
Module Guide for a Parallel Mesh
Generation Toolbox

Wen Yu

September 2008

Computing and Software

McMaster University

Wen Yu – McMaster University – Computing and Software

Contents

1 Introduction 2

2 Anticipated and Unlikely Changes 3
2.1 Anticipated Changes . 3
2.2 Unlikely Changes . 4

3 Module Hierarchy 4

4 Connection Between Requirements and Design 5

5 Module Decomposition 6
5.1 Hardware-Hiding Module . 7

5.1.1 Extended Computer Module 7
5.1.2 Device Interface Module 8

5.2 Behavior-Hiding Module . 9
5.2.1 Input Format Module (M5) 9
5.2.2 Output Format Module (M6) 9
5.2.3 Service Module (M7) 9

5.3 Software Decision Module . 9
5.3.1 Entity Module . 10
5.3.2 Mesh Algorithm Module 11

6 Traceability Matrix 11
6.1 Traceability Matrix for Requirements 12
6.2 Traceability Matrix for Anticipated Changes 14

7 Use Hierarchy between Modules 14

1

Wen Yu – McMaster University – Computing and Software

1 Introduction

Decomposing a system into modules is a commonly accepted approach to
developing software. A module is a work assignment for a programmer or
programming team. The basic principle of the decomposition used here is the
information hiding principle (Parnas et al., 1984). According to Parnas et al.
(1984),

• System details that are likely to change independently should be the
secrets of separate modules.

• Each data structure is used in only one module.

• Any other program that requires information stored in a module’s data
structures must obtain it by calling access programs belonging to that
module.

After completing the first stage of the design, the Software Require-
ments Specification (SRS), the Module Guide (MG) for the PMGT was devel-
oped. The MG specifies the modular structure of the system and is intended
to allow both designers and maintainers to easily identify the parts of the
software. The potential readers of this document are as follows:

• New project members: This document can be a guide for a new project
member to easily understand the overall structure of the PMGT and
quickly find the relevant modules they are searching for.

• Maintainers: The hierarchical structure of the module guide improves
the maintainers’ understanding when they need to make changes to the
system. It is important for a maintainer to update the relevant sections
of the document after changes have been made.

• Designers: Once the module guide has been written, it is can be used to
check for consistency, feasibility and flexibility. Designers can verify the
system in various ways, such as consistency among modules, feasibility
of the decomposition, and flexibility of the design.

The rest of the document is organized as described in the following.
Section 2 lists the anticipated and unlikely changes of the software require-
ments. Section 3 summarizes the module decomposition that was constructed
according to the likely changes. Section 4 specifies the connections between
the software requirements and the modules. Section 5 gives a detailed descrip-
tion of the modules. Section 6 includes two traceability matrices. One checks

2

Wen Yu – McMaster University – Computing and Software

the completeness of the design against the requirements provided in the SRS.
The other shows the relation between anticipated changes and the modules.
Section 7 describes the use relation between modules.

2 Anticipated and Unlikely Changes

This section lists possible changes to the system. According to the likeliness of
the change, the possible changes are classified into two categories. Anticipated
changes are listed in Section 2.1, and unlikely changes are listed in Section 2.2.

2.1 Anticipated Changes

Anticipated changes are the source of the information that is to be hidden
inside the modules. Ideally, changing one of the anticipated changes will only
require changing the one module that hides the associated decision. The ap-
proach adapted here is called design for change.

AC1: The data structure and algorithms for implementing the virtual mem-
ory of the system.

AC2: The data structure and algorithms for implementing the interface be-
tween the file and the system.

AC3: The data structure and algorithms for implementing the interface be-
tween the keyboard and the system.

AC4: The data structure and algorithms for screen display.

AC5: The format and structure of the initial input mesh.

AC6: The format and structure of the output mesh.

AC7: The mechanisms for validating the input and output meshes.

AC8: The data structure of a vertex.

AC9: The data structure of an edge.

AC10: The data structure of a cell.

AC11: The data structure of a mesh.

AC12: The algorithms for refining a mesh.

3

Wen Yu – McMaster University – Computing and Software

AC13: The algorithms for coarsening a mesh.

AC14: The shape of a cell, which is initially assumed to be a triangular.

2.2 Unlikely Changes

The module design should be as general as possible. However, a general system
is more complex. Sometimes this complexity is not necessary. Fixing some
design decisions at the system architecture stage can simplify the software
design. If these decision should later need to be changed, then many parts of
the design will potentially need to be modified. Hence, it is not intended that
these decisions will be changed.

UC1: Input/Output devices (Input: File and/or Keyboard, Output: File,
Memory, and/or Screen).

UC2: There will always be a source of input data external to the PMGT
software.

UC3: Output data are displayed to the output device.

UC4: The goal of the system is refining or coarsening a mesh.

UC5: The type of the mesh is unstructured.

UC6: The representation of an edge is a set of vertices.

UC7: The representation of a cell is a set of vertices.

UC8: A Cartesian coordinate system is used.

3 Module Hierarchy

This section provides an overview of the module design. Modules are sum-
marized in a hierarchy decomposed by secrets in Table 1. The modules listed
below, which are leaves in the hierarchy tree, are the modules that will actually
be implemented.

M1: Virtual Memory Module

M2: File Read/Write Module

M3: Keyboard Input Module

4

Wen Yu – McMaster University – Computing and Software

M4: Screen Display Module

M5: Input Format Module

M6: Output Format Module

M7: Service Module

M8: Vertex Module

M9: Edge Module

M10: Cell Module

M11: Mesh Module

M12: Refining Module

M13: Coarsening Module

Note that M1, M2, M3 and M4 are commonly used modules and are already
implemented by the operating system. They will not need to be implemented
again for PMGT.

4 Connection Between Requirements and De-

sign

The design of the system is intended to satisfy the requirements developed in
the SRS. In this stage, the system is decomposed into modules. The connec-
tion between requirements and modules is listed in Table 2. However, some
connections are not obvious. The explanation below has the purpose of mak-
ing these connections clear. The software requirements are documented in the
SRS. They are also listed starting on page 12 for convenience.

The functionalities of refining a mesh (F1), and coarsening a mesh
(F2) are achieved directly by M12 and M13, respectively. The functional re-
quirement MeshType (F4) is related to the representation of mesh, which is
contained in M9, M10, and M11. The algorithms for refining (M12) and coars-
ening (M13) also depend on the MeshType requirement. Another connection
worth mentioning relates to the DomainDimension requirement (F6). All geo-
metric information for the mesh, including dimension information, is stored in
M8. Algorithms in M12 and M13 also relate to the dimension of the domain.

5

Wen Yu – McMaster University – Computing and Software

Level 1 Level 2 Level 3 Level 4

Hardware-
Hiding
Module

Extended
Computer Module

Virtual Memory
Module
File Read/Write
Module

Device Interface
Module

Keyboard Input
Module
Screen Display
Module

Behavior-
Hiding
Module

Input Format Mod-
ule
Output Format
Module
Service Module

Software
Decision
Module

Mesh Data Module
Entity Module

Vertex Module
Edge Module
Cell Module

Mesh Module

Algorithm Module
Refining Module
Coarsening Module

Table 1: Module Hierarchy

Some nonfunctional requirements, such as Performance (N1) and Main-
tainability (N7), are related to the overall quality of the system. These qualities
depend on the implementation of all of the modules. The Precision require-
ment depends on modules related to calculation, which are the module M8,
M9, M10, M11, M12 and M13.

5 Module Decomposition

Modules are decomposed according to the principle of “information hiding”
proposed by Parnas et al. (1984). The Secrets field in a module decomposition
is a brief statement of the design decision hidden by the module. The Services
field specifies what the module will do without documenting how to do it.
For each module, a suggestion for the implementing software is given under
the Implemented By title. If the entry is OS, this means that the module
is provided by the operating system or by standard programming language
libraries. PMGT means the module will be implemented by the PMGT soft-

6

Wen Yu – McMaster University – Computing and Software

ware. Only leaf modules in the hierarchy have to be implemented. If a dash
(–) is shown, this means that the module is not a leaf and will not have to be
implemented. Whether or not this module is implemented depends on the pro-
gramming language selected. This decomposition is inspired by Chen (2003).
The decomposition of the mesh data module is partly based on ElSheikh et al.
(2004). One difference between the current design and ElSheikh et al. (2004)
is that ElSheikh et al. (2004) has an explicit module for incidence and adja-
cency information. However, it is believed that where and how to store this
information is an implementation decision that should be abstracted away at
the design stage.

5.1 Hardware-Hiding Module

Secrets: The data structure and algorithm used to implement the virtual
hardware.

Services: Serves as a virtual hardware used by the rest of the system. This
module provides the interface between the hardware and the software.
So, the system can use it to display outputs or to accept inputs.

Implemented By: –

5.1.1 Extended Computer Module

Secrets: The number of processors, the instruction set of the computer, and
the computer’s capacity for performing concurrent operations.

Services: Provides an instruction set including the operations on application-
independent data types, sequence control operations, and general I/O
operations.

Implemented By: –

5.1.1.1 Virtual Memory Module (M1)

Secrets: The hardware addressing methods for data and instructions in real
memory.

Services: Presents a uniformly addressable virtual memory.

Implemented By: OS

7

Wen Yu – McMaster University – Computing and Software

5.1.1.2 File Read Write Module (M2)

Secrets: The data structure and algorithms for implementing the interface
between the file and the system.

Services: Provides an interface between the storage of the system and the IO
devices.

Implemented By: OS

5.1.2 Device Interface Module

Secrets: Characteristics of the present devices not likely to be shared by
replacement devices.

Services: Provides virtual devices to be used by the rest of software.

Implemented By: –

5.1.2.1 Keyboard Input Module (M3)

Secrets: The data structure and algorithms for implementing the interface
between the keyboard and the system.

Services: Retrieves the user inputs from the keyboard and communicates the
information with other parts of the system.

Implemented By: OS

5.1.2.2 Screen Display Module (M4)

Secrets: The data structure and algorithms to display graphics and text on
the screen.

Services: Provides an interface between the system and the screen so the
system can display information on the screen through the use of programs
in the module.

Implemented By: OS

8

Wen Yu – McMaster University – Computing and Software

5.2 Behavior-Hiding Module

Secrets: The contents of the required behaviors.

Services: Includes programs that provide externally visible behavior of the
system as specified in the software requirements specification (SRS) doc-
uments. This module serves as a communication layer between the
hardware-hiding module and the software decision module. The pro-
grams in this module will need to change if there are changes in the
SRS.

Implemented By: –

5.2.1 Input Format Module (M5)

Secrets: The format and structure of the initial input mesh.

Services: Converts the input mesh to the data structured used in PMGT.

Implemented By: PMGT

5.2.2 Output Format Module (M6)

Secrets: The format and structure of the output mesh.

Services: Converts the output mesh to an output file.

Implemented By: PMGT

5.2.3 Service Module (M7)

Secrets: The algorithm for validating meshes.

Services: Checks if the input and output meshes are valid.

Implemented By: PMGT

5.3 Software Decision Module

Secrets: The design decision based on mathematical theorems, physical facts,
or programming considerations. The secrets of this module are not de-
scribed in the SRS.

9

Wen Yu – McMaster University – Computing and Software

Services: Includes data structure and algorithms used in the system that do
not provide direct interaction with the user.

Implemented By: –

5.3.1 Entity Module

Secrets: The data structure of a mesh entity, including vertex, edge, and cell.

Services: Stores the complete mesh information generated, and also provides
programs to import and export the mesh information.

Implemented By: –

5.3.1.1 Vertex Module (M8)

Secrets: The data structure of a vertex.

Services: Stores the complete vertex information generated and provides pro-
grams to import and export the vertex information. The operations on
vertices are also included in this module.

Implemented By: PMGT

5.3.1.2 Edge Module (M9)

Secrets: The data structure of an edge.

Services: Stores the complete edge information generated and provides pro-
grams to import and export the edge information. The operations on
edges are also included in this module.

Implemented By: PMGT

5.3.1.3 Cell Module (M10)

Secrets: The data structure of a cell.

Services: Stores the complete cell information generated and provides pro-
grams to import and export the cell information. The operations on cells
are also included in this module.

Implemented By: PMGT

10

Wen Yu – McMaster University – Computing and Software

5.3.1.4 Mesh Module (M11)

Secrets: The data structure of a mesh.

Services: Stores the complete mesh information generated and provides pro-
grams to import and export the cell information. The operations on
meshes are also included in this module.

Implemented By: PMGT

5.3.2 Mesh Algorithm Module

Secrets: Algorithms for refining and coarsening a mesh.

Services: Refining and coarsening a mesh.

Implemented By: –

5.3.2.1 Refining Module (M12)

Secrets: Algorithms for refining a mesh.

Services: Refining a mesh.

Implemented By: MPGT

5.3.2.2 Coarsening Module (M13)

Secrets: Algorithms for coarsening a mesh.

Services: Coarsening a mesh.

Implemented By: MPGT

6 Traceability Matrix

A traceability matrix can be used for checking the completeness of the current
design. In this section, there are two matrices, the traceability matrix for re-
quirements and the traceability matrix for anticipated changes. The module
names and their corresponding numbers are can be found in Section 3

11

Wen Yu – McMaster University – Computing and Software

6.1 Traceability Matrix for Requirements

The traceability matrix in Table 2 makes a connection between the modules
and the requirements. Modules are listed in the first row and requirements
are listed in the first column. If a module, say A, satisfies a requirement, say
B, and A is in j-th column and B in i-th row, then there is a check mark
�in the cell of the i-th row and the j-th column. There is a special column
“Doc.” It represents the documentation of PMGT. the “Doc” entry is used to
fulfill the requirement Help (F16). The names of the requirements and their
corresponding numbers are listed below for convenience.

F1: RefiningMesh

F2: CoarseningMesh

F3: RefiningOrCoarsening

F4: MeshType

F5: ElmShape

F6: DomainDimension

F7: Conformal

F8: InputDefinition

F9: RCInstruction

F10: OutputStorage

F11: VertexUniqueID

F12: ElmUniqueID

F13: ElmTopology

F14: OutElmOrder

F15: OutVertexOrder

F16: Help

N1: Performance

N2: Precision

12

Wen Yu – McMaster University – Computing and Software

N3: Exception

N4: Portability

N5: LookAndFeel

N6: Usability

N7: Maintainability

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 Doc

F1 �
F2 �
F3 � �
F4 � � � � �
F5 � �
F6 � � �
F7 � � �
F8 � �
F9 � �
F10 � � �
F11 �
F12 �
F13 �
F14 �
F15 �
F16 �
N1 � � � � � � � � � � � � �
N2 � � � � � � � � �
N3 � � � � � � � � � � �
N4 � � � � � � �
N5 � � � � � � � � �
N6 � � � � � � � � � � �
N7 � � � � � � � � � � � � � �

Table 2: Traceability Matrix: Modules and Requirements

13

Wen Yu – McMaster University – Computing and Software

6.2 Traceability Matrix for Anticipated Changes

The traceability matrix in Table 3 illustrates the relationship between modules
and anticipated changes listed in Section 2. If there is a �in an entry of
the matrix, the change specified in that row is hidden in the module of the
corresponding column.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

AC1 �
AC2 �
AC3 �
AC4 �
AC5 �
AC6 �
AC7 �
AC8 �
AC9 �
AC10 �
AC11 �
AC12 �
AC13 �
AC14 � �

Table 3: Traceability Matrix: Modules and Anticipated Changes

7 Use Hierarchy between Modules

In this section, the uses hierarchy between modules is provided. Parnas (1978)
said of two programs A and B that A uses B if correct execution of B may be
necessary for A to complete the task described in its specification. That is, A
uses B if there exist situations in which the correct functioning of A depends
upon the availability of a correct implementation of B. Figure 1 illustrates the
use relation between the modules. It can be seen that the graph is a directed
acyclic graph (DAG). Each level of the hierarchy offers a testable and usable
subset of the system, and modules in the higher level of the hierarchy are
essentially simpler because they use modules from the lower levels.

14

Wen Yu – McMaster University – Computing and Software

Service Refining

Cell

Mesh

Vertex

Edge

Coarsening Input Output

Virtual MemoryScreen OutputFile Read/WriteKeyboard Input

Embedded
Application

Figure 1: Use Hierarchy among Modules

15

Wen Yu – McMaster University – Computing and Software

References

Chien-Hsien Chen. A software engineering approach to developing mesh gen-
erators. Master’s thesis, McMaster University, Novermber 2003.

A. H. ElSheikh, S. Smith, and S. E. Chidiac. Semi-formal design of reliable
mesh generation systems. Adv. Eng. Softw., 35(12):827–841, 2004. ISSN
0965-9978.

D. L. Parnas, P. C. Clements, and D. M. Weiss. The modular structure of
complex systems. In ICSE ’84: Proceedings of the 7th international confer-
ence on Software engineering, pages 408–417, Piscataway, NJ, USA, 1984.
IEEE Press. ISBN 0-8186-0528-6.

David L. Parnas. Designing software for ease of extension and contraction.
In ICSE ’78: Proceedings of the 3rd international conference on Software
engineering, pages 264–277, Piscataway, NJ, USA, 1978. IEEE Press. ISBN
none.

16

