
Summary of Validation Testing for
a Parallel Mesh Generation

Toolbox

Wen Yu

September 2008

Computing and Software

McMaster University

Wen Yu – McMaster University – Computing and Software

Contents

1 Introduction 2
1.1 Purpose of the Document . 2
1.2 Scope of the Testing . 2
1.3 Organization of the Document 2

2 Testing PMGT 2
2.1 Test Cases . 3

2.1.1 Automated Correctness Validation Tests Requirements 3
2.1.2 Visual Correctness Validation Tests Requirements . . . 4
2.1.3 Test Cases . 4

2.2 Traceability Matrix for SRS 6
2.3 Traceability Matrix for MG 8

3 Results and Analysis 8
3.1 Testing Results . 9
3.2 Analysis . 12

1

Wen Yu – McMaster University – Computing and Software

1 Introduction

This section gives an overview of the Testing Summary for a Parallel Mesh
Generation Toolbox (PMGT). First, the purpose of the document is provided.
Second, the scope of the testing is identified. Third, the organization of the
document is summarized.

1.1 Purpose of the Document

This document specifies validation tests for a PMGT. The results of the tests
and analysis are also provided. The intended audience is testers who are going
to test the system and developers who are going to maintain the software.
Note that test document is dynamic in the sense that it should be updated
when the development of the system proceeds.

1.2 Scope of the Testing

In general, the purpose of testing is to help produce quality software. Due
to limits on the time available for testing, the scope of the testing of PMGT
is restricted to test the most important test factors. Like other scientific
computing software, correctness and efficiency are considered to be the two
most important test factors for PMGT. For efficiency testing, the focus is on
execution time rather than on storage.

1.3 Organization of the Document

Section 1 (this section) is an introduction to the report. Section 2 shows
what is going to be tested and the coverage of the testing, with respect to the
software requirements and the software design. Section 3 gives the result of
the testing and the analysis.

2 Testing PMGT

Test cases are listed in Section 2.1. The detailed information for these test cases
can be found in Section 3. The traceability matrix in Section 2.2 shows the
association between test cases and the functional and nonfunctional require-
ments that are specified in the Software Requirements Specification (SRS)
document. Similarly, a traceability matrix for test cases and the leaf modules
as introduced in the Module Guide (MG) as shown in Section 2.3. Tracking
these relations is useful for developing and maintaining the software.

2

Wen Yu – McMaster University – Computing and Software

2.1 Test Cases

The correctness validation test is designed for verifying the functional require-
ments RefiningMesh (F1), CoarseningMesh (F2), ElmShape (F5), and Con-
formal (F7). Other requirements for correctness are trivial and are satisfied
obviously. For example, since the vertices are stored in an array, the Out-
VertexOrder (F15) requirement is met by outputting the vertices in the order
as the order of them in the array. The tests are against above requirements
are automated. The automated validation tests requirements (ACVTRs) are
listed in Section 2.1.1. Since the output mesh also can also be displayed on
screen, it can be checked manually. The visual correctness validation tests re-
quirements (VCVTRs) are listed in Section 2.1.2. The test cases are in Section
2.1.3.

2.1.1 Automated Correctness Validation Tests Requirements

A list of ACVTRs follows. All test cases should pass these tests. Some test
cases relate to data definitions defined in the SRS. In these cases the related
data definition defined is shown as Dx, where x is the number of the associated
data definition given in the SRS.

• The area of each element is greater than zero (referring to D5).

• The boundary of the mesh is closed. (referring to D15).

• The mesh is conformal (referring to D16).

• The intersection of any two elements is empty (referring to D17).

• The input mesh and output mesh CoveringUp each other (referring to
D19).

• The length of each edge is greater than zero. (This is required by the
definition of a mesh, which is defined in the SRS.)

• The vertices of each element are listed in a counterclockwise order. (The
counterclockwise order of the vertices for each element is not necessary
for implementing PMGT. However, it is adopted by most meshing and
FEA software. PMGT uses this convention.)

• The output mesh conforms to the Euler Equation. (This requirement is
not documented in the SRS. However, any mesh should implicitly satisfy
the equation nc+nv−ne = 1, where nc is the number of cells, nv is the
number of vertices, and ne is the number of edges.)

3

Wen Yu – McMaster University – Computing and Software

2.1.2 Visual Correctness Validation Tests Requirements

The output meshes should also be visually checked to ensure that the following
VCVTRs are met.

• No vertex is outside of the input domain.

• No vertex is inside of a cell.

• No dangling points or edges are present.

• All cells are connected.

• The mesh is conformal.

Some of the VCVTRs overlap with the ACVTRs. This redundancy provides
increased confidence in case one testing method fails to catch an error.

2.1.3 Test Cases

The test cases developed involve testing meshes against the above require-
ments. In each test case, except the last one, the input mesh is refined and
then coarsened. Two algorithms for refining are used. One algorithm is called
Split. It splits one cell into three by adding a point in the centroid of the
triangle and connecting the added point to the three original vertices. The
other algorithm is simply call Refine. It refines the original mesh by longest
edge bisection.

The name of each test case includes three parts. For example, test case
AxxCBN means that the test uses Axx algorithm for refining, where Axx
equals Split or Refine. The letter C indicates that coarsening is performed.
If the C is missing, the input mesh is not coarsened. B is the number of refine-
ments before coarsening. If B is S, the mesh is refined once and then coarsen
once. If the B is M, the mesh is refined multiple time before coarsening. N is a
number. If the N is omitted, it means only one of this kind of test performed.
Otherwise the same test procedures is used several times on different input
meshes. The reason for using the same procedure is that the topology of the
output meshes may differ for different input meshes.

• Test Case SplitCS (TC1): This test case tests the correctness of PMGT.
The input mesh is shown in Figure 3. The refining and coarsening cri-
terion is that the cells intersected with the vertical line, x = 0.6, are
Split once, then the cells of the new mesh that intersect with the vertical
line are coarsened once. When the splitting and coarsening is done, the

4

Wen Yu – McMaster University – Computing and Software

vertical line is moved to the right one unit (x = x + 1.0), and another
Splitting and coarsening is performed. This procedure is repeated until
no cells intersect with the vertical line.

• Test Case RefineCS1 (TC2): This test case tests the correctness of
PMGT. The input mesh is the same as TC1, which is shown in Figure 3.
There is a vertical line at x = 0.6. The refining and coarsening criterion
is that the cells that intersect with the vertical line are refined once,
then the cells of the new mesh that intersect with the vertical line are
coarsened once. When the refining and coarsening are done, the vertical
line is moved to the right one unit, and another refining and coarsening
is performed. This procedure is repeated until no cells intersect with the
vertical line.

• Test Case RefineCS2 (TC3): This test case tests the correctness of
PMGT. The refining and coarsening criterion, vertical line function, and
the test procedure are the same as test case TC2. However, the input
mesh is different. The input mesh is showed in Figure 4.

• Test Case RefineCM (TC4): This test case tests the correctness of
PMGT. The input mesh is shown in Figure 5. There is a vertical line
at x = 0.5. The refining and coarsening criterion is the size of the cells.
The size of the cell is measured by the length of the longest edge of the
cell. The cells that intersect with the vertical line are refined until the
criterion is met. When the refining is done, the vertical line is moved to
the right 0.6 unit (x = x + 0.6), and another refinement is performed.
After five refinements are done, the cells to be left of the vertical line by
up to 2 units are coarsened, until the coarsening criterion is met. The
refining and coarsening are stopped when the vertical line moves to a
position outside of the domain.

• Test Case RefineM (TC5): This test case tests the correctness of PMGT.
The input mesh is shown in Figure 6. There is an arc with radius of 0.7
unit going through the mesh. Cells that intersect with the arc are refined
until the required number of refinements has been reached.

• Test Case Split (TC6): This test case tests both the correctness and
speed of PMGT. The input mesh is shown in Figure 7. This test simply
splits all cells of the mesh 4 times. It is done in both the serial version and
the parallel version with different number of processors. The execution
time of setting the cells to be refined and splitting the cells is measured.

5

Wen Yu – McMaster University – Computing and Software

2.2 Traceability Matrix for SRS

In the traceability matrix for software requirements, if a test case tests the
functionality of a software requirement, there will be a check mark on the
cell for the corresponding test case. In each row of the traceability matrix for
software requirements (Table 1), if the requirement in that row defines the cor-
rectness or the speed of the software, one or more cells in this row are checked.
Otherwise, all cells in the row are empty. Table 1 shows that the test cases
developed in Section 2.1 assist with validating the correctness and speed of the
software. The detailed information for each functional and nonfunctional re-
quirements can be found in the SRS document. The names of the requirements
and their corresponding numbers are listed below for convenience.

F1: RefiningMesh

F2: CoarseningMesh

F3: RefiningOrCoarsening

F4: MeshType

F5: ElmShape

F6: DomainDimension

F7: Conformal

F8: InputDefinition

F9: RCInstruction

F10: OutputStorage

F11: VertexUniqueID

F12: ElmUniqueID

F13: ElmTopology

F14: OutElmOrder

F15: OutVertexOrder

F16: Help

N1: Performance

6

Wen Yu – McMaster University – Computing and Software

N2: Precision

N3: Exception

N4: Portability

N5: LookAndFeel

N6: Usability

N7: Maintainability

TC1 TC2 TC3 TC4 TC5 TC6

F1 � � � � � �
F2 � � � �
F3 � � � � � �
F4 � � � � �
F5 � � � � �
F6 � � � � �
F7 � � � � �
F8 � � � � � �
F9 � � � � � �
F10 � � � � �
F11 � � � � �
F12 � � � � �
F13 � � � � �
F14 � � � � �
F15 � � � � �
F16
N1 �
N2
N3
N4
N5
N6
N7

Table 1: Traceability Matrix: Test Cases and Requirements

7

Wen Yu – McMaster University – Computing and Software

2.3 Traceability Matrix for MG

Similar to Section 2.2, the traceability matrix for modules (Table 2) shows
that the test cases validate the modules that are associated with correctness
and speed. The names of modules appear in Table 2 are listed below. The
detailed information for each module can be found in the MG document.

M1: Virtual Memory Module

M2: File Read/Write Module

M3: Keyboard Input Module

M4: Screen Output Module

M5: Input Format Module

M6: Output Format Module

M7: Service Module

M8: Vertex Module

M9: Edge Module

M10: Cell Module

M11: Mesh Module

M12: Refining Module

M13: Coarsening Module

3 Results and Analysis

The results of the test cases defined in Section 2.1.3 are listed in Section 3.1.
The analysis, including charts that compare the execution time of the parallel
version to the serial version are provided in Section 3.2.

8

Wen Yu – McMaster University – Computing and Software

TC1 TC2 TC3 TC4 TC5 TC6

M1 � � � � � �
M2 � � � � � �
M3 � � � � � �
M4 � � � � � �
M5 � � � � � �
M6 � � � � � �
M7 � � � � �
M8 � � � � � �
M9 � � � � � �
M10 � � � � � �
M11 � � � � � �
M12 � � � � � �
M13 � � � �

Table 2: Traceability Matrix: Test Cases and Modules

3.1 Testing Results

The following tables list the testing results of each test case. The field Test
Case Number and Test Case Name list the number and the name of each test
case. The Input field gives the number of the figure that is the input for that
test case, or a description of the input mesh. The Expected Output describes
the requirements of the output mesh. The Actual Output gives the result
of the test. The Selected Output Mesh field should give the output meshes.
However, there are too many intermediate mesh to display, and displaying only
the final mesh is too simple to illustrate the feature of the test case. Selected
intermediate meshes and final mesh are included in the Actual Output field.
The Result field indicates whether the test is passed or failed.

9

Wen Yu – McMaster University – Computing and Software

Test Case Number TC1
Test Case Name SplitCS
Input Figure 3
Expected Output ACVTRs and VCVTRs listed in

Section 2 are met
Actual Output Summary of the correctness test:

15 tests are performed.
15 tests succeed.
0 tests fail.

Selected Output Mesh Figure 8, 9, 10
Result Passed

Test Case Number TC2
Test Case Name RefineCS1
Input Figure 3
Expected Output ACVTRs and VCVTRs listed in

Section 2 are met
Actual Output Summary of the correctness test:

15 tests are performed.
15 tests succeed.
0 tests fail.

Selected Output Mesh Figure 11, 12, 13
Result Passed

Test Case Number TC3
Test Case Name RefineCS2
Input Figure 4
Expected Output ACVTRs and VCVTRs listed in

Section 2 are met
Actual Output Summary of the correctness test:

15 tests are performed.
15 tests succeed.
0 tests fail.

Selected Output Mesh Figure 14, 15, 16
Result Passed

10

Wen Yu – McMaster University – Computing and Software

Test Case Number TC4
Test Case Name RefineCM
Input Figure 5
Expected Output ACVTRs and VCVTRs listed in

Section 2 are met
Actual Output Summary of the correctness test:

15 tests are performed.
15 tests succeed.
0 tests fail.

Selected Output Mesh Figure 17, 18, 19, 20
Result Passed

Test Case Number TC5
Test Case Name RefineM
Input Figure 6
Expected Output ACVTRs and VCVTRs listed in

Section 2 are met
Actual Output Summary of the correctness test:

15 tests are performed.
15 tests succeed.
0 tests fail.

Selected Output Mesh Figure 21, 22, 23
Result Passed

Test Case Number TC6
Test Case Name SplitM
Input Figure 6
Expected Output ACVTRs and VCVTRs listed in

Section 2 are met
Execution time increases as the
number of cells increases. Execu-
tion time decreases as the number
of processors increases.

Actual Output Execution time as indicated in Fig-
ure 1

Selected Output Mesh The mesh is too dense to be shown.
Result Passed

11

Wen Yu – McMaster University – Computing and Software

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

100

200

300

400

500

600

Number of Cells

E
xe

cu
tio

n
T

im
e(

s)

Test Result of Efficiency Test

← serial

← np=2

← np=4
← np=8

Figure 1: Output of TC6

3.2 Analysis

All of the test cases conform to the ACVTRs and VCVTRs listed in Section
2. The test result of TC6 show that when the number of cells increased, the
execution time increased, and when the number of processors increased, the
execution time decreased. That is, this test is passed. Figure 2 show the
speedup when using different numbers of processors. The speedup is defined
as

Speedup(n) =
T1

Tn

Where T1 is the execution time of the serial version, and Tn is the execution
time of the parallel version with n processors. In general, Speedup(n) <
n. However, for PMGT, when the number of cells is greater than 2700,
Speedup(n) > n, which is a super linear speedup. Since the algorithms used
for the serial version and the parallel version are the same, the super linear

12

Wen Yu – McMaster University – Computing and Software

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10

12

14

Number of Cells

S
pe

ed
up

Speedup for Different Number of Processors

np=2

np=4

np=8

Figure 2: Speedup for Different Numbers of Processors

speedup is probably due to the cache effect. That is, when the numbers of
processors increases, the size of the accumulated caches from different proces-
sors also increases. With the larger accumulated cache size, more, or even all,
core data set can fit into the caches and the memory access time reduces dra-
matically. This may explain the extra speedup in additional to the speedup
due to parallel computation.

13

Wen Yu – McMaster University – Computing and Software

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Original Mesh

Figure 3: Input 1

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Original Mesh

Figure 4: Input 2

14

Wen Yu – McMaster University – Computing and Software

0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

Original Mesh

Figure 5: Input 3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Original Mesh

Figure 6: Input 4

15

Wen Yu – McMaster University – Computing and Software

0 5 10 15

0

1

2

3

4

5

6

7

8

9

10

Original Mesh

Figure 7: Input 5

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Mesh for "newVertices1.dat" and "newCells1.dat"

Figure 8: Output 1 of TC1

16

Wen Yu – McMaster University – Computing and Software

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Mesh for "newVertices15.dat" and "newCells15.dat"

Figure 9: Output 2 of TC1

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Mesh for "newVertices28.dat" and "newCells28.dat"

Figure 10: Output 3 of TC1

17

Wen Yu – McMaster University – Computing and Software

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Mesh for "newVertices1.dat" and "newCells1.dat"

Figure 11: Output 1 of TC2

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Mesh for "newVertices11.dat" and "newCells11.dat"

Figure 12: Output 2 of TC2

18

Wen Yu – McMaster University – Computing and Software

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Mesh for "newVertices28.dat" and "newCells28.dat"

Figure 13: Output 3 of TC2

19

Wen Yu – McMaster University – Computing and Software

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Mesh for "newVertices9.dat" and "newCells9.dat"

Figure 14: Output 1 of TC3

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Mesh for "newVertices20.dat" and "newCells20.dat"

Figure 15: Output 2 of TC3

20

Wen Yu – McMaster University – Computing and Software

0 2 4 6 8 10 12 14

−2

−1

0

1

2

3

4

5

6

7

8

Mesh for "newVertices28.dat" and "newCells28.dat"

Figure 16: Output 3 of TC3

0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

Mesh for "newVertices2.dat" and "newCells2.dat"

Figure 17: Output 1 of TC4

21

Wen Yu – McMaster University – Computing and Software

0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

Mesh for "newVertices8.dat" and "newCells8.dat"

Figure 18: Output 2 of TC4

0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

Mesh for "newVertices14.dat" and "newCells14.dat"

Figure 19: Output 3 of TC4

22

Wen Yu – McMaster University – Computing and Software

0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

Mesh for "newVertices16.dat" and "newCells16.dat"

Figure 20: Output 4 of TC4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mesh for "newVertices1.dat" and "newCells1.dat"

Figure 21: Output 1 of TC5

23

Wen Yu – McMaster University – Computing and Software

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mesh for "newVertices9.dat" and "newCells9.dat"

Figure 22: Output 2 of TC5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mesh for "newVertices15.dat" and "newCells15.dat"

Figure 23: Output 3 of TC5

24

