
Department of Computing and Software
Faculty of Engineering — McMaster University

Commonality Analysis for Mesh Generating Systems

by

S. Smith and C. H. Chen

C.A.S. Report Series CAS-04-10-SS
Department of Computing and Software October 2004
Information Technology Building
McMaster University
1280 Main Street West Hamilton, Ontario, Canada L8S 4K1

Copyright c© 2004, Smith, Chen

Commonality Analysis for Mesh Generating
Systems

Spencer Smith∗, Chien-Hsien Chen

Technical Report CAS-04-10-SS
Department of Computing and Software

McMaster University

October 25, 2004

Abstract

This report presents a commonality analysis for mesh generating systems with
the intention that the commonality analysis can be used to facilitate develop-
ment of meshing software as a program family. The document reviews both
the methodology of commonality analysis and the details of meshing systems.
The report also reviews arguments in favour of development of mesh generators
as a program family. The commonality analysis itself consists of the following:
i) terminology and definitions; ii) commonalities, or features that are common
to all potential family members; iii) variabilities, or features and characteris-
tics that may vary among family members; and, iv) parameters of variation,
or the potential values that can be assigned to the variabilities. The docu-
mentation of the above items for meshing software is clarified by decomposing
each item into subsections on mesh generation, input, output, nonfunctional
requirements, and, where appropriate, system constraints.

Keywords: Commonality analysis, mesh generation, program family.

∗Computing and Software Department, McMaster University, smiths@mcmaster.ca

1

Contents

1 Introduction 2

2 Overview 3
2.1 Commonality Analysis . 3
2.2 Mesh Generators . 5

3 Terminology and Definitions 9
3.1 Software Engineering Related Definitions and Acronyms 9
3.2 Mesh Generation Related Definitions and Acronyms 10

4 Commonalities 12
4.1 Mesh Generation . 13
4.2 Input . 15
4.3 Output . 15
4.4 Nonfunctional Requirements . 16

5 Variabilities 17
5.1 Mesh Generation . 18
5.2 Input . 22
5.3 Output . 24
5.4 System Constraints . 26
5.5 Nonfunctional Requirements . 26

6 Parameters of Variation 27
6.1 Mesh Generation . 28
6.2 Input . 34
6.3 Output . 36
6.4 System Constraints . 38
6.5 Nonfunctional Requirements . 38

7 Issues 39

8 Appendix: Topology Patterns for Structured Meshes 43

CAS-04-10-SS 2

1 Introduction

Mesh generating systems are well suited to development as a program family because they
fit Parnas’s definition of a program family: “a set of programs whose common properties
are so extensive that it is advantageous to study the common properties of the programs
before analyzing individual members” (Parnas, 1976). Developing mesh generating sys-
tems as a program family is advantageous because mesh generators share many common
features, or commonalities. Furthermore, when there are differences between systems, the
variabilities between them can be systematically considered. The purpose of this document
is to record these commonalities and variabilities and show the relationships between them,
and thus facilitate the specification and development of mesh generator program family
members. This document will be valuable in all future phases of system development and
analysis. For instance, the requirements documentation for any mesh generator will use
the commonality analysis, since the requirements should refine the commonalities, which
are shared requirements of all mesh generators. Moreover, the design of any future system
will use this documentation to facilitate consideration of the variabilities, so that likely
changes can be made to the system with a minimal amount of work.

The scope of the commonality analysis presented here can be considered both from the
point of view of mesh generating systems and from the point of view of software engineering
methodologies. From the mesh generator perspective, the starting point for the current
document is the commonality analysis conducted by Chen (2003). However, the scope of
the current document is broader than that of Chen (2003), which was restricted to two-
dimensional meshes and did not consider non-conformal, hybrid or mixed meshes. The
current commonality analysis is intended to cover all mesh generators that are targeted
at finite element applications. Meshes for cartography or other uses are not explicitly
considered, although much of the information in this document does overlap with other
mesh uses. With respect to software engineering methodologies, the scope of the current
report is restricted to informal methods, with the intention that the informal requirements
will form a starting point for later development and refinement by formal methods.

The first section below provides an overview of the program family of mesh generators,
by reviewing what is involved in a commonality analysis and the basics of mesh generating
systems. After this, the basic terminology and definitions necessary for understanding the
remainder of the document are provided. The definitions include terms used in describing
a commonality analysis and terms that are used in defining the characteristics and prop-
erties of meshes. The next three sections consist of the lists of commonalities, variabilities
and parameters of variation, respectively. These three sections form the heart of the docu-
mentation and include an extensive set of cross-references to demonstrate the relationships
between the different items. The final section provides information on unresolved issues.

CAS-04-10-SS 3

2 Overview

This section provides both an overview of the process of commonality analysis and of mesh
generation. The subsection on commonality analysis briefly introduces this topic, along
with references that can be searched for further information. The subsection on mesh
generators outlines the following: i) the basics of mesh generation, ii) the scope of the
current analysis, iii) the overall philosophy that has been adopted for the commonality
analysis, and iv) the arguments in favour of the development of mesh generators as a
program family.

2.1 Commonality Analysis

In some situations it is advantageous to develop a collection of related software products
as a program family. The idea is that if the software products are similar enough, then
it should be possible to predict what the products have in common, what differs between
them and then reuse the common aspects and thus support rapid development of the
family members. The idea of program families was introduced by Dijkstra (1972) and later
investigated by Parnas (Parnas, 1976, 1979). More recently, Weiss (Weiss, 1997, 1998;
Ardis and Weiss, 1997) has considered the concept of a program family in the context of
what he terms Family oriented Abstraction, Specification and Translation (FAST) (Cuka
and Weiss, 1997; Weiss and Lai, 1999).

In the approach advocated by Weiss, the first step is a commonality analysis. This
analysis consists of systematically identifying and documenting the commonalities that all
program family members share, the variabilities between family members and the termi-
nology used in describing the family. A commonality analysis provides a systematic way of
gaining confidence that a family is worth building and of deciding what the family members
will be. A commonality analysis document provides the following benefits (Weiss, 1997,
1998):

1. A starting point for the design of a domain specific languages (DSL): Once a DSL,
or application modelling language, is developed the program family members can be
rapidly generated by specifying a given family member using the language.

2. A basis for a common design for all family members: When the software engineers
come to designing the individual family members, they can take advantage of the
commonalities to reuse code. Moreover, the variabilities can be considered in the
design so that they can be easily accommodated. One approach to the design may
be to decompose the system into components that can each be customized by speci-
fication of values for its various parameters, where the parameters correspond to the
parameters of variation identified in the commonality analysis document.

3. A historical reference: This document records the important issues concerning the
scope and the nature of the family (as well as some unsolved issues) to facilitate the
involvement of the participants in maintaining and evolving the family.

CAS-04-10-SS 4

4. A basis for reengineering a domain: Existing projects may not have been developed
using software engineering methodologies. The projects can be systematically reor-
ganized and redesigned with the aid of a commonality analysis to unify the existing
products.

5. A basic training reference for new software developers: This document provides the
necessary basic information for a new team-member to understand the family.

The next section will show that the above uses of the commonality analysis document
will be beneficial for the development of a program family of mesh generators. The com-
monality analysis will benefit all subsequent stages in the software development process.
For instance, as mentioned in the introduction, the commonalities will act as requirements
that will be the starting point for writing a software requirements specification. The com-
monalities will be refined into specific requirements by fixing the value of their associated
variabilities. The change in the values of the variabilities then corresponds to the change
from one program family member to another.

As commonalities and variabilities are requirements, they should express “What” func-
tionalities and qualities the system should have, and not mention “How” these requirements
are to be accomplished. That is, the commonalities and variabilities should not involve
design decisions. The design decisions will be made after the requirements for a family
member have been specified. The one exception to this is system constraints, which are
requirements that explicitly make design decisions.

Besides the “What” versus “How” test, there are other tests that can be used to review
commonalities and variabilities, as proposed by Weiss (1997). One such test is the “what
is ruled out” test. This test determines if a commonality or variability actually makes a
decision because if no alternatives are ruled out then no decision has really been made.
Another test is the “negation” test. If the negation of a decision represents a position
that someone might argue for, then the original decision is likely to be meaningful. For
instance, the statement that “the software should be reliable” has a negation that no one
would likely argue for and thus the statement does not represent a good characterization
of a goal for the system.

In Weiss (1997) the stages of a commonality analysis are described in a systematic way.
The stages include the following: prepare, plan, analyze, quantify and review. The stages
are completed through the aid of a moderator and a series of meeting and preliminary
documents and documentation reviews. Although the systematic approach advocated by
Weiss has its advantages, for the case of writing a commonality analysis document for mesh
generating systems it was decided that a less structured approach is feasible. Mesh genera-
tors are simpler than other software systems in the sense that they have fewer interactions
with the environment. Also, the theory of mesh generation has a solid mathematical ba-
sis that can be used to remove some of the ambiguity that Weiss’s approach is aimed
at reducing. Therefore, the approach adopted here is to revise the original commonality
analysis document produced by Chen (2003) and then make the new document available
to others for review. The new document will be maintained in a concurrent versioning

CAS-04-10-SS 5

system repository so that multiple authors can work on it, and more importantly, so that
the documentation’s revision history can be tracked and the documentation can be rolled
back to an earlier version if necessary.

2.2 Mesh Generators

A mesh is a discretization of a geometric domain into small simple shapes, such as line
segments in 1D, triangles or quadrilaterals in 2D, and tetrahedral or hexahedra in 3D.
Meshes are employed in many application areas. For instance, in geography and cartog-
raphy, meshes are used to give compact and precise representations of terrain data (Bern
and Plassmann, 2000). In computer graphics, most objects are first reduced to meshes
before being rendered to the screen. As previously mentioned the principal application of
interest for the current study is the finite element method, where meshes are essential in
the numerical solution of partial differential equation arising in physical simulation (Bern
and Plassmann, 2000). Typically, the first step in a finite element analysis is the generation
of a finite element mesh. The output of the mesh generation program becomes the input
to a finite element program.

A simple 2D mesh of quadrilateral elements, which could be used for analysis of a solid
mechanics problem, is illustrated in Figure 1. The files created by a mesh generator must
describe the following: how the domain is decomposed into cells (or elements); the material
properties; and the boundary conditions on the domain, with respect to applied tractions
(e.g. τx), prescribed displacements (e.g. ∆y) and fixity (e.g. roller versus pinned versus
free). The mesh shown in Figure 1 is an example of a structured mesh for a rectangular
domain. In many practical problems the domain does not have such a simple geometry
and the cell topology is no longer regular, which means an unstructured mesh must be
adopted. Figure 2 shows an example of a 3D unstructured mesh for a magnetron. (A
magnetron is a diode-type electron tube that can be used to produce microwave energy.)
The magnetron mesh, along with other examples, can be found at the following web-page:
http://www.geuz.org/gmsh/gallery/

In the majority of cases, the tedious preparation and checking of a mesh are too de-
manding to do manually, especially when the model description contains several thousand
or more elements. Therefore, automatic generation of meshes, using a mesh generator,
is of obvious practical value for reducing the workload. As a result, the user will only
need to concentrate on a few input parameters and rely on a mesh generator to pro-
duce a corresponding mesh. The occurrence of human errors can thus be greatly dimin-
ished (Zienkiewicz and Phillips, 1971). The quality of the mesh, in terms of the size, shape
and placement of the elements, is critical for the success of any finite element analysis;
therefore, careful thought should occur before one proceeds to the implementation of a
mesh generating system.

The suitability of the concept of a program family for mesh generating systems is argued
in Chen (2003) and Smith and Chen (2004) by showing that mesh generating systems meet
the three hypotheses for a program family as proposed by Weiss (1997):

CAS-04-10-SS 6

x

vi

yy

1

20

2

3

4

1

i

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6

7

8

9

10

11

12

W

L

ui

y

x

Figure 1: Example structured finite element mesh

Figure 2: Example unstructured finite element mesh by P. Lefèvre

CAS-04-10-SS 7

The Redevelopement Hypothesis: This hypothesis requires that most software devel-
opment involved in producing the family should be redevelopement, which means
that there should be a significant portion of common requirements, design, and
code between the family members. For mesh generators there are examples of large
general purpose codes that are constantly redeveloped over their lifetime, such as
QMESH (Jones, December 1975) and CUBIT (Blacker et al., May 1994; Tautges
et al., 1995) from Sandia National Laboratories. In the case of small mesh generator
codes redevelopment is also common, as most small codes are based on modification
of existing code. Although different in the specific details, all mesh generators can
be abstracted as: input information then calculate a mesh discretization and finally
output the results.

The Oracle Hypothesis: This hypothesis requires that the types of changes that are
likely to occur during the system’s lifetime are predictable. This is certainly the case
for a mesh generators where one can determine likely changes by consulting the large
body of literature and mathematical theories on the topic. Moreover, there are many
example systems that show how the software can evolve over time.

The Organizational Hypothesis: According to the organizational hypothesis, the pro-
gram to be developed using the program family approach should be one that allows
designers and developers to organize the software, as well as the development effort,
in a way that the predicted changes can be made independently. If this assump-
tion holds, then a predicted change will require changing only a few modules in the
system. This hypothesis, however, is challenging for mesh generating systems.

For some of the likely changes, such as the changes in the user interface, visualization,
and output format, the changes can be dealt with in an elegant way. However, for
other types of the changes, like the use of different mesh generating algorithms and
the use of different optimization and smoothing algorithms, the goal of restricting
the change within one module is difficult to meet because a mesh data structure is
inevitably assumed by these algorithms. However, research on organizing the system
so that predicted changes can be made independently has begun (Berti and Bader,
1998; Chen, 2003; ElSheikh et al., 2004).

The above discussion suggests that it is possible to use the program family strategy
for mesh generators, but before investing effort into the commonality analysis, it is worth-
while to justify why the analysis is worthwhile. Five general advantages of a commonality
analysis are mentioned in the previous section: a starting point for the design of a domain
specific languages (DSL); a basis for a common design for all family members; a histori-
cal reference; a basis for reengineering a domain; and, a basic training reference for new
software developers. In particular, the idea of reengineering mesh generating systems has
appeal. It should be possible to learn from the many existing mesh generation systems to
produce something that can reproduce the functionality of the existing systems, but have
the advantage of being designed so as to avoid the pitfalls of previous attempts and to
have the advantage of complete and unambiguous documentation.

CAS-04-10-SS 8

In addition to sharing the general advantages that a commonality analysis brings to
software projects, there are also advantages that may not apply to all systems, but which
do apply in the special case of mesh generating systems. For instance, a commonality
analysis would provide a convenient framework for summarizing the existing literature on
mesh generation and for summarizing the existing systems. The existing work could be
characterized by specifying the values for the parameters of variation that would produce
this existing system as a program family member. Other attempts to classify existing
meshing software, such as Teng and Wong (2000), do not follow as systematic an approach
and focus a significant portion of the discussion on distinguishing meshing software based
on implementation details. Classification of meshing software using the commonality anal-
ysis would also provide the benefit of testing the commonality analysis document. If an
existing system is found that cannot be characterized by the commonality analysis, then
the document can be fixed to accommodate the oversight.

Another advantage of commonality analysis that applies for mesh generating systems
is the support that the analysis provides for the generation of special purpose systems.
When considering existing mesh generating systems, it is apparent that many are tailored
to specific problems. For instance, a mesh generator may target a certain problem domain,
or it may be restricted to generate meshes for a simple domain. Although general purpose
mesh generating systems exist, the extra details required for interacting with a general
purpose system can distract engineers if their intention is solve a relatively simple problem.
For instance, if they know that for their particular problem they will always need to
discretize a rectangular domain, then a package that supports an arbitrary closed shape
is more complicated than they require. Special purpose mesh generators are also popular
because they can be targeted to the specific physics of the problem of interest and they
can produce output files in the format required by the engineers preferred finite element
processor. Given the predominance of special purpose systems, engineers would greatly
benefit by having a program family generator that allows rapid production of customized
mesh generators.

Proper documentation of the commonality analysis has the advantage that it will allow
open communication between different domain experts. Those in the field of mesh gen-
eration, or computational geometry, will be able to learn about the software engineering
methodologies that they can employ to reduce their workload. For instance, computational
scientists can learn something about the language of software engineering by consulting the
terminology section, which includes definitions from software engineering field so that the
non-software engineers can understand the commonality analysis exercise. Furthermore,
the documentation will allow computer scientists and software engineers to more easily
learn about mesh generation and thus contribute their ideas to the development of mesh
generating systems. Proper documentation can assist the software engineering in designing
a system with a module decomposition that satisfies the principles of separation of concerns
and information hiding because clear guidance is provided about the likely changes to the
system.

In the previous section, it was pointed out that a commonality analysis document should
focus on “What” as opposed to “How”. It should be clarified that the notion of “How” is

CAS-04-10-SS 9

a relative one. Although in the current analysis the commonalities and variabilities focus
on “What” is required, in some contexts the choice to use a mesh generator would be
considered a “How” decision. For instance, in the context of solving a partial differential
equation in a scientific computing problem, the decision to use a finite element analysis,
and thus a mesh generator, would be considered a design decision, not a requirement.
As a consequence of this difference in context, a requirements template for scientific and
engineering computation problems, such as that proposed by Lai (2004) and Smith et al.
(2004), cannot be directly employed to document mesh generating systems.

Since the commonality analysis for mesh generators focuses on “What” is required and
not “How” to do it, the different mesh generating algorithms should not be considered as
variabilities. Instead, the mesh quality attributes, such as element aspect ratios, minimum
angles, maximum angles, etc., are variabilities. The choice of meshing algorithm should
only be made after the commonality analysis and associated requirement specification are
complete. Once it is known what qualities are required for the mesh, then during the design
phase a meshing algorithm can be selected that can provide these qualities. A review of
meshing algorithms and some insight into how they influence mesh quality can be found
in Frey and George (2000); Teng and Wong (2000); Bern and Plassmann (2000); Bern and
Eppstein (1992).

3 Terminology and Definitions

This section is divided into two subsections. The first discusses the terminology that comes
from the software engineering field, while the second presents the definitions used in mesh
generation. Common acronyms are also listed in this section. The lists are not intended
to be read sequentially, but rather to be consulted for reference purposes; therefore, the
terms are ordered alphabetically, with the consequence that some terms that appear early
in the list depend on the definitions of later terms.

3.1 Software Engineering Related Definitions and Acronyms

Commonality: A requirement or goal common to all family members.

Goal: “Goals capture, at different levels of abstraction, the various objectives the system
under consideration should achieve.” van Lamsweerde (2001)

Program Family: A set of programs that are analyzed and designed together starting
from the initial stages of the software development life-cycle.

Requirements: A software requirement is: i) a condition or capability needed by a user
to solve a problem or achieve an objective; ii) a condition or capability that must be
met or possessed by a system or system component to satisfy a contract, standard,
specification, or other formally imposed document; or, iii) a documented represen-

CAS-04-10-SS 10

tation of a condition or capability as in the above two definitions. (Thayer and
Dorfman, 2000)

Variability: A requirement or goal that varies between family members.

3.2 Mesh Generation Related Definitions and Acronyms

1D: One Dimensional

2D: Two Dimensional

3D: Three Dimensional

Conformal mesh: A conformal mesh is a mesh following the definition of a mesh, with
the addition of the following property (Frey and George, 2000):

1. the intersection of two elements in τ is either the empty set, a vertex, an edge
or a face (when the dimension is 3)

Cell: Another name for an element, as defined below.

Connectivity: There are two types of connectivity, one for the mesh and one for a mesh
element:

1. “The connectivity of a mesh is the definition of the connection between its
vertices.” (Frey and George, 2000)

2. “The connectivity of a mesh element is the definition of the connections between
the verticies at the element level.” (Frey and George, 2000)

Degree of Freedom (dof) : In the finite element method the dependent variables that
are being solved for are referred to as degrees of freedom. They may correspond to
displacements, velocities, pressures, stresses, temperatures, etc.

Domain : The area or volume that is to be discretized. The domain is sometimes referred
to as the computational domain.

Element: The original domain is discretized into smaller, usually simpler, shapes called
elements. The typical shapes for elements in 1D is a line, in 2D is a triangle or a
quadrilateral, and in 3D a tetrahedron or a hexahedron. Elements are also called
cells.

Grid: A structured mesh is sometimes referred to as a grid, if it is constructed of quadri-
lateral elements in 2D or hexahedral elements in 3D.

Hybrid mesh: “A mesh is said to be hybrid if it includes some elements with a different
spatial dimension.” (Frey and George, 2000)

CAS-04-10-SS 11

M.G.s: Mesh Generators

Manifold: “A surface mesh is called manifold if its internal edges are shared by exactly
two elements (one element in the case of a boundary edge for an open surface).” (Frey
and George, 2000)

Mesh: Let Ω be a closed bounded domain in R or R2 or R3 and let K be a simple shape,
such as a line segment in 1D, a triangle or a quadrilateral in 2D, or a tetrahedron or
hexahedron in 3D. A mesh of Ω, denoted by τ , has the following properties:

1. Ω ≈ ∪(K|Kετ : K), where ∪ is first closed and then opened

2. the length of every element K, of dimension 1, in τ is greater than zero

3. the interior of every element K, of dimension 2 or greater, in τ is nonempty

4. the intersection of the interior of two elements is empty

The above definition of a mesh is the same as that from Frey and George (2000),
but the equality (=) has been changed to approximate equality (≈) because it will
not always be possible for the mesh discretization to exactly match the boundary
of the given domain. For instance, if the boundary of a 2D domain is curved, it
cannot be exactly matched with a non-infinite number of straight-edged triangles.
The definition also differs from Frey and George (2000) by allowing for 1D elements.

Mesh Generation: The automatic mesh generation problem is that of attempting to
define a set of nodes and elements to best describe a geometric domain, subject to
various element size and shape criteria.

Mixed mesh: “A mesh is said to be mixed if it includes some elements of a different
geometric nature.” (Frey and George, 2000)

Multi-block mesh: A region can be divided, without holes or overlaps into a set of
contiguous subdomains/blocks, which may be considered as an unstructured grid.
Within each subdomain, a separate structured grid is then generated. This type of
mesh is referred to as a block-structured or multi-block grid.

Node: In the finite element method the degrees of freedom are located at the nodes. Nodes
are often located at the verticies, but they can also be placed at locations such as
the midpoints of edges or the centroid of the element. If there are more nodes than
vertices and if the nodes are used to interpolate the geometry, then the element can
have curved boundaries.

Overlaid mesh: Overlaid meshes occur when two meshes are overlaid on top of each
other, with no requirement to have the verticies between the two meshes match.
This kind of mesh may be used when one object is on top of another and the two
objects are best modelled using different coordinate systems. (Thompson et al., 1985)

CAS-04-10-SS 12

Physical Attribute: Information on the properties of a mesh that are related to the
physical problems. Some examples include material properties, boundary conditions,
areas, etc.

Structured mesh: The mesh in which the local organization of the grid points and the
form of the grid cells do not depend on their position but are defined by a general rule.
There is a pattern to the topology that repeats. Frey and George (2000) say, “a mesh
is called structured if its connectivity is of the finite difference type.” They go on
to remark, “Peculiar meshes other than quad or hex meshes could have a structured
connectivity. For instance, one can consider a classical grid of quads where each of
them are subdivided into two triangles using the same subdivision pattern.”

Topology: “The topology of a mesh element is the definition of this element in terms of its
faces and edges, these last two being defined in terms of the element’s vertices.” (Frey
and George, 2000)

Unstructured mesh: The mesh whose element connectivity of the neighbouring grid ver-
ticies varies from point to point. Any mesh that is not structured is an unstructured
mesh.

Vertices: The locations that define the shape of the cells. In 1D the verticies are the
end-points of the elements. For 2D and 3D elements the verticies correspond to the
location in space that defines the intersection of the edges of an element.

4 Commonalities

This section lists all the common features among all the potential family members. The
commonalities are organized using the following abstraction of the system, which can be
used to describe all mesh generators: input information, then generate the mesh and
finally output the results. Section 4.1 describes the commonalities for the mesh generation
step, which includes the discretization of the domain, as well as other information on the
problem such as the boundary conditions, material properties, etc. Section 4.2 highlights
the input information that is required for all mesh generators, such as the geometry of
the domain that is going to be discretized. The next section, Section 4.3, shows the
common features for the output of mesh generators, such as the requirement that mesh
information be written to files. (Although the mesh information could simply be written
to the computer’s memory, in all practical applications it is desirable to have a persistent
record of the mesh that was created.) The final section covers qualities of the system that
cannot be classified as input, mesh generation or output. These commonalities are termed
nonfunctional requirements of the system. For instance, all systems will have the goal that
the response time to a user’s request is small enough to allow the user to focus on his/her
problem and to maintain his/her train of thought, without being distracted by excessive
waiting time. The commonality in this case is refined by a later variability because the

CAS-04-10-SS 13

specific requirement on the response time will depend on the intended usage of the mesh
generating system.

Each commonality below uses the same structure. All of the commonalities are assigned
a unique item number, which takes the form of a natural number with the prefix “C”.
Following this, a description of the commonality is provided along with a list of related
variabilities, which are given as hyperlinks that allow navigation of the document to the
text describing the variability. Finally, each commonality ends with a summary of the
history, including the date of creation and any dates of modification, along with a brief
description of the modification. If necessary, a previous version of the document can be
obtained by using the concurrent versioning system where the files are stored.

The commonalities listed in this section are for a mesh generator that is acting as a
preprocessor for a finite element analysis program, which means that the mesh generator
will produce data files with information on the discretization of the domain, the boundary
conditions, the material properties, the system properties, etc. In some cases the mesh
generating systems only focus on the discretization of the domain and leave it to another
system to provide the other information necessary for the finite element analysis. For
systems that only focus on the discretization of the domain the following subset of the
commonalities applies: C1, C2, C3, C4, C9, C12, C13, C14, C15, C16, C17, C18, and C19.

4.1 Mesh Generation

Item Number
C1

Description A mesh generator discretizes a given computational domain
(closed boundary Ω) into a covering up of a finite number of
simple shapes, as described in the definition of a mesh on page
11.

Related Variability V3, V4, V5, V6, V9, V13, V16, V17, V18, V19, V20
History Created - May 7, 2004

Item Number
C2

Description Each vertex has a unique identifier.
Related Variability none
History Created - October 21, 2002; Modified April 29, 2004 (“a unique

integer” was changed to “a unique identifier” to make the com-
monality more generic.); Modified June 14, 2004 (“node” was
changed to “vertex” to be consistent with the distinction be-
tween nodes and verticies as introduced in the terminology sec-
tion.)

CAS-04-10-SS 14

Item Number
C3

Description Each element has a unique identifier.
Related Variability none
History Created - October 21, 2002; ; Modified April 29, 2004 (“a unique

integer” was changed to “a unique identifier” to make the com-
monality more generic.)

Item Number
C4

Description An element’s topology is given by the connectivity of its set of
verticies.

Related Variability V8
History Created - October 21, 2002

Item Number
C5

Description Information on the created meshes includes material properties.
Related Variability V24, V25
History Created - October 24, 2004

Item Number
C6

Description Information on the created meshes includes boundary condi-
tions.

Related Variability V26, V28, V29
History Created - October 24, 2004

Item Number
C7

Description Information on the created meshes includes system parameters,
such as the number of elements in the domain and numerical
parameters needed by the finite element analysis program.

Related Variability V27
History Created - October 24, 2004

CAS-04-10-SS 15

4.2 Input

Item Number
C8

Description A mesh generator requires that information be input by the user
to define his/her meshing problem.

Related Variability V21, V22, V27, V28, V29
History Created - October 21, 2002; Modified - June 14, 2004 (the word-

ing was changed to improve the flow of the sentence.)

Item Number
C9

Description The user defines the geometric domain of the problem by a
closed boundary.

Related Variability V23
History Created - October 21, 2002; Modified - Jun 14, 2004 (A related

variability has been added.)

Item Number
C10

Description The user needs to specify the physical attributes, such as the
material properties, the boundary conditions, etc.

Related Variability V24, V25, V26, V27, V28, V29
History Created - October 21, 2002

Item Number
C11

Description When boundary conditions are specified, a maximum of one
condition may be given for each degree of freedom (dof). For
instance, a dof cannot have both a prescribed displacement and
a prescribed force.

Related Variability V26
History Created - October 21, 2002; Modified - October 24, 2004 (The

wording was modified to clarify the meaning.)

4.3 Output

Item Number
C12

Description Mesh generators write mesh information to output file(s).
Related Variability V31, V32, V33
History Created - October 21, 2002

CAS-04-10-SS 16

Item Number
C13

Description The element information of a mesh is listed in the output file
in some order.

Related Variability V34
History Created - October 21, 2002; Modified - June 16, 2004 (The sen-

tence was changed to clarify that it is the element information
that is listed.)

Item Number
C14

Description The vertex information, such as the coordinates, for a mesh is
listed in output file(s) in some order.

Related Variability V35
History Created - October 21, 2002; Modified - June 16, 2004 (The

sentence was changed to clarify that it is the vertex information
that is listed.)

4.4 Nonfunctional Requirements

Item Number
C15

Description The response time to a user’s request is small enough to allow
the user to focus on his/her problem and to maintain his/her
train of thought, without being distracted by excessive waiting
times.

Related Variability V39
History Created - October 22, 2002; Modified - June 14, 2004 (the con-

cept of a reasonably small response time was made less am-
biguous.); Modified - October 24, 2004 (a related variability
was added.)

CAS-04-10-SS 17

Item Number
C16

Description The mesh generator provides the accuracy required for the par-
ticular problems it is intended to help solve.

Related Variability V40
History Created - October 22, 2002; Modified - June 14, 2004 (The

wording was changed to emphasize that the accuracy require-
ments are problem dependent.); Modified - October 24, 2004
(A related variability was added.)

Item Number
C17

Description The mesh generator provides the precision required for the par-
ticular problems it is intended to help solve.

Related Variability V41
History Created - June 14, 2004; Modified - October 24, 2004 (A related

variability was added.)

Item Number
C18

Description The mesh generator is robust enough to handle the types of
users and the types of problems that the system is expected to
encounter.

Related Variability V42
History Created - June 16, 2004; Modified - October 24, 2004 (A related

variability was added.)

Item Number
C19

Description The mesh generator will be as portable to other operating sys-
tems as required by the users of the system.

Related Variability V37
History Created - June 16, 2004

5 Variabilities

This section provides a list of characteristics that may vary among family members. As
in Section 4, the first three subsections on variabilities are organized into the following
sublists: Mesh Generation, Input and Output. The final two subsections list variabilities
that can be characterized as system constraints and as nonfunctional requirements.

As for the commonalities, each variability is labelled with a unique item number. In this

CAS-04-10-SS 18

case the numbers are prepended with the letter “V”. The other four headings provided for
each variability are: Description, Related Commonality, Related Parameter and History.
The related commonalities and parameters are given as a set of identifiers that respectively
refer back to the previous section on commonalities or refer forward to the next section on
parameters of variation.

5.1 Mesh Generation

Item Number
V1

Description Different mesh generators will be able to accommodate the
creation of meshes for different problem domains.

Related Commonality none
Related Parameter P1
History Created - October 22, 2002; Modified - June 15, 2004 (The

wording was changed to provide a better description of the
variability.)

Item Number
V2

Description The degree of generality of the mesh generator. Some mesh
generators are general purpose programs, while others are
tailored to a specific application domain.

Related Commonality none
Related Parameter P2
History Created - June 15, 2004

Item Number
V3

Description Some mesh generators have automated capabilities for im-
proving/changing an existing mesh, including techniques
for mesh smoothing.

Related Commonality C1
Related Parameter P3
History Created - October 22, 2002; Modified - June 15, 2004

(changed the wording to clarify that the capabilities ap-
ply to changing the mesh.)

CAS-04-10-SS 19

Item Number
V4

Description Some mesh generators allow manual mesh editing. That is
the user is allowed to tweak such information as the vertex
location.

Related Commonality C1
Related Parameter P4
History Created - October 22, 2002; Modified - June 15, 2004

(Added an example of mesh editing.)

Item Number
V5

Description In the mesh generating stage each vertex is assigned a
unique ID. The order of these IDs impacts the bandwidth
of the stiffness matrix in the finite element analysis pro-
gram; therefore, some mesh generators have algorithms and
heuristics for modifying the order of the verticies to reduce
the bandwidth.

Related Commonality C1, C2
Related Parameter P5
History Created - May 12, 2003; Modified - June 15, 2004 (Made the

connection between bandwidth and the system of equations
in the finite element program.)

Item Number
V6

Description There exists variety in the degree of structure exhibited by
a mesh.

Related Commonality C1
Related Parameter P6
History Created - October 22, 2002; Modified - June 15, 2004 (Clar-

ified that the variability is with respect to structure.)

Item Number
V7

Description For structured meshes different templates for the local pat-
terns in the element topology are possible.

Related Commonality C1
Related Parameter P7
History Created - October 24, 2004

CAS-04-10-SS 20

Item Number
V8

Description Different mesh generators can assume a different ordering
for the local numbering of an element’s vertices and nodes.

Related Commonality C4
Related Parameter P8
History Created - October 22, 2002; Modified - June 15, 2004 (The

variability now mentions both nodes and verticies.)

Item Number
V9

Description The shape of the elements generated by the mesh generator
as defined by their vertices.

Related Commonality C1
Related Parameter P9
History Created - October 22, 2002; Modified - June 5, 2004

(Changed the wording to clearly say that it is the shape
of the elements that is the variability.)

Item Number
V10

Description The number of nodes for an element and the location of
those nodes.

Related Commonality none
Related Parameter P10
History Created - June 5, 2004

Item Number
V11

Description The number of degrees of freedom at a node and the mean-
ing of each of those degrees of freedom.

Related Commonality none
Related Parameter P11
History Created - June 5, 2004

Item Number
V12

Description The pattern of the number of degrees of freedom and the
meaning of these degrees of freedom can vary between the
nodes of an element.

Related Commonality none
Related Parameter P12
History Created - June 5, 2004

CAS-04-10-SS 21

Item Number
V13

Description The dimensionality of the computational domain.
Related Commonality C1
Related Parameter P13
History Created - June 5, 2004

Item Number
V14

Description The shape allowed for the computational domain.
Related Commonality C1, C9
Related Parameter P14
History Created - October 24, 2004

Item Number
V15

Description The quality of the resulting mesh.
Related Commonality C1
Related Parameter P15
History Created - June 5, 2004

Item Number
V16

Description The ability of the system to accommodate a mixed mesh.
Related Commonality C1
Related Parameter P16
History Created - June 5, 2004

Item Number
V17

Description The ability of the system to accommodate a hybrid mesh.
Related Commonality C1
Related Parameter P17
History Created - June 5, 2004

CAS-04-10-SS 22

Item Number
V18

Description The ability of the system to accommodate a conformal ver-
sus a nonconformal mesh.

Related Commonality C1
Related Parameter P18
History Created - June 5, 2004

Item Number
V19

Description The dimension of the coordinate system used to describe
the geometry (coordinates) of the vertices and possibly of
the nodes.

Related Commonality C1, C9
Related Parameter P19
History Created - June 5, 2004

Item Number
V20

Description The type of the coordinate system used to describe the
geometry (coordinates) of the vertices and possibly of the
nodes.

Related Commonality C1, C9
Related Parameter P20
History Created - June 5, 2004

5.2 Input

Item Number
V21

Description Some mesh generators provide a graphical user interface
while others provide a text based interface.

Related Commonality C8
Related Parameter P21
History Created - October 22, 2002; Modified - June 15, 2004

(Changed user friendly interface to graphical interface.)

CAS-04-10-SS 23

Item Number
V22

Description The interface for specifying the closed boundary of the com-
putational domain (Ω).

Related Commonality C8, C9
Related Parameter P22
History Created - October 22, 2002; Modified - June 15, 2004 (The

description was simplified.)

Item Number
V23

Description The mathematical form used to specify the closed boundary
of the computational domain (Ω).

Related Commonality C9
Related Parameter P23
History Created - June 15, 2004

Item Number
V24

Description The number of material properties, their names and their
types.

Related Commonality C5, C10
Related Parameter P24
History Created - June 15, 2004

Item Number
V25

Description The number of different materials allowed in the specifica-
tion of the physical problem.

Related Commonality C5, C10
Related Parameter P25
History Created - June 15, 2004

Item Number
V26

Description The types of boundary conditions accommodated by the
system.

Related Commonality C6, C10, C11
Related Parameter P26
History Created - June 15, 2004

CAS-04-10-SS 24

Item Number
V27

Description The number and type of different system parameters input
to the system. These parameters will be passed on to the
finite element program.

Related Commonality C7, C8, C10
Related Parameter P27
History Created - June 15, 2004

Item Number
V28

Description The system may allow the user to specify that two degrees
of freedom will be constrained to have the same value. As
far as the finite element analysis is concerned the two dof
will be solved for as one dof.

Related Commonality C8, C10
Related Parameter P28
History Created - June 15, 2004; Modified - October 25, 2004 (The

wording was changed to clarify this variability.)

Item Number
V29

Description Constraints on the mesh may be inputs for the system.
Related Commonality C8, C10
Related Parameter P29
History Created - June 15, 2004

5.3 Output

Item Number
V30

Description Some mesh generators provide visualization of the meshes
produced.

Related Commonality none
Related Parameter P30
History Created - October 22, 2002

CAS-04-10-SS 25

Item Number
V31

Description Mesh information is output in either text or binary format.
Related Commonality C12
Related Parameter P31
History Created - October 22, 2002

Item Number
V32

Description The number of files that are output by the mesh generator.
Related Commonality C12
Related Parameter P32
History Created - June 15, 2004

Item Number
V33

Description The format of the information in the file(s) output by the
mesh generator.

Related Commonality C12
Related Parameter P33
History Created - June 15, 2004

Item Number
V34

Description The element information is written to the file(s) following
a different ordering.

Related Commonality C13
Related Parameter P34
History Created - October 22, 2002; Modified - June 16, 2004 (The

description was reworded to clarify the meaning.)

Item Number
V35

Description The vertex information is written to the file(s) following a
different ordering.

Related Commonality C14
Related Parameter P35
History Created - October 22, 2002; Modified - June 16, 2004 (The

description was reworded to clarify the meaning.)

CAS-04-10-SS 26

Item Number
V36

Description The degree to which the user can customize the output file
formats.

Related Commonality C12
Related Parameter P36
History Created - October 24, 2004

5.4 System Constraints

Item Number
V37

Description The operating systems on which the mesh generating sys-
tem is intended to run.

Related Commonality C19
Related Parameter P37
History Created - June 15, 2004

Item Number
V38

Description The amount of persistent storage available for storing the
generated data files.

Related Commonality none
Related Parameter P38
History Created - June 16, 2004

5.5 Nonfunctional Requirements

Item Number
V39

Description The response time required for user interaction with the
system varies. The user will expect a faster response time
for simple input operations, and will tolerate longer wait
time when the system is calculating the mesh and generat-
ing the output files.

Related Commonality C15
Related Parameter P39
History Created - October 24, 2004

CAS-04-10-SS 27

Item Number
V40

Description The tolerance allowed for each output produced by the sys-
tem, where the tolerance is a relative quantity defined as
(calculated value− true value)/(true value).

Related Commonality C16
Related Parameter P40
History Created - October 24, 2004

Item Number
V41

Description The number of decimal digits of precision allowed for each
input and displayed for each output value.

Related Commonality C17
Related Parameter P41
History Created - October 24, 2004

Item Number
V42

Description Systems will have different degrees of input error checking
and runtime exception handling.

Related Commonality C18
Related Parameter P42
History Created - October 24, 2004

6 Parameters of Variation

This section specifies the parameters of variation for the variabilities listed in Section
5. They are organized into the same five subcategories as employed previously: Mesh
Generation, Input, Output, System Constraints, Nonfunctional Requirements.

Each parameter of variation is given a unique identifier of the form “P” followed by a
natural number. The corresponding variability is listed and a hyperlink is provided that
allows navigation back to the appropriate item in Section 5. The final entry for each
parameter of variation is the binding time, which is the time in the software lifecycle when
the variability is fixed. The binding time could be during specification, or during building
of the system (compile time), or during execution of the system (run time). It is possible
to have a mixture of binding times. For instance, a parameter of variation could have a
binding time of “specification or building” to represent that the parameter could be set at
specification time, or it could be postponed until the given family member is built. The
choice of postponing the decision until the build would be associated with the presence
of a domain specific language that would allow postponing decisions on the values of the

CAS-04-10-SS 28

parameter of variation.

6.1 Mesh Generation

Item Number
P1

Corresponding Variability V1
Range of Parameters Mesh generating systems can build meshes for a large

range of problem domains corresponding to the large
range of problems that can be solved via finite element
analysis. For instance, the mesh data files can be tar-
geted toward the following problem domains: solid me-
chanics, fluid mechanics, heat transfer, seepage, elec-
trostatics, etc.

Binding Time specification or run time

Item Number
P2

Corresponding Variability V2
Range of Parameters A continuum exists from the most specialized systems

to arbitrarily general systems. For instance, a special
purpose system may involve quadilateral elements on
a 2D rectangular domain for the purpose of solving for
the temperature in a heated plate. On the other hand,
a general purpose system would handle an arbitrary
geometry for the domain, provide a choice of element
shapes, allow for 1D, 2D or 3D domains and provide
meshes for a variety of physical problems.

Binding Time specification or build time

Item Number
P3

Corresponding Variability V3
Range of Parameters Mesh generators may have optimization features such

smoothening, and refinement/coarsening.
Binding Time specification or build time

CAS-04-10-SS 29

Item Number
P4

Corresponding Variability V4
Range of Parameters The mesh generators with graphical user interfaces

can incorporate some degree of mesh-editing features.
Some mesh generators do not have this feature.

Binding Time specification or build time

Item Number
P5

Corresponding Variability V5
Range of Parameters Some mesh generators will provide options for band-

width reduction. The requirements for the mesh gen-
erating systems will differ in how small a bandwidth
they must achieve.

Binding Time specification time or build time

Item Number
P6

Corresponding Variability V6
Range of Parameters The options are as follows: structured mesh, unstruc-

tured mesh, multi-block mesh, overlaid mesh.
Binding Time specification or build or run time

Item Number
P7

Corresponding Variability V7
Range of Parameters Seven (7) potential local topology templates are pos-

sible, as shown in Appendix A.
Binding Time specification or build or run time

CAS-04-10-SS 30

Item Number
P8

Corresponding Variability V8
Range of Parameters The local vertex numbering can be either clockwise or

counterclockwise. By convention it is nearly always
counterclockwise. The local nodes also need to be
numbered. If the nodes coincide with the verticies,
then the numbering is usually the same. If there are
more nodes than verticies, then a new numbering con-
vention needs to be adopted. Frey and George (2000)
and Zienkiewicz (1977) discuss the usual numbering
scheme convention.

Binding Time specification or build or run time

Item Number
P9

Corresponding Variability V9
Range of Parameters In 1D there are line segments; in 2D there are triangles

and quadrilaterals; in 3D there are tetrahedras and
hexahedras

Binding Time specification or build or run time

Item Number
P10

Corresponding Variability V10
Range of Parameters The element can have fewer nodes than verticies, the

same number of nodes as verticies or more nodes than
verticies. The nodes can be located at the vertices,
on the element edges, or inside the element. Some
examples of the large variety of elements that are used
can be found in Zienkiewicz (1977)

Binding Time specification or build or run time

CAS-04-10-SS 31

Item Number
P11

Corresponding Variability V11
Range of Parameters The number and type of degrees of freedom at the

nodes can vary between different types of elements and
within an element. The dof for an element represent
the dependent variable that will be solved for. Some
example dof are as follows: displacements, velocities,
temperatures, voltages, pressures, etc. Some examples
of the large variety of elements that are used can be
found in Zienkiewicz (1977)

Binding Time specification or build or run time

Item Number
P12

Corresponding Variability V12
Range of Parameters If the geometry is interpolated at fewer nodes than the

interpolation of the dof, then the element is subpara-
metric. If the geometry is interpolated at the same
number of nodes as the interpolation for the dof, then
the element is isoparametric. If the geometry is inter-
polated at more nodes than the interpolation for the
dof, then the element is superparametric.

Binding Time specification or build or run time

Item Number
P13

Corresponding Variability V13
Range of Parameters 1D, 2D, or 3D
Binding Time specification or build or run time

CAS-04-10-SS 32

Item Number
P14

Corresponding Variability V14
Range of Parameters The computational domain in 1D can be either a

straight line or a curve. For 2D and 3D the domain can
consist of simple shapes, such as triangles (tetrahedra),
rectangles (boxes), parallelograms (parallelepipeds),
etc. or more complex domains constructed from poly-
gons and polyhedra, or the domain can constructed us-
ing curved boundaries or surfaces. The domain could
be a surface, which is a 2D domain located in a 3D
coordinate system. The computational domain can al-
low for holes, or disallow holes. The computational
domain can be either connected or unconnected. The
computational domain may or may not allow for inter-
nal constraints within the domain that require verticies
to follow a prescribed internal boundary.

Binding Time specification or build time

Item Number
P15

Corresponding Variability V15
Range of Parameters There are many potential mesh quality measures, such

as the aspect ratio, the minimum angle, the maximum
angle, etc. The quality measure can change if the prob-
lem in question is anisotropic versus isotropic.

Binding Time specification or build or run time

Item Number
P16

Corresponding Variability V16
Range of Parameters A mesh generator will or will not be able to accom-

modate mixed meshes. The combinations of different
element types also provides a range of parameters.

Binding Time specification or build time

CAS-04-10-SS 33

Item Number
P17

Corresponding Variability V17
Range of Parameters A mesh generator will or will not be able to accom-

modate hybrid meshes. The combinations of spatial
dimensions that the problem can handle also provides
a range of parameters.

Binding Time specification or build time

Item Number
P18

Corresponding Variability V18
Range of Parameters A mesh generator will or will not be able to accommo-

date conformal meshes.
Binding Time specification or build time

Item Number
P19

Corresponding Variability V19
Range of Parameters The dimension of the spatial coordinate system that is

used to express the geometric coordinates. The options
are 1D, 2D or 3D. The dimensionality of the shape of
the elements does not have to be the same as the coor-
dinate system used for the geometry. For instance, a
surface mesh uses 2D element shapes, but is embedded
in a 3D space.

Binding Time specification or build or run time

Item Number
P20

Corresponding Variability V20
Range of Parameters The type of coordinate system can be Cartesian, polar,

spherical, or another type.
Binding Time specification, or build or run time

CAS-04-10-SS 34

6.2 Input

Item Number
P21

Corresponding Variability V21
Range of Parameters Some mesh generators provide a graphical user inter-

face, which helps to minimize the user’s effort in defin-
ing the seed information, while other mesh generators
instead use a text-based interface that requires the user
to type the seed information, often in a given file for-
mat.

Binding Time specification or build time

Item Number
P22

Corresponding Variability V22
Range of Parameters Multi-block mesh generators let the user define sub-

regions, while unstructured mesh generators let the
user define boundary entities. Structured mesh gen-
erators ask the user to specify the number of subdi-
visions along each direction, while unstructured mesh
generators ask for the size of the elements.

Binding Time specification or build time

Item Number
P23

Corresponding Variability V23
Range of Parameters The options include parametric representations, ex-

plicit representations and implicit representations, as
presented in Frey and George (2000). A paramet-
ric representation is given by a function γ(t), where
t is a parameter and γ(t) ∈ R2 or γ(t) ∈ R3. Im-
plicit curves are given by relations like f(x, y) = 0 and
f(x, y, z) = 0 in R2 and R3, respectively, where x, y
and z denote the coordinates. Explicit curves take the
form y = f(x) in R2.

Binding Time specification or build or run time

CAS-04-10-SS 35

Item Number
P24

Corresponding Variability V24
Range of Parameters The number of material properties is variable and can

include such properties as elastic modulus, viscosity,
relaxation time, thermal conductivity, etc.

Binding Time specification or build or run time

Item Number
P25

Corresponding Variability V25
Range of Parameters The entire domain can consist of one material or there

may be any finite number of different materials.
Binding Time specification or build or run time

Item Number
P26

Corresponding Variability V26
Range of Parameters The boundary conditions may be of the Dirichilet,

Neumann or of a mixed type. If the boundary con-
ditions are for prescribed values (Dirichilet type) that
are zero, they may be specified in a different manner
from other prescribed values. For instance, in solid
mechanics problems a boundary may be fixed in one
or more directions so that it cannot move in that di-
rection and it will be free in the remaining directions.
The input may specify this kind of fixity information.

Binding Time specification or build time

Item Number
P27

Corresponding Variability V27
Range of Parameters The number and meaning of the system parameters

can vary from one mesh generator to the next. System
parameters may include global numerical parameters,
such as the degree of implicitness for a time marching
scheme.

Binding Time specification or build or run time

CAS-04-10-SS 36

Item Number
P28

Corresponding Variability V28
Range of Parameters In some mesh generators it may be possible to set the

problem so that two, or more, degrees of freedom will
have the same value after the numerical solution has
been calculated.

Binding Time specification or build time

Item Number
P29

Corresponding Variability V29
Range of Parameters In some cases it may be possible to specify internal

boundaries that the mesh will be required to follow.
Binding Time specification or build time

6.3 Output

Item Number
P30

Corresponding Variability V30
Range of Parameters Some mesh generators display the resulting mesh on

the screen.
Binding Time specification or build time

Item Number
P31

Corresponding Variability V31
Range of Parameters Some mesh generators produce binary output file(s),

some produce text (ASCII) output file(s) and some
may produce a mix of both types of files.

Binding Time specification or build or run time

Item Number
P32

Corresponding Variability V32
Range of Parameters The number of files can range from 1 to many. In

the case of many files the data can be split between
files, possibly so that geometry data, topology data,
material properties data, etc. are separated.

Binding Time specification or build or run time

CAS-04-10-SS 37

Item Number
P33

Corresponding Variability V33
Range of Parameters Different mesh generators organize mesh information

into file(s) in different orders. The data structure that
is output can change between mesh generators, or it
may be something that the user can customize within
a given mesh generator.

Binding Time specification, build or run time

Item Number
P34

Corresponding Variability V34
Range of Parameters Some mesh generators list elements in an increasing

order (implicity), while other explicitly output the el-
ement identifier and list them in an arbitrary order.

Binding Time specification or build or run time

Item Number
P35

Corresponding Variability V35
Range of Parameters Some mesh generators list nodal information in ascend-

ing order (implicitly), but others explicitly output the
node’s identifier and list them in an arbitrary order.

Binding Time specification or build or run time

Item Number
P36

Corresponding Variability V36
Range of Parameters Some mesh generators will have a fixed file format,

while others will allow the user to customize the out-
put. The customization can range from modifying file
names, to changing the order of blocks of data, to split-
ting the data between files, to changing the data struc-
ture, to changing from text to binary, etc.

Binding Time specification or build or run time

CAS-04-10-SS 38

6.4 System Constraints

Item Number
P37

Corresponding Variability V37
Range of Parameters Most operating systems that are in common use will

have mesh generators that will run on the system.
Some examples include: Windows, Unix, Mac OS X,
Linux, etc.

Binding Time specification, build or run time

Item Number
P38

Corresponding Variability V38
Range of Parameters The physical systems that the mesh generator is built

on will have a limit to the amount of storage that is
available. The amount could vary between kilobytes
to Gigabytes, or more.

Binding Time specification, build or run time

6.5 Nonfunctional Requirements

Item Number
P39

Corresponding Variability V39
Range of Parameters The maximum amount of time that the user will be

expected to wait for the system to perform each of its
functions. The amount of time will range from essen-
tially instantaneous for entering user input, to seconds
while waiting for graphics to display, to minutes or
longer while waiting for the mesh to be generated and
output files to be created.

Binding Time specification

Item Number
P40

Corresponding Variability V40
Range of Parameters The tolerance for each output will be provided as a

real number.
Binding Time specification, build or run time

CAS-04-10-SS 39

Item Number
P41

Corresponding Variability V41
Range of Parameters Each input and each output will have an associated

integer that specifies the precision (number of decimal
digits) with which the real number is stored and/or
calculated.

Binding Time specification, build or run time

Item Number
P42

Corresponding Variability V42
Range of Parameters Input error may be checked for one or more of the

following: valid type, valid range, completeness, con-
sistency, etc. Run-time exception handling may be
checked for one or more of the following: division by
zero, square root of a negative number, lack of conver-
gence, maximum iterations exceeded, etc.

Binding Time specification or build time

7 Issues

In the course of composing and revising the above documentation, the following unresolved
issues arose:

• The meshes that are considered here only discretize space, there is no discretization
of time; therefore, there are no “4D” meshes.

• The documentation and the definition of a mesh should be made more formal.

• A figure to show some examples of potential element, with the various options for
verticies and nodes, would likely be helpful.

• The mesh quality measures should be explained in greater detail.

• The mathematics of how the closed boundary is specified could be improved by
introducing the appropriate equations.

• Add some examples of general purpose mesh generators versus special purpose mesh
generators in the section on the overview of mesh generators.

Acknowledgements

The financial support of the Natural Sciences and Engineering Research Council (NSERC)
and of Material and Manufacturing Ontario (MMO) are gratefully acknowledged.

CAS-04-10-SS 40

References

Mark Ardis and David M. Weiss. Defining families: The commonality analysis. In Pro-
ceedings of the Nineteenth International Conference on Software Engineering. ACM, Inc.,
1997.

Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. In D.-Z.
Du and F.K. Hwang, editors, Computing in Euclidean Geometry. World Scientific, 1992.

Marshall Bern and Paul Plassmann. Mesh Generation. Handbook of Computational Ge-
ometry, Elsevier Science, 2000.

Guntram Berti and Georg Bader. Design principles of reusable software components for
the numerical solution of pde problems. presented at the the 14th GAMM-Seminar Kiel
on Concepts of Numerical Software, January 1998.

T. D. Blacker, Robert A. Kerr, Patrick Knupp, Robert W. Leland, Darryl J. Melander,
Scott A. Mitchell, Steven J. Owen, Jason F. Sheperd, Timoshy J. Tautges, David R.
White, Steve Benzley, Michael J. Borden, Steven R. Jankovich, Jason Kraftcheck, Yong
Lu, Ray J. Meyers, Michael Stephenson, Steve Storm, Eric Nielsen, and Rammagy
Yoeu. Cubit mesh generation environment, volume 1: User’s manual. Technical Report
SAND94-1100, Sandia National Laboratories, Albuquerque, New Mexico, May 1994.

Chien-Hsien Chen. A software engineering approach to developing mesh generators. Mas-
ter’s thesis, McMaster University, Hamilton, Ontario, Canada, 2003.

David A. Cuka and David M. Weiss. Specifying executable commands: An example of fast
domain engineering. Submitted to IEEE Transactions on Software Engineering, pages 1
– 12, 1997. URL http://www.research.avayalabs.com/user/weiss/Publications.

html.

E. W. Dijkstra. Structured Programming, chapter Notes on Structured Programming.
Academic Press, London, 1972.

Ahmed H. ElSheikh, W. Spencer Smith, and Samir E. Chidiac. Semi-formal design of
reliable mesh generation systems. Advances in Engineering Software, accepted, 2004.

Pascal Jean Frey and Paul-Louis George. Mesh Generation Application to Finite Elements.
Hermes Science Europe Ltd., 2000.

Rondall E. Jones. The QMESH mesh generation package. Association for Computing
Machinery SIGNUM Newsletter, vol. 10, no. 4, pp. 31-34, December 1975.

Lei Lai. Requirements documentation for engineering mechanics software: Guidelines, tem-
plate and a case study. Master’s thesis, initial draft for McMaster University, Hamilton,
Ontario, Canada, 2004.

http://www.research.avayalabs.com/user/weiss/Publications.html
http://www.research.avayalabs.com/user/weiss/Publications.html

CAS-04-10-SS 41

David Parnas. On the design and development of program families. IEEE Transactions
on Software Engineering, SE-2(1):1–9, 1976.

David L. Parnas. Designing software for ease of extension and contraction. IEEE Trans-
actions on Software Engineering, pages 128–138, March 1979.

W. Spencer Smith and Chien-Hsien Chen. Commonality and requirements analysis for
mesh generating software. In Proceedings of the Sixteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE 2004), pages 384–387, Banff,
Alberta, Canada, June 2004. Knowledge Systems Institute Gradute School, KSI, Skokie,
IL, 60076, USA.

W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for engineering
computation. In Proceedings of the NSF Workshop on Reliable Engineering Computing,
September 15–17, Savannah, Georgia, 2004. Center for Reliable Engineering Computing.

T. Tautges, T. Blacker, and S. Mitchell. The whisker weaving algorithm: A connectivity-
based method for constructing all-hexahedral finite element meshes, 1995. URL
citeseer.ist.psu.edu/tautges95whisker.html.

Shang-Hua Teng and Chi Wai Wong. Unstructured mesh generation: theory, practice and
perspectives. International Journal of Computational Geometry and Applications, 10(3):
227–266, June 2000. URL http://www-sal.cs.uiuc.edu/~steng/mesh97_changed.

ps.

R. H. Thayer and M. Dorfman, editors. IEEE Recommended Practice for Software Require-
ments Specifications. IEEE Computer Society, Washington, DC, USA, 2nd ed. edition,
2000.

Joe F. Thompson, Z. U. A. Warsi, and C. Wayne Mastin. Mesh Generation. Elsevier Sci-
ence Publishing Co., Inc., 1985. URL http://www.erc.msstate.edu/publications/

gridbook/index.html.

Axel van Lamsweerde. Goal-oriented requirements engineering: a guided tour. In Pro-
ceedings of the 5th IEEE International Symposium on Requirements Engineering, pages
249–263. IEEE, IEEE Computer Society, Washington, DC, USA, August 2001.

D. Weiss and C.T.R. Lai. Software Product Line Engineering. Addison-Wesley, 1999.

David M. Weiss. Defining families: The commonality analysis. Submitted to IEEE Trans-
actions on Software Engineering, 1997. URL http://www.research.avayalabs.com/

user/weiss/Publications.html.

David M. Weiss. Commonality analysis: A systematic process for defining families. Lecture
Notes in Computer Science, 1429:214 – 222, 1998. URL citeseer.ist.psu.edu/13585.

html.

citeseer.ist.psu.edu/tautges95whisker.html
http://www-sal.cs.uiuc.edu/~steng/mesh97_changed.ps
http://www-sal.cs.uiuc.edu/~steng/mesh97_changed.ps
http://www.erc.msstate.edu/publications/gridbook/index.html
http://www.erc.msstate.edu/publications/gridbook/index.html
http://www.research.avayalabs.com/user/weiss/Publications.html
http://www.research.avayalabs.com/user/weiss/Publications.html
citeseer.ist.psu.edu/13585.html
citeseer.ist.psu.edu/13585.html

CAS-04-10-SS 42

O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill Publishing Company, 1977.

O.C. Zienkiewicz and D. V. Phillips. An automatic mesh generation scheme for plane and
curved surfaces by ’isoparametric’ co-ordinates. International Journal for Numerical
methods in Engineering, 3:519–528, 1971.

CAS-04-10-SS 43

8 Appendix: Topology Patterns for Structured Meshes

g.

a. b. c. d.

e. f.

Figure 3: Parameters of variation for patterns for structured mesh discretizations

	Introduction
	Overview
	Commonality Analysis
	Mesh Generators

	Terminology and Definitions
	Software Engineering Related Definitions and Acronyms
	Mesh Generation Related Definitions and Acronyms

	Commonalities
	Mesh Generation
	Input
	Output
	Nonfunctional Requirements

	Variabilities
	Mesh Generation
	Input
	Output
	System Constraints
	Nonfunctional Requirements

	Parameters of Variation
	Mesh Generation
	Input
	Output
	System Constraints
	Nonfunctional Requirements

	Issues
	Appendix: Topology Patterns for Structured Meshes

