Software Requirements
Specification for a Parallel Mesh
Generation Toolbox

Wen Yu

September 2008

Computing and Software
McMaster University

Wen Yu — McMaster University — Computing and Software

Contents

1 Reference Material
1.1 Table of Symbols, Abbreviations and Acronyms
1.1.1 Symbols
1.1.2 Abbreviations and Acronyms
1.2 Index of Requirements

2 Introduction
2.1 Purpose of the Document
2.2 Scope of the Software Product
2.3 Terminology Definition
2.3.1 Software Engineering Related Terminology
2.3.2 Mesh Generation Related Terminology
2.4 Organization of the Document

3 General System Description
3.1 System Context
3.2 User Characteristics
3.3 System Constraints, .

4 Specific System Requirements
4.1 Problem Description
4.1.1 Background Overview
4.1.2 Goal Statements L.
4.2 Solution Characteristics Specification
4.2.1 Assumptions.
4.2.2 Theoretical Model
4.2.3 Data Definitions
4.2.4 System Behaviour
4.3 Non-functional Requirements

5 Other System Issues
5.1 Openlssues
5.2 Off-the-shelf Solutions
5.3 Waiting Rooms L.

6 Traceability Matrix

7 List of Possible Changes in the Requirements

W W w W

O© 3 O O ot ot Ut

Wen Yu — McMaster University — Computing and Software

8 Values of Auxiliary Constants

32

Wen Yu — McMaster University — Computing and Software

1 Reference Material

1.1 Table of Symbols, Abbreviations and Acronyms
1.1.1 Symbols

Q a closed bounded domain in R?

QF a mesh covering the domain bounded by €2

K a simple shape, such as a line segment in 1D, a triangle
or a quadrilateral in 2D, or a tetrahedron or hexahe-
dron in 3D

MIN an input mesh

MOUT an output mesh

1 instructions on how a mesh should be
refined /coarsened

1.1.2 Abbreviations and Acronyms

1D One Dimensional Space

2D Two Dimensional Space

3D Three Dimensional Space

FEA Finite Element Analysis

HPC High Performance Computing

PDE Partial Differential Equation

PMGT Parallel Mesh Generation Toolbox

SHARCNET Shared Hierarchical Academic Research Computing
Network

SRS Software Requirements Specification

AOMD Algorithm Oriented Mesh Database

Wen Yu — McMaster University — Computing and Software

1.2 Index of Requirements

CoarseningMesh, 19
Conformal, 22

DomainDimension, 21

ElmShape, 21
ElmTopology, 25
ElmUniquelD, 25
Exception, 29

Help, 27
InputDefinition, 22
LookAndFeel, 29

Maintainability, 30
MeshType, 20

OutElmOrder, 26
OutputStorage, 24
OutVertexOrder, 26

Performance, 28
Portability, 29
Precision, 28

RClnstruction, 23
RefiningMesh, 19
RefiningOrCoarsening, 20
Usability, 30

VertexUniquelD, 24

Wen Yu — McMaster University — Computing and Software

2 Introduction

This section gives an overview of the Software Requirements Specification
(SRS) for a Parallel Mesh Generation Toolbox (PMGT). First, the purpose of
the document is provided. Second, the scope of PMGT is identified. Third,
some terminology for software engineering and mesh generation are defined.
Finally, the organization of the document is summarized. The Table of Sym-
bols, Abbreviation and Acronyms, and Index of Requirement are given at the
beginning of the SRS.

2.1 Purpose of the Document

This SRS provides a black-box description of PMGT. The intended audience
of the SRS is the development team and the users of PMGT.

2.2 Scope of the Software Product

PMGT provides a library that will be embedded into a larger application, such
as a finite element analysis (FEA) program.

e The input of PMGT is an existing mesh M IN' with instructions I pro-
vided by the user on how the mesh should be refined/coarsened.

e PMGT refines/coarsens M IN according to the supplied instructions 1
on how the mesh should be refined /coarsened.

e PMGT will take advantage of parallel computation.
e The output of PMGT is a refined/coarsened mesh M OUT,

Note that depending on the given instruction, PMGT can either refine or
coarsen the given mesh, but cannot do both at the same time. That is, any
individual transition from MIN to MOUT winl only do one of refining or
coarsening. The embedding application will have access to reading the mesh
information, such as information on the position of vertices and on the vertices
that define a given element. However, the application cannot directly change
any mesh data, except for the information indicating which elements should
be refined /coarsened.

Wen Yu — McMaster University — Computing and Software

2.3 Terminology Definition

This subsection provides the definitions for terminology used in the SRS. There
are two classes of terminology. One relates to software engineering, and the
other relates to mesh generation. The definitions are listed in alphabetical
order.

2.3.1 Software Engineering Related Terminology

Constraint: A statement that expresses measurable bounds for an element or
function of the system. That is, a constraint is a factor that is imposed
on the solution by force or compulsion and may limit or modify the
design changes. (IEEE, 1998)

Context: The boundaries between the system that we intend to build and the
people, organizations, other system and pieces of technology that have
a direct interface with the system. (Robertson and Robertson, 2001)

Functional Requirements: Functional requirements define precisely what
input are expected by the software, what outputs will be generated by the
software, and the details of relationships that exist between those inputs
and outputs. In short, functional requirements describe all aspects of
interface between the software and its environment (that is, hardware,
humans, and other software). (Davis, 1990)

Goal: Goals capture, at different levels of abstraction, the various objectives
the system under consideration should achieve. (van Lamsweerde, 2001)

Non-functional Requirements: Non-functional requirements define the over-
all qualities or attributes to be exhibited by the resulting software sys-
tem. (Davis, 1990)

Requirements: A software requirement is: 7) a condition or capability needed
by a user to solve a problem or achieve an objective; i) a condition or
capability that must be met or possessed by a system or system com-
ponent to satisfy a contract, standard, specification, or other formally
imposed document; or, i) a documented representation of a condition
or capability as in the above two definitions. (IEEE, 2000)

Software Engineering: Software Engineering is the application of a system-
atic, disciplined, quantifiable approach to the development, operation,
and maintenance of software. (IEEE, 1990)

Wen Yu — McMaster University — Computing and Software

Software Requirements Specification: A Software Requirements Specifi-
cation (SRS) is a document containing a complete description of what
the software will do without describing how it will do it. (Davis, 1990)

System: An interdependent group of people, objects, and procedures consti-
tuted to achieve defined objectives or some operational role by perform-
ing specified functions. (IEEE, 1998)

System Context: System Context documents the relationships between the
system being specified and other human and computer systems. (Som-
merville, 1992)

User: The person, or persons, who operate or interact directly with the prod-
uct. (IEEE, 2000)

2.3.2 Mesh Generation Related Terminology

Cell: Another name for an element, as defined in page 7.

Conformal Mesh: A conformal mesh is a mesh (defined on page 8) following
the definition of a mesh, with the addition of the following property:
The intersection of two elements in the mesh Q* is either the empty set,
a vertex, an edge or a face (when the dimension is 3). (Frey and George,
2000)

Connectivity: There are two types of connectivity, one for the mesh and one
for a mesh element:

1. “The connectivity of a mesh is the definition of the connection be-
tween its vertices.” (Frey and George, 2000)

2. “The connectivity of a mesh element is the definition of the connec-
tions between the vertices at the element level.” (Frey and George,
2000)

Domain: The area or volume that is to be discretized. The domain is some-
times referred to as the computational domain. (Smith and Chen, 2004)

Edge: An edge is a line segment between two vertices.

Element : The original domain is discretized into smaller, usually simpler,
shapes called elements. The typical shapes for elements in 1D is a line,
in 2D is a triangle or a quadrilateral, and in 3D a tetrahedron or a
hexahedron. Elements are also called cells. (Smith and Chen, 2004)

7

Wen Yu — McMaster University — Computing and Software

Embedding Application: The software that uses PMGT.

Face: A face is a maximal connected subset of the plane without vertices
inside the subset. In 2D, a face is a cell.(Frey and George, 2000)

Hybrid Mesh: A mesh is said to be hybrid if it includes some elements with
a different spatial dimension. (Frey and George, 2000)

Mesh: In Smith and Chen (2004), a mesh is defined as follows:
Let © be a closed bounded domain in R or R? or R?® and let K be an
element. A mesh of €2, denoted by 2%, has the following properties:

1. Q= U(K|K € Q" : K), where U is first closed and then opened

2. the length of every element K, of dimension 1, in Q* is greater than
Zero

3. the interior of every element K, of dimension 2 or greater, in 2* is
nonempty

4. the intersection of the interior of two elements is empty

The only difference between above definition and the definition given
by Frey and George (2000) is that equality (=) had been changed to
approximate equality (=).

Mesh Generation: The automatic mesh generation problem is that of at-
tempting to define a set of elements to best describe a geometric do-
main, subject to various element size and shape criteria. (Smith and
Chen, 2004)

Mixed Mesh: A mesh is said to be mixed if it includes some elements of a
different geometric nature. (Frey and George, 2000)

Structured Mesh: The mesh in which the local organization of the grid
points and the form of the grid cells do not depend on their position
but are defined by a general rule. There is a pattern to the topology
that repeats. Frey and George (2000) say, “a mesh is called structured if
its connectivity is of the finite difference type.” They go on to remark,
“Peculiar meshes other than quad or hex meshes could have a structured
connectivity. For instance, one can consider a classical grid of quads
where each of them are subdivided into two triangles using the same
subdivision pattern.”

Wen Yu — McMaster University — Computing and Software

Topology: “The topology of a mesh element is the definition of this element
in terms of its faces and edges, these last two being defined in terms of
the element’s vertices.” (Frey and George, 2000)
The topology of a mesh is the set of topologies of its constitute mesh
elements.

Unstructured Mesh: The mesh whose element connectivity of the neigh-
bouring grid vertices varies from point to point. Any mesh that is not
structured is an unstructured mesh. (Smith and Chen, 2004)

Vertices: The locations that define the shape of the cells. In 1D the vertices
are the end-points of the elements. For 2D and 3D elements the vertices
correspond to the location in space that defines the intersection of the
edges of an element. (Smith and Chen, 2004)

2.4 Organization of the Document

This SRS follows the template introduced by Lai (2004). Lai’s template targets
an SRS for scientific computing software. In particular, the example shown is
for engineering mechanics software, such as software to analyze beams. In the
current work, Lai’s template is modified to fit PMGT, which is a more general
purpose software. For example, the instanced model section of Lai’s template
is removed since PMGT is not designed for solving a specific physical problem.

Section 2 (this section) is an introduction to the SRS. The rest of the
document is arranged as follows. Section 3 provides the general information
about the system. Section 4 is the major part of the SRS. All functional
requirements and non-functional requirements of the software are presented in
this section. Section 5 discusses some other system issues. Section 6 gives a
traceability matrix that summaries the association of each requirement with
goals, assumptions, theoretical models and data definitions introduced in 4.
This SRS also contains the list of possible changes in the requirements and
values of auxiliary constants. The references are listed at the end of this
document.

3 General System Description

This section describes the general information about the system. The inter-
faces between the system and its environment are defined first. Then the
characteristics of potential users are discussed. At end of this section, some
system constraints are described.

Wen Yu — McMaster University — Computing and Software

3.1 System Context

The software to be built is a library tool that will be called by other ap-
plications. There is no direct interaction between the system and the end
users. Users of the embedding application, such as an FEA program, provide
some parameters directly to the FEA program. Some of these parameters are
passed to PMGT by the FEA program. The interface between PMGT and
the embedding application should only show what PMGT can do and hide the
information about how to do it. Therefore, users who are not experts in mesh
generation or in parallel processing will be able to use this toolbox.

Embedding PMGT

Application

Figure 1: System Context Diagram

Figure 1 shows the context that PMGT will normally fit into. A circle
represents an external entity outside the system, an embedding application in
this case. The rectangle is the system itself. Arrows represent the data flows
between them.

The input: MIN 7

The output: MOUT,

10

Wen Yu — McMaster University — Computing and Software

PMGT has the following function:

A mesh MY and some refining/coarsening instructions I are given.

PMGT generates a refined/coarsened mesh M OUT according to
the instructions /.

3.2 User Characteristics

The target user group of PMGT includes both software designers, who intend
to embed this library in their applications, and theoreticians, who are involved
in parallel mesh generation. A user of PMGT is expected to be familiar with
the notion/knowledge of mesh creation. PMGT is a library used by other ap-
plications. Therefore, users should not be novices in terms of software design.
The prerequisite software design knowledge are equivalent to that of a senior
undergraduate student in science or engineering who took an introductory
course on programming. For example, they should be comfortable with com-
pilation of the programming language in which PMGT is written, be familiar
with embedding a library in their software, etc.

3.3 System Constraints

This system is intended to be built on the Shared Hierarchical Academic Re-
search Computing Network (SHARCNET). SHARCNET is structured as a
“cluster of clusters” across South Central Ontario, designed to meet the com-
putational needs of researchers in a diverse number of research areas and to
facilitate the development of leading-edge tools for high performance comput-
ing (HPC) grids.

Large production clusters, located at the Universities of Western On-
tario, Guelph and McMaster, house over 400 HP/Compaq Alpha processors
and large symmetric multiprocessor computers. Windsor and Wilfrid Laurier
host smaller development clusters (8 processors), which enable researchers to
develop and test code before moving to one of the larger clusters. A glance
of SHARCNET systems is shown in Table 1. Note that the network is con-
stantly being updated. Detailed information can be found at SHARCNET
(Last Access: January, 2006).

4 Specific System Requirements

This section describes the system requirements in detail. After the problem is
clearly and unambiguously stated, some solution characteristics are specified.

11

Wen Yu — McMaster University — Computing and Software

System Make Type CPUs OS

bala Compaq Cluster | 8 Red Hat Linux 7.2
cat Unknown Cluster | 162 Red Hat Linux 8
goblin Sun Cluster | 56 Fedora Core 2
hammerhead Compaq Cluster | 112 Red Hat Linux 7.2
idra Compaq SC Cluster | 128 Tru64

mako HP Cluster | 16 Fedora Core 2
tiger Compaq Cluster | 8 Red Hat Linux 7.2
typhon Compaq SMP 16 Tru64

wobbe Unknown Cluster | 193 Red Hat Linux 8
TOTALS 699

Table 1: A Glance at the SHARCNET System

Non-functional requirements are also included in this section. The symbol := is
used to indicate type definition. The notation for set building and expressions
used in this section follows Gries and Schneider (1993). To define the notation,
first let be a list of dummies, ¢ a type, R a predicate, E an expression, x
an operator, and P a predicate. Notation {z : ¢ | R : E} represents a set of
values that result from evaluating E[z := v] in the state for each value v in ¢
such that R[x := v] holds in that state. Expression (xx : ¢ | R : P) denotes
the application of operator % to the values P for all x in ¢ for which range R
Is true.

4.1 Problem Description

The problems (goals) specified in this subsection represent ideal general mod-
els. The problems are simplified by introducing some assumptions, which are
listed in Section 4.2.

4.1.1 Background Overview

Many physical problems of importance to scientists and engineers are modeled
as a set of Partial Differential Equations (PDEs). In most practical cases, it
is necessary to solve the PDEs numerally. Numerical methods to solve PDEs
frequently require that the domain of interest be divided into a mesh, which is
a set of small, simple elements that cover the computational domain. In some
applications, a single mesh is generated and used many times; in this case
the processing time spent on mesh construction is not critical and a relatively
slow, sequential algorithm suffices (Ruppert, 1993). However, some applica-

12

Wen Yu — McMaster University — Computing and Software

tions need adaptive meshing, which requires that the meshes be generated
once and then modified many times. For instance, adaptive meshing is used
for reliable Finite Element Analysis (FEA) using a posterrori error estimation
(Zienkiewicz et al., 2005). The increased mesh interaction for adaptive meshing
means an increased need for speed of managing the mesh data which suggest
employing parallel processing techniques. Although generating a mesh using
multiple processors is complicated, it can offer considerable speed-up over se-
quential processing. In addition, some FEA applications are implemented on
multiple processors. If the adaptive mesh can be generated in multiple pro-
cessors as well, the mesh data can remain on the local processors. Potentially,
time to be used will be significantly reduced.

4.1.2 Goal Statements
There are two related goals for PMGT.

G1: Given a mesh MIN and instructions I on how to refine the mesh, PMGT

AOUT

should generate a refined mesh according to the instructions I.

G2: Given a mesh MY and instructions I on how to coarsen the mesh,

PMGT should generate a coarsened mesh M OUT

structions /.

according to the in-

4.2 Solution Characteristics Specification

The goals stated in the last section are too general to achieve. In this section,
the assumptions are specified first to reduce the scope of the software. Second,
the theoretical models for the goals are described. Third, data definitions
are given to assist with defining the theoretical models. Finally, the system
behaviour is summarized.

4.2.1 Assumptions
A1l: PMQGT focuses on a 2D domain.

A2: The input and output meshes are bounded.
A3: The input and output meshes are unstructured.
A4: The input and output meshes are conformal.

A5: The elements of input and output meshes are triangles.

13

Wen Yu — McMaster University — Computing and Software

A6: The initial mesh is valid.

4.2.2 Theoretical Model

The theoretical models corresponding to the goals given in Section 4.1 de-

scribes the relationship between the input mesh (M IN) and the output mesh

(M OUT). The meshes are assumed to be embedded in a 2D space.

TM1: Refining Mesh

Input: MIN, MeshT, I: RCinstructionT
Output: MOUT. MeshT

The following behavior is specified:
o Reﬁned(MOUT, MIN)
That is, the output mesh is a refined version of the input mesh.
TM2: Coarsening Mesh

Input: MIN. MeshT, I: RCinstructionT
Output: MOUT, MesnT

The following behavior is specified:
MOUT’ MIN)

o Coarsened(

That is, the output mesh is a coarsened version of the input mesh.

4.2.3 Data Definitions

The data definitions below are organized so that a definition listed in the
beginning may be used to define a data item listed after it.

VertexT (D1): A vertex is represented by two real numbers, which are its
x coordinate and y coordinate. More formally,
VertexT := tuple of (z: R, y: R).

EdgeT (D2): An edge is represented by a set of VertexT. More formally,
EdgeT := set of VertexT.

14

Wen Yu — McMaster University — Computing and Software

ValidEdge (D3): An edge is valid if the edge is a line segment (that is, the
set has two elements). More formally,
ValidEdge: EdgeT — B
ValidEdge(e: EdgeT) = #e = 2

CellT (D4): A cell is represented by a set of VertexzT. More formally,
CellT := set of VertexT

Area (D5): The area of a triangle whose apexes are elements of a cell. More
formally,
Area: CellT — R
Area(c: CellT) = Yvl,v2,v3: VertexT |vl € cAv2 € cAv3 E€c
ANvl #v2ANv2 #v3Avd #vl:
% * [vl.x xv2.y —v2.x xvly +
V2.2 * v3.y — V3.2 * v2.y +
vl xv3.y — v3.x * vl.y|

ValidCell (D6): A cell is valid if the cell is a triangle (that is , the set has
three elements) and the area of the triangle is greater than zero. More
formally,

ValidCell: CellT — B
ValidCell(c: CellT) = #c¢ = 3A Area(c) >0

MeshT (D7): A mesh is represented by a set of cells. More formally,
MeshT := set of CellT.

OnEdge (D8): Checks if a vertex is on the line segment between two vertices
(exclusive) of an edge. More formally,
OnEdge: VertexT x EdgeT — B
OnEdge(v: VertexT, e: EdgeT) = 3 vl, v2: VertexT |
vileeAv2e€eANvl #v2ANv# vl AvF#v2:
(vlz <vazx <v2x A
(v.y —vly)/(vix —vla) = (vV2.y —vly)/(v2.2 —vl.x))

BelongToCell (D9): Checks if an edge belongs to a cell. More formally,
BelongToCell: VertexT x CellT — B
BelongeToCell(e: EdgeT, ¢: CellT) =V v: VertexT |[vE€e:v Ec

Inside (D10): Checks if a point (of type VertexT) is inside of a cell. The
inside checking is false if the point is on an edge of the cell or the point is
a vertex of the cell. (The algorithm to check if a point is inside a polygon
is from Blackpawn (Last Access: January, 2006).) More formally,

15

Wen Yu — McMaster University — Computing and Software

Inside: VertexT x CellT — B
Inside(v: VertexT, ¢: CellT) = J vl, v2, v3: VertexT |
viecAv2ecAv3decAvl #v2ANv2#v3Av3#0vl:

((v.y —vly) * (V2.2 —vlx) — (v —vl.x) * (V2.y —vl.y)) *
((v.y —v2.y) * (V3.2 —v2.2) — (v.r — v2.2) % (V3.y —v2.y)) > 0 A
(v.y —v2.y) * (V3.2 — v2.2) — (v.r — V2.2) * (V3.y — V2.)) *
((v.y —v3.y) * (vl.x —v3.2) — (v.x — v3.2) % (vl.y — v3.y)) >0

Vertices (D11): A set of all vetices of the mesh. More formally,
Vertices: MeshT — set of VertexT
Vertices(m: MeshT) = {v: VertexT | (V ¢: CellT |c €m:v €c¢): v}

Edges (D12): A set of all edges of the mesh. More formally,
Edges: MeshT — set of EdgeT
Edges(m: MeshT) = {vl, v2: VertexT | (Vc: CellT | c € m:
vl ecAv2€ecAvl #02): {vl,v2}}

BoundaryEdges (D13): A set of edges are boundary edges if they form a
boundary of a mesh. More formally,
BoundaryFEdges: MeshT — set of EdgeT
BoundaryEdges(m: MeshT) = {b: EdgeT | b € Edges(m) A
(#{c: CellT | ¢ € mA BelongToCell(b, c): ¢} = 1): b}

BoundaryVertices (D14): A set of boundary vertices of the mesh. More
formally,
BoundaryVertices: MeshT — set of VertexT
Boundary Vertices(m: MeshT) =
{v: VertexT | v € BoundaryEdges(m): v}

Bounded (D15): A mesh is bounded if the boundary edges form a closed
polygon(all vertices of boundary edges belong to exactly two boundary
edges). More formally,

Bounded: MeshT — B
Bounded(m: MeshT) = Vv: VertexT | v € BoundaryVertices(m):
(#{e: EdgeT | e € BoundaryEdge(m) A\v € e : e} = 2)

Conformal (D16): In 2D, a mesh is conformal if the intersection of any two
cells is either a vertex or an edge or empty. More formally,
Conformal: MeshT — B
Conformal(m: MeshT) = Vcl,¢2: CellT |[cl€mAc2eEmAcl # ¢2:
(Je: EdgeT | e € Feges(m): (Jv : VertexT | v € Vertices(m):
(clne2=eVelNe2=vVelNne2=0)A (= OnEdge(v, €))))

16

Wen Yu — McMaster University — Computing and Software

NolnteriorIntersect (D17): NolnteriorIntersect is true if a point in space

(of type VertexT) is inside only one cell of the mesh. More formally,
NolnteriorIntersect. MeshT — B

NolnteriorIntersect(m: MeshT) = Vel, ¢2: CellT |
cl e mAc2 e mAcl # 2 : (Vu: VertexT | Inside(v, c1): — Inside(v,c2))

ValidMesh (D18): A mesh is valid if the mesh is bounded, conformal, and
any point is only inside one cell. More formally,
ValidMesh: MeshT — B
ValidMesh(m: MeshT) = (Ve: EdgeT | e € Edges(m): ValidEdge(e))
A (Ye: CellT | ¢ € m: ValidCell(c)) N
Bounded(m) N Conformal(m) A NolnteriorIntersect(m)

CoveringUp (D19): True if two meshes covering up each other, that is, if
all endpoints of the boundary edges of one mesh are on the boundary

edges or are end points of the boundary edges of another mesh. More
formally,

CoveringUp: MeshT X MeshT — B

CoveringUp(m1, m2: MeshT) = Vvl, v2: VertexT, |

vl € BoundaryVertice(m1) A v2 € BoundaryVertices(m2):

(3b1, b2: EdgeT | bl € BoundaryEdges(m1) Nb2 € BoundaryEdges(m?2):
(OnEdge(vl, b2) Vvl € b2)A (OnEdge(v2, b1) Vv2 € bl))

InstructionT (D20): The type of instructions is defined as:
InstructionT = {REFINE, COARSEN, NOCHANGE}

CelllnstructionT (D21): The type of instructions on a cell is defined as:
CelllnstructionT:= tuple of (cell: CellT, instr: InstructionT)
(For each cell, there is an instruction for refining, coarsening, or nochange.)

RCinstructionT (D22): The type of instructions on a mesh is defined as:
RCinstructionT:= tuple of (rORc: InstructionT, cInstr: set of CellInstructionT)

(For each mesh, there is an instruction on whole mesh, and there are set
of instruction on each cell.)

Refined (D23): True if a mesh M’ is a refined mesh of a mesh M. More
formally
Refined: MeshT X MeshT x RCinstructionT — B
Refined(m’, m: MeshT, rc: RCinstructionT) =
rc.rORc = REFINE A ValidMesh(m) N\ ValidMesh(m’) A
CoveringUp(m’, m) A#m’ > #m

17

Wen Yu — McMaster University — Computing and Software

Coarsened (D24): True if a mesh M’ is a coarsened mesh of a mesh M.
More formally
Coarsened: MeshT x MeshT x RCinstructionT — B
Coarsened(m’, m: MeshT, rc¢: RCinstructionT) =
re.rORc = COARSEN A ValidMesh(m) A ValidMesh(m’) A
CoveringUp(m’, m) AN#m' < #m

4.2.4 System Behaviour

System Behaviour, shown through functional requirements, defines what the
software should do. The functional requirements, as well as nonfunctional re-
quirements in Section 4.3, partially come from Smith and Chen (2004). Smith
and Chen (2004) listed all requirements that are common for mesh genera-
tion systems. They also considered the difference between meshes in term
of variabilities. However, the mesh generations analyzed by Smith and Chen
(2004) are targeted at full FEA applications. PMGT only manages the geo-
metric information about the mesh, not other FEA related information, such
as boundary condition and material property. Hence, only commonalities that
is meaningful for PMGT are selected. Variabilities with parameters of vari-
ation that are suitable for PMGT are also considered. Other part of the
requirements are obtained from Dr. Smith.

New functional requirements, RCInstruction (F9) and Help (F16) are
added. F9 is unique to PMGT and F16 facilities the non-functional require-
ments Usability (NG6).

We specify both functional requirements and non-functional require-
ments in the tables. In each table, the field Description gives a brief de-
scription of this requirement. It tells what PMGT should do to fulfill this
requirement. There are two potential sources, shown in the Source field, for
each requirement. One source is from Smith and Chen (2004), and the other
comes from Dr. Smith. If the requirement is from Smith and Chen (2004),
then this field will show the commonality number, with a prefix C' and the
associated variability, shown by a prefix V. Where applicable, Related Data
Definitions and Related Theoretical Models gives the numbers of related data
definitions and the numbers of related theoretical models, respectively. These
two field only appear for functional requirements. The Binding Time field ei-
ther shows scope time or run time. Scope time means that this requirement is
determined when the SRS is written. Run time means that this requirement is
determined when the system is running. History records the time of creating
and changing of the requirements.

18

Wen Yu — McMaster University — Computing and Software

Requirements Number
Requirements Name

F1
RefiningMesh

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

PMGT should have capabilities for
refining an existing mesh.

I.rORc = REFINE A
Reﬁned(MOUT, MIN)

C1, V3

D20, D22, D23

TM1

Scope time

Created — June, 2005.

Modified — October, 2005. Change
the name from “ImprovingMesh”
to “RefiningMesh”.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

Requirements Number
Requirements Name

F2
CoarseningMesh

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

PMGT should have capabilities for
coarsening an existing mesh.

L. rORc = COARSEN A
Coarsened(MOUT, MIN)
C1, V3

D20, D22, D24

TM2

Scope time

Created — October, 2006.

19

Wen Yu — McMaster University — Computing and Software

Requirements Number
Requirements Name

F3
RefiningOrCoarsening

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

PMGT can either refine a given
mesh to a refined mesh, or coarsen
a mesh to a coarsened mesh. How-
ever, PMGT cannot do both re-
fining and coarsening at the same
time.

C1, V3

D20, D22, D23, D24

TM1, TM2

Run time

Created — October, 2006.

Requirements Number
Requirements Name

F4
MeshType

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

The mesh generated by PMGT is
unstructured.

C1, Vb

N/A

N/A

Scope time

Created — June, 2005.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

20

Wen Yu — McMaster University — Computing and Software

Requirements Number
Requirements Name

F5
ElmShape

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

The shape of the elements in both
input and output meshes are trian-
gles.

Vel, ¢2: CellT |

c1e MIN A2 e MOUT .

#cl = 3N Area(cl) > OA

#c2 = 3N Area(c2) >0

C1, V9

D4, D5

TM1, TM2

Scope time

Created — June, 2005.

Modified — October, 2006. Take
out the requirement for generating
quadrilateral meshes.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

Requirements Number F6

Requirements Name DomainDimension

Description The computational domain is in 2D
space.

Source C1, V13

Related Data Definitions N/A

Related Theoretical Models | TM1, TM2

Binding Time Scope time

History

Created — June, 2005.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

21

Wen Yu — McMaster University — Computing and Software

Requirements Number
Requirements Name

E7

Conformal

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

Both input and output meshes are
conformal.

Conformal(MIN) A
Conformal(MOUT)

C1, V18

D16

N/A

Scope time

Created — June, 2005.

Modified — October, 2006. Take
out the requirement for generating
non-conformal meshes.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

Requirements Number
Requirements Name

F8
InputDefinition

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

The input of PMGT should be pro-
vided by the embedding applica-
tion.

C8

D7, D20, D22

TM1, TM2

Scope time

Created — June, 2005.
Modified—October 2005. Change
the name from “Input” to “Input-
Definition” to clarify that this re-
quirements is about the source of
the input.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

22

Wen Yu — McMaster University — Computing and Software

Requirements Number
Requirements Name

F9
RClInstruction

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

The Instruction on how to re-
fine/coarsen a mesh includes the
instruction of whether to refine or
coarsen the mesh and an individ-
ual instruction for each element of
the the mesh to indicate refining,
coarsening, or no change.

Dr. Smith

D20, D21, D22

TM1, TM2

Scope time

Created — June, 2005

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

23

Wen Yu — McMaster University — Computing and Software

Requirements Number
Requirements Name

F10
OutputStorage

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

The output of PMGT is stored in
memory or in files or in both mem-
ory and files.

C12, Dr. Smith

N/A

N/A

Run time

Created — June, 2005.

Modified — October 2005. Change
the name from “Output” to “Out-
putStorage” to clarify that this re-
quirements is about the storage of
the output.

Modified — October 2006. Add the
requirement of storing the output
mesh in files or both memory and
files.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

Requirements Number
Requirements Name

F11
VertexUniquelD

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

Each vertex in the output file has a
unique identifier.

C2

N/A

N/A

Scope time

Created — June, 2005.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

24

Wen Yu — McMaster University — Computing and Software

Requirements Number
Requirements Name

F12
ElmUniquelD

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

Each element in the output file has
a unique identifier.

C3

N/A

N/A

Scope time

Created — June, 2005.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

Requirements Number
Requirements Name

F13
ElmTopology

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

The topology of an element in the
output file is given by the connec-
tivity of its set of vertices.

C4

N/A

N/A

Scope time

Created — June, 2005.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

25

Wen Yu — McMaster University — Computing and Software

Requirements Number
Requirements Name

F14
OutElmOrder

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

The element information in output
files is listed in ascending order.
C13, V34

N/A

N/A

Scope time

Created — June, 2005.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

Requirements Number
Requirements Name

F15
OutVertexOrder

Description

Source

Related Data Definitions
Related Theoretical Models
Binding Time

History

The vertex information, such as the
coordinates, in output files is listed
in ascending order.

C14, V35

N/A

N/A

Scope time

Created — June, 2005.

Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

26

Wen Yu — McMaster University — Computing and Software

Requirements Number F16

Requirements Name Help

Description Helps on documenting the interface
and the functionality of each func-
tion should be provided.

Source Dr. Smith

Related Data Definitions N/A

Related Theoretical Models | N/A

Binding Time Scope time

History Created — June, 2005.

Modified — October 2005. Add the
requirement of documenting func-
tionality of each function.
Modified — October, 2006. Field
for “Related Data Definitions” and
“Related Theoretical Models” are
added.

4.3 Non-functional Requirements

All non-functional requirements listed in Smith and Chen (2004) are selected
except for C16, which is solution tolerance, since a mesh refined/coarsened
by different algorithms may have different solutions, but all of these solutions
can still be valid. All potential output meshes are valid as long as the out-
put meshes are covering/covered up meshes of the original mesh, and they
are refined /coarsened according to the RCInstruction. The resulting mesh is
difficult to measure in terms of solution tolerance. Three new non-functional
requirements, which are LookAndFeel (N5), Usability (N6), and Maintainabil-
ity (NT), are added. These requirements are mentioned in Lai (2004).

PMGT is difficult to validate. One reason is that the solution for re-
fining/coarsening a mesh is unknown, as mentioned above. The other reason
is that it is difficult to write validatable requirements, especially for nonfunc-
tional requirements. For example, what is the proper way for specifying the
requirement of Usability (N6) of PMGT? On the one hand, that the software
should easy to use is not validatable. On the other hand, that a person should
be able to use the software in two days is validatable. However, the measure-
ment, two days, often lacks a justifiable rationale.

The approach to validate this kind of requirements are to compare it
with other software with similar functionality. Phrases that are in italics and
capitalized, such as MANPROP, represent constant defined in Section 8. Usu-

27

Wen Yu — McMaster University — Computing and Software

ally, these constants come from other applications with similar functionalities.
For example, the Usability requirement of PMGT is presented as follows:

This system should be easy to use. Users with the background
specified in Section 3.2 should take LEARNTIME to reproduce
an example mesh, which is specified by the test case TC?? in the
Appendix 77.

First, more general requirement is given. Then, a suggestion to reproduce an
example mesh is specified. The constant LEARNTIME is defined as the time
to produce the same mesh for users with the same background using AOMD.

Requirements Number | N1

Requirements Name Performance

Description Refining/coarsening a mesh using
multiple processors should be faster
than when using a single proces-
sor. In addition, the performance
of PMGT should be comparable
with that of similar applications.
The execution time to refine an ex-
ample mesh, which is specified by
the test case TC?? in the Appendix

77,
Source C15, V39
Binding Time Scope time
History Created — June, 2005.

Requirements Number N2

Requirements Name Precision

Description The number of decimal digits
should agree with the IEEE stan-
dard for floating-point numbers.

Source C17, V41
Binding Time Scope time
History Created — June, 2005.

28

Wen Yu — McMaster University — Computing and Software

Requirements Number N3
Requirements Name Exception
Description Run-time exception handling

Source
Binding Time
History

should check at least the following
exceptions: division by zero, re-
dundant vertices, redundant edges,
redundant cells.

C18, V42

Scope time

Created — June, 2005

Requirements Number
Requirements Name

N4
Portability

Description

Source
Binding Time
History

PMGT should build on a platform
with access to SHARCNET or on a
the system that has similar archi-
tecture to SHARCNET. The mem-
ory capacity should be MEMCAP.
C19, V37, V38

Scope time

Created — June, 2005

Requirements Number
Requirements Name

N5
LookAndFeel

Description

Source
Binding Time
History

PMGT should follow the program-
ming conventions of the language in
which the application is coded in.
Dr. Smith

Scope time

Created — June, 2005

29

Wen Yu — McMaster University — Computing and Software

Requirements Number
Requirements Name

N6
Usability

Description

Source
Binding Time
History

This system should be easy to use.
Users with the background spec-
ified in Section 3.2 should take
LEARNTIME to reproduce an ex-
ample mesh, which is specified in
the Appendex 77.

Dr. Smith

Scope time

Created — June, 2005

Requirements Number
Requirements Name

N7
Maintainability

Description

Source
Binding Time
History

The system should be developed
in the way that the effort spent
to maintain the system or to add
in features would be minimum.
The redevelopment time to add a
new algorithm to coarsen meshes in
PMGT should be MANPROP.

Dr. Smith

Scope time

Created — June, 2005

5 Other System Issues

This section includes some other supporting information that might contribute
to the success or failure of the system development. The following factors are

considered:

e Open issues are statements of factors that are uncertain and might make

significant difference to the system.

e Off-the-shell solutions are existing systems and/or components bought

or borrowed. They could be the potential solutions.

e Waiting rooms provide a blueprint of how the system will be extended.

30

Wen Yu — McMaster University — Computing and Software

5.1 Open Issues
There are no open issues for PMGT at this stage.

5.2 Off-the-shelf Solutions
The following programs may be used in PMGT.

e AOMD: a mesh management library (or database) that is able to provide
a variety of services for mesh users (SCOREC, Last Access: January,
2006).

5.3 Waiting Rooms

Here, we list the possible changes that can affect the extension of the system.
These changes are related to the assumptions specified in Section 4.2.

1. PMGT may produce both structured and unstructured meshes.
2. PMGT may produce both conformal and nonconformal meshes.

3. The elements of input and output mesh may be of a shape other than
triangles.

4. The system may deal with invalid input mesh.
5. The system may accommodate a mixed mesh.
6. The system may accommodate a hybrid mesh.

7. The system may deal with a 3D problem domain.

6 Traceability Matrix

The traceability matrix defined in this section gives a big picture of the associa-
tions among goals, assumptions, data definitions, theoretical models, and func-
tional requirements. Goals are ideal general models. After assumptions are
applied, these goals are restricted to problems that can be solved by PMGT.
Data definitions and theoretical models are used to describe the requirements.
The matrix is too big to fit one page. For the sake of clarity, it is split into
three parts in five tables, which are Table 2, Table 3, Table 4, Table 5, and
Table 6. In addition, only items that have a relation with items in the same

31

Wen Yu — McMaster University — Computing and Software

part are listed. If there is a v'in a cell, it means that if the goal, or the as-
sumption, or the theoretical model, or the data definition, or the requirement
in the corresponding column changes, the assumption, or the data definition,
or the theoretical model, or the requirement in the corresponding row should
also change.

7 List of Possible Changes in the Requirements

The system might evolve to accommodate the following changes in the future.
These changes will add additional goals to the software library.

1. The input of PMGT may include material properties.

2. The input of PMGT may include boundary conditions.

8 Values of Auxiliary Constants

The constants given in this section are used to validate some nonfunctional
requirements. The compatible software chosen is AOMD. However, other soft-
ware can also be used as long as the other software has the required function-
alities to validate the given requirement.

LEARNTIME The time that reproduce the same example as
that specified in nonfunctional requirement N6 using
AOMD.

MANPROP The redevelopment time to add the same algorithm
as that specified in the nonfunctional requirement N7,
using AOMD. If the algorithm is already in AOMD,
the the time that AOMD took to add it.

RSPTIME The execution time to refine the same mesh as
that specified in nonfunctional requirement N1 using
AOMD.

MEMCAP The typical memory capacity of a machine on SHAR-
CNET.

32

Wen Yu — McMaster University — Computing and Software

—_

2 |A1 [A2 [A3 [A4 [A5 | A6 | TMI] TM2

Al

v

A2

v

A3

A4

A5

A6

D1

D2

D3

D4

D5

D6

SNENEN

SNENEN

D7

D8

D9

D10

SNENEN

D11

D12

D13

D14

D15

D16

D17

SENENENENEN

D18

D20

D21

D22

D19

SSNENEN NN AN ENEN AN ENENENENENENENENENENENENEN ENENENENENEN(f

D23

N ENENENENENENENEN N RN ENENENENENENENENENENENEN ENENENENENEN o

D24

(\

TM1

~

v

v

TM2

v

v

v

Table 2: Traceability Matrix (PART I): Goals, Assumptions, Theoretical Mod-

els, Data Definitions, and Requirements (I)

References

Blackpawn.

Point in triangle test, Last Access:

January, 2006.
http://www.blackpawn.com/textghpointinpoly/default.html.

URL

Wen Yu — McMaster University — Computing and Software

| [G1 [G2 [Al [A2 [A3 [A4 [A5 [A6 [TMI] TM2

F1 | v v

F2 v v
F3 |V v v v
F4 v

F5 | v v v v v v
F6 | v v v v v
F7 | v v v

F8 | v v v v
F9 | v v v v
F10 | v v

F16 | v v

Table 3: Traceability Matrix (PART I): Goals, Assumptions, Theoretical Mod-
els, Data Definitions, and Requirements (II)

Alan M. Davis. Software Refquirements: Analysis and Specification. Prentice
Hall Inc., 1990.

Pascal Jean Frey and Paul-Louis George. Mesh generation Application to
Finite Elements. Hermes Science Europe ltd., 2000.

David Gries and Fred B. Schneider. A Logical Approach to Discrete Math.
Springer-Verlag New Yourk, Inc., 1993.

IEEE. IEEFE Standard Glossary of Software Engineering Terminology. IEEE
Computer Society, Washington, DC, USA, 1990.

IEEE. IEEE Guide for Developing System Requirements Specifications. IEEE
Computer Society, Washington, DC, USA, 1998.

IEEE. IEEE Recommended Practice for Software Requirements Specifications.
IEEE Computer Society, Washington, DC, USA, 2nd edition, 2000.

Lei Lai. Requirements documentation for engineering mechanics software:
Guidelines, template and a case study. Master’s thesis, McMaster University,
Sept. 2004.

James Robertson and Suzanne Robertson. Volere requirements specification
template, 2001.

34

Wen Yu — McMaster University — Computing and Software

Jim Ruppert. A new and simple algorithm for quality 2-dimensional mesh
generation. In SODA ’93: Proceedings of the fourth annual ACM-SIAM
Symposium on Discrete algorithms, pages 83-92, Philadelphia, PA, USA,
1993. Society for Industrial and Applied Mathematics. ISBN 0-89871-313-7.

SCOREC. Algorithm oriented mesh database, Last Access: January, 2006.
URL http://www.scorec.rpi.edu/AOMD/.

SHARCNET. Shared hierarchical academic research computing network, Last
Access: January, 2006. URL www.sharcnet. ca.

S. Smith and C. H. Chen. Commonality analysis for mesh generation system.
Technical Report CAS-04-10-ss, Department of Computing and Software,
McMaster University, 2004.

[an Sommerville. Software Engineering. Addison-Wesley Publishing Company,
1992.

Axel van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Proceedings of the fifth IEEE International Symposium on Require-
ments Engineering, pages 249-263. IEEE Computer Society, Washington,
DC, USA, 2001.

O. C. Zienkiewicz, R. L Taylor, and J. Z. Zhu. The Finite Element Method
Its Basis and Fundamentals. Elsevier Butterworth-Heinemann, 6th edition,
2005.

35

Wen Yu — McMaster University — Computing and Software

| | D1 [D2 | D3 | D4 |D5|D6|D7[D8 | D9 | D10 D11} D12
Dl [V
D2 |V |V
D3 v |V
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18 v v
D19
D20
D21 v
D22
D23
D24

TM1 v
TM2 v
F1
F2
F3 v
F5 v v
F7
F'8 v
F9

AN

AR
(\

NEN

SNENENENEN
NEN

SSENENENEN

ANEN

SNEN

SNENENEN

ANEN
ANENENENENEN

\
«\

Table 4: Traceability Matrix (PART II): Data Definitions and Requirements
(D)

36

Wen Yu — McMaster University — Computing and Software

| | D13] D14] D15| D16| D17] D18| D19[D20 D21] D22| D23] D24
D13 | v
D4 v [V
DI5[v |V |V
D16 v
D17 v
D18 v v [v |/
D19 | v |V v
D20
D21
D22
D23 s
D24 s
TM1
TM2

F1
F2
F3
F5
EF7 v
F8 v v
F9 v IV Y

SNENENENEN
\

SNENENENEN/ENENEN
(\

NENEN

Table 5: Traceability Matrix (PART II): Data Definitions and Requirements
(1)

| |F1 |F2 |F6 [F8 |F10|NG |
F3 [v |V
F5 v
F9 %
F11
F12
F13
F14
F15
F16 v

AN ENENENEN

Table 6: Traceability Matrix (PART III): Requirements

37

