able to define new sections, and subse-
quently defined variables are located in
the new section. In the locator descrip-
tion file, a section name is associated
with a memory space.

Note that in the latter case, the com-
piler does not recognise that variables are
located in, and pointers point to different
memory spaces. This is a big disadvan-
tage for the compiler optimisers. In this
situation, the optimisers have no infor-

FIR filter using C-language extensions

#define FIR_ORDER 20

_fract _X _circ samples[FIR_ORDER];

_fract _Y coeffs[FIR_ORDER];

/* N

* Computes result = SUM(coef[i] * sample[T-i])

* i=0

*/

void fir_filter(int n)

{

_fract _X _circ *buffer_p = samples;

long fract result = 0;

int i;

buffer_p += n;

for(i = 0; i < FIR_ORDER; i++)

{

result += *buffer_p-- * (long _fract)coeffs[i];

}

result = _round(result);

}

L
IS

T
IN

G
: 4

Pointer to
circular buffer

x(n)
x(n-1)

x(n-2)

x(n-r)

Figure 2:

Logical

structure of

circular array or

buffer

30 MAY 2000 Embedded Systems

B Y G E R A R D V I N K

D S P D E V E L O P M E N T

mation about memory-latency related
dependencies between variables, which
prevents the compiler from being able to
generate an ‘ideal’ instruction schedule.

Circular buffers
Most DSP filter algorithms process long
lists of data that must be multiplied in
the correct order. Although the coeffi-
cient values are static, the input data
changes every sample period (for exam-
ple, the x(n) value for one sampling pe-
riod becomes x(n-1) in the next, then
x(n-2), until it drops off the end of the
delay chain). Circular buffers provide an
efficient way to handle these input lists.
New data that is placed in a circular
buffer is placed one position above the
previous sample.

If the buffer is filled to the top, the
next sample will replace the first buffer
location and so on. Typically, DSPs sup-
port modulo address modification to
implement circular buffers with zero
computation overhead.

ANSI C does not support circular
addressing. So, many DSP compiler ven-
dors have introduced the _circ pointer
and array qualifier. It can be applied to
one-dimensional arrays only.

In Listing 4, the input for the FIR filter
is placed in array sample, which is de-
fined as a circular buffer, represented in
Figure 2. It is located in _X memory and
contains 20 items of _fract. Argument
n identifies the most recent entry in the
samples buffer.

The first iteration of the for loop
calculates result += sample[n] *
coeffs[0]; the second iteration calcu-
lates result += sample[n-1] * co-
effs[1]; and so on.

Finally, let’s take a look at debugging
aspects of circular buffers. Taking Listing
5 as an example, suppose you are single
stepping through the loop and you are
in the sixth iteration (that is a=6). What
would you expect to see if you ask the
debugger to show the value of x[a]?

Various answers are possible. First,
‘array subscript out of bounds’ is possi-
ble, as the array contains five items.
Second, ‘x[6]=42031’ is also possible, as
the debugger could read the data from
outside of the array boundaries and re-
trieve the value of variable dummy in-
stead.

Third, the most desirable answer is
‘x[6]=6’. If the compiler passes the type
information of int _circ x[5] to
the debugger, the latter knows that vari-
able x is of type circular array of integer
with size of 5, and it therefore can
deduce that it has to read the memory
location associated with x[1]. The same
reasoning as applied to circular buffers
(that is, modulo address modification)
can be applied to bit-reversed address-
ing.

Conclusions
Standard C does not allow the applica-
tion programmer to exploit the capabil-
ities of the DSP hardware. However,
either introducing DSP-C language
extensions or implementing intrinsic
functions in the compiler can solve this
problem. The author considers DSP-C
language extensions to be the superior
solution because of the following rea-
sons:

� This improves the readability of the
source code.
� The additional type information
allows the compiler to perform thor-
ough static error checks.
� The compiler optimizers can use the
additional type information to fully ex-
ploit the address modification types
supported by the DSP architecture and
to create more aggressive instruction
schedules.
� Debugging the source code will be
easier. First, because the source code is
easier to read and understand. Second,
since the debugger has correct type in-
formation the value of variables are
displayed in the correct format and
when appropriate the debugger can
apply modulo and bit-reversed address
modifications.

� Porting the source code to a new DSP
architecture will take less effort.

The author encourages the readers to
re-implement Listing 4 without using
any DSP-C language extensions. Next,
you can use the pragmas and intrinsics
offered by the DSP compiler of your
choice to optimise the code. Afterwards,
decide for yourself whether you agree
with the above conclusions.

� Gerard Vink studied mechanical engineer-
ing and computer science. He began his career
developing CAD and computer graphics soft-
ware. He has worked for Tasking since 1988.
Before obtaining his current position as R&D
manager, he was active as a consulting engi-
neer and project manager.

Notes
[1] An intrinsic function is a function
that is automatically in-lined by the
compiler. The code associated with the
intrinsic function is built into the com-
piler. In contrast to in-line assembly func-
tions, intrinsic functions are inserted
into the intermediate code representa-
tion used by the compiler and do not
interfere with compiler optimizations.
[2] A pragma is a preprocessing directive
of the form: #pragma pragma-token-list
new-line and causes the compiler to
behave in an implementation-defined
manner. Pragmas can give directions to
the code generator of the compiler.
[3] Also known as ‘reversed-carry’
addressing.
[4] Fract refers to fractional (or fixed-
point) type which is a number in the
range of [1,-1]
[5] The assembly code that is executed
by the system before the main() function
is invoked.

Debugging aspects of circular buffers

int _circ x[5];

int _circ *p = x;

int dummy = 42031;

for (int a=0; a < 7; a++)

{

*p = a; // x[0]=5; x[1]=6; x[2]=2; x[3]=3; x[4]=4;

}

L
IS

T
IN

G
: 5

