
Abstract versus Concrete Computation on Metric Partial Algebras

J.V. Tucker

Department of Computer Science,
University of Wales, Swansea SA2 8PP, Wales

J.V.Tucker@swansea.ac.uk

J.I. Zucker*

Department of Computing and Software,
McMaster University, Hamilton, Ont. L8S 4L7, Canada

zucker@mcmaster.ca

Abstract

In the theory of computation on topological algebras there is a considerable gap between so-called

abstract and concrete models of computation. With an abstract model of computation on an

algebra, the computations do not depend on any representation of the algebra. With a concrete

model of computation, the computations depend on the choice of a representation of the algebra.

First, we show that to compute functions on topological algebras using an abstract model, it

is necessary to use algebras with partial operations , and computable functions that are both

continuous and many-valued . This many-valuedness is needed even to compute single-valued

functions, and so abstract models must be nondeterministic even to compute deterministic
problems . As an abstract model, we choose the ‘while’-array programming language, and extend

it with a nondeterministic assignment of “countable choice”. This is called the WhileCC ∗

model. Using this, we introduce the notion of approximable many-valued computation on metric

algebras. For our concrete model, we choose metric algebras with effective representations .

We prove: (1) for any metric algebra A with an effective representation, any function that

is WhileCC ∗ approximable over A is computable in the effective representation of A; and

conversely, (2) under certain reasonable conditions on A, any function that is computable in the

effective representation of A is also WhileCC ∗ approximable. From (1) and (2) we derive an

equivalence theorem between abstract and concrete computation on metric partial algebras. We

give examples of algebras where this equivalence holds.

Keywords: data types, abstract models of computation, partial algebra, countable choice,

nondeterminism, many-valued functions, metric algebras, topological algebras, effective metric

spaces, effective Banach spaces.

* The research of the second author was supported by a grant from the Natural Sciences and Engineering

Research Council (Canada) and by a Visiting Fellowship from the Engineering and Physical Sciences
Research Council (U.K.)

1

2

0 Introduction

The theory of data in computer science is based on many sorted algebras and homomor-
phisms. The theory originates in the 1960s, and has developed a wealth of theoretical
concepts, methods and techniques for the specification, construction, and verification of
software and hardware systems. It is a significant achievement in computer science and
has exerted a profound influence on programming [GTW78, MG85, Wir91]. However,
given the absolutely fundamental nature of its subject matter — data — there are many
fascinating and significant open problems. An important general problem is:

To develop a comprehensive theory of specification, computation and reasoning
with infinite data.

By infinite data we mean real numbers, spaces of functions, streams of bits or reals,
waveforms, multidimensional graphics objects, video, and analogue and digital interfaces.
The application areas are obvious: scientific modelling and simulation, embedded systems,
graphics and multimedia communications.

Data types of infinite data are modelled by topological many-sorted algebras. In this
paper we consider computability theory on topological algebras and investigate the problem

To compare and integrate high-level, representation independent, abstract mod-
els of computation with low-level, representation dependent, concrete models
of computation in topological algebras.

Computability theory lies at the technical heart of theories of both specification and
reasoning about such systems. There are many disparate ways of defining computable
functions on topological algebras and some have (different) significant mathematical theo-
ries. In the case of real numbers one can contrast the approaches in books such as [Abe80,
Abe01, PER89, Wei00, BCSS98].

Generally speaking, the models of computation for an algebra can be divided into two
kinds: the abstract and concrete.

With an abstract model of computation for an algebra, the programs and algorithms do
not depend on any representation of the algebra and are invariant under isomorphisms.
Abstract models originated in the late 1950s in formalising flowcharts, and include program
schemes and many languages that have been used in the study of program semantics
[dB80, AO91]. Examples of such models are the While programming language over any
algebra and the Blum-Cucker-Shub-Smale model [BSS89, BCSS98] over the rings of real
or complex numbers. The theory of abstract models is stable: there are many models of
computation and the conditions under which they are equivalent are largely known [TZ88,
TZ00]. For example, ‘ while’ programs, flow charts, register machines, Kleene schemes,
etc., are equivalent on any algebra; the BCSS models are simply instances obtained by
choosing the algebra to be a ring or ordered ring.

With a concrete model of computation for an algebra the programs and computations
are not invariant under isomorphisms, but depend on the choice of a representation of
the algebra. To understand invariance requires a study of reductions and equivalences
between “computable” representations. Complications arise in relating different concrete

3

representations. Usually, the representations are made from the set
�

of natural numbers,
and computability on an algebra is reduced to classical computability on

�
. Concrete

models originated in the 1950s, in formalising the computable functions on real numbers
[Grz55, Grz57, Lac55]. Examples of concrete models are computability via

• effective metric spaces [Mos64],

• computable sequence structures [PER89],

• domain representations [SHT88, SHT95, Eda95, Eda97],

• type two enumerability [Wei00], and

• numbered topological spaces [Spr98, Spr01].

The theory of concrete models is not stable, though it seems to be converging: the above
models are known to be equivalent under conditions satisfied by many (though not all) im-
portant spaces (see [SHT99] for equivalence results; also [Wei00, §9] for counterexamples).

In the theory of computation on algebras, abstract models are implemented by concrete
models. Thus, the gap between the models is the gap between high level programming
abstractions and low level implementations, and can be explored in terms of the following
concepts:

• Soundness of abstract model : The functions computable in the abstract model are also
computable in the concrete model.

• Adequacy of abstract model : The functions computable in the concrete model are com-
putable in the abstract model.

• Completeness of abstract model : Functions are computable in the abstract model if,
and only if, they are computable in the concrete model.

However, there is a considerable gap between abstract and concrete models of computa-
tion, especially over topological data types. For example, the popular abstract model in
[BCSS98] is not sound for the main concrete models because of its assumptions about the
total computability of relations such as equality. Equality on the real numbers is not every-
where continuous, but in all the concrete models computable functions are continuous (cf.
Ceitin’s Theorem [Cei59, Mos64]). The connection between abstract and concrete models
of computation on the real numbers is examined in [TZ99] where approximation by ‘while’
programs over a particular algebra was shown to be equivalent to the standard concrete
model of GL computability over the unit interval.

First attempts at bridging the gap for all topological algebras in general have been made
in [Bra96, Bra99], using a generalisation of recursion schemes (abstract computability) and
Weihrauch’s type two enumerability (concrete computability). Here we investigate further
the problems in comparing the two classes of models and in establishing a unified and
stable theory of computation on topological algebras. We prove new theorems that bridge
the gap in the case of computations on metric algebras with partial operations.

By reflecting on a series of examples, we show that to compute functions on topological
algebras, it is necessary to consider

(i) algebras with partial operations,

4

(ii) computable functions that are both continuous and many-valued, and

(iii) approximations by abstract programs.

In particular, many-valued functions are needed in the abstract model, even to compute
single-valued functions. Thus, to prove an equivalence between abstract and concrete
models we must include a nondeterministic construct to define many-valued functions, and
in this way use nondeterministic abstract models even to compute deterministic problems.
We find that

imperative and other abstract programming models must be nondeterministic
to express even simple programs on topological data types.

We choose the While programming language as an abstract model for computing on
any data type, and extend it with the nondeterministic assignment of countable choice

x ::= choose z : b(z, x, y)

where z is a natural number variable and b is a Boolean-valued operation. This new
model is called WhileCC ∗ computability (‘CC ’ for “countable choice”, ‘∗’ for array
variables.) In particular, we introduce a notion of approximable many-valued computation,
and formulate and prove the continuity of their semantics. We thus have the partial many-
valued functions approximable by a WhileCC ∗ program on A.

As a concrete model, we choose effective metric spaces; this is known to be equivalent
with several other concrete models. It is an elegant approach, we feel, suitable for theoret-
ical investigation and comparison with other models of computability; some other choices
of concrete model (among those listed above) may be closer to practical techniques for
exact computation with reals (say).

In computation with effective metric spaces A we pick an enumeration α of a subspace
X of A, and construct the subspace Cα(X) of α-computable elements of A, enumerated
by α. We thus have the partial functions computable on Cα(X) in the representation α.

We then prove two theorems that can be summarised (a little loosely) as follows.

Soundness Theorem : Let A be any metric partial algebra with an effective representa-
tion α. Suppose Cα(X) is a subalgebra of A, effective under α. Then any function F on
A that is WhileCC ∗ approximable over A is computable on Cα(X) in α.

This theorem is technically involved but quite general, and gives new insight into the
semantics of imperative programs applied to topological data types. The converse theorem
is more restricted in its data types:

Adequacy Theorem : Let A be any metric partial algebra A with an effective represen-
tation α. Suppose the representation α is WhileCC ∗ computable and dense. Then any
function F : A → A that is computable on Cα(X) in α and effectively locally uniformly
continuous in α is WhileCC ∗ approximable over A.

These are combined into a Completeness Theorem . The proper statements of these
three theorems are given as Theorems A, B and C (in Sections 7, 8 and 9). Some interesting
applications to algebras of real numbers and to Banach spaces are studied.

Here is the structure of the paper. We begin, in Section 1, by explaining the role of

5

partiality, continuity and many-valuedness in computation, using simple examples on the
real numbers. In Section 2 we describe topological and metric partial algebras. In Section
3 we introduce the WhileCC ∗ language, give it an algebraic semantics, and define
approximable WhileCC ∗ computability. Section 4 is devoted to examples. In Section 5
we prove the continuity of WhileCC ∗ computable many-valued functions. In Section 6
we introduce our concrete model, effective metric spaces, and prove a Soundness Theorem
(Theorem A0) for the special case of surjective enumerations of countable (not necessarly
metric) algebras. In Section 7 we define the subspace of elements computable in a metric
algebra, and then prove the more general Soundness Theorem (Theorem A) and, in Section
8, the Adequacy Theorem (Theorem B). These are combined into a Completeness Theorem
(Theorem C) in Section 9. Concluding remarks are made in Section 10.

This work is part of a research programme — starting in [TZ88] and most recently
surveyed in [TZ00] — on the theory of computability on algebras, and its applications.
Specifically, it has developed from our studies of real and complex number computation in
[TZ92a, TZ99, TZ00], stream algebras in [TZ92b, TZ94] and metric algebras in [TZ02].

We thank Vasco Brattka and Kristian Stewart for valuable discussions, and three anony-
mous referees for helpful comments.

1 Partiality, continuity, many-valuedness and extensionality

When one considers the relation between abstract and concrete models, a number of
intriguing problems appear. We explain them by considering a series of examples. Then
we formulate our strategy for solving these problems.

Our chosen abstract and concrete models are introduced later (in Sections 3 and 5,
respectively), so we must explain the problems of computing on the real number data type
in general terms. First, we sketch the abstract and concrete forms of the real number data
type. The picture for topological algebras in general will be clear from the examples.

1.1 Abstract versus concrete data types of reals; Continuity; Partiality

(a) Abstract and concrete data types of reals. To compute on the set � of real
numbers with an abstract model of computation, we have only to select an algebra A in
which � is a carrier set. Abstract computability on an algebra A is computability relative
to A: a function is computable over A if it can be programmed from the operations of
A using the programming constructs of the abstract model. Clearly, there are infinitely
many choices of operations with which to make an algebra A, and hence there are infinitely
many choices of classes of abstractly computable functions. All the classes of abstractly
computable functions on � have decent mathematical theories, resembling the theory
of the computable functions on the natural numbers — thanks to the general theory of
computable functions on many-sorted algebras [TZ00].

In contrast, to compute on � with a concrete model of computation, we choose a
representation map α : C → � from a structure C (typically a subset of the naturals

�
or

Baire space
�

�

) based on the fact that the reals can be built from the rationals, and hence
the naturals, in a variety of equivalent ways (Cauchy sequences, decimal expansions, etc.).

6

Computability of functions on the reals is investigated using the theory of computable
functions on C, applied to � via α.

To compare this model with abstract models, we choose an algebra A in which C
is a carrier set and the operations of A are computable with respect to α. For example,
multiplication by 3 is not computable in the decimal representation, but the field operations
on � are computable in the Cauchy sequence representation.

In the examples in §1.2 below, we will take as our concrete model the set CS ⊆
�

�

of
fast Cauchy sequences, i.e., sequences (kn) of naturals such that for all n and all m > n,
|rkm

− rkn
| < 2−n, where r0, r1, r2, . . . is some standard enumeration of the rationals.

Note that the canonical map α : CS → � is continuous and onto.

(b) Continuity. Computations with real numbers involve infinite data. The topology
of � defines a process of approximation for infinite data; the functions on the data that
are continuous in the topology are exactly the functions that can be approximated to any
desired degree of precision.

For abstract models we assume the algebra A that contains � is a topological algebra,
i.e., one in which the basic operations are continuous in its topologies. We expect further
that all the computable functions will be continuous. The class of functions that can be
abstractly computed exactly can be quite limited! With abstract models, approximate
computations also turn out to be necessary [TZ99].

In the concrete models, moreover, it follows from Ceitin’s Theorem [Mos64] that com-
putable functions are continuous.

Thus, in both abstract and concrete approaches, an analysis of basic concepts shows
that computability implies continuity.

(c) Partiality. In computing with an abstract model on A we assume A has some
boolean-valued functions to test data. For example, in computing on � we need the
functions

=R : � 2 → � and <R : � 2 → �
where � = { � , � } is the set of booleans. This presents a problem, since total continuous
boolean-valued functions on the reals must be constant. Further, as was shown in [TZ99],
the ‘while’ and ‘ while’-array computable functions on connected total topological algebras
are precisely the functions explicitly definable by terms over the algebra.

To study the full range of real number computations, we must therefore redefine these
tests as partial boolean-valued functions. Computation with partial algebras has interest-
ing effects on the theory of computable functions, as indicated in [TZ99].

On the basis of these preliminary remarks, we turn to the examples.

1.2 Examples of nondeterminism and many-valuedness

We look at three examples of computing functions on � .

Example 1.2.1: Pivot function. Define the function

piv: � n ⇀ { 1, . . . , n }

7

by

piv(x1, . . . , xn) =

{

some i : xi 6= 0 if such an i exists

↑ otherwise.
(1)

Computation of the pivot is a crucial step in the Gaussian elimination algorithm for in-
verting matrices.

Note that (depending on the precise semantics for the phrase “some i” in (1)) piv is
nondeterministic or (alternatively) many-valued on dom(piv) = � n\{0}. Further:

(a) There is no single-valued function which satisfies the definition (1) and is continuous on
� n. For such a function, being continuous and integer-valued, would have to be constant
on its domain � n\{0}, with constant value (say) j ∈ { 1, . . . , n }. But its value on the
xj-axis would have to be different from j, leading to a contradiction.

(b) However there is a computable (and hence continuous!) single-valued function

piv0 : CSn ⇀ { 1, . . . , n } (2)

with a simple algorithm. (The space CS was defined in §1.1(a).) Note however that piv0

is not extensional on CSn (i.e., not well defined on � n), or (equivalently) the map (2)
cannot be factored through � n:

CSn

α

?

HHHHHHj
·

piv0

� n · -
?

{ 1, . . . , n }

In effect, we can regain continuity (for a single-valued function), by foregoing extensionality.

(c) Alternatively, we can maintain continuity and extensionality by giving up single-
valuedness. For the many-valued function

pivω : � n → Pω({1, . . . , n})

(where Pω(. . .) denotes the set of countable subsets of . . .) defined by

k ∈ pivω(x1, . . . , xn) ⇐⇒ xk 6= 0 (k = 1, . . . , n)

is extensional and continuous, where a function f : A → Pω(B) is defined to be contin-
uous iff for all open Y ⊆ B, f−1[Y] (=df {x ∈ A | f(x) ∩ Y 6= ∅ }) is open in A. (We
will consider continuity of many-valued functions systematically in Section 5.)

Remarks 1.2.2. (a) The many-valued function pivω is “tracked” (in a sense to be
elucidated in Section 6) by (any implementation of) piv0.

(b) We could only recover continuity of the piv function by giving up either extensionality
(as in (b) above) or single-valuedness (as in (c)).

8

(c) Note however that the complete Gaussian algorithm for inverting matrices is continuous
and deterministic (hence single-valued) and extensional , even though it contains piv0 as
an essential component!

Example 1.2.3: “Choose” a rational arbitrarily near a real. Define a function

F : � ×
�

→
�

by
F (x, n) = “some” k : d(x, rk) < 2−n (3)

where (as before) r0, r1, r2, . . . is some standard enumeration of the rationals. Note again:

(a) There is no single-valued, continuous function F satisfying (3), since such a function,
being continuous with discrete range space, would have to be constant in the first argument.

(b) But there is a single-valued computable (and continuous) function

F0 : CS×
�

→
�

trivially — just define
F0(ξ, n) = ξn.

This is, again, non-extensional on � .

(c) Further, there is a many-valued, continuous, extensional function satisfying (3):

Fω : � ×
�

→ Pω(
�

)

where
Fω(x, n) = { k | d(x, rk) < 2−n }.

Example 1.2.4: Finding the root of a function. (Adapted from [Wei00].) Consider
the function fa shown in Figure 1, where a is a real parameter. It is defined by

fa(x) =

x+ a+ 2 if x ≤ −1

a− x if −1 ≤ x ≤ 1

x+ a− 2 if 1 ≤ x.

This function has either 1 or 3 roots, depending on the size of a. For a < −1, fa has
a single (large positive) root; for a > 1, fa has a single (large negative) root; and for
−1 < a < 1, fa has three roots, two of which become equal when a = ±1.

Let g be the (many-valued) function, such that g(a) gives all the non-repeated roots of
fa. This is shown in Figure 2. Again we have the situation of the previous examples:

(a) We cannot choose a (single) root of fa continuously as a function of a.

9

x

y

a

-1 0

y = f (x)a

1

Figure 1

a

g(a)

1

-1

0

Figure 2

(b) However, one can easily choose and compute a root of fa continuously as a function of
a Cauchy sequence representation of a, i.e., non-extensionally in a.

(c) Finally, g(a), as a many-valued function of a, is continuous. (Note that in order to
have continuity, we must exclude the repeated roots of fa, at a = ±1.)

Note that other examples of a similar nature abound, and can be handled similarly; for
example, the problem of finding, for a given real number x, an integer n > x.

1.3 Solutions for the abstract model

In the above three examples we have presented a number of single-valued functions

10

f : � n → � that we want to compute, and argued that:

(i) they are not continuous;

(ii) hence they cannot be abstractly computed on the abstract data type containing � ;

(iii) however they can be computed in the concrete data type CS;

(iv) they are selection functions for many-valued functions on � that are continuous.

At the level of concrete models of computation, there is no real problem with the issues
raised by these examples, since concrete models work only by computations on represen-
tations of the reals (say by Cauchy sequences), to be described in Sections 5 and 7.

The real problem arises with the construction of abstract models of computation on
the reals which should model the phenomena illustrated by these examples, and should,
moreover, correspond, in some sense, to the concrete models. Thus we have the question:

Can such continuous many-valued functions be computed on the abstract data
type A containing � using new abstract models of computation? If they can,
are the concrete and abstract models then equivalent?

The rest of this paper deals with these issues. We answer the above question more
generally, over many-sorted metric partial algebras A.

The solution presented in this paper is to extend the While∗ programming language
over A [TZ00] with a nondeterministic “countable choice” programming construct, so that
in the rules of program term formation,

choose z : b

is a new term of type nat, where z is a variable of type nat and b is a term of type bool.
We will revisit the examples after giving the language definition in Section 3.

Alternatively (and equivalently), one could use other abstract models; e.g., modify
the µPR∗ function schemes [TZ00, §8.1] by replacing the constructive least number (µ)
operator, f(x) ' µz ∈

�
[g(x, z) = �] (where g is boolean-valued) by a nondeterministic

choice operator f(x) ' choose z ∈
�

[g(x, z) = �].

In [Bra99] a more elaborate set of recursive schemes over many-sorted algebras, with
many-valued operations, was presented.

2 Topological partial algebras and continuity

We define some basic notions concerning topological and metric many-sorted partial alge-
bras. Much of this information is in [TZ00], but we introduce here the concept of partial
algebra, with examples which are important for later.

2.1 Basic algebraic definitions

A signature Σ (for a many-sorted partial algebra) is a pair consisting of (i) a finite set
Sort(Σ) of sorts, and (ii) a finite set Func (Σ) of typed function symbols F : u→ s, where
u is a Σ-product type s1 × · · · × sm (m ≥ 0), with s1, . . . , sm, s ∈ Sort(Σ). (The case
m = 0 corresponds to constant symbols.) We write u, v, . . . for Σ-product types.

11

A partial Σ-algebra A has, for each sort s of Σ, a non-empty carrier set As of sort s,
and for each Σ-function symbol F : u→ s, a partial function FA : Au ⇀ As, where we
write Au =df As1

× · · · ×Asm
if u = s1 × · · · × sm. (The notation f : X ⇀ Y refers to

a partial function from X to Y .) We also write Σ(A) for the signature of A.

The algebra A is total if FA is total for each Σ-function symbol F . Without such a
totality assumption, A is called partial.

In this paper we deal mainly with partial algebras. The default assumption is that
“algebra” refers to partial algebra. We will, nevertheless, for the sake of emphasis, often
speak explicitly of “partial algebras”.

Examples 2.1.1. (a) The algebra of booleans has the carrier � = { � , � } of sort bool.
The signature Σ(B) and algebra B respectively can be displayed as follows:

signature Σ(B)
sorts bool

functions true, false : → bool,
and, or : bool2 → bool

not : bool → bool

end

and

algebra B
carriers �
functions � , � : → � ,

andB, orB : � 2 → �
notB : � → �

end

Note that the signature can essentially be inferred from the algebra; indeed from now on
we will not define the signature where no confusion will arise. Further, for notational
simplicity, we will not always distinguish between function names in the signature (true,
etc.) and their intended interpretations (trueB = � , etc.)

(b) The algebra N 0 of naturals has a carrier
�

of sort nat, together with the zero
constant and successor function:

algebra N 0

carriers
�

functions 0 : →
�
,

S :
�

→
�

end

(c) The ring R0 of reals has a carrier � of sort real:

algebra R0

carriers �
functions 0, 1 : → � ,

+,× : � 2 → � ,
− : � → �

end

(d) The field R1 of reals is formed by adding the multiplicative inverse to the ring R0:

algebra R1

import R0

functions invR : � → �
end

12

where

invR(x) =

{

1/x if x 6= 0

↑ otherwise.
.

This is an example of a partial algebra. Other examples will be given later.

Throughout this work we make the following assumption about the signatures Σ.

Assumption 2.1.2 (Instantiation Assumption). For every sort s of Σ, there is a
closed term of that sort, called the default term δs of that sort.

This guarantees the presence of default values δs
A in a Σ-algebra A at all sorts s, and

default tuples δ
u
A at all product types u.

2.2 Adding booleans: Standard signatures and algebras

The algebra B of booleans (Example 2.1.1(a)) plays an essential role in computation. This
motivates the following definition.

Definition 2.2.1 (Standard signature). A signature Σ is standard if (i) it is an
expansion1 of Σ(B), and (ii) the function symbols of Σ include a conditional

ifs : bool × s2 → s

for all sorts s of Σ other than bool.

For a standard Σ, a Σ-sort s is called an equality sort if Σ includes an equality operator

eqs : s2 → bool.

Definition 2.2.2 (Standard algebra). Given a standard signature Σ, a Σ-algebra A
is a standard if (i) it is an expansion1 of B, (ii) the conditional operator on each sort s
has its standard interpretation in A; i.e., for b ∈ � and x, y ∈ As,

ifAs (b, x, y) =

{

x if b = �
y if b = � ;

and (iii) the operator eqs is interpreted as a partial identity on each equality sort s, i.e.,
for any two elements of As, if they are identical, then the operator at these arguments
returns � if it returns anything; and if they are not identical, it returns � if anything.

Remarks 2.2.4. (a) In practice, case (iii) in the above definition occurs as one of three
subcases. First, the case

eqA
s (x, y) =

{ � if x = y

� otherwise,

1Expansions of signatures and algebras are defined in [TZ00, Def. 2.6].

13

i.e., total equality, represents the situation where equality is “decidable” or “computable”
at sort s, for example, when s = nat. Second, the case

eqA
s (x, y) =

{ � if x = y

↑ otherwise

represents typically the situation where equality is “semidecidable”. An example is given
by the initial term algebra of an r.e. equational theory. Third, the case

eqA
s (x, y) =

{

↑ if x = y

� otherwise,

represents typically the situation where equality is “co-semidecidable”. Examples are given
by the data types of streams and reals; cf. the discussion in 1.1(c) and Example 2.2.5(c).

(b) Any many-sorted signature Σ can be standardised to a signature ΣB by adjoining
the sort bool together with the standard boolean operations; and, correspondingly, any
algebra A can be standardised to an algebra AB by adjoining the algebra B as well as the
conditional and equality operators.

Examples 2.2.5 (Standard algebras).

(a) The simplest standard algebra is the algebra B of the booleans (Example 2.1.1(a)).

(b) A standard algebra of naturals N is formed by standardising the algebra N 0

(Example 2.1.1(b)), with (total) equality and order operations on
�

:

algebra N
import N 0, B
functions ifNnat : � ×

� 2 →
�
,

eqNnat, lessNnat :
� 2 → �

end

(c) A standard partial algebra Rp on the reals is formed similarly by standardising the field
R1 (Example 2.1.1(d)), with partial equality and order operations on � :

algebra R
import R1, B
functions ifR

real
: � × � 2 ⇀ � ,

eqR
real

, lessR
real

: � 2 ⇀ �
end

where

eqR
real

(x, y) =

{

↑ if x = y

� if x 6= y.
and lessR

real
(x, y) =

� if x < y

� if x > y

↑ if x = y

.

14

Discussion 2.2.6 (Semicomputability and co-semicomputability). The signif-
icance of the partial equality and order operations in Example (c) above, in connection
with computability and continuity, has been touched on in 1.1(c). The continuity of par-
tial functions will be discussed in §2.5 (and see in particular Example 2.5.4(b)). Regarding
computability , these definitions are intended to capture the intuition of the “semicom-
putability” of order and “co-semicomputability” of equality on (a concrete model of) the
reals. For given two reals x and y, represented (say) by their infinite decimal expansions,
suppose their decimal digits are being read systematically, the n-th digit of both at step
n. Then if x 6= y or x < y, this will become apparent after finitely many steps, but no
finite number of steps can confirm that x = y.

Throughout this paper, we will assume the following.

Assumption 2.2.7 (Standardness Assumption). The signature Σ and Σ-algebra
A are standard.

2.3 Adding counters: N-standard signatures and algebras

The standard algebra N of naturals (Example 2.2.5(b)) plays, like B, an essential role in
computation. This motivates the following definitions.

Definition 2.3.1 (N-standard signature). A signature is N-standard if (i) it is
standard, and (ii) it is an expansion of Σ(N).

Definition 2.3.2 (N-standard algebra). Given an N-standard signature Σ, a corre-
sponding Σ-algebra A is N-standard if it is an expansion of N .

Note that any standard signature Σ can be N-standardised to a signature ΣN by ad-
joining the sort nat and the operations 0, S, eqnat, lessnat and ifnat. Correspondingly, any
standard Σ-algebra A can be N-standardised to an algebra AN by adjoining the carrier

�

together with the corresponding standard functions.

Examples 2.3.3 (N-standard algebras).

(a) The simplest N-standard algebra is the algebra N (Example 2.2.5(b)).

(b) We can N-standardise the algebra Rp (Example 2.2.5(c)) to form the algebra RN
p .

2.4 Adding arrays: Algebras A∗ of signature Σ∗

A standard signature Σ, and standard Σ-algebra A, can be expanded in two stages:

(1◦) N-standardise these to form ΣN and AN , as in §2.3.

(2◦) Define, for each sort s of Σ, the carrier A∗
s to be the set of finite sequences or arrays

a∗ over As, of “starred sort” s∗.

The resulting algebras A∗ have signature Σ∗, which extends ΣN by including, for each
sort s of Σ, the new starred sorts s∗, and certain new function symbols. Details are given
in [TZ00, §2.7] and (an equivalent but simpler version) in [TZ99, §2.4].

15

The significance of arrays for computation is that they provide finite but unbounded
memory. The reason for introducing starred sorts is the lack of effective coding of finite
sequences within abstract algebras in general (unlike the case with

�
).

2.5 Topological partial algebras

We now add topologies to our partial algebras, with the requirement of continuity for the
basic partial functions.

Definition 2.5.1. Given two topological spaces X and Y , a partial function
f : X ⇀ Y is continuous iff for every open V ⊆ Y , f−1[V] is open in X, where

f−1[V] =df {x ∈ X | x ∈ dom(f) and f(x) ∈ Y }.

Remark 2.5.2. For later use, we recast this definition in the language of metric spaces.
Given two metric spaces X and Y , a partial function f : X ⇀ Y is continuous iff

∀a ∈ dom(f)∀ε > 0 ∃δ > 0 ∀x ∈ B(a, δ)
(

x ∈ dom(f) ∧ f(x) ∈ B(f(a), ε)
)

.

Definition 2.5.3. (a) A topological partial Σ-algebra is a partial Σ-algebra with topolo-
gies on the carriers such that each of the basic Σ-functions is continuous.

(b) An (N-)standard topological partial algebra is a topological partial algebra which is also
(N-)standard, such that the carriers � (and

�
) have the discrete topology.

Examples 2.5.4. (a) Discrete algebras: The standard algebras B and N of booleans
and naturals respectively (§§2.1, 2.2) are topological (total) algebras under the discrete
topology. All functions on them are trivially continuous, since the carriers are discrete.

(b) The partial real algebra Rp (Example 2.2.5(c)) and its N-standardised version RN
p (Ex-

ample 2.3.3(b)) can be construed as topological algebras, where � has its usual topology,
and � and

�
the discrete topology. Note that the partial operations eqR

real
and lessR

real

are continuous. (Recall the discussion in (1.1(c)).)

(c) Partial interval algebras on the closed interval [0, 1] have the form

algebra Ip

import Rp

carriers I
functions iI : I → � ,

F1 : Im1 → I,
. . .

Fk : Imk → I
end

16

where I = [0, 1] (with its usual topology), iI is the embedding of I into � , and
Fi : Imi → I are continuous partial functions. There are also N-standard versions:

algebra IN
p

import RN
p

carriers I
functions iI : I → � ,

. . .
end

(d) The N-standard total real algebra RN
t is defined by

algebra RN
t

import R0, N , B
functions ifR

real
: � × � 2 → � ,

divRnat : � ×
�

→ � ,
end

Here R0 is the ring of reals (§2.1.1(c)), N is the standard algebra of naturals (2.2.5(b)),
and divnat is division of reals by naturals (total and continuous! divnat(x, 0

nat) =df 0).

Note that RN
t does not contain (total) boolean-valued functions < or = on the reals,

since they are not continuous (cf. the partial functions eqreal and lessreal of Rp).

Definition 2.5.5 (Extensions of topology to AN and A∗). The various algebraic
expansions of A detailed in §§2.3/2.4 induce corresponding topological expansions.

(a) The topological N-standardisation AN , of signature ΣN , is constructed from A by
giving the new carrier

�
the discrete topology.

(b) The topological array algebra A∗, of signature Σ∗, is constructed from AN by giving
A∗

s the disjoint union topology of the sets (As)
n of arrays of length n, for all n ≥ 0, where

each set (As)
n is given the product topology of the sets As.

It can be seen that this is the topology on A∗ generated by the new functions, i.e., the
weakest topology which makes them continuous. It can also be described as follows. The
basic open sets in A∗

s have the form

{ a∗ ∈ A∗
s | Lgth(a∗) = n and a∗[i1] ∈ U1, . . . , a

∗[ik] ∈ Uk }

for some n, k, i1, . . . , ik, where 0 < k < n and 0 ≤ i1 < · · · < ik < n, and for some open
sets U1, . . . , Uk ⊆ As.

2.6 Metric algebra

17

A particular type of topological algebra is a metric partial algebra. This is a many-sorted
standard partial algebra with an associated metric:

algebra A
import B, Rp

carriers A1, . . . , Ar,
functions FA

1 : Au1 → As1
,

. . .
FA

k : Auk → Ask
,

dA
1 : A2

1 → � ,
. . .

dA
r : A2

r → �
end

where B and Rp are respectively the algebras of booleans and reals (Examples 2.1.1(a),

2.2.5(c)), the carriers A1, . . . , Ar are metric spaces with metrics dA
1 , . . . , d

A
r respectively,

F1, . . . , Fk are the Σ-function symbols other than d1, . . . , dr, and the (partial) functions
FA

i are all continuous with respect to these metrics (cf. Definition 2.5.1).

Note that the carrier � (as well as
�

, if present) has the discrete metric, defined by

d(x, y) =

{

0 if x = y

1 if x 6= y,

which induces the discrete topology.

We will often speak of a “metric algebra A”, without stating the metric explicitly.

Example 2.6.1. Clearly, metric partial algebras can be viewed as special cases of topolog-
ical partial algebras. Thus the partial and total real algebras Rp, R

N
p and RN

t (Examples
2.5.4) can be recast as metric algebras in an obvious way.

Remark 2.6.2 (Extension of metric to A∗). A metric algebra A can be expanded
to a metric algebra A∗ of arrays over A. Namely, given a metric ds on As, we define a
(bounded) metric d∗

s on A∗
s as follows: for a∗ = (a1, . . . , ak), b∗ = (b1, . . . , bl) ∈ A∗

s:

d∗s(a
∗, b∗) =

{

1 if k 6= l

min
(

1, maxk−1
i=0 ds(a

∗[i], b∗[i])
)

otherwise

This gives the topology on A∗ induced by the topology on A (Definition 2.5.5) [Eng89].

Remark 2.6.3 (Product metric on A). If A is a Σ-metric algebra, then for each
Σ-product sort u = s1 × · · · × sm, we can define a metric du on Au by

du((x1, . . . , xm), (y1, . . . , ym)) =
m

max
i=1

(

dsi
(xi, yi)

)

18

or more generally, by the `p metric

du((x1, . . . , xm), (y1, . . . , ym)) =
(

m
∑

i=1

(dsi
(xi, yi))

p
)1/p

(1 ≤ p ≤ ∞)

where p = ∞ corresponds to the “max” metric. This induces the product topology on Au.

Remark 2.6.4 (W-continuity). An alternative notion of continuity of partial func-
tions, used by Weihrauch and others [Wei00, Bra96], is discussed in Appendix A.

3 ‘While’ programming with countable choice

The programming language WhileCC = WhileCC (Σ) is an extension of While(Σ)
[TZ00, §3] with an extra ‘choose’ rule of term formation. We give the complete definition
of its syntax and semantics, using the algebraic operational semantics of [TZ00].

Assume Σ is an N-standard signature, and A is an N-standard Σ-algebra.

3.1 Syntax of WhileCC (Σ)

We define four syntactic classes: variables, terms, statements and procedures.

(a) Var = Var(Σ) is the class of Σ-program variables, and for each Σ-sort s, Vars is
the class of program variables of sort s: as, bs, . . . , xs, ys

(b) PTerm = PTerm(Σ) is the class of Σ-program terms t, . . . , and for each Σ-sort s,
PTerms is the class of program terms of sort s. These are generated by the rules

t ::= xs | F (t1, . . . , tn) | choose znat : b

where s, s1, . . . , sn are Σ-sorts, F : s1 × · · · × sn → s is a Σ-function symbol, ti ∈
PTermsi

for i = 1, . . . , n (n ≥ 0), and b is a boolean term, i.e., a term of sort bool.

The ‘choose’ term has sort nat. Think of ‘choose’ as a generalisation of the constructive
least number operator least z : b which has the value k in case b[z/k] is true and b[z/i]
is defined and false for all i < k, and is undefined in case no such k exists.

Here ‘choose z : b’ selects some value k such that b[z/k] is true, if any such k exists
(and is undefined otherwise). In our abstract semantics, we will give the meaning as the set
of all possible k’s (hence “countable choice”). Any concrete model will select a particular
k, according to the implementation.

Note that the program terms extend the algebraic terms (i.e., the terms over the signa-
ture Σ) by including in their construction the ‘choose’ operator, which is not an operation
of Σ. An alternative formulation would have ‘choose’ not as part of the term construction,
but rather as a new atomic program statement: ‘choose z : b’. We prefer the present treat-
ment, as it leads to the construction of many-valued term semantics (as we will see), which
is interesting in itself, and which we would have to deal with anyway if we were to extend
our syntax to include (many-valued) function procedure calls in our term construction.

19

We write t : s to indicate that t ∈ PTerms, and for u = s1 × · · · × sm, we write t : u
to indicate that t is a u-tuple of program terms, i.e., a tuple of program terms of sorts
s1, . . . , sm. We also use the notation b, . . . for boolean terms.

(c) AtSt = AtSt(Σ) is the class of atomic statements Sat, . . . defined by

Sat ::= skip | div | x := t

where ‘div’ stands for “divergence” (non-termination), and x := t is a concurrent assign-
ment, where for some product type u, t : u and x is a u-tuple of distinct variables.

(d) Stmt = Stmt(Σ) is the class of statements S, . . . , generated by the rules

S ::= Sat | S1;S2 | if b then S1 else S2 fi | while b do S od

(e) Proc = Proc(Σ) is the class of function procedures P,Q, These have the form

P ≡ func in a out b aux c begin S end

where a, b and c are lists of input variables, output variables and auxiliary (or local)
variables respectively, and S is the body. Further, we stipulate:

• a, b and c each consist of distinct variables, and they are pairwise disjoint,

• all variables occurring in S must be among a, b or c,

• the input variables a must not occur on the lhs of assignments in S,

• initialisation condition: S has the form Sinit;S
′, where Sinit is a concurrent assignment

which initialises all the output and auxiliary variables, i.e., assigns to each variable in
b and c the default term (2.1.2) of the same sort.

If a : u and b : v, then P is said to have type u→ v, written P : u→ v. Its input type
is u and its output type is v.

3.2 Algebraic operational semantics of WhileCC

We interpret programs as countably-many-valued state transformations, and function
procedures as countably-many-valued functions on A. Our approach follows the algebraic
operational semantics of [TZ00, §3.4]. First we need some notation.

Notation 3.2.1.

(a) Pω(X) is the set of all countable subsets of a set X, including the empty set.

(b) P+
ω (X) is the set of all countable non-empty subsets of X.

(c) We write Y ↑ for Y ∪ { ↑}, where ‘↑’ denotes divergence.

(d) We write f : X ⇒ Y for f : X → Pω(Y).

(e) We write f : X ⇒+ Y for f : X → P+
ω (Y).

20

We will interpret a WhileCC procedure P : u→ s as a countably-many-valued function
PA from Au to As

↑, i.e., as a function

PA : Au → P+
ω (As

↑)

or, in the above notation:
PA : Au ⇒+ As

↑.

Remark 3.2.2 (Significance of ‘↑’). Notice that an output of, say, {2, 5, ↑} is different
from {2, 5}, since the former indicates the possibility of divergence. So a semantic function
will have, for inputs not in its domain, ‘↑’ as a possible output value.

Definition 3.2.3 (States). (a) For each Σ-algebra A, a state on A is a family
〈σs | s ∈ Sort(Σ)〉 of functions

σs : Vars → As.

Let State(A) be the set of states on A, with elements σ,

(b) Let σ be a state over A, x ≡ (x1, . . . , xn) : u and a = (a1, . . . , an) ∈ Au (for n ≥ 1).
The variant σ{x/a} of σ is the state over A formed from σ by replacing its value at xi by
ai for i = 1, . . . , n.

We give a brief overview of algebraic operational semantics. This was used in [TZ88]
for deterministic imperative languages with ‘while’ and recursion (see [TZ00] for the case
of While(Σ)), but it can be applied to a wide variety of imperative languages. It has also
been used to analyse compiler correctness [Ste96]. It can also be adapted, as we will see,
to a nondeterministic language such as WhileCC ∗ .

Assume (i) we have a meaning function for atomic statements

〈|Sat|〉 : State(A) ⇒+ State(A)↑,

and (ii) we have defined a pair of functions

First : Stmt → AtSt

Rest A : Stmt × State(A) ⇒+ Stmt,

where, for a statement S and state σ,

First(S) is an atomic statement which gives the first step in the execution of
S (in any state), and Rest A(S, σ) is a statement (or, in the present context,
a finite set of statements) which gives the rest of the execution in state σ.

From these we define the computation step function

CompStepA : Stmt × State(A) ⇒+ State(A)↑

by
CompStepA(S, σ) = 〈|First(S)|〉Aσ.

21

from which, in turn, we can define (for the deterministic language of [TZ00]) a compu-
tation sequence or (for the present language) a computation tree. The aim is to define a
computation tree stage function

CompTreeStageA : Stmt × State(A) ×
�

⇒+ (State(A)↑)<ω

where CompTreeStageA(S, σ, n) represents the first n stages of CompTreeA(S, σ).
Here (State(A)↑)<ω denotes the set of finite sequences from State(A)↑, interpreted as
finite initial segments of the paths through the computation tree. From this are defined
the semantics of statements and procedures.

Remark 3.2.4. The intuition behind these semantics is that for any input x ∈ Au,
PA(x) is the set of all possible outcomes (including divergence), for all possible imple-
mentations of the ‘choose’ construct, including non-constructive implementations! So if
(for a given input x) the only infinite paths through the semantic computation tree are
non-constructive, then PA(x) will still include ‘↑’. This is discussed further in §3.4(b).

We turn to the details of these definitions.

(a) Semantics of program terms. The meaning of t ∈ PTerms is a function

[[t]]A : State(A) ⇒+ As
↑.

The definition is by structural induction on t:

[[x]]Aσ = {σ(x) }

[[c]]Aσ = { cA }

[[F (t1, . . . , tm)]]Aσ = { y | ∃x1 ∈ A ∩ [[t1]]σ . . . ∃xm ∈ A ∩ [[tm]]σ : FA(x1, . . . , xm) ↓ y }

∪ { ↑ | ∃x1 ∈ A ∩ [[t1]]σ . . . ∃xm ∈ A ∩ [[tm]]σ : FA(x1, . . . , xm) ↑ }

∪ { ↑ | ↑ ∈ [[ti]]
Aσ for some i, 1 ≤ i ≤ m }

[[if(b, t1, t2)]]
Aσ = { y |

(

� ∈ [[b]]Aσ ∧ y ∈ [[t1]]
Aσ

)

∨
(

� ∈ [[b]]Aσ ∧ y ∈ [[t2]]
Aσ

)

}

∪ { ↑ | ↑ ∈ [[b]]Aσ }

[[choose z : b]]Aσ = {n ∈
�

| � ∈ [[b]]Aσ{z/n} }

∪ { ↑ | ∀n ∈
� (

� ∈ [[b]]Aσ{z/n} ∨ ↑ ∈ [[b]]Aσ{z/n}
)

}.

Notice that [[choose z : b]]Aσ could include both natural numbers and ‘↑’, since for any n,
[[b]]Aσ{z/n} could include both � and � .

(b) Semantics of atomic statements. The meaning of Sat ∈ AtSt is a function

〈|Sat|〉 : State(A) ⇒+ State(A)↑

defined by:

〈|skip|〉Aσ = {σ}

〈|div|〉Aσ = { ↑ }

〈|x := t|〉Aσ = {σ{x/a} | a ∈ A ∩ [[t]]Aσ } ∪ { ↑ | ↑ ∈ [[t]]Aσ }

22

(c) The First and Rest operations. The operation

First : Stmt → AtSt

is defined exactly as in [TZ00, §3.5], namely:

First(S) =

S if S is atomic

First(S1) if S ≡ S1;S2

skip otherwise.

The operation
Rest A : Stmt × State(A) ⇒+ Stmt,

is defined as follows (cf. [TZ00, §3.5]):

Case 1. S is atomic. Then Rest A(S, σ) = { skip }.

Case 2. S ≡ S1;S2.

Case 2a. S1 is atomic. Then Rest A(S, σ) = {S2 }.

Case 2b. S1 is not atomic. Then Rest A(S, σ) =

{S′;S2 | S′ ∈ Rest A(S1, σ) } ∪ { div | div ∈ Rest A(S1, σ) }.

Case 3. S ≡ if b then S1 else S2 fi. Then Rest A(S, σ) contains all of:

S1 if � ∈ [[b]]Aσ,

S2 if � ∈ [[b]]Aσ,

div if ↑ ∈ [[b]]Aσ.

Note that more than one condition may hold.

Case 4. S ≡ while b do S0 od. Then Rest A(S, σ) contains all of:

S0;S if � ∈ [[b]]Aσ,

skip if � ∈ [[b]]Aσ,

div if ↑ ∈ [[b]]Aσ.

Note again that more than one condition may hold.

(d) Computation step. From First we can define the computation step function

CompStepA : Stmt × State(A) ⇒+ State(A)↑

which is like the one-step computation function CompA
1 of [TZ00, §3.4], except for being

multi-valued:
CompStepA(S, σ) = 〈|First(S)|〉Aσ.

23

(e) The computation tree. The computation sequence, which is basic to the semantics
of While computations in [TZ00], is replaced here by a computation tree

CompTreeA(S, σ)

of a statement S at a state σ. This is an ω-branching tree, branching according to all pos-
sible outcomes (i.e., “output states”) of the one-step computation function CompStepA.
Each node of this tree is labelled by either a state or ‘↑’.

Any actual (“concrete”) computation of statement S at state σ corresponds to one of
the paths through this tree. The possibilities for any such path are:

(i) it is finite, ending in a leaf containing a state: the final state of the computation;

(ii) it is finite, ending in a leaf containing ‘↑’ (local divergence);

(iii) it is infinite (global divergence).

Correspondingly, the function CompA of [TZ00, §3.4] is replaced by a computation
tree stage function

CompTreeStageA : Stmt × State(A) ×
�

⇒+ (State(A)↑)<ω

where CompTreeStageA(S, σ, n) represents the first n stages of CompTreeA(S, σ).
This is defined (like CompA) by a simple recursion (“tail recursion”) on n:

Basis: CompTreeStageA(S, σ, 0) = {σ}, i.e., just the root labelled by σ.

Induction step: CompTreeStageA(S, σ, n) is formed by attaching to the root {σ} the
following:

(i) for S atomic: the leaf {σ′}, for each σ′ ∈ 〈|S|〉Aσ (where σ′ may be a state or ↑);

(ii) for S not atomic: the subtree CompTreeStageA(S′, σ′, n − 1), for each σ′ ∈
CompStepA(S, σ) (σ′ 6= ↑) and S′ ∈ Rest A(S, σ), as well as the leaf { ↑ } if
‘↑’ ∈ CompStepA(S, σ).

Then CompTreeA(S, σ) is defined as the “limit” over n of CompTreeStageA(S, σ, n).

Note that only the leaves of CompTreeA(S, σ) may contain ‘↑’ (“local divergence”).

(f) Semantics of statements. From the semantic computation tree we can easily define
the i/o semantics of statements

[[S]]A : State(A) ⇒+ State(A)↑.

Namely,

[[S]]Aσ is the set of states and/or ‘↑’ at all leaves in CompTreeA(S, σ), together
with ‘↑’ if CompTreeA(S, σ) has an infinite path.

Note that, by its definition, [[S]]Aσ cannot be empty. It will contain (at least) ‘↑’ if there
is at least one computation sequence leading to divergence, i.e., a path of the computation
tree which is either infinite or ends in a ‘↑’ leaf.

24

(g) Semantics of procedures. Finally, if

P ≡ func in a out b aux c begin S end (1)

is a procedure of type u→ v, then its meaning in A is a function

PA : Au ⇒+ Av↑

defined as follows (cf. [TZ00, §3.6]). For x ∈ Au,

PA(x) = {σ′(b) | σ′ ∈ [[S]]Aσ } ∪ { ↑ | ↑ ∈ [[S]]Aσ }

where σ is any state on A such that σ[a] = x. (From the initialisation condition (§3.1(e))
it follows by a “functionality lemma” (cf. [TZ00, 3.6.1]) that PA is well defined.)

Definition 3.2.5. A WhileCC procedure P : u→ v is deterministic on A if for all
x ∈ Au, PA(x) is a singleton.

Remark 3.2.6 (Two concepts of deterministic computation). One can distinguish
between two notions of deterministic computation: (i) strong deterministic computation,
the common concept, in which each step of the computation is determinate; and (ii) weak
deterministic computation, in which the output (or divergence) is uniquely determined by
(i.e., a unique function of) the input, but the steps in the computation are not necessarily
determinate. A good example of (ii) is the Gaussian elimination algorithm (§1.2.1, §4.2.1)
which, although defining a unique function (the inverse of a matrix), incorporates the
(nondeterministic!) pivot function as a subroutine. In Definition 3.2.5 and elsewhere in
this paper, we are concerned with the weak sense of deterministic computation.

Definition 3.2.7. (a) A many-valued function f : Au ⇒+ As
↑ is WhileCC

computable on A if there is a WhileCC procedure P such that f = PA.

(b) A partial function f : Au ⇀ As is WhileCC computable on A if there is a determin-
istic WhileCC procedure P : u→ s such that for all x ∈ Au,

(i) f(x) ↓ y =⇒ PA(x) = {y}, and

(ii) f(x)↑ =⇒ PA(x) = {↑},

Remark 3.2.8 (Many-valued algebras). As we have seen, the semantics for While-
CC procedures is given by countably many-valued functions. If we were to start with
algebras with many-valued basic operations, as in [Bra96, Bra99], the algebraic operational
semantics could handle this just as easily, by adapting the clause for the basic Σ-function
f in part (a) (“Semantics of program terms”) of the semantic definition above.

3.3 The language WhileCC ∗ (Σ)

In [TZ99, TZ00] we worked with the language While∗ (Σ) (rather than While(Σ)),
formed by augmenting While with auxiliary array and nat variables [TZ00, §3.13]. The

25

importance of While∗ computability lies in the fact that it forms the basis for a generalised
Church-Turing Thesis for computability on abstract many-sorted algebras [TZ00, §8].

Here, similarly, we will work with the language WhileCC ∗ = WhileCC ∗ (Σ), which
can be viewed similarly as WhileCC (Σ) augmented by auxiliary array and nat variables
(or as While∗ (Σ) augmented by the ‘choose’ construct).

More precisely, a WhileCC ∗ (Σ) procedure is a WhileCC (Σ∗) procedure in which
the input and output variables have sorts in Σ only. (However the auxiliary variables may
have starred sorts or sort nat.)

Thus it defines a countably-many-valued function on any standard Σ-algebra.

3.4 Some computability issues in the semantics of WhileCC ∗ procedures

Some interesting issues in the semantics of WhileCC ∗ arise already in the case of
computation over the algebra N of naturals (Example 2.2.5(b)).

(a) Elimination of ‘choose’ from deterministic WhileCC ∗ over total algebras

The ‘choose’ operator can be eliminated from deterministic WhileCC ∗ procedures (cf.
Definition 3.2.5 and Remark 3.2.6) over total algebras.

Theorem 3.4.1. For any total Σ-algebra A and f : Au ⇀ As,

f is WhileCC ∗ computable over A ⇐⇒ f is While∗ computable over A.

Proof: (⇒) Let P be a deterministic WhileCC ∗ procedure over A which computes f .
Since A is total, evaluation of any boolean term b over A (relative to a state) converges to
� or � in A. Further, since P is deterministic, its output for a given input is independent
of the implementation. Hence every ‘choose’ term in P of the form choose z : b[z] can be
replaced by a ‘while’ loop which tests b[0], b[1], b[2], . . . in turn, i.e., finds the least k for
which b[k] is true, if it exists, and diverges otherwise. �

Applying this to the total algebra N , and recalling that While∗ computability over
N is equivalent to partial recursiveness (i.e., classical computability) over

�
[TZ00], we

have:

Corollary 3.4.2. For any f :
� m ⇀

�
,

f is WhileCC ∗ computable over N ⇐⇒ f is partial recursive over
�

.

(b) Recursive and non-recursive implementations

The semantics PA of a procedure P (§3.2) is given, for an input x, by all paths of the
computation tree T = CompTreeA(S, σ) (where S is the body of P) representing all
possible computation sequences for S starting at state σ, where σ[a] = x, i.e., all possible
implementations of instances of the ‘choose’ construct occurring in the execution of S
starting at σ. This leads to interesting computation-theoretic issues even in the simple
case that A = N , where we can assume that T is coded as a subset of

�
in a standard

way. Now any path of T ending in a leaf is finite, and therefore (trivially) recursive. An

26

infinite path or computation sequence (leading to divergence), however, may or may not
be recursive. (See Remark 3.2.4.)

Proposition 3.4.3. There is a WhileCC ∗ (N) procedure P such that its computation
tree has infinite paths, but no recursive infinite paths.

The construction of P is based on the construction of a recursive tree with infinite paths,
but no recursive infinite paths [Odi99, V.5.25]. Details are given in Appendix B.

For this procedure P , ↑ ∈ PA(), i.e., divergence is possible. However, if we were to
restrict computation sequences to be recursive, then divergence would not be a possible
outcome for PA(). The semantics, as we give it (i.e., all possible computation sequences
included, whether recursive or not) is simpler than this alternative. In any case, as we will
see, this choice will not affect continuity considerations (cf. Lemmas 5.1.7 and 5.2.1).

3.5 Approximable WhileCC ∗ computability

The basic notion of computability that we will be using in working with metric algebras
is not so much computability, as rather computable approximability on metric algebras, as
discussed in [TZ99, §9]. We have to adapt the definition given there to the nondeterministic
case with countable choice.

Let A be a metric Σ-algebra, u a Σ-product type and s a Σ-type. Let P : nat×u → s
be a WhileCC ∗ (ΣN) procedure. Put

PA
n =df PA(n, ·) : Au ⇒+ As

↑.

Note that that for all x ∈ Au, PA
n (x) 6= ∅.

Definition 3.5.1 (WhileCC ∗ approximability to a single-valued function).
Let f : Au ⇀ As be a single-valued partial function on A.

(a) f is WhileCC ∗ approximable by P on A if for all n ∈
�

and all x ∈ Au:

x ∈ dom(f) =⇒ ↑ /∈ PA
n (x) ⊆ B(f(x), 2−n). (1)

(b) f is strictly WhileCC ∗ approximable by P on A if in addition to (1),

x /∈ dom(f) =⇒ PA
n (x) = { ↑ }. (2)

Remarks 3.5.2.

(a) Clearly, WhileCC ∗ computability is a special case of WhileCC ∗ approximability .

(b) For total f , the concepts of WhileCC ∗ approximability and strict WhileCC ∗ ap-
proximability coincide.

(c) If a single-valued function f is strictly approximable by P , then (from (1) and (2)) for
all x ∈ Au and all n:

f(x)↑ ⇐⇒ ↑ ∈ PA
n (x) ⇐⇒ PA

n (x) = { ↑ }.

27

Definition 3.5.3 (WhileCC ∗ approximability to a many-valued function).
Let f : Au ⇒ As be a countably-many-valued function on A.

(a) f is WhileCC ∗ approximable by P on A if for all n ∈
�

and all x ∈ Au:

f(x) 6= ∅ =⇒ ↑ /∈ PA
n (x) ⊆

⋃

y∈f(x)

B(y, 2−n)

and f(x) ⊆
⋃

y∈P A
n (x)

B(y, 2−n).
(3)

Note that (assuming ↑ /∈ PA
n (x)) the r.h.s. of (3) implies

dH(f(x), PA
n (x)) ≤ 2−n, (4)

and is implied by

dH(f(x), PA
n (x)) < 2−n, (5)

where X denotes the closure of X, and dH is the Hausdorff metric on the set of closed,
bounded non-empty subsets of As [Eng89, 4.5.23]. (Actually, the Hausdorff metric applies
only to the space of closed bounded subsets of a given metric space, so (4) and (5) should
be taken as heuristic statements.)

In other words (assuming f(x) 6= ∅), for all x ∈ Au and all n, each output of f(x) lies
within 2−n of some output of PA

n (x), and vice versa.

(b) f is strictly WhileCC ∗ approximable by P on A if in addition,

f(x) = ∅ =⇒ PA
n (x) = { ↑ }.

Remark 3.5.4. (Cf. Remark 3.5.2(c).) If a many-valued function f is strictly approx-
imable by P , then for all x ∈ Au and all n:

f(x) = ∅ ⇐⇒ ↑ ∈ PA
n (x) ⇐⇒ PA

n (x) = { ↑ }.

4 Examples of WhileCC∗ exact and approximating computations

4.1 Discussion: Use of ‘choose’ for searching and dovetailing

Following the examples in Section 1, the ‘choose’ construct was introduced to compute
many-valued functions. Technically, this construct strengthens the power of the While

language in performing searches. In a partial algebra, simple searches (e.g., “find some xk

in an effectively enumerated set X = {x0, x1, x2, . . .} satisfying b(xk)”) will obviously fail
in general if the search simply follows the given enumeration of X (i.e., testing in turn
whether b(x0), b(x1), b(x2), . . . holds), since the computation of the boolean predicate
b(x) may not terminate for some x.

28

This problem is overcome, at the concrete model level, by the use of scheduling tech-
niques such as interleaving or “dovetailing”: at stage n, do n steps in testing whether
b(xi) holds, for i = 0, . . . , n.

An important function of ‘choose’, which will recur in our examples, is to simulate such
scheduling techniques at the abstract model level. This allows searches over any countable
subset X of an algebra A that has a computable enumeration enumX :

�
→ X, since

we can search X in A by assignments such as

x := enumX(choose z : b(enumX(z))).

4.2 Examples

We now illustrate the use of the WhileCC ∗ language in topological partial algebras with
examples, which involve computations which are either many-valued, or approximating,
or both. The examples given in §1.2 to motivate many-valued abstract computation are a
good place to start. They can be displayed in the table:

Exact computation Approximating computation

Single-valued Gaussian elimination ex, sin(x), etc.

Many-valued Approx. points in metric algebra All simple roots of polynomial

Examples 4.2.1, 4.2.2 and 4.2.4 below are all based on the metric algebra derived from
RN

p (Example 2.3.3(b)).

Example 4.2.1 (Gaussian elimination). This is a single-valued exact computation.
The algorithm can be found in any standard text of numerical computation, e.g., [Hea97].
It is deterministic, but only in the weak sense (cf. Remark 3.2.6), since it contains, as an
essential component, the computation of the pivot function (§1.2), which is many-valued,
and can be formalised simply with the ‘choose’ construct:

func in x1, . . . , xn : real

out i : nat

aux k : nat

begin

i := choose k : (k = 1 and x1 6= 0) or

(k = 2 and x2 6= 0) or

. . .

(k = n and xn 6= 0)

end.

Example 4.2.2 (Approximations to ex). On the interval algebra IN
p (Example

2.5.4(c)) we give a While procedure to approximate the function ex on I (Figure 3).

29

func in n : nat, { degree of approximation }

x : intvl { ‘intvl’ is the sort of reals in the interval [0, 1] }

out s : real { partial sum of power series }

aux y : real, { current term of series }

k : nat { counter }

begin

k := 0;

y := 1;

s := 1;

while k < 2n+1 do

k := k + 1;

y := y× iI(x)/ iN (k); { y = xk/k ! }

s := s + y { s =

k
∑

i=0

xi/i ! }

od

end

Figure 3

Here iI : I → � is the embedding of I in � , which is primitive in Σ(IN
p), and iN :

�
→ � is the embedding of

�
in � , which is easily definable in While(RN

p).

Denoting the above function procedure by P , and IN
p by A, we have the semantics

PA
n : I → �

with

PA
n (x) =

2n+1

∑

i=0

xi

i !

and so for all x ∈ I,
d(PA

n (x), ex) < 2−n,

i.e., ex is While approximable on IN
p by P .

This computation of ex is single-valued, but approximating.

Example 4.2.3 (“Choosing” a member of an enumerated subspace close to an
arbitrary element of a metric algebra). Given a metric algebra A with a countable
dense subspace C, and an enumeration enumC :

�
� C of C in the signature, we want

to compute a function f : A×
�

→ C such that

30

f(a, n) = “some” x ∈ C such that d(a, x) < 2−n.

This is a generalisation of the problem of approximating reals by rationals (Example 1.2.3).

Here is a WhileCC ∗ procedure (in pseudo-code) for an exact computation of f . (Note

that the real-valued function 2−n is While computable on RN
p , and hence on A.)

func in a : space, n : nat

out x : space

aux k : nat

begin

x := enumC

(

choose k : d(a, enumC(k)) < 2−n
)

end

This computation is many-valued, but exact.

Example 4.2.4 (Finding simple roots of a polynomial). We construct a WhileCC

procedure to approximate “some” simple root of a polynomial p(X) with real coefficients,
using the method of bisection. By a simple root of p(X) we mean a real root at which
p(X) changes sign. (See [Hea97]. In practice, a hybrid method is generally used, involving
bisection, Newton’s method, etc.)

Fundamental to the bisection method is the concept of a bracket for p(X), which means
an interval [a, b] such that p(a) and p(b) have opposite signs. By rational bracket , we
mean a bracket with rational endpoints. We note the following:

(1) Any bracket for p contains a root of p (by the Intermediate Value Theorem), in fact
a simple root of p.

(2) Conversely, any simple root of p is contained in a rational bracket for p of arbitrarily
small width.

(3) If x is a simple root of p, then any bracket for p of sufficiently small width which
contains x, contains no other simple root of p.

(4) If [a, b] is a bracket for p, then, putting m = (a+ b)/2, exactly one of the following
holds:

(i) p(m) = 0; then m is a root of p (not necessarily simple);

(ii) p(m) has the same sign as p(a); then [m, b] is a bracket for p;

(iii) p(m) has the same sign as p(b); then [a,m] is a bracket for p.

It follows from the above that starting with any rational bracket J for p, we can, by
repeated bisection, find a nested sequence of rational brackets

J = J0, J1, J2, . . . where

∞
⋂

n=0

Jn = {x}

31

for some simple root x of p. Then, letting rn be the left-hand endpoint of Jn, we have a
fast Cauchy sequence 〈rn〉n with limit x.

One complication with our algorithm is the occurrence of case (i) in (4) above, i.e., the
case that the midpoint m of the bracket is itself a root of p, since by the co-semicomputabil-
ity of equality (Discussion 2.2.6) on � we can only verify when f(m) 6= 0, not when
f(m) = 0. We therefore proceed as follows. By means of the ‘choose’ construct, we search
in the middle third (say) of the bracket [a, b] for a “division point”, i.e., a rational point
d such that f(d) 6= 0, producing either [a, d] or [d, b] as a sub-bracket. (So we use a
“trisection”, instead of ”bisection”, method.)

This new bracket may not halve the width of [a, b]; in the worst case its width is
2/3(b − a). However a second iteration of this procedure leads to a bracket of width at
most (2/3)2 < 1/2 the width of [a, b], and so 2n iterations lead to a bracket of width less
than 2−n(b− a).

For convenience, we will use the following two conservative extensions to our “official”
programming notation:

(a) Simultaneously choosing two naturals with a single condition:

k1, k2 := choose z1, z2 : b[z1, z2]

which is easily expressible in WhileCC by the use of a primitive recursive pairing
function pair on

�
and its inverses proj1, proj2:

k := choose z : b[proj1(z), proj2(z)];

k1, k2 := proj1(k), proj2(k)

(b) Choosing a rational (of type real) satisfying a boolean condition:

q := choose rreal :
(

“r is rational” and b[r]
)

.

Let rat :
�

→ � be a While-computable enumeration of the rationals in � . Then
this can be interpreted as:

q := rat
(

choose k : b[rat(k)]
)

.

Finally, a polynomial p(X) over � will be represented by an element p∗ of � ∗:

p∗ = (a0, . . . , an−1) =

n−1
∑

i=0

aiX
n−i

Its evaluation at a point c, denoted by p∗(c), is easily seen to be While(R) computable in
p∗ and c.

32

func in n : nat, { degree of approximation }

p∗ : real∗ { input polynomial, given by list of coefficients }

out x : real { approximation to root }

aux a, b : real, { endpoints of bracket }

d : real, { division point of bracket }

k : nat { counter }

begin

k := 0;

a, b := choose a, b : (“a and b are rational” and a < b < a + 1 and

(p∗(a) > 0 and p∗(b) < 0)

or (p∗(a) < 0 and p∗(b) > 0));

while k < 2n do

k := k + 1;

d := choose d : (“d is rational” and (2a + b)/3 < d < (a + 2b)/3

and p∗(d) 6= 0);

if (f(d) > 0 and f(a) > 0) or (f(d) < 0 and f(a) < 0)

then a, b := d, b { new bracket on right part of old }

else a, b := a, d { new bracket on left part of old }

fi

od;

x := a { x := b would also work here }

end.

Figure 4

Hence we can give a WhileCC ∗ procedure for approximably computing some simple
root of an input polynomial, in the signature of Rp (see Figure 4).

For input natural n and polynomial p, the output is within 2−n of some simple root of p.
Further, for any simple root e of p, there is some implementation of the ‘choose’ operator
which will give an output within 2−n of e. Finally, the computation will diverge if, and
only if, p has no simple roots.

This computation is both many-valued and approximating.

5 Continuity of countably-many-valued WhileCC∗ functions

In this section we define continuity for countably-many-valued functions, and then prove

33

that countably-many-valued functions computed by WhileCC ∗ programs are continuous.

5.1 Topology and continuity with countably many values and ‘↑’

The results in this subsection are mostly of a technical nature, and their proofs are rele-
gated to Appendix C. (Actually, all these results hold for arbitrary many-valued functions
f : X → P(Y), not necessarily countably-many-valued.) Recall Notation 3.2.1.

Definition 5.1.1 (Totality). The function f : X ⇒ Y is said to be total if for all
x ∈ X, f(x) is a non-empty subset of Y , i.e., if f : X ⇒+ Y .

Our semantic functions (in Section 6) will typically be of the form

Φ : Au ⇒+ Av↑. (1)

Remark 5.1.2. We think of the “deterministic version” of (1) as being a total function
Φ, where for each x ∈ X, Φ(x) is a singleton, containing either an element of Av (to
indicate convergence) or ‘↑’ (to indicate divergence). (Recall Remark 3.2.2.)

We must now consider what it means for such a function (1) to be continuous.

Definition 5.1.3 (Continuity). Let f : X ⇒ Y , where X,Y are topological spaces.
(a) For any V ⊆ Y ,

f−1[V] =df {x ∈ X | f(x) ∩ V 6= ∅ },

i.e., x ∈ f−1[V] iff at least one of the elements of f(x) lies in V .

(b) f is continuous (w.r.t. X and Y) iff for all open V ⊆ Y , f−1[V] is open in X.

Remarks 5.1.4. (a) For metric spaces X and Y , Definition 5.1.3(b) becomes:
f : X ⇒ Y is continuous iff

∀a ∈ X ∀b ∈ f(a) ∀ε > 0 ∃δ > 0 ∀x ∈ B(a, δ)
(

f(x) ∩ B(b, ε) 6= ∅
)

.

(b) Definition 5.1.3(b) reduces to the standard definition of continuity for total single-
valued functions from X to Y .

(c) It also reduces to the definition of continuity for partial single-valued functions (Defi-
nition 2.5.1 and Remark 2.7.2(a)), as we will see below (Remark 5.1.9). We must first see
how to extend the topology on Y to that on Y ↑ (Definition 5.1.6 below).

Definition 5.1.5. For two functions f : X ⇒ Y , g : X ⇒ Y , we define

f v g ⇐⇒df for all x ∈ X, f(x) ⊆ g(x).

Definition 5.1.6 (Topology on Y ↑). We extend the topology on Y to Y ↑ (= Y ∪{ ↑ })
by specifying that the only open set containing { ↑ } is Y ↑. (So Y ↑ is a “one-point
compactification” of Y .)

34

Now, given a function f : X ⇒ Y ↑, we define functions

f↑ : X ⇒ Y ↑ and f− : X ⇒ Y

by
f↑(x) = f(x) ∪ { ↑ } and f−(x) = f(x)\{ ↑}.

In other words, f↑ adds ‘↑’ to the set f(x) for each x ∈ X and f− removes ‘↑’ from
every such set. This changes the semantics of f (see Remark 3.2.2), but not its continuity
properties, as will be seen from the following technical lemma, which will be used in the
proof of continuity of computable functions below (§5.2).

Lemma 5.1.7. Let f : X ⇒ Y and g : X ⇒+ Y ↑ be any two functions such that

f v g v f↑,

i.e., for all x ∈ X, g(x) 6= ∅, and either g(x) = f(x) or g(x) = f(x) ∪ { ↑ }. Then

f is continuous ⇐⇒ g is continuous.

Corollary 5.1.8. Suppose f : X ⇒+ Y ↑ (i.e., f is total). Then

f is continuous ⇐⇒ f− is continuous ⇐⇒ f↑ is continuous.

Remark 5.1.9 (Justification of Remark 5.1.4(c)). Let f : X ⇀ Y be a single-
valued partial function. Define

f̌ : X ⇒ Y and f̂ : X ⇒+ Y ↑

by

f̌(x) =

{

{ f(x) } if x ∈ dom(f)

∅ otherwise
and f̂(x) =

{

{ f(x) } if x ∈ dom(f)

{ ↑ } otherwise
.

(We can view either f̌ or f̂ as “representing” f in the present context, cf. Remark 5.1.2.)
Then

f is continuous (according to Def. 2.5.1)

⇐⇒ f̌ is continuous (according to Def. 5.1.3)

⇐⇒ f̂ is continuous (according to Def. 5.1.3)

The equivalence of the continuity of f and f̌ follows immediately from the definitions.

The equivalence of the continuity of f̌ and f̂ follows from Lemma 5.1.7.

35

Lemma 5.1.10. Given f : X ⇒ Y ↑, extend it to f̃ : X↑ ⇒ Y ↑ by stipulating that
f̃(↑) = ↑. If f is continuous and total, then f̃ is continuous.

Definition 5.1.11 (Composition).
(a) Suppose f : X ⇒ Y and g : Y ⇒ Z. We define g ◦ f : X ⇒ Z by

(g ◦ f)(x) =
⋃

{ g(y) | y ∈ f(x) }.

(b) Suppose f : X ⇒ Y ↑ and g : Y ⇒ Z↑. We define g ◦ f : X ⇒+ Z↑ by

(g ◦ f)(x) =
⋃

{ g(y) | y ∈ f(x) ∩ Y } ∪ { ↑ | ↑ ∈ f(x) }

Proposition 5.1.12 (Continuity of composition).

(a) If f : X ⇒ Y and g : Y ⇒ Z are continuous, then so is g ◦ f : X ⇒ Z.

(b) If f : X ⇒+ Y ↑ and g : Y ⇒+ Z↑ are continuous, then so is g ◦ f : X ⇒+ Z↑.

Definition 5.1.13 (Union of functions). Let fi : X ⇒ Y ↑ be a family of functions
for i ∈ I. Then we define

⊔

i∈I

fi : X ⇒ Y ↑

by
(

⊔

i∈I

fi

)

(x) =
⋃

i∈I

fi(x).

Lemma 5.1.14. If fi : X ⇒ Y ↑ is continuous for all i ∈ I, then so is
⊔

i∈I fi.

5.2 Continuity of WhileCC computable functions

Let A be an N-standard topological Σ-algebra.

To prove that WhileCC ∗ procedures on A are continuous, we first prove that such
procedures are (almost) equivalent to While procedures (without ‘choose’) in an extended
signature, which includes a symbol f for an “oracle function”. Then we apply Lemma 5.1.7.

Lemma 5.2.1 (Oracle equivalence lemma). Given a WhileCC (Σ) statement S,
and procedure

P ≡ func in a out b aux c begin S end,

we can effectively construct a While(Σf) statement Sf and procedure

Pf ≡ func in a out b aux c begin Sf end

36

in a signature Σf which extends Σ by a function symbol f : nat → nat, such that, putting

PA
t =df

⊔

f∈F

PA
f ,

where F =
�

�

is the set of all functions f :
�

→
�

and PA
f is the interpretation of Pf

in A formed by interpreting f as f , we have

PA v PA
t v (PA)↑. (1)

(Recall Definitions 5.1.13 and 5.1.5, and the definition of PA : Au ⇒+ Av↑ in §3.2(g).)

Proof: Intuitively, f represents a possible implementation of the ‘choose’ operator: f(n)
is a possible value for the nth call of this operator in any particular implementation of P .
We will then take the union of the interpretations over all such possible implementations.

In more detail: Sf is constructed from S is as follows. Let c be a new “counter”,
i.e., an auxiliary nat variable which is not in S. First, by “splitting up” assignments in
S, and introducing more auxiliary nat variables, we re-write S in such a way that every
occurrence of the ‘choose’ construct is in the context of an assignment of the form

z′ := choose z : b (2)

where the boolean term b does not contain the ‘choose’ construct. Now replace each
assignment of the form (2) by the pair of assignments

c := c + 1;

if b〈z/f(c)〉 then z′ := f(c) else div

and initialise the value of c (at the beginning of the statement) to 0. The result is a
While∗ (Σf) procedure Pf with a body Sf which, for a given interpretation f of f, “in-
terprets” successive executions of ‘choose’ by successive values of f , when this is possible
(i.e., b〈z/f(c)〉 has � as one of its values), and otherwise, causes the execution to diverge.

For those f which (for a given input) always give “good” values for all the successive
executions of ‘choose’ assignments (2) in S, PA

f will give a possible implementation of

P . For all other f , PA
f will diverge. Since (for a given input) each PA

f either simulates
one possible implementation of successive executions of ‘choose’ in S or diverges, their
“union” PA

t gives the result of all possible implementations of ‘choose’, plus divergence;
hence the conclusion (1). �

Theorem 5.2.2. Let

P ≡ func in a out b aux c begin S end (3)

be a WhileCC procedure, where a : u and b : v. Then the interpretation

PA : Au ⇒+ Av↑

37

is continuous.

Proof: In the notation of the Oracle Equivalence Lemma (5.2.1): PA
f is continuous for

all f ∈ F , by the continuity theorem for While [TZ00, §6.5]. Hence PA
t is continuous,

by Lemma 5.1.14. Hence, by (1) and Lemma 5.1.7, so is PA. �

Remark 5.2.3. In the special case that PA is deterministic, i.e., single-valued:

PA : Au ⇀ Av,

it follows by Remark 5.1.9 that PA is continuous according to our definition (2.5.1) of
continuity for single-valued partial functions.

Corollary 5.2.4. A WhileCC ∗ computable function on A is continuous.

Proof: Such a function is WhileCC computable on A∗, hence (by Theorem 5.2.2) con-
tinuous on A∗, and hence on A. �

5.3 Continuity of WhileCC ∗ approximable functions

Recall Definition 3.5.1.

Theorem 5.3.1. Let A be a metric Σ-algebra, and f : Au ⇀ Av. If f is WhileCC ∗

approximable on A and dom(f) is open in Au then f is continuous.

Proof: Suppose f is approximable on A by the WhileCC ∗ procedure P : nat × u→ v.
We will show that f is W-continuous, using Remark 2.5.2. Given a ∈ dom(f) and ε > 0,
choose N such that

2−N < ε/3. (1)

Then by Definition 3.5.1,

∅ 6= PA
N (a) ⊆ B(f(a), 2−N). (2)

Choose b ∈ PA
N (a). By (2),

d(f(a), b) < 2−N . (3)

By Corollary 5.2.3, PA
N is continuous on A, and so by Remark 5.1.4(a), there exists δ > 0

such that
∀x ∈ B(a, δ), PA

N (x) ∩ B(b, ε/3) 6= ∅. (4)

Since dom(f) is open, we may assume that δ is small enough so that

B(a, δ) ⊆ dom(f).

Take any x ∈ B(a, δ). By Definition 3.5.1 again,

PA
N (x) ⊆ B(f(x), 2−N) (5)

38

By (4), choose y ∈ PA
N (x) ∩ B(b, ε/3). So

d(y, b) < ε/3 (6)

and by (5)
d(f(x), y) < 2−N . (7)

Hence

d(f(x), f(a)) ≤ d(f(x), y) + d(y, b) + d(b, f(a))

< ε

by (7), (6), (3) and (1). The theorem follows by Remark 2.5.2. �

6 Concrete computability; Soundness of WhileCC∗ computation
on countable algebras

To compute on a metric algebra A using a concrete model of computation, we choose a
countable subspace X of A and an enumeration α :

�
→ X.

In this section we step back from topological algebras and consider computability on
arbitrary countable algebras A. We show (Theorem A0) that if A is enumerated by α and
its basic functions are α-computable, then functions that are WhileCC ∗ computable on
A are also α-computable. This is a key lemma in the soundness theorem for WhileCC ∗

approximation in the next section.

6.1 Enumerations and tracking functions for partial functions

Let X = 〈Xs | s ∈ Sort(Σ)〉 be a family of non-empty sets, indexed by Sort(Σ).

Definition 6.1.1. An enumeration of X is a family

α = 〈αs : Ωs � Xs | s ∈ Sort(Σ)〉

of surjective maps αs : Ωs � Xs, for some family

Ω = 〈Ωs | s ∈ Sort(Σ)〉

of sets Ωs ⊆
�

. The family X is said to be enumerated by α. We say that α : Ω � X is an
enumeration of X, and call the pair (X,α) an enumerated family of sets. (The notation
‘�’ denotes surjections, or onto mappings.)

We also write Ωα,s for Ωs to make explicit the fact that Ωs = dom(αs).

Definition 6.1.2 (Tracking and strict tracking functions). We use the notation
Xu = Xs1

× · · · ×Xsm
and Ωu

α = Ωα,s1
× · · · × Ωα,sm

, where u = s1 × · · · × sm.
Let f : Xu ⇀Xs and ϕ : Ωu

α ⇀ Ωα,s,

39

(a) ϕ is a tracking function with respect to α, or α-tracking function, for f , if the
following diagram commutes:

Xu f -
·

Xs

αu
6
· ·

6
αs

� m · -
ϕ

�

in the sense that for all k ∈ Ωu
α

f(αu(k)) ↓ =⇒ ϕ(k) ↓ ∧ϕ(k) ∈ Ωα,s ∧ f(αu(k)) = αs(ϕ(k)).

(b) ϕ is a strict α-tracking function for f if in addition, for all k ∈ Ωu
α

f(αu(k)) ↑ =⇒ ϕ(k) ↑.

Here we use the notation αu(k) = (αs1
(k1), . . . , αsm

(km)), where k = (k1, . . . , km).
(We will sometimes drop the type super- and subscripts.)

Definition 6.1.3 (α-computability). (a) Suppose A is a Sort(Σ)-family, and (X,α)
an enumerated subfamily of A, i.e., Xs ⊆ As for all Σ-sorts s. Suppose we have

f : Au ⇀ As and ϕ :
� m ⇀

�

f � Xu : Xu ⇀ Xs and ϕ � Ωu
α : Ωu

α ⇀ Ωα,s,
such that

and ϕ � Ωu
α is a (strict) α-tracking function for f � X. We then say that ϕ is a (strict)

α-tracking function for f .

(b) Suppose now further that ϕ is a computable (i.e., recursive) partial function. Then f
is said to be (strictly) α-computable.

Remarks 6.1.4. (a) In the situation of Definition 6.1.3, we are not concerned with the
behaviour of f off Xu, or the behaviour of ϕ off Ωu

α.

(b) For total f , the concepts of tracking function and strict tracking function coincide; as
do the concepts of α-computability and strict α-computability.

(c) For convenience, we will always assume:

Ωα,bool = {0, 1}, αbool(0) = � , αbool(1) = �

and also (when Σ is N-standard):

Ωα,nat =
�

and αnat is the identity on
�

.

40

Assume now that A is a Σ-algebra and (X,α) is a Sort(Σ)-family of subsets of A,
enumerated by α.

Definition 6.1.5 (Enumerated Σ-subalgebra). (X,α) is said to be an enumerated
Σ-subalgebra of A if X is a Σ-subalgebra of A.

Definition 6.1.6 (Σ-effective subalgebra). Suppose A is a Σ-algebra and (X,α) is
an enumerated Σ-subalgebra. Then α is said to be

(a) Σ-effective if all the basic Σ-functions on A are α-computable; and

(b) strictly Σ-effective if all the basic Σ-functions on A are strictly α-computable.

6.2 Soundness Theorem for surjective enumerations

For the rest of this section we will be considering the special case of §6.1 in which the
enumerated subalgebra X is A itself, i.e., we assume the enumeration is onto A. To
emphasise this special situation, we will denote the enumeration by

β : Ωβ � A,

so that (A, β) is our enumerated Σ-algebra. Then given a function

f : Au ⇀ As,

we have two notions of computability for f :

(i) abstract , i.e., WhileCC ∗ computability, as described in Section 3; and

(ii) concrete, i.e., β-computability, as in Definition 6.1.3, in the special case that X = A.

We will prove a soundness theorem (Theorem A0), for these notions of abstract and
concrete computability, i.e., (i)⇒(ii), assuming strict effectiveness of β.

A more general soundness theorem (Theorem A), with more general notions of abstract
computability (WhileCC ∗ approximability) and concrete computability (computability
w.r.t. the computable closure of an enumeration), will be proved in Section 7.

Theorem A0 (Soundness for countable algebras). Let (A, β) be an enumerated
N-standard Σ-algebra such that β is strictly Σ-effective. If f : Au ⇀ As is WhileCC ∗

computable on A, then f is strictly β-computable on A.

6.3 Proof of Soundness Theorem A0

Assume, then, that (A, β) is an enumerated N-standard Σ-algebra and β is strictly Σ-
effective. We must show that each of the semantic functions listed in §3.2(a)–(g) has
a computable strict tracking function. More precisely, we work, not with the semantic
functions themselves, but “localised” functions representing them [TZ00, §4]. This amounts
to proving a series of results of the form:

41

Lemma Scheme 6.3.1. For each WhileCC semantic representing function

Φ : Au ⇒+ Av↑

representing one of the semantic functions listed in §3.2(a)–(g), there is a computable
tracking function w.r.t. β, i.e., a function

ϕ : Ωu
β ⇀ Ωv

β

which commutes the diagram

Au Φ -- + Av↑

βu
6 6

βv

Ωu
β

· -
ϕ Ωv

β

in the sense that for all k, l ∈ Ωu
β:

ϕ(k) ↓ l =⇒ βv(l) ∈ Φ(βu(k)),

ϕ(k) ↑ =⇒ ↑ ∈ Φ(βu(k)).

[This Lemma Scheme is proved in Appendix D.]

Remarks 6.3.2. (a) Here ϕ is a combination “strict tracking function” and “selection
function”. We can think of ϕ as giving one possible implementation of Φ. (Compare the
representative functions for various semantic functions in [TZ00, §4].)

(b) We are not concerned with the behaviour of ϕ on
� m\Ωu

β. (Cf. Remark 6.1.4(a).)

Theorem A0 then follows easily from this lemma scheme. (See Appendix D).

7 Soundness of WhileCC∗ approximation

We return to the general situation introduced in §6.2, of a partial metric Σ-algebra A with
an enumerated subalgebra (X,α), and prove a more general soundness theorem (Theorem
A) for WhileCC ∗ approximation. From the enumeration α :

�
→ X we will build the

space Cα(X) of α-computable elements of A, and enumerate it with α :
�
⇀ Cα(X).

7.1 Enumerated subspace of metric algebra; Computational closure

Let A be an N-standard metric Σ-algebra, and (X,α) an enumerated Sort(Σ)-family
〈(Xs, α) | s ∈ Sort(Σ)〉 of subsets Xs ⊆ As (s ∈ Sort(Σ)). Each Xs can be viewed as
a metric subspace of the metric space As. We call (X,α) a Sort(Σ)-enumerated (metric)
subspace of A. From (X,α) we define a family

Cα(X) = 〈Cα(X)s | s ∈ Sort(Σ)〉

42

of sets Cα(X)s of α-computable elements of As, i.e., limits in As of effectively convergent
Cauchy sequences (to be defined below) of elements of Xs, so that

Xs ⊆ Cα(X)s ⊆ As,

with corresponding enumerations

αs : Ωα,s � Cα(X)s.

Writing α = 〈αs | s ∈ Sort(Σ)〉, we call the enumerated subspace (Cα(X), α) the com-
putable closure of (X,α) in A.

We will generally be interested in α-computable (rather than α-computable) functions
on A (cf. Definition 6.1.3), as our model of concrete computability on A.

The sets Ωα,s ⊆
�

consist of codes for Cα(X)s (w.r.t. α), i.e., pairs of numbers
c = 〈e,m〉 where

(i) e is an index for a total recursive function defining a sequence α ◦ {e} in Xs, i.e.,
the sequence

αs({e}(0)), αs({e}(1)), αs({e}(2)), . . . , (1)

of elements of Xs,

(ii) m is an index for a modulus of convergence for this sequence:

∀k, l ≥ {m}(n) : ds(α({e}(k)), α({e}(l))) < 2−n. (2)

For any such code c = 〈e,m〉 ∈ Ωα,s, αs(c) is defined as the limit in As of the Cauchy
sequence (1), and Cα(X)s is the range of αs:

Xs ⊆ Cα(X)s ⊆ A

αs

6
αs

6

Ωα,s Ωα,s

Remarks 7.1.1. (a) (Fast Cauchy sequences.) We may assume, when convenient, that
the modulus of convergence for a given code is the identity , i.e., replace (2) by the simpler

∀k, l ≥ n : ds(α({e}(k)), α({e}(l))) < 2−n.

or, equivalently,
∀k > n : ds(α({e}(k)), α({e}(n))) < 2−n, (3)

because any code c = 〈e,m〉 satisfying (2) can be effectively replaced by a code for
the same element of Cα(X)s satisfying (3), namely c′ = 〈e′,m1〉, where m1 is a stan-
dard code for the identity function on

�
, and e′ = comp(e,m), where comp(x, y) is a

43

primitive recursive function for “composition” of (indices of) computable functions, i.e.,
{ comp(e,m) }(x) ' { e }({m }(x)). In the case of a code c = 〈e,m1〉 satisfying (3), the
sequence (1) is called a fast (α-effective) Cauchy sequence. We may then, for simplicity,
call e itself the “code”, and the argument of αs. So we can shift between “c-codes” and
“e-codes” as convenient.

(b) In the case s = nat, we can simply take Ωα,nat = Ωα,nat =
�

, and αnat and αnat

as the identity mappings on
�

. Similarly, in the case s = bool, we can take Ωα,bool =
Ωα,bool = { 0, 1 }, with α(0) = α(0) = � and α(1) = α(1) = � . (Cf. Remark 6.1.3(b).)

(c) (Closure of α-computability operation) The subspace (Cα(X), α) is “computationally
closed in A”, in the sense that the limit of a (fast) α-effective Cauchy sequence of elements
of Cα(X) is again in Cα(X), i.e., Cα(Cα(X)) = Cα(X). (Easy exercise.)

(d) (Decidability of Ωα,s) We usually assume that Ωα,s is decidable, in fact, that Ωα,s =
�

for all s, which is typical in practice, unlike the case for Ωα. (See Example 7.1.2.)

(e) (Extension of enumeration to A∗) Given an enumeration α of a Σ-subspace X of
A, we can extend this canonically to an enumeration α∗ of a Σ∗-subspace X∗ of A∗.
(Easy exercise.) This in turn generates an enumeration α∗ of a Σ∗-subspace Cα(X)∗ of
α∗-computable elements of A∗. It is easy to see that

(i) if Cα(X) is an Σ-subalgebra of A, then Cα(X)∗ is a Σ∗-subalgebra of A∗;

(ii) if α is (strictly) Σ-effective, then α∗ is (strictly) Σ∗-effective.

We will usually use this extension (of (X,α) and (Cα(X), α)) to A∗ implicitly, i.e., writing
‘α’ instead of ‘α∗’ etc.

Example 7.1.2 (Constructible reals). The best known nontrivial example of an enu-
merated subspace (X,α), and its extension to a subspace of α-computable elements, is
the following. Let A be the metric algebra Rp of reals (Example 2.6.1), with signature Σ.
Let Xreal be the set of rationals � ⊂ � , let Ωα,real =

�
and let αreal :

�
→ � be a

canonical enumeration of � . Then Cα(�) =df Cα(X)real ⊂ � is the subspace of recursive
or constructible reals. Note that it is a subfield of � , and hence Cα(X) is a subalgebra
of R. Further, it is easily verified that α is strictly Σ(R)-effective. (Cf. Definition 6.1.6.)
Note that Ωα,real =

�
, whereas Ωα,real is non-recursive. (See Remark 7.1.1(d).)

7.2 Soundness theorem for effective numberings

We now prove the first main theorem mentioned in the Introduction.

Theorem A (Soundness). Let A be an N-standard metric Σ-algebra, and (X,α)
an enumerated Sort(Σ)-subspace. Suppose the enumerated Sort(Σ)-space (Cα(X), α)
of α-computable elements of A is a Σ-subalgebra of A, and α is strictly Σ-effective. If
f : Au ⇀ As is WhileCC ∗ -approximable on A, then f is α-computable on A.

Proof: The proof uses the Soundness Theorem A0 (Section 6), or rather the Lemma
Scheme 6.3.1 (specifically, part (g) of the proof) applied to the enumerated subalgebra
(Cα(X), α) in place of (A, β).

44

So suppose f : Au ⇀ As is effectively uniformly WhileCC ∗ approximable on A.
Then there is a WhileCC ∗ (Σ) procedure

P : nat × u→ s

such that for all n ∈
�

and all x ∈ dom(f):

↑ /∈ PA
n (x) ⊆ B(f(x), 2−n). (1)

(see Definition 3.5.1). By Lemma Scheme 6.1 (specifically, part (g) of the proof, applied
to (Cα(X), α) in place of (A, β)) there is a computable function

ψ :
�

× Ωu
α ⇀ Ωα,s

which tracks PA strictly, in the sense that for all n ∈
�

, e ∈ Ωu
α and e′ ∈ Ωα,s (and

writing ψn = ψ(n, ·)):
ψn(e) ↓ e′ =⇒ α(e′) ∈ PA

n (α(e)),

ψn(e) ↑ =⇒ ↑ ∈ PA
n (α(e)).

(2)

We will show how to define a partial recursive α-tracking function

ϕ : Ωu
α → Ωα,s

for f as follows. Given any e ∈ Ωu
α, suppose α(e) ∈ dom(f), i.e.,

f(α(e)) ↓ ∈ As. (3)

We must show how to define an α-tracking function ϕ for f , i.e., such that

ϕ(e) ∈ Ωα,s and α(ϕ(e)) = f(α(e)). (4)

By (1), for all n

↑ /∈ PA
n (α(e)) ⊆ B(f(α(e)), 2−n). (5)

Hence by (2), for all n
ψn(e) ↓∈ Ωα,s (6a)

and
α(ψn(e)) ∈ PA

n (α(e)). (6b)

and so by (6a) we may assume (by definition of Ωα) that for all n

α ◦ {ψn(e)} is a fast Cauchy sequence, with limit α(ψn(e)). (7)

Also by (6b) and (5),
d
(

α(ψn(e)), f(α(e))
)

< 2−n. (8)

45

Now let e′ be a “canonical” index for the (partial) function

{e′} : n 7→ {ψn(e)}(n) (9)

obtained uniformly effectively in e. So {e′} is the “diagonal” function formed from the
sequence of functions with indices ψn(e). Consider the sequence αs ◦ {e′}, i.e.,

αs({e
′}(0)), αs({e

′}(1)), αs({e
′}(2)), . . . , (10)

Claim: (10) is a Cauchy sequence in As, with modulus of convergence λn(n+ 2).

Proof of claim: For any n and k > n:

d
(

α({e′}(k)), α({e′}(n)
)

= d
(

α({ψk(e)}(k), α({ψn(e)}(n)
)

by def. (9) of e′

≤ d
(

α({ψk(e)}(k)), α(ψk(e))
)

+ d
(

α(ψk(e)), α(ψn(e))
)

+ d
(

α(ψn(e)), α({ψn(e)}(n))
)

= d1 + d2 + d3 (say)

where by (7)
d1 ≤ 2−k, d3 ≤ 2−n,

and by (8)

d2 ≤ d
(

α(ψk(e)), f(α(e))
)

+ d
(

f(α(e)), α(ψn(e))
)

< 2−k + 2−n.

Therefore

d
(

α({e′}(k)), α({e′}(n)
)

≤ d1 + d2 + d3

< 2 · 2−k + 2 · 2−n

< 2−n+2.

This proves the claim. �

Further, by the method of Remark 7.1.1(a) (composing {e′} with the modulus of con-
vergence), we can replace the index e′ by an e-code e′′ for a fast Cauchy sequence:

{e′′}(n) ' {e′}(n+ 2). (11)

Then we define
ϕ(e) = e′′. (12)

We show that ϕ is an α-tracking function for f , i.e., (assuming (3)) we show (4). Since
α ◦ {e′′} is a fast Cauchy sequence, with the same limit in A (if it exists) as α ◦ {e′} (by
its definition (11)), to prove (4) it is enough to show (by (12)) that

α({e′}(n)) → f(α(e)) as n → ∞. (13)

46

This follows since

d
(

α({e′}(n), f(α(e))
)

= d
(

α({ψn(e)}(n)), f(α(e))
)

by def. (9) of e′

≤ d
(

α({ψn(e)}(n)), α(ψn(e))
)

+ d
(

α(ψn(e)), f(α(e))
)

< 2−n + 2−n by (7) and (8)

= 2−n+1

proving (13). �

A deterministic version of Theorem A (i.e., without ‘choose’) was proved in [Ste98].

8 Adequacy of WhileCC∗ approximation

8.1 Adequacy Theorem

In this section we will prove Theorem B, a converse to the result of the previous section.
Assume that A is an N-standard metric Σ-algebra, and (X,α) an enumerated Σ-subspace,
with α-computable closure (Cα(X), α).

Note that we are not assuming in this section that Cα(X) is a subalgebra of A, or even
that α is Σ-effective.

One of the assumptions in the theorem, “effective local uniform continuity w.r.t. an
open exhaustion”, must first be defined, as must “open exhaustion”.

Definition 8.1.1 (Open exhaustion). Let U be a subset of a metric space X. An
open exhaustion of U is a sequence of open subsets of X

V = (V0, V1, V2, . . .) such that

∞
⋃

p=0

Vp = U.

Remarks 8.1.2. (a) Clearly, if U has an open exhaustion, then U is open.

(b) It is helpful (though not necessary) to think of the sets of an exhaustion as increasing:
V0 ⊆ V1 ⊆ V2 ⊆

(c) Any open set U has the trivial exhaustion U,U,

(d) A simple non-trivial example of an open exhaustion is the standard open exhaustion V
of � , where Vp = (−p, p).

We also need an effective notion of open exhaustion:

Definition 8.1.3 (WhileCC ∗ -effective open exhaustions). An open exhaustion V
of U ⊆ Au is WhileCC ∗ -effective in A if it satisfies the following two conditions:

(a) (WhileCC ∗ -effective Archimedean property of U w.r.t. V) There is a WhileCC ∗

procedure Ploc : u → nat which, given x ∈ U , “locates” x in V , i.e., produces some

47

p such that x ∈ Vp; more precisely:

PA
loc

(x) =

{

{ p | x ∈ Vp } if x ∈ U

{ ↑ } otherwise.

(b) (WhileCC ∗ -effective openness of V) There is a WhileCC ∗ -computable function
γ : Au ×

�
→

�
such that for all p and all x ∈ Vp,

B(x, 2−γ(x,p)) ⊆ Vp.

Remarks 8.1.4. (a) Typically, the procedure Ploc(x) is realised in the form “choose p :
x ∈ Vp” where “x ∈ Vp” can formalised as a boolean test in the language.

(b) The standard open exhaustion of � (Remark 8.1.2(d)) is WhileCC ∗ -effective in RN
p .

Definition 8.1.5 (Effective global and local uniform continuity). Let X and Y
be metric spaces, and let f : X ⇀ Y .

(a) We say f is effectively (globally) uniformly continuous iff dom(f) is open and there is
a recursive function δ :

�
→

�
such that for all n and all x, y ∈ dom(f):

dX(x, y) < 2−δ(n) =⇒ dY (f(x), f(y)) < 2−n.

(b) We say f is effectively locally uniformly continuous w.r.t. an open exhaustion V of
dom(f) iff there is a recursive δ :

� 2 →
�

such that for all p, n and all x, y ∈ Vp:

dX(x, y) < 2−δ(p,n) =⇒ dY (f(x), f(y)) < 2−n.

Example 8.1.6. This occurs typically when A is a countable union of neighbourhoods
with compact closure; for example, in the algebra Rp of reals, � is the union of the
neighbourhoods (−k, k) for k = 1, 2, Then a continuous function f on � will be
uniformly continuous on each of these neighbourhoods.

Remarks 8.1.7. (a) Effective global and local uniform continuity implies continuity (as
we would hope; see Remark 2.7.2(b)).

(b) Effective global uniform continuity of f corresponds to the special case of effective local
uniform continuity with respect to the trivial exhaustion of dom(f).

We are now ready for the theorem.

Theorem B (Adequacy). Let A be an N-standard metric Σ-algebra, (X,α) an
enumerated Sort(Σ)-subspace, and (Cα(X), α) the Sort(Σ)-subspace of α-computable
elements of A. Suppose that for all Σ-sorts s:

48

(i) Xs is dense in As, and

(ii) αs :
�

→ As is WhileCC ∗ -computable on A.

Let f : Au ⇀ As be a function on A and V an open exhaustion of dom(f) such that

(iii) V is WhileCC ∗ -effective, and

(iv) f is effectively locally uniformly continuous w.r.t. V .

If f is α-computable on A, then f is WhileCC ∗ approximable on A.

Remark 8.1.8. From the proof of the theorem, it will be apparent that only sorts s in
the domain of f have to satisfy condition (i), and only sorts s in the domain or range of
f have to satisfy condition (ii).

The proof uses the following notation.

Notation 8.1.9 (Embedding X into its α-computational closure). By elementary
recursion theory, there is a primitive recursive function const :

�
→

�
such that for each

k, const(k) is the index of the function on
�

with constant value k, i.e., for all n,

{const(k)}(n) = k,

Thus for all k, const(k) can be taken as a code for a fast Cauchy sequence in X (see Remark
7.1.1(a)), making const an α, α-tracking function for the inclusion map ι : X ↪→ Cα(X),
in the sense that for each sort s the following diagram commutes:

Xs
ιs - Cα(X)s

αs

6 6
αs

� -
const

Ωα,s

8.2 Proof of Theorem B

We give (in WhileCC ∗ pseudo-code) an algorithm for a function

g :
�

×Au ⇒+ As
↑

which approximates f , in the sense that for all n and all x ∈ dom(f),

gn(x) ⊆ B(f(x), 2−n) ⊆ As. (1)

With input n and x ∈ Au: assume x ∈ dom(f) (otherwise we don’t care about the output).

(1◦) First, we want to find some p such that x ∈ Vp. This is WhileCC ∗ computable,
by the WhileCC ∗ -effectiveness of V (assumption (iii)). Note the use of the ‘choose’

49

construct in “finding” p (see Remark 8.1.4), even though p will not be an explicit argument
of g. Note that (still by (iii), and in the notation of Definition 8.1.3)

B(x, 2−γ(x,p)) ⊆ Vp ⊆ dom(f). (2)

Now, using assumption (iv) and in the notation of Definition 8.1.5(b), compute

M := max(γ(x, p), δ(p, n+ 1)) (3)

which (since γ is WhileCC ∗ computable and δ is recursive) is WhileCC ∗ computable.

(2◦) Next we want to find some k such that

d(α(k), x) < 2−M (4)

By the density assumption (i) such a k exists. Again, we can find such a k using the ‘choose’
construct. Note again the use of the ‘choose’ construct in “finding” k, even though k will
not be an explicit argument of g. Now by (3) and (2),

B(x, 2−M) ⊆ B(x, 2−γ(x,p)) ⊆ dom(f)

and so by (4)
α(const(k)) = α(k) ∈ dom(f). (5)

By assumption, f has an α-tracking function ϕ. By (5),

ϕ(const(k)) ↓ ∈ Ωα. (6)

(3◦) Compute ϕ(const(k)) ↓ e′. By (6), e′ ∈ Ωα and

f(α(k)) = f(α(const(k))) = α(ϕ(const(k))) = α(e′).

Hence by (2), (3) and (4),

d
(

f(x), α(e′)
)

= d
(

f(x), f(α(k))
)

< 2−n−1. (7)

(4◦) Finally compute
y := α

(

{e′}(n+ 1)
)

(8)

This is possible by assumption (ii). Then, since α ◦ {e′} is a fast Cauchy sequence,

d
(

y, α(e′)
)

= d
(

α({e′}(n+ 1)), α(e′)
)

≤ 2−n−1. (9)

Hence by (9) and (7),

d
(

y, f(x)
)

≤ d
(

y, α(e′)
)

+ d
(

α(e′), f(x)
)

< 2−n−1 + 2−n−1

= 2−n.

50

Now the value of y computed in (8) is the output of the algorithm for g. Note however
that this value depends on the actual implementation of the ‘choose’ construct as used in
the above algorithm. Therefore (in accordance with our semantics for the abstract model)
we define gn(x) to be the set of all such y, for all possible implementations of ‘choose’.
Then g satisfies (1), and is WhileCC ∗ computable, by the above discussion. �

8.3 WhileCC ∗ -semicomputability of dom(f)

Here we point out a connection between WhileCC ∗ -semicomputability of the function
domain and strict WhileCC ∗ approximability.

Definitions 8.3.1. (a) The halting set of a WhileCC ∗ procedure P : u→ v on A is

{x ∈ Au | PA(x)\{↑} 6= ∅ }.

(b) A subset ofAu is WhileCC ∗ -semicomputable if it is the halting set of some WhileCC ∗

procedure.

The following two lemmas have easy proofs.

Lemma 8.3.2. If U has a WhileCC ∗ -effective open exhaustion, then U is WhileCC ∗ -
semicomputable. In fact, it is the halting set of Ploc (in the notation of Definition 8.1.3).

Lemma 8.3.3. Suppose dom(f) is WhileCC ∗ -semicomputable. Then

f is WhileCC ∗ -approximable ⇐⇒ f is strictly WhileCC ∗ -approximable.

(Recall Definition 3.5.1.) Hence we see, by Lemmas 8.3.2 and 8.3.3, that the conclusion of
Theorem B can be replaced by the (apparently) stronger statement:

If f is α-computable on A, then f is strictly WhileCC ∗ approximable on A.

9 Completeness of WhileCC∗ approximation

Under certain assumptions, we can combine Theorems A and B into a single equivalence,
namely Theorem C below. We will then look at several examples of metric algebras where
our abstract and concrete models are equivalent according to this Theorem.

9.1 Completeness

We are ready to state the completeness theorem for WhileCC ∗ approximability relative
to α-computability.

Theorem C (Completeness). Let A be an N-standard metric Σ-algebra, and (X,α)
an enumerated Sort(Σ)-subspace. Suppose the enumerated Sort(Σ)-space (Cα(X), α) of
α-computable elements of A is a Σ-subalgebra of A. Assume also that for all Σ-sorts s,

(i) α is strictly Σ-effective,

51

(ii) Xs is dense in As, and

(iii) αs :
�

→ As is WhileCC ∗ -computable on A.

Let f : Au ⇀ As be a function on A and V an open exhaustion of dom(f) such that

(iv) V is WhileCC ∗ -effective, and

(v) f is effectively locally uniformly continuous w.r.t. V .

Then

f is WhileCC ∗ approximable on A ⇐⇒ f is α-computable on A.

Proof: From Theorems A and B.

9.2 α-semicomputability of dom(f)

(Compare §8.3.)

Definition 9.2.1 (α-semicomputability). A subset of Au is α-semicomputable if it is
the domain of a strictly α-computable function.

Lemma 9.2.2. If U ⊆ Au is α-semicomputable then

α−1[U] = {e ∈ Ωu
α | α(e) ↓∈ U} = S ∩ Ωu

α.

for some recursively enumerable set S ⊆
�

.

Remark 9.2.3. If αu is onto Au, then the reverse implication of Lemma 9.2.2 holds.

Lemma 9.2.4. Let f : Au ⇀ As. Suppose dom(f) is α-semicomputable. Then

f is α-computable ⇐⇒ f is strictly α-computable.

Proof: (⇒) Since dom(f) is α-semicomputable, by Lemma 9.2.2 there is an r.e. set S
such that

{e ∈ Ωu
α | α(e) ∈ dom(f)} = S ∩ Ωu

α.

Now if ϕ is a computable α-tracking function for F , it can be replaced by a strict α-tracking
function ϕ′, defined by

ϕ′(e) '

{

ϕ(e) if e ∈ S

↑ otherwise

which is easily seen to be computable. �

From this lemma and the discussion in §8.3, we have another form of the Theorem C,
in which α-computability of dom(f) is (also) assumed (condition (vi) below).

52

Theorem C+ (Completeness for functions with semicomputable domain).
Let A be an N-standard metric Σ-algebra, and (X,α) an enumerated Sort(Σ)-subspace.
Suppose the enumerated Sort(Σ)-space (Cα(X), α) of α-computable elements of A is a
Σ-subalgebra of A. Assume also that for all Σ-sorts s,

(i) α is strictly Σ-effective,

(ii) Xs is dense in As, and

(iii) αs :
�

→ As is WhileCC ∗ -computable on A.

Let f : Au ⇀ As be a function on A and V an open exhaustion of dom(f) such that

(iv) V is WhileCC ∗ -effective in A,

(v) f is effectively locally uniformly continuous w.r.t. V , and

(vi) dom(f) is α-semicomputable.

Then

f is (strictly) WhileCC ∗ approximable on A ⇐⇒ f is (strictly) α-computable on A.

Note that the word “strictly” may be omitted or inserted in either side at will.

9.3 Completeness for total effectively uniformly continuous functions

A special case of the Completeness Theorem, with a simpler formulation, is obtained by
assuming that f is total and effectively globally uniformly continuous.

Note that since f is total, the difference between WhileCC ∗ -approximability and strict
WhileCC ∗ -approximability, and between α-computability and strict α-computability,
vanish, and applying Theorem C or C+ (with the trivial exhaustion of Au, which need not
be mentioned explicitly) we obtain:

Corollary Ctot (Completeness for total effectively uniformly continuous func-
tions). Let A be an N-standard metric Σ-algebra, and (X,α) an enumerated Sort(Σ)-
subspace. Suppose the enumerated Sort(Σ)-space (Cα(X), α) of α-computable elements
of A is a Σ-subalgebra of A. Assume also that for all Σ-sorts s,

(i) α is strictly Σ-effective,

(ii) Xs is dense in As, and

(iii) αs :
�

→ As is WhileCC ∗ -computable on A.

Let f : Au → As be a total function on A such that

(iv) f is effectively uniformly continuous.

Then

53

f is WhileCC ∗ approximable on A ⇐⇒ f is α-computable on A.

9.4 Examples of the application of the Completeness Theorem.

(a) Canonical enumerations

The purpose of this example is to make plausible condition (iii) of Theorem C (and con-
dition (ii) of Theorem B in Section 8), i.e., the assumption of WhileCC ∗ computability
of the enumeration α, by describing a commonly occurring situation which implies it.

Suppose (X,α) is an enumerated Σ-subalgebra of A.

Definition 9.4.1. The enumeration α :
�

� X is effectively determined by a system of
generators G = 〈gs

0, g
s
1, g

s
2, . . .〉s∈Sort(Σ) if, and only if,

(i) G generates X as a Σ-subalgebra of A;

(ii) α is defined as the composition of the maps

� enumΣ - Term(Σ)
evalG - X

where enumΣ is the inverse of the Gödel numbering of Term(Σ), and evalG is the
term evaluation induced by the mapping xs

i 7→ gs
i , (i = 0, 1, 2, . . .) for some standard

enumeration xs
0, x

s
1, x

s
2, . . . of the Σ-variables of sort s; and

(iii) if, for any Σ-sort s, the sequence 〈gs
0, g

s
1, g

s
2, . . .〉 is finite, then each gs

i is a Σ-constant,
whereas if this sequence is infinite, then the map i 7→ gs

i is a Σ-function.

An enumeration constructed in this way is called canonical w.r.t. G.

Remark 9.4.2 (Totality of evalG). We assume here that evalG (and hence α) is
total. This is achieved by assuming that either (i) A is total, or (ii) Term(Σ) is replaced
by some decidable subset Term′(Σ) on which evalG is total (for example, omitting all
terms involving division by 0).

Either one of these assumptions holds in each of the following examples; for example,
(i) holds in example (b) below, and (ii) in example (c), resulting in the same “canonical”
enumeration α of � in both cases (even though the algebras are different).

Lemma 9.4.3. If α is effectively determined by a system of generators, then the
canonical enumerations αs are While∗ computable for all Σ-sorts s.

Proof: This follows from While∗ computability of term evaluation [TZ00, Cor. 4.7]. �

The significance of the above definition and proposition is this: it is quite common
for an enumeration to be effectively determined by a system of generators; and in such
a situation, condition (ii) in Theorem B, and (iii) in Theorem C, will be (more than)
satisfied. This will be the case in the following examples.

54

(b) Partial real algebra

Recall the example (7.1.2) of the enumeration α of � as a subspace of the N-standardised

metric algebra RN
p of reals (Examples 2.5.4(b) and 2.6.1) and the corresponding enumer-

ation α of the set Cα(�) of recursive reals. Note that α is canonical, being effectively
determined by the generators {0, 1}, and is hence While∗ computable over R. Further,

� is dense in � , Cα(�) is a subfield of � , and α is strictly Σ(R)-effective. We then have,
as another corollary to Theorem C+:

Corollary 9.4.4. Suppose f : � n ⇀ � is effectively locally uniformly continuous
w.r.t. some WhileCC ∗ -effective open exhaustion of dom(f), and suppose dom(f) is
α-semicomputable. Then

f is (strictly) WhileCC ∗ -approximable on RN
p ⇐⇒ f is (strictly) α-computable on �

(where, again, the word “strictly” may be omitted or inserted in either side at will).

Examples of functions satisfying the assumption (and also the equivalence) are all the
common (partial) functions of elementary calculus, such as 1/x, logx and tanx.

Consider the special case of total functions on the unit interval I = [0, 1]. (Recall that
a continuous function on I is uniformly continuous, so we may as well assume effective
global uniform continuity on I.) Applying Corollary Ctot to the partial interval algebra
IN

p (Example 2.5.4(c)) and a canonical enumeration α of � ∩ I, we obtain:

Corollary 9.4.5. Suppose f : In → I is effectively uniformly continuous. Then

f is WhileCC ∗ -approximable on IN
p ⇐⇒ f is α-computable on I.

(c) Banach spaces with countable bases

Let X be a Banach space over � with a countable basis e0, e1, e2, . . . , which means that
any element x ∈ X can be represented uniquely as an infinite sum

x =

∞
∑

i=0

riei

with coefficients ri ∈ � (where the infinite sum is understood as denoting convergence of
the partial sums in the norm of X). (Background on Banach space theory can be found
in any of the standard texts, e.g., [Roy63, TL80].) To program with X, we construct a
many-sorted algebra X as in Figure 5, where � is scalar multiplication, ‖ · ‖ is the norm
function and and e is the enumeration of the basis: e(i) = ei. Note that the algebras B
and N are implicitly imported, as parts of RN

p , so that there are four carriers: X, � , �
and

�
, of sorts vector, scalar, bool and nat respectively.

Let Σ = Σ(X). Let Σ0 be Σ without the norm function ‖ · ‖, and let X 0 be the
reduct2 of X to Σ0. Then Σ0 is the signature of an N-standardised vector space over � ,
with explicit countable basis.

2Reducts of algebras are defined in [TZ00, Def. 2.6].

55

algebra X
import RN

p

carriers X
functions 0: → X,

+: X2 → X,
− : X → X,
� : � ×X → X,
‖ · ‖ : X → � ,
e :

�
→ X,

ifX : � ×X2 → X
end

Figure 5

This can be turned into a metric algebra in the standard way, by defining a distance
function on X in terms of the norm d(x, y) =df ‖x− y‖.

Let L(� , e) ⊂ X be the set of all finite linear combinations of basis elements from e

with coefficients in � . The following are easily shown:

• L(� , e) is countable; in fact it has a canonical enumeration α :
�

� L(� , e) w.r.t.
the generators e, which (by (a) above) is While∗ computable;

• L(� , e) is dense in X;

• L(� , e), with scalar field � (with carriers
�

and �) is a Σ0-subalgebra of X 0.

Now let (Cα(L(� , e)), α) be the enumerated subspace of α-computable vectors. Then

• Cα(L(� , e)), with scalar field Cα(�) (with carriers
�

and �) is also a Σ0-subalgebra
of X 0; and moreover,

• α is strictly Σ0-effective.

However Cα(L(� , e)) is not necessarily a normed subspace of X , since it may not be closed
under ‖ · ‖, i.e., ‖x‖ may not be in Cα(�) for all x ∈ Cα(L(� , e)); for example, if X is
the space `p or Lp[0, 1] where p is a nonrecursive real (see Examples 9.4.8 below). We
must therefore make an explicit assumption for the Banach space (X, ‖ · ‖) with respect
to both the closure of Cα(L(� , e)) under ‖ · ‖, and the α-computability of ‖ · ‖.

Assumption 9.4.5 (α-computable norm assumption for (X, ‖ · ‖)).
For all x ∈ Cα(L(� , e)), ‖x‖ ∈ Cα(�). Further, the norm function ‖ · ‖ is α-computable.

As we will see, many common examples of Banach spaces satisfy this assumption.

Note that Assumption 9.4.5 is equivalent to the following (apparently weaker) assump-
tion, which is often easier to prove:

Assumption 9.4.6 ((α, α)-computable norm assumption for (X, ‖ · ‖)). For all
x ∈ L(� , e), ‖x‖ ∈ Cα(�). Further, ‖ · ‖ has a computable (α, α)-tracking function, i.e.,
a computable function ϕ :

�
→

�
such that the following diagram commutes:

56

L(� , e)
‖ · ‖ - Cα(�)

α
6 6

α

� -
ϕ Ωα

Suppose now that (X, ‖ · ‖) satisfies the α-computable norm assumption. Then the Σ0-
subalgebra Cα(L(� , e)) of X 0 can be expanded to a Σ-subalgebra of X (which we will
also write as Cα(L(� , e))), enumerated by α, which is strictly Σ-effective.

Now let F : X → � be a (total) linear functional on X. F is said to be bounded if for
some real M ,

|F (x)| ≤ M‖x‖ for all x ∈ X. (1)

Write ‖F‖ for the least M for which (1) holds. Then if F is bounded,

|F (x) − F (y)| ≤ ‖F‖ · ‖x− y‖ for all x, y ∈ X,

and so F is uniformly continuous, in fact it is clearly effectively uniformly continuous. We
may therefore apply Corollary Ctot to F .

Corollary 9.4.7 (Completeness for computation on Banach spaces). Let X
be a Banach space over � with countable basis, and let Cα(L(� , e)) be the enumerated
subspace of α-computable vectors, where α is a canonical enumeration of the subspace
L(� , e). Suppose (X, ‖ · ‖) satisfies the (α, α)-computable norm assumption. Then for
any bounded linear functional F on X,

F is WhileCC ∗ approximable on X ⇐⇒ F is α-computable on X.

Here X is the N-standard algebra formed from X as above.

Finally we give examples of Banach spaces which satisfy the α-computable norm as-
sumption.

Examples 9.4.8 (Banach spaces with computable norms).

(a) For 1 ≤ p < ∞, we have the space `p of all sequences x = 〈xn〉∞n=0 of reals such
that

∑∞
n=0 |xn|p <∞, with norm defined by

‖x‖p =
(

∞
∑

n=0

|xn|
p
)1/p

,

and a countable basis given by ei = 〈ei,n〉∞n=0, where

ei,n =

{

1 if i = n,

0 otherwise.

It is easy to see that

57

if p is a recursive real, then `p satisfies the computable norm assumption,

and so Corollary 9.4.7 can be applied to it.

(b) For 1 ≤ p < ∞, we have the space Lp[0, 1] of all Lebesgue measurable functions x(t)

on the unit interval [0, 1] such that
∫ 1

0
|x|p <∞, with norm defined by

‖x‖p =
(

∫ 1

0

|x|p
)1/p

,

and a countable basis given by (e.g.) some standard enumeration of all step functions
on [0, 1] with rational values and (finitely many) rational points of discontinuity, or of all
polynomial functions on [0, 1] with rational coefficients. Again, we see that

if p is a recursive real, then Lp[0, 1] satisfies the computable norm assumption.

(c) The space C[0, 1] of all continuous functions x(t) on [0, 1], with norm defined by

‖x‖sup = sup
t∈I

|x(t)|

and a countable basis given by a standard enumeration of all zig-zag functions on [0, 1] with
(finitely many) turning points with rational coordinates, or of all polynomial functions on
[0, 1] with rational coefficients. Again,

C[0, 1] satisfies the computable norm assumption.

10 Conclusion

We have compared two theories of computable functions on topological algebras, one based
on an abstract, high level model of programming and another based on a concrete, low-level
implementation model. Our examples and results here, combined with our earlier results
[TZ99, TZ00] and those of Brattka [Bra96, Bra99], show that the following are surprisingly
necessary features of a comprehensive theory of computation on topological algebras:

1. The algebras have partial operations.

2. Functions are both continuous and many-valued.

3. Classical algorithms in analysis require nondeterministic constructs for their proper
expression in programming languages.

4. Indeed, many-valued subfunctions are needed to compute even single-valued functions,
and abstract models must be nondeterministic even to compute deterministic problems.

5. Abstract models and effective approximations by abstract models are generally sound
for concrete models.

6. Abstract models even with approximation or limit operators are adequate to capture
concrete models only in special circumstances.

7. Nevertheless there are interesting examples where equivalence holds.

8. The classical computable functions of analysis can be characterised by abstract models
of computation.

58

Specifically, we examined abstract computation by the basic imperative model of ‘ while’-
array programs. Many algorithms in practical computation are presented in pseudo-code
based on the ‘ while’ language. To meet the requirement of feature 2 above we added the
simplest form of countable choice to the assignments of the language, and we defined the
WhileCC ∗ approximable computations. We proved a Soundness Theorem (Theorem A)
and an Adequacy Theorem (Theorem B), and combined these into a Completeness Theo-
rem (Theorem C), in the case of metric algebras with partial operations. We considered
algebras of real numbers and Banach spaces where equivalence theorems hold.

There are interesting technical questions to answer in working out the details of the
computability theory for the WhileCC ∗ model (cf. the theory for single-valued functions
on total algebras in [TZ00]). Several other important abstract models of computation, for
example the schemes in [Bra99], could be extended with nondeterminsitic constructs in
order to establish equivalence with concrete models. The topological properties of many
valued functions are also in need of investigation.

However, returning to the general problem posed in the Introduction, the features 1–8
above suggest that new research directions are needed to develop a comprehensive theory
of specification, computation and reasoning with infinite data. What are the appropriate
programming constructs for working with topological computations? What specification
techniques are appropriate for continuous systems? What logics are needed to support
verification of programs that approximate functions? Our work on computation suggests
that some advanced semantic features are necessary. It suggests that the nondeterminism
that played an important role in programming methodologies of the late 1970s (e.g., [Dij76]
seems to be needed in the proper development of topological programming. There are
plenty of algorithms in scientific modelling, numerical analysis and graphics to investigate,
using such new theoretical tools.

References

[Abe80] O. Aberth. Computable Analysis. MIT Press, 1980.

[Abe01] O. Aberth. Computable Calculus. Addison-Wesley, 2001.

[AO91] K.R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.

Springer-Verlag, 1991.

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-

Verlag, 1998.

[Bra96] V. Brattka. Recursive characterisation of computable real-valued functions and relations.

Theoretical Computer Science, 162:45–77, 1996.

[Bra99] V. Brattka. Recursive and computable operations over topological structures. Ph.d. the-

sis, FernUniversität Hagen, Fachbereich Informatik, Hagen, Germany, 1999. Informatik

Berichte 255, FernUniversität Hagen, July 1999.

59

[BSS89] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the

real numbers: NP-completeness, recursive functions and universal machines. Bulletin of

the American Mathematical Society, 21:1–46, 1989.

[Cei59] G.S. Ceitin. Algebraic operators in constructive complete separable metric spaces. Doklady

Akademii Nauk SSSR, 128:49–52, 1959.

[dB80] J.W. de Bakker. Mathematical Theory of Program Correctness. Prentice Hall, 1980.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[Eda95] A. Edalat. Dynamical systems, measures, and fractals via domain theory. Information

and Computation, 120:32–48, 1995.

[Eda97] A. Edalat. Domains for computation in mathematics, physics and exact real arithmetic.

Bulletin of Symbolic Logic, 3:401–452, 1997.

[Eng89] R. Engelking. General Topology. Heldermann Verlag, 1989.

[Grz55] A. Grzegorczyk. Computable functions. Fundamenta Mathematicae, 42:168–202, 1955.

[Grz57] A. Grzegorczyk. On the defintions of computable real continuous functions. Fundamenta

Mathematicae, 44:61–71, 1957.

[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial approach to the specification,

correctness and implementation of abstract data types. In R.T. Yeh, editor, Current

Trends in Programming Methodology, vol. 4: Data Structuring, pages 80–149. Prentice

Hall, 1978.

[Hea97] M.T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill, 1997.

[Lac55] D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs

variables réelles, I, II, III. C.R. Acad. Sci. Paris, 1955. 240:2470–2480, 241:13–14,151–153.

[MG85] J. Meseguer and J.A. Goguen. Initiality, induction and computability. In M. Nivat and

J. Reynolds, editors, Algebraic Methods in Semantics, pages 459–541. Cambridge Univer-

sity Press, 1985.

[Mos64] Y.N. Moschovakis. Recursive metric spaces. Fundamenta Mathematicae, 55:215–238, 1964.

[Odi99] P. Odifreddi. Classical Recursion Theory (21st ed.). North Holland, 1999.

[PER89] M.B. Pour-El and J.I. Richards. Computability in Analysis and Physics. Springer-Verlag,

1989.

[Roy63] H.L. Royden. Real Analysis. Macmillan, 1963.

[SHT88] V. Stoltenberg-Hansen and J.V. Tucker. Complete local rings as domains. Journal of

Symbolic Logic, 53:603–624, 1988.

[SHT95] V. Stoltenberg-Hansen and J.V. Tucker. Effective algebras. In S. Abramsky, D. Gabbay,

and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 4, pages 357–

526. Oxford University Press, 1995.

[SHT99] V. Stoltenberg-Hansen and J.V. Tucker. Concrete models of computation for topological

algebras. Theoretical Computer Science, 219:347–378, 1999.

60

[Spr98] D. Spreen. On effective topological spaces. Journal of Symbolic Logic, 63:185–221, 1998.

[Spr01] D. Spreen. Representations versus numberings: on the relationship of two computability

notions. Theoretical Computer Science, 263:473–499, 2001.

[Ste96] K. Stephenson. An Algebraic Approach to Syntax, Semantics and Computation. PhD

Thesis, Department of Computer Science, University of Wales, Swansea, 1996.

[Ste98] K. Stewart. Concrete and Abstract Models of Computation over Metric Algebras. PhD

Thesis, Department of Computer Science, University of Wales, Swansea, 1998.

[TL80] A.E. Taylor and D.C. Lay. Introduction to Functional Analysis. John Wiley & Sons, 1980.

[TZ88] J.V. Tucker and J.I. Zucker. Program Correctness over Abstract Data Types, with Error-

State Semantics, volume 6 of CWI Monographs. North Holland, 1988.

[TZ92a] J.V. Tucker and J.I. Zucker. Examples of semicomputable sets of real and complex num-

bers. In J.P. Myers, Jr. and M.J. O’Donnell, editors, Constructivity in Computer Science:

Summer Symposium, San Antonio, Texas, June 1991, volume 613 of Lecture Notes in

Computer Science, pages 179–198. Springer-Verlag, 1992.

[TZ92b] J.V. Tucker and J.I. Zucker. Theory of computation over stream algebras, and its appli-

cations. In I.M. Havel and V. Koubek, editors, Mathematical Foundations of Computer

Science 1992: 17th International Symposium, Prague, volume 629 of Lecture Notes in

Computer Science, pages 62–80. Springer-Verlag, 1992.

[TZ94] J.V. Tucker and J.I. Zucker. Computable functions on stream algebras. In H. Schwicht-

enberg, editor, Proof and Computation: NATO Advanced Study Institute International

Summer School at Marktoberdorf, 1993, pages 341–382. Springer-Verlag, 1994.

[TZ99] J.V. Tucker and J.I. Zucker. Computation by ‘while’ programs on topological partial

algebras. Theoretical Computer Science, 219:379–420, 1999.

[TZ00] J.V. Tucker and J.I. Zucker. Computable functions and semicomputable sets on many-

sorted algebras. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic

in Computer Science, volume 5, pages 317–523. Oxford University Press, 2000.

[TZ02] J.V. Tucker and J.I. Zucker. Abstract computability and algebraic specification. ACM

Transactions on Computational Logic, 3:279–333, 2002.

[Wei00] K. Weihrauch. Computable Analysis: An Introduction. Springer-Verlag, 2000.

[Wir91] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, Vol. B: Formal Methods and Semantics, pages 675–788. North Holland,

1991.

APPENDICES 61

Appendix A: W-continuity

Recall our definition (2.5.1) of continuity of partial functions: f : X ⇀ Y is continuous
if for every open V ⊆ Y , f−1[V] is open in X.

This is not the only reasonable definition. Another definition, used in [Wei00, Bra96,
Bra99] (henceforth “W-continuity”), amounts to saying that f is continuous iff its restric-
tion to its domain

f � dom(f) : dom(f) → Y

is continuous (as a total function), where dom(f) has the topology as a subspace of A;
or, equivalently, iff for every open V ⊆ Y , f−1[V] is open in dom(f).

The following is easily checked:

Proposition A.1. f is continuous ⇐⇒ f is W-continuous and dom(f) is open.

It is instructive to express these two notions of continuity in terms of metric spaces (cf.
Remark 2.5.2). Suppose f : X ⇀ Y where X and Y are metric spaces. Then

(a) f is continuous iff

∀a ∈ dom(f)∀ε > 0 ∃δ > 0 ∀x ∈ B(a, δ)
(

x ∈ dom(f) ∧ f(x) ∈ B(f(a), ε)
)

.

(b) f is W-continuous iff

∀a ∈ dom(f)∀ε > 0 ∃δ > 0 ∀x ∈ B(a, δ)
(

x ∈ dom(f) → f(x) ∈ B(f(a), ε)
)

.

Here B(a, δ) is the open ball with centre a and radius δ.

Example A.2. Consider the partial function f : � ⇀
�

defined by

f(x) =

{

0 if x is an integer

↑ otherwise.

Then f is W-continuous, but not continuous. The intuition here is that for continuity (and
certainly for computability), we would want a finite approximation to the input (however
defined exactly) to produce a finite approximation to the output (in this case, the output
itself). However that would not be the case here, since no finite approximation to the
input will tell us whether the input is in dom(f) (i.e., an exact integer) or not.

Analogously, we can consider another notion of continuity for many-valued functions
f : X ⇒ Y by modifying Definition 5.1.3(b); namely, f is W-continuous iff for all open
V ⊆ Y , f−1[V] is open in dom(f). Note that Lemma 5.1.7, and the equivalences given
in Remark 5.1.9, also hold for W-continuity.

Finally, Theorem 5.3.1 holds for W-continuity, without the assumption that dom(f) is
open:

62 APPENDICES

Theorem A.3. Let A be a metric Σ-algebra, and f : Au ⇀ Av. If f is WhileCC ∗

approximable on A then f is continuous.

The proof is similar to that for Theorem 5.3.1. In fact, Theorem 5.3.1 follows immedi-
ately from Theorem A.3 and Proposition A.1.

Appendix B: Computation tree with infinte paths,

but no recursive infinite paths

Here we prove:

Proposition 3.4.3. There is a WhileCC ∗ (N) procedure P such that its computation
tree has infinite paths, but no recursive infinite paths.

Proof: Our construction of P is based on the construction of a recursive tree with infinite
paths, but no recursive infinite paths [Odi99, V.5.25].

Let A and B be two disjoint r.e., recursively inseparable sets, and suppose A = ran(f)
and B = ran(g) where f and g are total recursive functions. The procedure P can be
written in pseudo-code as:

func aux n, k : nat,

choices∗ : nat∗, { array recording all choices up to present stage n }

halt : bool

begin

n := 0;

choices∗ := Null;

halt := false;

while not halt do

n := n + 1;

choices∗ := Newlength(choices∗, n + 1);

choices∗[n] := choose z : (z = 0 or z = 1);

for k := 0 to n− 1 do

if (choices∗[k] = 0 and k ∈ { f(0), . . . , f(n− 1) }) or

(choices∗[k] = 1 and k ∈ { g(0), . . . , g(n− 1) })

then halt := true

od

od

end.

APPENDICES 63

Let α0, α1, α2, . . . be the successive values (0 or 1) given by the ‘choose’ operator in
some given implementation of P . Note that at stage n,

choices∗[k] = αk for k = 0, . . . , n− 1.

Further, the execution diverges if, and only if, the set C =df { k | αk = 1 } separates A
and B (i.e., A ⊆ C and C∩B = ∅), in which case C, and hence its characteristic function
α = (α0, α1, α2, . . .), are non-recursive.

Note finally that for any given sequence α of choices, α is effectively obtainable from
the corresponding computation sequence or path, i.e., α is recursive in that path (with
a standard coding of the computation tree). Hence, since any infinite sequence α is non-
recursive, so is the corresponding infinite path. �

Appendix C: Proofs for Section 5.1

This section contains mainly technical results relating to the continuity of countably-
many-valued functions. The proofs are collected here.

Lemma 5.1.7. Let f : X ⇒ Y and g : X ⇒+ Y ↑ be any two functions such that

f v g v f↑,

i.e., for all x ∈ X, g(x) 6= ∅, and either g(x) = f(x) or g(x) = f(x) ∪ { ↑ }. Then

f is continuous ⇐⇒ g is continuous.

Proof: (⇒) Suppose f is continuous. We must show g is continuous. Let V be an open
subset of Y ↑. We must show g−1[V] is open in X. There are two cases, according as ↑ is
in V or not.

Case 1: ↑ /∈ V , i.e., V ⊆ Y . Then V is also open in Y (by definition of the topology on
Y ↑). Hence f−1[V] is open in X, and hence

g−1[V] = {x ∈ X | g(x) ∩ V 6= ∅ }

= {x ∈ X | f(x) ∩ V 6= ∅ } since ↑ /∈ V

= f−1[V]

is open in X.

Case 2: ↑ ∈ V . Then V = Y ↑ (by definition of the topology on Y ↑). Hence

g−1[V] = g−1[Y ↑] = X (since g is total),

64 APPENDICES

which is open in X.

(⇐) Suppose g is continuous. We must show f is continuous. Let V be an open subset of
Y . We must show f−1[V] is open in X. Since V is also open in Y ↑ (by definition of the
topology on Y ↑), g−1[V] is open in X. Hence

f−1[V] = {x ∈ X | f(x) ∩ V 6= ∅ }

= {x ∈ X | g(x) ∩ V 6= ∅ } since ↑ /∈ V

= g−1[V]

is open in X. �

Corollary 5.1.8. Suppose f : X ⇒+ Y ↑ (i.e., f is total). Then

f is continuous ⇐⇒ f− is continuous ⇐⇒ f↑ is continuous.

Proof: Apply Lemma 5.1.7 twice: once with f− and f , and once with f− and f↑. �

Lemma 5.1.11. Given f : X ⇒ Y ↑, extend it to f̃ : X↑ ⇒ Y ↑ by stipulating that
f̃(↑) = ↑. If f is continuous and total, then f̃ is continuous.

Proof: Let V be an open subset of Y ↑. We must show f̃−1[V] is open in X↑. There are
two cases:

Case 1: ↑ /∈ V , i.e., V ⊆ Y . Then f̃−1[V] = f−1[V], which is open in X, and hence in
X↑.

Case 2: ↑ ∈ V . Then V = Y ↑ (by definition of the topology on Y ↑). Hence

f̃−1[V] = f̃−1[Y ↑]

= dom(f) ∪ { ↑ }

= X ∪ { ↑} (since f is total)

which is open in X↑. �

Proposition 5.1.13 (Continuity of composition).

(a) If f : X ⇒ Y and g : Y ⇒ Z are continuous, then so is g ◦ f : X ⇒ Z.

(b) If f : X ⇒+ Y ↑ and g : Y ⇒+ Z↑ are continuous, then so is g ◦ f : X ⇒+ Z↑.

Proof: (a) Just note that for W ⊆ Z,

(g ◦ f)−1[W] = f−1[g−1[W]].

(b) We give two proofs: (i) Note that

(g ◦ f)− = g− ◦ f− : X ⇒ Z

APPENDICES 65

and use part (a) and Corollary 5.1.8.

(ii) Note that for W ⊆ Z↑,

(g ◦ f)−1[W] = f−1[g̃−1[W]]

(in the notation of Lemma 5.1.11), and apply Lemma 5.1.11. �

Lemma 5.1.15. If fi : X ⇒ Y ↑ is continuous for all i ∈ I, then so is
⊔

i∈I fi.

Proof: This follows from the fact that for V ⊆ Y ↑,

(

⊔

i∈I

fi)
−1[V] =

⋃

i∈I

f−1
i [V]. �

Appendix D: Proof of the Soundness Theorem A0

We re-state this theorem (cf. §6.2).

Theorem A0 (Soundness for countable algebras). Let (A, β) be an enumerated
N-standard Σ-algebra such that β is strictly Σ-effective. If f : Au ⇀ As is WhileCC ∗

computable on A, then f is strictly β-computable on A.

Assume that (A, β) is an enumerated N-standard Σ-algebra and β is strictlyΣ-effective.

We will show that each of the semantic functions listed in §3.2(a)–(g) has a computable
strict tracking function. More precisely, we will work, not with the semantic functions
themselves, but “localised” functions representing them (cf. [TZ00, §4]).

First we will prove a series of results of the form:

Lemma Scheme 6.3.1. For each semantic representing function

Φ : Au ⇒+ Av↑

representing one of the WhileCC semantic functions listed in §3.2(a)–(g), there is a
computable tracking function w.r.t. β, i.e., a function

ϕ : Ωu
β ⇀ Ωv

β

which commutes the diagram

Au Φ -- + Av↑

βu
6 6

βv

Ωu
β

· -
ϕ Ωv

β

66 APPENDICES

in the sense that for all k, l ∈ Ωu
β:

ϕ(k) ↓ l =⇒ βv(l) ∈ Φ(βu(k)),

ϕ(k) ↑ =⇒ ↑ ∈ Φ(βu(k)).

Proof: We proceed to prove this lemma scheme by constructing concrete strict tracking
functions for the semantic functions in §3.2.

Let x be a u-tuple of variables, where u = s1 × · · · × sm. Let PTerm x = PTerm x(Σ)
be the class of all Σ-terms with variables among x only, and for all sorts s of Σ, let
PTerm x,s = PTerm x,s(Σ) be the class of such terms of sort s.

We consider in turn the semantic functions in §3.2, or rather versions of these localised
to x, i.e., defined only in terms of the state values on x (cf. [TZ00, §4]). For example, we
localise the set State(A) of states on A to the set

State x(A) =df Au

of u-tuples of elements of A, where a tuple a ∈ Au represents a state σ (relative to x) if
σ[x] = a. The set Au is, in turn, represented (relative to β) by the set Ωu

β.

We assume an effective coding, or Gödel numbering, of the syntax of Σ. We use the
notation

pPTermsq =df {ptq | t ∈ PTerms},

etc., for sets of Gödel numbers of syntactic expressions.

(a) Tracking of term evaluation.

The function

PTE A
x,s : PTerm x,s × State x(A) ⇒+ As

↑

defined by

PTE A
x,s(t, a) = [[t]]Aσ

for any state σ on A such that σ[x] = a, is strictly tracked by a computable function

pte
A,β
x,s : pPTerm x,sq × Ωu

β ⇀ Ωβ,s

so that the following diagram commutes:

PTerm x,s × State x(A)
PTE A

x,s -- + As
↑

〈enum, βu〉
6 6

βs

pPTerm x,sq × Ωu
β

· -
pte

A,β
x,s

Ωβ,s

APPENDICES 67

(where enum is the inverse of the Gödel numbering function), in the sense that

pte
A,β
x,s (ptq, k) ↓ l =⇒ βs(l) ∈ PTE A

x,s(t, β
u(k)),

pte
A,β
x,s (ptq, k) ↑ =⇒ ↑ ∈ PTE A

x,s(t, β
u(k)).

(1)

In order to construct such a representing function, we first define the state variant repre-
senting function, i.e., a (primitive) recursive function

vart β

x : Ωu
β × pVarsq × Ωβ,s → Ωβ,s

such that
βu(vart β

x(k, pyq, k0)) = βu(e){ y/βs(k0) }.

for k ∈ Ωu
β , y ∈ Vars and k0 ∈ Ωβ,s (cf. Definition 3.2.3(b)).

We turn to the definition of pte
A,β
x,s (ptq, k). This is by induction on ptq, or structural

induction on t ∈ PTerm x, over all Σ-sorts s. The cases are:

• t ≡ c, a primitive constant. Then define

pte
A,β
x,s (ptq, k) = k0 where β(k0) = cA.

(Such a k0 exists by the strict Σ-effectivity of β).

• t ≡ xi for some i = 1, . . . ,m, where x ≡ x1, . . . , xm. Note that k = (k1, . . . , km) ∈
Ωu

β . So define

pte
A,β
x,s (ptq, k) = ki.

• t ≡ F (t1, . . . , tm). Let ϕ be a computable strict tracking function for F , which
exists by the strict Σ-effectivity of β. Then define

pte
A,β
x,s (ptq, k) ' ϕ(pte A,β

x,s1
(pt1q, k), . . . , pte

A,β
x,sm

(ptmq, k))).

From the induction hypothesis applied to t1, . . . , tm, the definition of PTE (§3.2(a))
and the fact that ϕ strictly tracks F , we can infer (1) for t.

• t ≡ if(b, t1, t2). Define

pte
A,β
x,s (t, k) '

pte
A,β
x,s (t1, k) if pte

A,β
x,bool

(b, k) ↓ 1

pte
A,β
x,s (t2, k) if pte

A,β
x,bool

(b, k) ↓ 0

↑ if pteA
x,bool

(b, k) ↑.

From the induction hypothesis applied to b, t0 and t1, and the definition of PTE,
we can infer (1) for t.

• t ≡ (choose z : t0). We define pte
A,β
x,s (ptq, k) by specifying its computation: find,

by dovetailing (recall the discussion in §4.1!) some n such that

pte
A,β
x,s (pt0q, vart

β

x(k, pzq, n)) ↓ 1

68 APPENDICES

(remember, β(1) = � , by Remark 6.1.4(b)), so that pte
A,β
x,s (ptq, k) = some such n,

if it exists, and ↑ otherwise. From the induction hypothesis applied to t0, and the
definition of PTE, we can infer (1) for t.

(b) Tracking of atomic statement evaluation.

Let AtSt x be the class of atomic statements with variables among x only. The atomic
statement evaluation function on A localised to x,

AE A
x : AtSt x × State x(A) ⇒+ State x(A)↑,

defined by
AE A

x (S, a) = 〈|S|〉Aσ

for any state σ such that σ[x] = a, is strictly tracked by a computable function

ae
A,β
x : pAtSt xq × Ωu

β ⇀ Ωu
β

so that the following diagram commutes:

AtSt x × State x(A)
AE A

x -- + State x(A)↑

〈enum, βu〉
6 6

βu

pAtSt xq × Ωu
β

· -
ae

A,β
x

Ωu
β

in the sense that

ae
A,β
x (pSq, k) ↓ l =⇒ β(l) ∈ AE A

x (S, β(k)),

ae
A,β
x (pSq, k) ↑ =⇒ ↑ ∈ AE A

x (S, β(k)).
(2)

The definition of ae
A,β
x (pSq, k) is given by:

ae
A,β
x (pskipq, k) ↓ k

ae
A,β
x (pdivq, k) ↑

ae
A,β
x (py := tq, k) '

{

vart β

x (k, y, l) if pte
A,β
x,s (sptq, k) ↓ l

↑ if pte
A,β
x,s (ptq, k) ↑.

Using (1) and the definition of AE A
x (§3.2(b)), we can infer (2).

(c) Tracking of First and Rest operations.

Let Stmt x be the class of statements with variables among x only. Consider the functions
First and Rest A (§3.2(c)). Then First is strictly tracked by a computable function

first : pStmtq → pAtStq

APPENDICES 69

defined on Gödel numbers in the obvious way, so that the following diagram commutes:

Stmt First - AtSt

enum
6 6

enum

pStmtq -
first

pAtStq

(Note that first, unlike most of the other representing functions here, does not depend
on State x(A), or, indeed, on A or x.) Next, the localised version of Rest A:

Rest A
x : Stmt x × State x(A) ⇒+ Stmt x

defined by

Rest A
x (S, a) = Rest A(S, σ)

for any state σ such that σ[x] = a, is strictly tracked by a computable function

rest
A,β
x : pStmt xq × Ωu

β ⇀ pStmt xq

so that the following diagram commutes:

Stmt x × State x(A)
Rest A

x -- + Stmt x

〈enum, βu〉
6 6

enum

pStmt xq × Ωu
β

· -
rest

A,β
x

pStmt xq

in the sense that

rest
A,β
x (pSq, k) ↓ pS′q =⇒ S′ ∈ Rest A (S, β(k)),

rest
A,β
x (pSq, k) ↑ =⇒ div ∈ Rest A (S, β(k))

(3)

The definition of rest
A,β
x (pSq, k), as well as the proof of (3), are by induction on pSq,

or structural induction on S.

• S is atomic. Then

rest
A,β
x (pSq, k) = pskipq.

• S ≡ S1;S2. Then

rest
A,β
x (pSq, k) =

{

pS2q if S1 is atomic

prest
A,β
x (S1, k);S2q otherwise

70 APPENDICES

• S ≡ if b then S1 else S2 fi. Then

rest
A,β
x (pSq, k) '

pS1q if pte
A,β
bool,s

(b, k) ↓ 1

pS2q if pte
A,β
bool,s

(b, k) ↓ 0

↑ if pte
A,β
bool,s

(b, k) ↑.

• S ≡ while b do S0 od. Then

rest
A,β
x (S, k) '

pS0;Sq if pte
A,β
bool,s

(b, k) ↓ 1,

pskipq if pte
A,β
bool,s

(b, k) ↓ 0,

↑ if pte
A,β
bool,s

(b, k) ↑.

(d) Tracking of a computation step.

The computation step function (§3.2(d)) localised to x:

CompStep A
x : Stmt x × State x(A) ⇒+ State x(A)↑

defined by
CompStep A

x (S, a) = CompStepA(S, σ)

for any state σ such that σ[x] = a, is represented by the computable function

compstep
A,β
x : pStmt xq × Ωu

β ⇀ Ωu
β

defined by

compstep
A,β
x (pSq, k) ' ae

A,β
x (first(pSq), k).

This makes the following diagram commute:

Stmt x × State x(A)
CompStep A

x-- + State x(A)↑

〈enum, βu〉
6 6

βu

pStmt xq × Ωu
β

· -
compstep

A,β
x

Ωu
β

in the sense that

compstep
A,β
x (pSq, k) ↓ l =⇒ β(l) ∈ CompStep A

x (S, β(k)),

compstep
A,β
x (pSq, k) ↑ =⇒ ↑ ∈ CompStep A

x (S, β(k)).
(4)

This is proved easily from the definitions and (2).

APPENDICES 71

(e) Tracking of a computation sequence.

Now consider localised versions of the computation tree stage and computation tree of
§3.2.(e):

CompTreeStage A
x : Stmt x × State x(A) ×

�
→ P((State x(A)↑)<ω)

CompTree A
x : Stmt x × State x(A) → P((State x(A)↑)≤ω)

We will define a function which selects a path through the computation tree:

compseq
A,β
x : pStmt xq × Ωu

β ×
�

⇀ Ωu
β ∪ { p∗q }

(where ‘∗’ is a symbol meaning “already terminated”) by recursion on n:

compseq
A,β
x (pSq, k, 0) = k

compseq
A,β
x (pSq, k, n+ 1) '

p∗q if S is atomic and n > 0 and compseq
A,β
x (pSq, k, n) ↓

↑ if S is atomic and n > 0 and compseq
A,β
x (pSq, k, n) ↑

compseq
A,β
x (rest A,β

x (pSq, k), compstep
A,β
x (pSq, k), n)

otherwise.

(This is a “tail recursion”: compare definition of CompA
1 in [TZ00, §3.4].)

Writing kn = compseq
A,β
x (pSq, k, n), this defines a (concrete) computation sequence

k̄ = k0, k1, k2, . . .

for S from the initial state k = k0. (Our notation here includes the possibility that some
of the ki may be p∗q or ↑.) As can easily be checked, there are three possibilities for k̄
(compare the discussion in §3.2(e)):

(i) For some n, ki ∈ Ωu
β for all i ≤ n and ki = ∗ for all i > n. This represents a

computation which terminates at stage n, with final state kn.

(ii) For some n, ki ∈ Ωu
β for all i < n and ki = ↑ for all i ≥ n. This represents a

non-terminating computation, with local divergence at stage n.

(iii) For all i, ki ∈ Ωu
β . This represents non-terminating computation, with global diver-

gence.

We write k̄[n] = the initial segment k0, k1, . . . , kn, with length lgth(k̄[n]) = n+ 1. We
put lgth(k̄) = ∞. The ki are called components of k̄, and of k̄[n], for all i ≤ n.

The computation sequence k̄ then has the following connection with the computation
tree CompTree A

x . Extend (for now) the definition of β by β(p∗q) = ∗, β(↑) = ↑, and

β(k̄) =df β(k0), β(k1), β(k2), . . .

β(k̄[n]) =df β(k0), β(k1), β(k2), . . . , β(kn).

72 APPENDICES

Lemma. Let τ = CompTree A
x (S, β(k)). Then

(i) If the computation sequence k̄ terminates at stage n, then β(k̄[n]) is a path through
τ from the root to a leaf (= β(k0), the final state).

(ii) If for some (smallest) n, kn = ↑, then β(k̄[n]) is a path through τ from the root to
a leaf (= ↑, local divergence).

(iii) If for all n, kn ∈ Ωu
β, then β(k̄) is an infinite path through τ (global divergence).

To prove this, we first define an initial segment of k̄ (including k̄ itself) to be acceptable
if (i) no component is equal to ‘∗’, and (ii) no component, except possibly the last, is
equal to ↑. Further, an acceptable initial segment of k̄ is maximal (acceptable) if it has
no acceptable extension. Thus if k̄ is acceptable, it is automatically maximal. If k̄[n] is
acceptable, it is maximal acceptable provided either kn+1 = ∗ or kn = ↑. We then show:

Sublemma. Given a computation sequence k̄ = k0, k1, . . . for pSq from k, where kn =

compseq
A,β
x (pSq, k, n), let τ = CompTree A

x (S, β(k)). Then with every acceptable
initial segment k̄[n] of k̄, β(k̄[n]) is a path through τ from the root. If k̄[n] is maximal,
then β(kn) is a leaf.

Proof of sublemma: Put τ [n] = CompTreeStage A
x (S, β(k0), n). The proof is by

induction on n, comparing the inductive definitions of kn and τ [n].

Basis: n = 0. This is immediate from the definitions: k0 = k, and τ [0] = { β(k0) }.

Induction step: Assume the induction hypothesis holds for the initial segment of length n
of the computation sequence for pS ′q from k1, where

S′ = rest
A,β
x (pSq, β(k)),

e1 = compseq
A,β
x (pSq, k, 1)

' compseq
A,β
x (rest A,β

x (pSq, k), compstep
A,β
x (pSq, k), 0)

' compstep
A,β
x (pSq, e)

i.e., assume the induction hypothesis for the segment l of length n:

l0, l1, l2, . . . , ln

where li = ei+1 (i = 1, . . . , n). Now apply the inductive definitions for compseq
A,β
x (pSq,

k, n+ 1) (above) and CompTreeStage A
x (S, β(k), n+ 1) (§3.2(e)), and use (3) and (4).

This proves the sublemma, and hence the lemma.

(f) Tracking of statement evaluation.

First we need a constructive computation length function

complength
A,β
x : pStmt xq × Ωu

β ⇀
�

APPENDICES 73

by (cf. [TZ00, §3.4])

complength
A,β
x (pSq, k) ' µn[compseq

A,β
x (pSq, k, n+ 1) ↓ ∗]

i.e., the least n (if it exists) such that for all i ≤ n, compseq
A,β
x (pSq, k, i) ↓ 6= ∗ and

compseq
A,β
x (pSq, k, n+ 1) ↓ ∗.

Thus complength
A,β
x (pSq, k) is undefined (↑) in the case of local or global divergence

of the computation sequence for pSq from k.

Now the statement evaluation function (§3.2(f)) localised to x:

SE A
x : Stmt x × State x(A) ⇒+ State x(A)↑

defined by
SE A

x (S, a) = [[S]]A(σ)

for any state σ such that σ[x] = a, is strictly tracked by the computable function

se
A,β
x : pStmt xq × Ωu

β ⇀ Ωu
β

defined by

se
A,β
x (pSq, k) ' compseq

A,β
x (pSq, k, complength

A,β
x (pSq, k)).

This makes the following diagram commute:

Stmt x × State x(A)
SE A

x -- + State x(A)↑

〈enum, βu〉
6 6

βu

pStmt xq × Ωu
β

· -
se

A,β
x

Ωu
β

in the sense that

se
A,β
x (pSq, k) ↓ l =⇒ β(l) ∈ SE A

x (S, β(k)),

se
A,β
x (pSq, k) ↑ =⇒ ↑ ∈ SE A

x (S, β(k)).
(5)

This result is clear from the definition of complength and the lemma in (e).

(g) Tracking of procedure evaluation.

For a specific triple of lists of variables a : u, b : v, c : w, let Proc a,b,c be the class
of all WhileCC ∗ procedures of type u→ v, with declaration ‘in a out b aux c’. The
procedure evaluation function (§3.2(g)) localised to this declaration:

PE A
a,b,c : Proc a,b,c × Au ⇒+ Av↑

74 APPENDICES

defined by
PE A

a,b,c(P, a) = PA(a),

is strictly tracked by the computable function

pe
A,β
a,b,c

: pProc a,b,cq × Ωu
β ⇀ Ωv

β

defined by the following algorithm. Let P ∈ Proc a,b,c; say

P ≡ proc in a out b aux c begin S end

and let k0 ∈ Ωu
β . Take any k1 ∈ Ωv

β and k2 ∈ Ωw
β . (The choice of k1 and k2 is irrelevant,

by Remark 3.2.4.) Put k ≡ k0, k1, k2 and put x ≡ a, b, c. Compute se
A,β
x (pSq, k).

Suppose this converges to l ≡ l0, l1, l2, where l0 ∈ Ωu
β , l1 ∈ Ωv

β and l2 ∈ Ωw
β . Then we

define pe
A,β
a,b,c

(pPq, k0) ↓ l1. The following diagram then commutes:

Proc a,b,c × Au
PE A

a,b,c -- + Av↑

〈enum, βu〉
6 6

βv

pProc a,b,cq × Ωu
β

· -
pe

A,β
a,b,c

Ωv
β

in the sense that

pe
A,β
a,b,c

(pPq, k) ↓ l =⇒ β(l) ∈ PE A
a,b,c (P, β(k)),

pe
A,β
a,b,c

(pPq, k) ↑ =⇒ ↑ ∈ PE A
a,b,c (P, β(k)).

(6)

This is proved from (5) and the definitions of PE and pe.

This concludes the proof of Lemma Scheme 6.3.1. �

Proof of Theorem A0 (conclusion): Suppose f : Au ⇀ As is WhileCC ∗ com-
putable on A. Then there is a deterministic WhileCC ∗ procedure (Definitions 3.2.5/6)

P : u → s

such that for all a ∈ Au,

f(x) ↓ y =⇒ PA(x) = {y},

f(x) ↑ =⇒ PA(x) = {↑}.

Hence by (g) (above) there is a computable (partial) function

ϕ : Ωu
β ⇀ Ωβ,s

which strictly tracks f , as required. �

Note that this last step implicitly uses the following (the proof of which is omitted):

Lemma (Canonical extensions of numberings). A numbering β of A can be canon-
ically extended to a numbering β∗ of A∗, such that if β is strictly Σ-effective, then β∗ is
strictly Σ∗-effective.

