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Abstract

We define a general concept of a network of analog modules connected by chan-
nels, processing data from a metric space A, and operating with respect to a
global continuous clock T. The inputs and outputs of the network are contin-
uous streams u : T→ A, and the input-output behaviour of the network with
system parameters from A is modelled by a function Φ : Ar × C[T, A]p →
C[T, A]q (p, q > 0, r ≥ 0), where C[T, A] is the set of all continuous streams
equipped with the compact-open topology. We give an equational specification
of the network, and a semantics which involves solving a fixed point equation
over C[T, A] using a contraction principle based on the fact that C[T,A] can
be approximated locally by metric spaces. We show that if the module func-
tions are continuous then so is the network function Φ. We analyse in detail
two case studies involving mechanical systems. Finally, we introduce a custom-
made concrete computation theory over C[T, A] and show that if the module
functions are concretely computable then so is Φ.

Key words and phrases: analog computation, analog computing, analog
networks, continuous time, continuous streams
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1 Introduction

Digital and analog computation and communication both process infinite data such as real
numbers, wave forms, signals, timed streams of data, and various other kinds of functions.
The data invariably originate as physical measurements from the world’s work.

In digital computation and communication, data are ultimately discrete. Each datum
is representable by finitely many symbols, and the set of data is countable. Data rep-
resentations are often made from strings of bits {0, 1}, or of other finite alphabets, and
computations are expressed by algorithms computing functions on these strings. In the
case of nondeterministic algorithms, the functions are multivalued. Digital computation is
exact in the following sense: given exact finite data as input, an exact computation returns
exact finite data as output . The finite input may be an approximation to some question,
in which case the finite output is an approximation to an answer. The quality of the digi-
tal computation is determined by the level of control of the errors in the approximations
presented to and propagated by the algorithm. Indeed, the above notion of exactness can
be lifted to digital computation on infinite data, i.e., computations from finite approxima-
tions of the input to finite approximations of the output, by calling such a computation
“exact” when the computed function from input approximations to output approximations
is accurate to any error margin. Digital computation is fundamentally computation by
algorithms, which operate on symbols in discrete time.

In analog computation and communication, data is continuous. A datum can require an
infinite symbolic representation, and the set of all representations is uncountable. Often
the data are made from real numbers, and the functions computed are of the form f :Rn → Rm; these may be partial and/or many-valued.

Analog computation, as conceived by Lord Kelvin [TT80], Vannevar Bush [Bus31],
and Douglas Hartree [Har50], is a form of experimental computation with physical systems
called analog devices or analog computers. Historically, data are represented by measurable
physical quantities, including lengths, shaft rotation, voltage, current, resistance, etc., and
the analog devices that process these representations are made from mechanical or electro-
mechanical or electronic components [Hol96, Joh96, Sma96]. Here experimental procedures
applied to the machine, especially measurements, play a special role. The inexactness of
the measurement means that only an approximate input can be measured and presented
to the analog device, and only an approximate output can be measured and returned from
it. (In practice, an error of within 1% was easily achieved.)

The exact theoretical values of the analog input and output are unknown — and, per-
haps, unknowable. Analog computation is a form of computation by experimental pro-
cedures. In general, analog devices are based on physical technology that operates in
continuous time.

Starting in the 1930s, classical computability theory has matured into a comprehensive
and mathematically deep theory of digital computation. Since its creation, Turing com-
putability and its equivalents have become the standard for what we mean by computation.
The subject continues to develop in new directions and applications [Gri99]. Of particular
relevance is Computable Analysis, where the theory is applied to computable functions on
real numbers, Banach spaces, and, more generally, metric and topological spaces [PER89,
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Wei00].

The theory of analog computation is less developed. A general purpose analog computer
(GPAC) was introduced by Shannon [Sha41] as a model of Bush’s Differential Analyzer
[Puc96]. Shannon discovered that a function can be generated by a GPAC if, and only
if, it is differentially algebraic, but his proof was incomplete. A basic study was made by
Marian Pour-El [PE74] who gave some good characterisations of the analog computable
functions, focusing on the classic analog systems built from adders, multipliers, integrators
etc. This yielded a stronger model and a new proof of the Shannon’s equivalence (and
some new gaps, corrected by Lipshitz and Rubel [LR87]). Using this characterisation in
terms of algebraic differential equations, Pour-El showed that these analog models do not
compute all computable functions on the reals.

Recently, the theory of analog computing has been boosted by Cristopher Moore with
some very general mathematical models [Moo96]. These models, using schemes rather like
Kleene’s [Kle52], but with primitive recursion replaced by integration and others added,
can define functions beyond the class of computable functions on the reals. Félix Costa and
his colleagues and students [GC03] have presented an improved model extending GPAC,
and shown this to be equivalent with a subclass of Moore’s functions (those defined by
composition and integration). They have also presented some fine results concerning analog
complexity classes [CMC02, MC04].

Technological interest in analog computing continues, for example, with such work as
that of Jonathan Mills at the University of Indiana.1

The revival of interest in analog computing is motivated by the search for solutions to
old unsolved problems, and for new models of computation based on physical theories and
technologies. For instance, analog computation, broadly conceived, provides a basis for a
general theory of analog field computation, in which the primary data objects are scalar
fields.

We present two theoretical questions about analog technology:

1. Technology specification: What are the characteristics of data, processing units,
transmissions, system architecture, system operation and measurement that make up a
technology for analog computation?

2. Technology classification: Given a technology that builds systems from physical
components, do these analog systems produce, by measurements, the same functions
than those computed by algorithms?

Thanks to Shannon and Pour-El and the improvements of the later authors mentioned,
we have an example of one possible precise formulation of, and negative answer to, these
technology questions. Their models are based on the traditional technological components
of analog computing up until the 1960s (adders, integrators, etc.). However, even for the
case of traditional analog technologies, the conceptual basis is not sufficiently clear to
answer even the first question fully. In this paper we will address these questions in some
generality.

1http://www.cs.indiana.edu/ jwmills/ANALOG.NOTEBOOK/klm/klm.html
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We begin, in Section 2, by defining a general concept of an analog network. This is a
network of analog processing units connected by channels, processing data from a metric
space A, and operating in continuous time, measured by a global clockT, which is modelled
by the set of non-negative real numbers. The input and output of a network are continuous
streams u : T→ A.

Let C[T, A] be the set of all continuous streams equipped with the compact-open topol-
ogy. The input-output behaviour of a network with system parameters from Ar is modelled
by a function of the form

Φ: Ar × C[T, A]p → C[T, A]q

where C[T, A] is the set of all continuous streams of data from A. An analog network is
designed according to some physical theory, but it will be used to compute by means of
measurements on the network. We propose that the units satisfy an important physically
motivated condition: causality . We show how to give an equational specification of the
network.

In Section 3, we also propose a stability condition on the behaviour of the network,
partially motivated by experimental procedure. We give a semantics for an equational
specification of the network satisfying the causality condition. This involves solving a
fixed point equation over C[T, A] using a custom-made contraction principle, based on
the fact that C[T, A] can be locally approximated by metric spaces. This is an extension
of the well-known Banach fixed point theorem for metric spaces [Eng89]. We derive the
continuity of Φ from the continuity of the module functions. Hence, we have a conceptual
and mathematical model of what it means for a network to be well-posed, and, therefore,
for a function to be computable by measurements on an analog system.

In Section 4 we analyse in detail two case studies of analog computations, using me-
chanical systems in which data are represented by displacement, velocity and acceleration.
Our aim is give informative and complete case studies of our general model.

In Section 5 we compare analog and digital computation. For this we introduce a
custom-made concrete (algorithmic) computation theory over C[T, A]. The theory is con-
crete in the sense that it is based on choosing particular representations of data [SHT99,
TZ04, TZ05, TZ06]. This is, again, an extension to the non-metric space C[T, A] of
the theory of concrete computations on metric algebras [TZ04]. We prove the following
“soundness theorem” for analog, relative to concrete, computation.

Theorem. If the functions defined by the components of an analog network are all
concretely computable, then so is the function defined by the whole network.

In particular, the results for traditional analog systems (based on real numbers and inte-
grators etc.) can be easily derived. Settling a converse to these theorems, i.e., completeness
of analog computation, would be of great interest. (For work related to completeness using
other models of computation, see [GCB05, BCGH06, BCGH07].)

We have also studied computation on discrete time streams [TZ94], and networks that
process discrete time in streams. In [TT91] we develop a theory of synchronous algorithms
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(SCAs) that generalise standard algorithmic discrete time models of computer hardware
(microprocessors, systolic algorithms) and spatially extended dynamical systems (cellular
automata, coupled map lattices, and neural networks). Mathematically, the present work
can be seen as a generalisation of SCA’s to continuous time.

We are grateful to an anonymous referee for some very helpful comments.

2 Analog networks

An analog network N consists of a number of modules and channels computing and
communicating with data from a topological algebra A. We make this idea precise in
several stages.

2.1 Data, time and streams

Assume we are working with data from a complete metric space (A, dA). The network
operates in continuous time T, modelled by the set of non-negative reals with its usual
metric topology. The channels carry signals in the form of continuous streams of data
from A, represented as continuous functions u : T → A. Typical examples of streams are
signals given by voltages as functions of time.

Let C[T, A] be the set of continuous streams on A, with the compact-open topology
[Eng89, §3.4]. We discuss properties of this topology, and equivalent formulations, below
(Section 3).

2.2 Modules

A module M has finitely many input channels α1, . . . , αkM
(kM ≥ 1), one output channel

β (Figure 1), and locations for some parameters (not shown).

β

α1

αkM

M

Figure 1: A module

Each module M is specified by a total function with kM > 0 input streams, lM ≥ 0 input
parameters and one output stream, which it “computes”:

FM : C[T, A]kM × AlM → C[T, A].

For inputs u = (u1, . . . , ukM
) ∈ C[T, A]kM and parameters c = (c1, . . . , clM ) ∈ AlM , we

write FM (u, c) = v, where v ∈ C[T, A] is the output
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Examples 2.2.1. In classical analog computing (A = R), typical module operations are:

• Pointwise addition of two streams:

FM (u1, u2)(t) = u1(t) + u2(t).

This has 2 input streams, and no parameters.

• Pointwise scalar multiplication of a stream by a constant “scalar”:

FM (u, c)(t) = c · u(t).

This has 1 input stream u and 1 parameter c.

• Integration:

FM (u, c)(t) = (

∫ t

0

u) + c.

This has 1 input stream and 1 parameter (the constant of integration), typically asso-
ciated with the initial value v(0) of the output v(t).

• Stieltjes integration:

FM (u1, u2, c)(t) = (

∫ t

0

u1du2) + c.

This has 2 input streams and 1 parameter (the constant of integration). Note that this
is a partial operation, and treatment of it is therefore deferred to another paper. The
stream u2 must be absolutely continuous on [0, t] for all t > 0, or equivalently, it must
itself be a definite integral:

u2(t) = (

∫ t

0

w) + u2(0).

A sufficient condition for this is that u2 have bounded variation on [0, t] for all t > 0
[Roy63].

An important property of module functions is causality2, which we now define.

Definition 2.2.3 (Causality of module functions). The output is “causally” related
to the inputs, in the sense that the output at any time depends only on the inputs up to
that time. Precisely:

Caus : For u, v ∈ C[T, A]kM , c ∈ AlM and t ≥ 0 :

u↾[0,t] = v↾[0,t] =⇒ FM (u, c)(t) = FM (v, c)(t).

Here we are using notation for vector restriction:

u↾[0,t] =df (u1 ↾[0,t], . . . , uk ↾[0,t]).

We will also write u↾t for u↾[0,t] for t ≥ 0.

2called retrospectiveness in [Tra66, Rab03]
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Remarks 2.2.4 (Causality condition).

(a) By continuity of streams, Caus is equivalent to the apparently stronger condition:

u1 ↾[0,t)= u2 ↾[0,t) =⇒ FM (u1, c)(t) = FM (u2, c)(t).

(b) In either version, the causality condition depends on an assumption of instantaneous
response of the modules, and hence of the network. Contrast this with the unit time
delay with discrete networks, i.e., SCAs [HTT88, TT91].

(c) All the common module operations, including the standard examples listed in 2.2.1,
satisfy Caus .

In fact the functions we typically encounter as module functions (apart from integration)
satisfy a stronger condition than causality, i.e., pointwise definability , in the following
sense.

Definition 2.2.5 (Pointwise definable functions). A function F : C[T, A]k × Al →
C[T, A] is pointwise definable if there is a function f : Ak × Al → A such that for all
u, c, t ≥ 0,

F(u, c)(t) = f(u(t), c).

Lemma 2.2.6. If F is pointwise definable by f, then it satisfies Caus .

2.3 Network architecture

Consider now (Figure 2) a network N with m modules M1, . . . ,Mm and m channels
α1, . . . , αm. Each module Mi (i = 1, . . . , m) has some input channels αi1 , . . . , αiki

(ki >

0), which are the outputs of modules Mi1 , . . . ,Miki
respectively, some (local) parameter

locations ci1 , . . . , cili
(li ≥ 0) and one output channel αi. The module Mi in the network

N is specified by the function

Fi = FMi
: C[T, A]ki × Ali → C[T, A].

The network N itself has p input channels and q output channels (p, q ≤ m). We
assume that the first p modules M1, . . . ,Mp are instances of the identity module MI.
They function as input ports, and the p network input channels are actually their output
channels α1, . . . , αp. (This is for the sake of uniformity of notation, to allow us to assume
that each channel of N is the output channel of some module; cf. Figure 2). The remaining
(non-trivial) modules of the network are Mp+1, . . . ,Mm.

Thus for i = 1, . . . , m, the channel αi is an output channel for module Mi. As stated
above, the first p of these, α1, . . . , αp, are also the p network input channels. The q
network output channels β1, . . . , βq are q of the m network channels, say βi = αji

for
i = 1, . . . , q.

There are also locations for the global or network parameters c = (c1, . . . , cr) (r ≥ 0),
which include all the local parameters of all the modules in N . Each module Mi selects
its own list of local parameters (ci1 , . . . , cili

) from the global list c.
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Miki

Mi

Mi1

αi1

αiki

αi

M1

αp

α1
x1(t)

xp(t)

x1(t)

xp(t)

αj1
= β1

αjq
= βq

yq(t)

y1(t)

Mp

Figure 2: A network

We make an assumption of input determinacy :

InDet : For i = 1, . . . , p, the input channel αi carries an input stream or signal xi(t) at
all times t ≥ 0.

2.4 Network operation: the model; well-posedness

Under the module function causality assumption Caus, we want to prove a network

determinacy condition:

NetDet : For certain inputs and parameter values, there is a well-determined value for
the stream on each channel at all times.

This means that, at least for a certain set U ⊆ Ar × C[T, A]p of global parameters and
stream inputs (c, x) ∈ U , there is a well-determined tuple of (total) streams

u = (u1, . . . , um) ∈ C[T, A]m

that describes the data on all channels α1, . . . , αm at all times. “Well-determinedness” of
the tuple u = (u1, . . . , um), or “well-posedness” of the problem, implies, further, stability
under perturbation, i.e., continuity of the stream tuple u as a function of the inputs (c, x) ∈
U (cf. Remark 3.3.2 below). Thus with each module Mi (i = 1, . . . , m) is associated a
continuous (partial) function

Φi : A
r × C[T, A]p ⇀ C[T, A]

where, for (c, x) ∈ U :
Φi(c, x) = ui.

These module functions Φi (i = 1, . . . , m) can then be vectorised to form the network state
function

ΦN : Ar × C[T, A]p ⇀ C[T, A]m
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where, for (c, x) ∈ U :
ΦN (c, x) = (Φ1(c, x), . . . ,Φm(c, x)) (2.1)

and hence also a continuous network i/o function

ΦN
io

: Ar × C[T, A]p ⇀ C[T, A]q

where, for (c, x) ∈ U :

ΦN
io

(c, x) = (Φj1(c, x), . . . ,Φjq
(c, x)),

i.e., ΦN
io

(c, x) is a suitable sub-tuple of ΦN (c, x), as we will see below (Theorem 2 and
Remark 3.3.2).

2.5 Network operation: Algebraic specification

Given the above assumptions, we can specify the model by the following system equations:

ui(t) = xi(t) (i = 1 , . . . , p, t ≥ 0) (2.2a)

ui(t) = Fi(ui1, . . . , uiki
, ci1, . . . , cili)(t) (i = p+ 1, . . . , m, t ≥ 0), (2.2b)

which form an algebraic specification for the network state function to be constructed below
(Section 3). Here (2.2a) is the input condition.

In Section 3 we will derive the existence and uniqueness of solutions of this specification
as a fixed point of a certain function.

Remark 2.5.1. The specifying equations (2.2) include input conditions (2.2a) but not
any “initialisation conditions” of the form ui(0) = . . . , in contrast to the situation with
SCAs (see Remark 2.2.4(b)). This is connected with the fact that SCAs are underdeter-
mined without initial conditions, whereas our analog networks are fully determined by
(2.2), assuming any solution exists.

In certain cases, initial values on some of the channels may in fact be given by the
values of the module parameters, typically as constants of integration (as we will see in
the case studies in Section 4); however such initial values are then determined through the
corresponding equation (2.2a); they do not have do be specified by further “initialisation
equations”.

3 Solving network equations; Fixed point semantics

We want to construct a network state function, which will be an m-tuple of module state
functions, satisfying the equational algebraic specification (2.2).

First, we define some general concepts and give some results concerning the topology
of stream spaces and stream transformations. More details can be found in [TZ07].
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3.1 Stream spaces and stream transformations

Let 0 ≤ a < b, and let C[[a, b], A] be the set of continuous functions from [a, b] to A. For
u, v ∈ C[[a, b], A] (or u, v ∈ C[T, A]), define

da,b(u, v) =df sup {dA(u(t), v(t)) | t ∈ [a, b]}.

This makes C[[a, b], A] a complete metric space, with the topology of uniform convergence.
The product space C[[a, b], A]m (for m > 0) has the metric

dm
a,b(u, v) = (

m∑

i=1

(
da,b(ui, vi)

)p
)

1

p (3.1)

(where u = (u1, . . . , um) and v = (v1, . . . , vm)) for some fixed p (1 ≤ p ≤ ∞). Two
common special cases are formed by taking p = 1:

dm
a,b(u, v) =

m∑

i=1

da,b(ui, vi)

and p = ∞:

dm
a,b(u, v) =

m
max
i=1

da,b(ui, vi).

We will usually drop the superscript ‘m’ from dm
a,b.

Of special interest to us are the spaces C[[0, k], A] of streams on the finite intervals [0, k]
(k = 1, 2, . . . ). We will write dk for the metric d0,k.

The stream space C[T, A] cannot, in general, be made into a metric space, and da,b is
only a pseudometric on C[T, A]. Nevertheless we can define a notion of convergence in
C[T, A] as follows.

Definition 3.1.1 (Local uniform convergence in C[T, A]). A sequence (un) of
elements of C[T, A] converges locally uniformly to the limit u ∈ C[T, A] if

∀ǫ > 0 ∀k ∃N ∀n ≥ N : dk(un, u) ≤ ǫ,

or, more simply but equivalently:

∀k ∃N ∀n ≥ N : dk(un, u) ≤ 2−k.

Such a limit (if it exists) is easily seen to be unique.

The topology of local uniform convergence can then be characterised as follows. Given
a set X ⊆ C[T, A] and a point u ∈ C[T, A], u is in the closure of X if, and only if, there
is a sequence of elements of X which converges locally uniformly to u. Equivalently, it is
the topology generated by open neighbourhoods of the form

Nk(u, r) =df {v ∈ C[T, A] | dk(v, u) < r}
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for any stream u, any r > 0 and k = 1, 2, . . . .

This topology on C[T, A] can also be characterised as the inverse limit [Eng89, §2.5] of
the family of metric spaces and mappings

lim
←−

k

〈C[[0, k], A], πk〉

where the mapping πk : C[[0, k + 1], A] → C[[0, k], A] is defined by πk(u) = u↾k.
The projection mappings πk : C[T, A] → C[[0, k], A] are then given by πk(u) = u↾k.

Remark 3.1.2 (Standard compact exhaustion of T). We can think of the sequence
of sets [0, k] (k = 0, 1, 2, . . . ) as a compact exhaustion (the “standard” one) of T, which
demonstrates the sequential compactness [TZ07, §2] of T. Note that our characterisations
of the topology of local uniform convergence and the inverse limit topology used the com-
plete metric spaces C[K,A] where K has (only) the special form [0, k] of this standard
compact exhaustion. We could, alternatively, have let K range over [a, b] for 0 ≤ a < b,
or over arbitrary compact subsets of T. These produce the same topology [TZ07]. Our
choice gives the notationally simplest development. The same remarks apply to the exact
form of the definition (3.1.3) of locally uniform Cauchy sequence below.

Finally, this topology is the same as the compact-open toplogy on C[T, A] [Eng89, §3.4],
which is defined as having subbasic open sets of the form

M(K,U) =df { u ∈ C[T, A] | ∀t ∈ K : u(t) ∈ U }

for all compact K ⊂ T and open subsets U of A.

The equivalence of all the above characterisations of the topology on C[T, A] is proved
in [TZ07].

Moreover, the space C[T, A] is complete in the sense given below (Lemma 3.1.4). First
we define:

Definition 3.1.3 (Locally uniform Cauchy sequence). A sequence (un) of elements
of C[T, A] is a locally uniform Cauchy sequence if

∀ǫ > 0 ∀k ∃N ∀m,n ≥ N : dk(um, un) ≤ ǫ,

or, more simply but equivalently:

∀k ∃N ∀m,n ≥ N : dk(um, un) ≤ 2−k.

Lemma 3.1.4 (Completeness of C[T, A]). A locally uniform Cauchy sequence in
C[T, A] converges locally uniformly to a limit.

Proof: Let (un) be a locally uniform Cauchy sequence in C[T, A]. For any k, the sequence
u0 ↾k, u1 ↾k, . . . is a uniform Cauchy sequence in the space C[[0, k], A], and so, by complete-
ness of C[[0, k], A], has a limit u(k) in C[[0, k], A]. These limits are compatible, in the sense
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that for n > k, u(k) = u(n) ↾k. The desired limit u can then be defined as the common
extension of all the u(k), i.e., u(t) = u(k)(t) for any k ≥ t. �

We are interested in stream transformations

f : C[T, A]m → C[T, A]m (m > 0). (3.2)

We are especially interested in contracting stream transformations, to be explained
below. First, some notation and definitions.

Notation 3.1.5. For u ∈ C[T, A]m and T > 0, define u↾↾T∈ C[T, A]m by

u↾↾T (t) =

{
u(t) if t ≤ T

u(T ) if t > T .

In other words, the stream u ↾↾T agrees with the stream u up to time T , and thereafter
has, as constant value, the value of u at T .

Remark 3.1.6 (Causality for stream transformations). For reasons that will
become clear in the following development, we will generally assume that the stream
transformations satisfy a causality condition (cf. Definition 2.2.3), which, for a stream
transformation f of the form (3.2) can be most conveniently expressed as:

Caus : For all T ≥ 0 and u, v ∈ C[T, A]m: u↾T = v↾T =⇒ f(u)↾T = f(v)↾T .

Definition 3.1.7 (Contracting stream transformations). Let 0 < λ < 1 and τ > 0.
A stream transformation f as in (3.2) is said to be contracting w.r.t. (λ, τ), or to be in
Contr(λ, τ), if for all T ≥ 0 and all u, v ∈ C[T, A]m:

dT, T+τ (f(u), f(v)) ≤ λ · dT, T+τ (u, v). (3.3)

The factor λ is said to be a modulus of contraction for f w.r.t. τ .

Lemma 3.1.8. Suppose f satisfies Caus. Then if f ∈ Contr (λ, τ) for some τ > 0,
then f ∈ Contr(λ, τ ′) for all τ ′ > 0.

Proof: Suppose f ∈ Contr (λ, τ) for a given τ . We must show that for any τ ′ > 0,
f ∈ Contr (λ, τ ′). The proof is in three stages.

(i) First, f ∈ Contr(λ, kτ) for any positive integer k. The proof does not depend on
Caus . For suppose

dT, T+kτ (u, v) = δ.

Then clearly, for j = 0, . . . , k − 1,

dT+jτ, T+(j+1)τ (u, v) ≤ δ
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and so, for j = 0, . . . , k − 1, by Contr(λ, τ),

dT+jτ, T+(j+1)τ (f(u), f(v)) ≤ λ · δ

Hence
dT, T+kτ (f(u), f(v)) ≤ λ · δ

from which it follows that f ∈ Contr(λ, kτ).

(ii) Next, let 0 < τ ′ < τ , and suppose

dT, T+τ ′(u, v) = δ.

Then, using Notation 3.1.5:

dT, T+τ (u↾↾T+τ ′ , v↾↾T+τ ′) = sup
t∈[T,T+τ ]

dA(u↾↾T+τ ′ (t), v↾↾T+τ ′ (t))

= max
(

sup
t∈[T,T+τ ′]

dA(u↾↾T+τ ′ (t), v↾↾T+τ ′ (t)),

sup
t∈[T+τ ′,T+τ ]

dA(u↾↾T+τ ′ (t), v↾↾T+τ ′ (t))
)

= max
(

sup
t∈[T,T+τ ′]

dA(u(t), v(t)),

dA(u(T + τ ′), v(T + τ ′))
)

= sup
t∈[T,T+τ ′]

dA(u(t), v(t)),

= dT, T+τ ′(u, v)

= δ.

Hence, since f ∈ Contr (λ, τ),

dT, T+τ (f(u↾↾T+τ ′), f(v↾↾T+τ ′)) ≤ λ · δ. (3.4)

Also, since (u↾↾T+τ ′)↾T+τ ′ = u↾T+τ ′ and f satisfies Caus ,

f(u↾↾T+τ ′)↾T+τ ′ = f(u)↾T+τ ′

f(v↾↾T+τ ′)↾T+τ ′ = f(v)↾T+τ ′ .and similarly

Hence

dT, T+τ ′(f(u), f(v)) = dT, T+τ ′(f(u↾↾T+τ ′), f(v↾↾T+τ ′))

≤ dT, T+τ (f(u↾↾T+τ ′), f(v↾↾T+τ ′)) trivially

≤ λ · δ by (3.4)

Hence f ∈ Contr (λ, τ ′).
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(iii) Finally, for any τ ′ > 0, f ∈ Contr(λ, τ ′) follows by noting that τ ′ < kτ for some k,
and applying (i) and (ii). �

Remark 3.1.9. A consequence of the above lemma is that if f satisfies Caus and
f ∈ Contr(λ, τ), then we can choose τ to suit ourselves. In such cases we will write
Contr(λ) instead of Contr (λ, τ), and generally take τ = 1. We then say simply that f
is contracting w.r.t. λ, and call λ a modulus of contraction for f .

The following theorem is fundamental in finding the solution of the network specifica-
tions.

Theorem 1 (Fixed point of contracting stream transformation). Suppose the
stream transformation f satisfies Caus , and f ∈ Contr (λ) for some λ < 1. Then f has
a unique fixed point, i.e., there is a unique u ∈ C[T, A]m such that f(u) = u.

Proof: 1. Uniqueness:

Suppose u, v are fixed points of f . Then for all k

dk(u, v) = dk(f(u), f(v))

≤ λ · dk(u, v)

since f ∈ Contr (λ), from which it follows that

dk(u, v) = 0,

i.e.,
u↾k = v↾k

for all k, and hence
u = v.

2. Existence:

We will construct a solution, namely a fixed point v of f , as a limit of a locally uniformly
convergent Cauchy sequence of stream tuples:

v0, v1, v2, . . . (3.5)

Define v0 arbitrarily, and
vn+1 = f(vn). (3.6)

Then for all k and n, it can be seen, by induction on n, that

dk(vn, vn+1) ≤ λndk(v0, v1). (3.7)

If v1 = f(v0) = v0, then v0 is the sought-for fixed point. Otherwise, dk(v0, v1) > 0 for
k sufficiently large. The sequence (vn)n can then be seen to be a locally uniform Cauchy
sequence, by (given k and ǫ > 0) choosing N (in Definition 3.1.1, 1st version) such that

λN <
(1 − λ) · ǫ

dk(v0, v1)
. (3.8)
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For then, for m > n ≥ N ,

dk(vn, vm) ≤ dk(vn, vn+1) + . . . + dk(vm−1, vm)

≤ (λn + λn+1 + . . . + λm) · dk(v0, v1) by (3.7)

< (λn + λn+1 + . . . + λm + λm+1 + . . . ) · dk(v0, v1)

= λn · (1 − λ)−1 dk(v0, v1)

≤ λN · (1 − λ)−1 dk(v0, v1)

< ǫ by (3.8).

Thus by Lemma 3.1.4 (which applies to C[T, A]m as well as C[T, A]) the sequence (3.5)
converges locally uniformly to a limit v.

Hence, also, the sequence
f(v0), f(v1), f(v2), . . . (3.9)

converges locally uniformly to f(v), since by the contraction property of f ,

dk(f(vn), f(v)) ≤ λ · dk(vn, v).

for all k and n. Since (3.9) is actually the sequence (3.5) shifted by 1, it follows that it
also converges to v, and so

f(v) = v. �

Remark 3.1.10 (Contracting transformation w.r.t. compact exhaustion). Our
definition (3.1.7) of contracting transformation uses a rather strong or “global” notion of
contraction (3.3), holding for all T > 0. A more general definition [TZ07] has a weaker
notion of contraction, formulated relative to the standard exhaustion of T, in which the
global contraction constant λ is replaced by a sequence (λ0, λ1, λ2, . . . ) of contraction
constants, each strictly between 0 and 1, and then (3.3) is replaced by

dk(f(u), f(v)) ≤ λk · dk(u, v) (k = 0, 1, 2, . . . ).

The appropriate version of Theorem 1 can still be derived for this formulation of contrac-
tion.

Interestingly, for this formulation of the contraction property, we do not seem to need
the Caus condition, which was needed in our proof of Theorem 1.

The notion of contraction that we used (3.3) is, however, simple to work with, and
sufficient for the two case studies in Section 4.

Remark 3.1.11 (Effectivity of local uniform convergence). Note that in Section
5, where we deal with the issue of the computability of the fixed point u, we need a
stronger property of the sequence (3.5) than local uniform convergence, namely effective
local uniform convergence.
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We turn to apply the above theory to the network N .

3.2 Network functions

Recall the specifications for the network N in Section 2:

ui(t) = xi(t) (i = 1 , . . . , p, t ≥ 0) (2.2a)

ui(t) = Fi(ui1, . . . , uiki
, ci1, . . . , cili)(t) (i = p+ 1, . . . , m, t ≥ 0), (2.2b)

Writing the global parameters as c = (c1, . . . , cr), and the input streams as x =
(x1, . . . , xp) ∈ C[T, A]p, a (partial) solution (u1, . . . , um) to these equations is given by
a subset U ⊆ Ar × C[T, A]p, and, for each module Mi (i = 1, . . . , m) a function

Φi : A
r × C[T, A]p ⇀ C[T, A]

where, for all (c, x) ∈ U :
Φi(c, x) = ui,

from which, as we have seen in Section 2, we obtain by vectorisation the network state
function for N :

ΦN : Ar × C[T, A]p ⇀ C[T, A]m,

where for (c, x) ∈ U :
ΦN (c, x) = (Φ1(c, x), . . . ,Φm(c, x)). (2.1)

Notice next that a stream tuple (u1, . . . , um) satisfying the specifications (2.2) can be
written as

(u1, . . . , um) = (x1, . . . , xp, u
0
p+1, . . . , u

0
m)

where x = (x1, . . . , xp) are the input streams of N , and u0 = (u0
p+1, . . . , u

0
m) form a fixed

point of the network stream transformation function

ΨN,x : C[T, A]m−p → C[T, A]m−p

with
ΨN,x(u) =df ΨN (c, x,u), (3.10)

where the function

ΨN : Ar × C[T, A]p × C[T, A]m−p → C[T, A]m−p

is defined by
ΨN (c, x,u) =df (Fp+1(u1, c1), . . . , Fm(um, cm)) (3.11)

where, on the r.h.s., (ui, ci) is the list of local input streams and local parameters associated
with Fi, with ui a sub-tuple of (x,u), for i = p+ 1, . . . , m. (Recall that the operations of
the modules F1, . . . , Fp are just the identity functions.) Then

a solution to (2.2) will be a fixed point for ΨN,x.
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The network state function ΦN is then easily obtained from this fixed point u0, since for
a given input (c, x) ∈ U , the output of ΦN is just (x,u0).

Thus in looking for a solution to the equations (2.2), the basic questions are:

Under what conditions does ΨN,x have a fixed point?
Under what conditions is it unique?

We will give at least a partial solution to this, namely a sufficient condition for a fixed point,
which will also be unique, by applying the theory of contracting stream transformations
developed above.

3.3 Solution of fixed point equation

Recall Definition 3.1.7 and Remark 3.1.9.

Definition 3.3.1 (Contracting condition for a network).
Given c ∈ Ar, x ∈ C[T, A]p and 0 < λ < 1, the network N satisfies Contr,x(λ) if the
network stream transformation

ΨN,x : C[T, A]m−p → C[T, A]m−p

defined by (3.10) and (3.11) is (total and) in Contr(λ). It is contracting at (c, x) if it
satisfies Contr,x(λ) for some λ < 1.

Theorem 2. (a) (Existence and Uniqueness) Suppose that for all (c, x) ∈ U ⊆
Ar ×C[T, A]p, there exists λ(= λ,x) < 1 such that the network N satisfies Contr,x(λ).
Then there is a unique stream tuple (u1, . . . , um) ∈ C[T, A]m satisfying the network equa-
tions (2.2). It is given by specifying that (u1, . . . , up) = x and (up+1, . . . , um) = u0

is the unique fixed point of the stream transformation function ΨN,x : C[T, A]m−p →

C[T, A]m−p defined by equations (3.10) and (3.11). This defines the network state function
ΦN : Ar × C[T, A]p ⇀ C[T, A]m and network i/o function ΦN

io
: Ar × C[T, A]p ⇀ C[T, A]q

by: ΦN (c, x) = (x,u0), and ΦN
io

(c, x) is a suitable sub-tuple of this, for all (c, x) ∈ U .

(b) (Continuity) Suppose further that the module functions of N are continuous, and
for some (c, x) in the interior of U , the modulus of contraction λ can be defined in a
neighbourhood of (c, x) so as to be continuous at (c, x). Then ΦN and ΦN

io
are continuous

at (c, x).

Proof: Part (a) is immediate from Theorem 1. For part (b): First note that we can assume
without loss of generality that λ can be defined so as to be constant in a neighbourhood
of (c, x). For if λ is continuous at (c, x), with value λ0 < 1 at (c, x), then, by continuity,
its value is less than (say) λ1 =df (λ0 + 1)/2 < 1 in some neighbourhood of (c, x). So we
can take the constant value λ1 as the modulus of contraction near (c, x).

We use the notation of Theorem 1 and its proof, notably (3.5) and (3.6). So, putting
f = ΨN,x (cf. (3.10), (3.11)), and v0 arbitrary but fixed, we have (cf. (3.5), (3.6)) vn =

f (n)(v0) (n = 0, 1, 2, . . . ), and so ΦN (c, x) = (x,u0) where u0 is the limit of the Cauchy
sequence (vn), which is a fixed point of f . Similarly, for each (c ′, x ′) ∈ V , writing
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f ′ = ΨN ′,x ′ and v ′

n = f ′(n)(v0), we have ΦN (c ′, x ′) = (x ′,u0 ′) where u0 ′ is the limit

of the Cauchy sequence (v ′

n), which is the fixed point of f ′.

Hence to show that ΦN is continuous at (c, x), we must show that for (c ′, x ′) sufficiently
“close to” (c, x), u0 ′ is “close to” u0.

Note that the product topology on Ar × C[T, A]p is generated by the pseudometrics
(cf. §3.1)

dk((c, x), (c ′, x ′)) = max(dA(c, c ′), dk(x, x ′))

and the corresponding neighbourhoods

Nk((c, x), r) =df {(c ′, x ′) ∈ Ar × C[T, A]p | dk((c ′, x ′), (c, x)) < r}.

Since the module functions of N are continuous, ΨN is continuous, and so for all n, vn

depends continuously on (c, x). Now, given k and ǫ > 0, choose n such that (cf. (3.8))

λn <
(1 − λ) · ǫ

6 · dk(v0, v1)
. (3.12)

Now choose δ > 0 such that (i) Nk((c, x), δ) ⊆ V , and also (ii) the modulus of contrac-
tion has a constant value λ in Nk((c, x), δ), and also (iii) for all (c ′, x ′) ∈ Nk((c, x), δ),

dk(v ′

n, vn) < ǫ/3, (3.13)

and (iv) dk(v ′

1, v1) < dk(v0, v1), so that

dk(v0, v
′

1) ≤ dk(v0, v1) + dk(v1, v
′

1)

< 2 · dk(v0, v1) (3.14)

Then (as in the proof of Theorem 1) for all m > n,

dk(vn, vm) ≤ dk(vn, vn+1) + . . . + dk(vm−1, vm)

≤ (λn + λn+1 + . . . + λm) · dk(v0, v1) by (3.7)

< λn · (1 − λ)−1 · dk(v0, v1)

< ǫ/6 by (3.12)

and so
dk(vn,u

0) ≤ ǫ/6 < ǫ/3. (3.15)

Similarly, for all m > n,

dk(v ′

n, v
′

m) < λn · (1 − λ)−1 · dk(v0, v
′

1)

< λn · (1 − λ)−1 · 2 · dk(v0, v1) by (3.14)

< ǫ/3 by (3.12)
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and so
dk(v ′

n, u
0 ′) ≤ ǫ/3. (3.16)

Hence

dk(u0 ′,u0) ≤ dk(v ′, v ′

n) + dk(v ′

n, vn) + dk(vn, v)

< ǫ/3 + ǫ/3 + ǫ/3 by (3.16), (3.13) and (3.15)

= ǫ,

proving the continuity of ΦN at (c, x). The continuity of ΦN
io

at (c, x) follows immediately,

since the output of ΦN
io

at a given input is a sub-tuple of the output of ΦN at the same
input. �

Remark 3.3.2 (Continuity, stability, well-posedness; Hadamard’s principle).
Continuity of the network state function, guaranteed by part (b) of the theorem under
the stated conditions, implies in turn stability of the solution to the specification (2.2),
and hence well-posedness of the problem. The significance of these issues is related to
Hadamard’s principle [Had52] which, as (re-)formulated by Courant and Hilbert ([CH53,
pp. 227ff.], [Had64]) states that for a scientific problem to be well posed, the solution must
(apart from existing and being unique) depend continuously on the data.3

3.4 A simple example

Figure 3 shows a simple feedback system. Here the metric space A is R. There are 4
channels. The input channel α1 carries the input stream x(t), and the output channel α3

(also called β in conformity with the notation in Section 2) carries the output stream y(t).
There are 3 modules, M1, M2 and M3. Module M1 is the identity on the input stream x,
M2 sums the streams x and u to produce the output y and M3 multiplies y by a scalar ρ
to produce the stream u.

To simplify the treatment, we combine the scalar multiplier M3 with the following
module M2, to produce the network of Figure 4. (Henceforth we will not explicitly show
the names αi of the channels.)

We want to show that, for suitable values of the parameter ρ and input stream x, the
network satisfies Contrρ,x(λ), i.e., the function Ψρ,x of equation (3.11) is in Contr(λ)
for some λ < 1.

Now the function F2 associated with module M2 is the “modified adder”

F2(x, y) = x+ ρ · y.

The stream tuple u of (3.12) is just the stream y. So for any y ∈ C[T,R],

Ψρ,x(y) = F2(x, y) = x+ ρ · y,

3See the insightful discussions on this topic by Beeson [Bee85, p. 368] and Myrvold [Myr95]
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α1 α2

M1

M2

M3

I ⊕

⊗ρ
α3

α4

x yx y

y

u
y α3

α3 = β

Figure 3: A simple feedback system

M1

M2

I ⊕̂
x yx y

y

Figure 4: The feedback system simplified

or rather, for all t ≥ 0:
Ψρ,x(y)(t) = x(t) + ρ · y(t).

We want a fixed point for Ψρ,x, i.e., a solution y(t) to the equation

y(t) = x(t) + ρ · y(t) (3.17)

Note that for any y1, y2 ∈ C[T,R],

Ψρ,x(y1)(t) − Ψρ,x(y2)(t) = ρ · (y1(t) − y2(t))

and so
|Ψρ,x(y1)(t) − Ψρ,x(y2)(t)| = ρ · |(y1(t) − y2(t))|

Hence for any T and τ > 0:

dT, T+τ (Ψρ,x(y1),Ψρ,x(y2)) = ρ · dT, T+τ (y1, y2).
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Thus, if ρ < 1, this network satisfies Contr(ρ), and so has a solution y as output, for any
input stream x ∈ C[T,R].

We can compute the output stream y, as a function of x, by the construction in the
proof of Theorem 1, as follows. Define y0(t) arbitrarily, and

yn+1(t) = Ψρ,x(yn)(t) = x(t) + ρ · yn(t).

It is easy to check that

yn+1(t) = (1 + ρ+ ρ2 + · · ·+ ρn) x(t) + ρn+1 · y0(t)

=
1 − ρn+1

1 − ρ
x(t) + ρn+1 · y0(t).

The sequence (yn)n is easily seen to be a locally uniform Cauchy sequence, with the limit

y(t) =
1

1 − ρ
x(t).

which is the required solution. Note that this limit is independent of the choice of y0. Also,
it could have been obtained more easily (at least in this simple example, with one input
and one output stream) by directly solving equation (3.17) for y(t). Such a direct solution
does not seem possible in more complicated examples, such as those in Section 4.

4 Two case studies

We apply the theory of Section 3 to two examples of analog designs taken from a standard
text [Hyn70]. Each physical system is specified by a differential equation. To make an
analog machine, we reconstruct the equation from its components, modelling it as a network
of modules of the form described in Section 2. This process is relatively straightforward,
though care must be taken to decompose the system appropriately so that it satisfies the
contraction condition. Typically these modules are among the classical processing units
such as scalar multipliers, integrators, etc. From this network an analog machine can be
built.

4.1 Case study 1

(a) Physical system : The first case study (Figure 5) is a simple mass/spring/damper
system, where a mass M is suspended by a spring with stiffness K and damping coefficient
D. A force f (which is a function of time t) is applied to the mass. We want to compute
its displacement x as a function of t.

(b) Equational specification : To set up the equation of motion, consider the three
forces acting on the mass M : the external force f , the spring force −Kx, and the damping
force −Ddx/dt.

By Newton’s second law of motion:

Ma+Dv +Kx = f (4.1)
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Figure 5: Case Study 1

where v = dx/dt is the velocity of the mass, and a = dv/dt is its acceleration.

We show how to design an analog machine that solves this equation for x(t). The
machine is designed to give the displacement x(t) as a function of t by experiment, i.e.,
measurements on the machine.

(c) Network : The analog network N for this system is shown in Figure 6. The parameters
are M,K,D, v0, x0 (the first three used in module M2 and the last two being constants of
integration inM3 andM4 respectively), the single input stream is f(t), and the single output
stream is x(t). The network follows [Hyn70], except for the extra “identity” module M1

for the input stream f , as explained in Section 2. There are also an adder M2, integrators
M3 and M4, and scalar multipliers M5, M6 and M7.

Next we simplify the network by combining each scalar multiplier with the preceding
or following module, as shown in Figure 7.

There are now 4 modules, M1, . . . ,M4. Then (recalling that Fi is the function computed
by Mi) F1 is the identity, F2 = ⊕̂ is the “modified adder”

a = F2(f, x, v) =
f −Kx−Dv

M

(obtained by rearranging (4.1)) and F3 and F4 are integrators:

v(t) = F3(a)(t) = (

∫ t

0

a) + v0

x(t) = F4(v)(t) = (

∫ t

0

v) + x0
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I
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Figure 6: Network for case study 1
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∫ ∫
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xx
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Figure 7: Simplified network for Case Study 1

Here the constants of integration v0 and x0 represent the initial velocity and displacement
of the mass.

(d) Network semantics : The parameter tuple is

c = (M,K,D, v0, x0),

the single input stream is f , and the non-input stream tuple is

u = (a, v, x). (4.2)

So we want a fixed point of the function

Ψ,f : C[T,R]3 → C[T,R]3

where
Ψ,f (a, v, x) = (a′, v′, x′)



24

with

a′(t) =
1

M
(f(t) −Kx(t) −Dv(t)) (4.3a)

v′(t) =

∫ t

0

a(s)ds+ v0 (4.3b)

x′(t) =

∫ t

0

v(s)ds+ x0. (4.3c)

Now we must find under what conditions, Ψ,f is contracting.

For changes δa, δv, δx in a, v, x, and corresponding changes δa′, . . . in a′, . . . :

Ψ,f (a+ δa, v + δv, x+ δx) = (a′ + δa′, v′ + δv′, x′ + δx′).

Now from (4.3a):

δa′ = −
1

M

[
Kδx+Dδv

]

Hence for any T ≥ 0 and τ > 0, using the pseudonorm

‖u‖ = ‖u‖T+τ
T =df sup {u(t) | T ≤ t ≤ T + τ} (4.4)

we have from (4.3):

‖δa′‖ ≤ (K‖δx‖ + D‖δv‖)/M (4.5a)

‖δv′‖ ≤ τ‖δa‖ (4.5b)

‖δx′‖ ≤ τ‖δv‖. (4.5c)

Now assume

M > max(K, 2D) (4.6)

and put

λ =df

max(K, 2D)

M
. (4.7)

Then by (4.6)

λ < 1. (4.8)

Let τ have any positive value ≤ D/M , say

τ =
D

M
. (4.9)

Define the product pseudonorm

‖(δa, δv, δx)‖ =df ‖δa‖ + ‖δv‖ + ‖δx‖. (4.10)
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This corresponds to the “sum definition” of the product pseudometric (equation (3.1), with
p = 1). Then

‖(δa′, δv′, δx′)‖ = ‖δa′‖ + ‖δv′‖ + δx′‖

≤
K

M
‖δx‖ +

(D
M

+ τ
)
‖δv‖ + τ‖δa‖ by (4.5)

=
K

M
‖δx‖ +

2D

M
‖δv‖ +

D

M
‖δa‖ by (4.9)

≤ λ ‖(δa, δv, δx)‖ by (4.7)

which, by (4.8), proves Contr,f (λ).

Remark 4.1.1. The above calculation “worked” because we chose the “sum definition”
(4.10) for the product pseudonorm. For some other example, another definition might
work, with a different choice of p, or even a “mixed definition”, e.g.,

‖(u, v, w)‖ =df max(‖u‖, ‖v‖) + ‖w‖.

Remark 4.1.2 (Effect of parameters). As it turned out, the only assumption needed
to prove the contraction property was (4.6), i.e., that the mass M be sufficiently large
relative to the stiffness K and damping coefficient D. No assumption was needed on either
the initial values v0 and x0 of velocity and displacement, or the external force f(t). These
remarks can be formulated as a theorem.

Theorem 3. The network of Figure 7 is contracting, and hence satisfies NetDet , for
any input stream f(t), provided M > max(K, 2D).

Corollary 4.1.3. The system of Figure 5 has a well determined solution (a(t), v(t), x(t))
for the acceleration, velocity and displacement as functions of time t ≥ 0, for any input
force f(t) as a continuous function of time t ≥ 0, and any initial conditions (v0, x0) for the
velocity and displacement, provided only that M > max(K, 2D).

4.2 Case Study 2: Coupled system

(a) Physical system : The second case studies, shown in Figure 8, is formed by coupling
two mass/spring/damper systems. Now we want to compute the displacements x1 and x2

of both masses M1 and M2. We will follow a method similar to that for Case Study 1.

(b) Equational specification : Equating the forces acting on each mass, we get the
equations:

M1a1 +D1v1 +K1(x1 − x2) = F (t)

M2a2 +D2v2 +K2x2 +K1(x2 − x1) = 0
(4.11)

where vi and ai are the velocity and acceleration of ai (i = 1, 2).
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x1

K2

K1

x2

M2

M1

Figure 8: Case Study 2

(c) Network : The analog network N for this is shown in Figure 9. It is convenient to
present the network as two components (reflecting Figure 8): an M1/K1/D1 component
and an M2/K2/D2 component. In each component simplifications have been performed,
similar to those used in transforming Figure 6 to Figure 7, i.e., combining scalar multipliers
with the preceding or following modules.

The parameters are M1, K1, D1,M2, K2, D2, v
0
1 , x

0
1, v

0
2 , x

0
2, the first three used in module

M12, the next three in module M13, and the last four being constants of integration in
M13,M14,M23,M24 respectively. There is one input stream, the external force f(t), and
two output streams, the displacements x1 and x2 of the two masses M1 amd M2.

There are now 7 modules M11, . . . ,M14 and M22, . . . ,M24 with corresponding module
functions Fij , where F11 is the identity, F12 and F22 are “modified adders” producing the
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M14

a1 v1
∫ x1

I
M11

f f M12

M13

v1

∫

M22

v2 x2x2

x1

M23 M24

v2

x1

x1

x1

v1

x1

a2

v2

x2

⊕̂
∫

⊕̂
∫x1

Figure 9: Simplified network for Case Study 2

two accelerations:

a1 = F12(f, x1, v1) =
f −K1(x1 − x2) −D1v1

M1

a2 = F22(x1, x2, v2) =
K1(x1 − x2) −K2x2 −D2v2

M2
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(obtained by rearranging equations (4.11)) and F13, F14, F23, F24 are all integrators:

v1(t) = F13(a)(t) =

∫ t

0

a1(s)ds+ v0
1

x1(t) = F14(a)(t) =

∫ t

0

v1(s)ds+ x0
1

v2(t) = F23(a)(t) =

∫ t

0

a2(s)ds+ v0
2

x2(t) = F24(a)(t) =

∫ t

0

v2(s)ds+ x0
2.

(d) Network semantics : The parameter tuple is

c = (M1, K1, D1,M2, K2, D2, v
0
1 , x

0
1, v

0
2 , x

0
2),

the single input stream is again f , and the non-input stream tuple is (compare (4.2)):

u = (a1, v1, x1, a2, v2, x2).

So we want a fixed point of the function

Ψ,f : C[T,R]6 → C[T,R]6

where

Ψ,f (a1, v1, x1, a2, v2, x2) = (a′1, v
′
1, x
′
1, a
′
2, v
′
2, x
′
2)

with

a′1(t) =
1

M1
[f(t) −K1(x1(t) − x2(t)) −D1v1(t)] (4.12a)

v′1(t) =

∫ t

0

a1(s)ds+ v0
1 (4.12b)

x′1(t) =

∫ t

0

v1(s)ds+ x0
1 (4.12c)

a′2(t) =
1

M2
[K1(x1(t) − x2(t)) −K2x2(t) −D2v2(t)] (4.12d)

v′2(t) =

∫ t

0

a2(s)ds+ v0
2 (4.12e)

x′2(t) =

∫ t

0

v2(s)ds+ x0
2. (4.12f)

Again we must find under what conditions, Ψ,f is contracting.
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For changes δa1, δv1, . . . in a1, v1, . . . , and corresponding changes δa′1, . . . in a′1, . . . :

Ψ,f (a1 + δa1, v1 + δv1, . . . ) = (a′1 + δa′1, v
′
1 + δv′1, . . . ).

Note also from (4.12a, d) (taking δf = 0):

δa′1 = −
1

M1
[K1(δx1 − δx2) +D1δv1]

δa′2 = −
1

M2
[K1(δx2 − δx1) +K2δx2 +D2δv2]

Hence for any T ≥ 0 and τ > 0, and again defining the pseudonorm ‖u‖ as in (4.4), we
have

‖δa′1‖ ≤
K1

M1
‖δx1‖ +

K1

M1
‖δx2‖ +

D1

M1
‖δv1‖ (4.13a)

‖δa′2‖ ≤
K1

M2
‖δx1‖ +

(K1 +K2

M2
)‖δx2‖ +

D2

M2
‖δv2‖ (4.13b)

Also, from (4.12b, c, e, f):

‖δv′1‖ ≤ τ‖δa1‖ (4.13c)

‖δx′1‖ ≤ τ‖δv1‖ (4.13d)

‖δv′2‖ ≤ τ‖δa2‖ (4.13e)

‖δx′2‖ ≤ τ‖δv2‖ (4.13f)

Now assume (compare (4.6))

M1 > max(2K1, 2D1)

M2 > max(2K1 + 2K2, 2D2)
(4.14)

and put

λ =df max
(K1

M1
+
K1 +K2

M2
,

2D1

M1
,

2D2

M2

)
. (4.15)

Then by (4.14)

λ < 1. (4.16)

Let

τ = min
(D1

M1
,
D2

M2

)
(4.17)
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Then, defining the product pseudonorm as in (4.10), we have:

‖(δa′1, δv
′
1, δx

′
1, δa

′
2, δv

′
2, δx

′
2)‖

= ‖δa′1‖ + ‖δv′1‖ + δx′1‖ + ‖δa′2‖ + ‖δv′2‖ + δx′2‖

≤
(K1

M1
+
K1

M2

)
‖δx1‖ +

(D1

M1
+ τ

)
‖δv1‖ + τ‖δa1‖

+
(K1

M1
+
K1 +K2

M2

)
‖δx2‖ +

(D2

M2
+ τ

)
‖δv2‖ + τ‖δa2‖ by (4.13)

=
(K1

M1
+
K1

M2

)
‖δx1‖ +

2D1

M1
‖δv1‖ +

D1

M1
‖δa1‖

+
(K1

M1
+
K1 +K2

M2

)
‖δx2‖ +

2D2

M2
‖δv2‖ +

D2

M2
‖δa2‖ by (4.17)

≤ λ ‖(δa1, δv1, δx1, δa2, δv2, δx2)‖ by (4.15)

which, by (4.16), proves Contr,f (λ).

Again, this gives a theorem (compare Theorem 3):

Theorem 4. The network of Figure 8 is contracting, and hence satisfies NetDet , for
any input stream f(t), provided

M1 > max(2K1, 2D1) and M2 > max(2K1 + 2K2, 2D2).

Corollary 4.2.1. The system of Figure 8 has a well determined solution

(a1(t), v1(t), x1(t), a2(t), v2(t), x2(t))

for the accelerations, velocities and displacements of the masses M1 and M2 as functions
of time t ≥ 0, given any input force f(t) as a continuous function of time t ≥ 0, and
any initial conditions (v0

1 , x
0
1, v

0
2 , x

0
2) for the velocity and displacement of M1 and M2,

provided only that

M1 > max(2K1, 2D1) and M2 > max(2K1 + 2K2, 2D2).

5 Computability of the solution

We want to show that the network function which solves the network specification (2.2)
according to Theorem 3.2.2 is computable relative to the module functions for that network;
in other words, the output streams are computable from the input streams, the parameters,
and the module functions. Hence if all the module functions are computable, then so is
the network function.

By “computable” here we mean: computable according to some concrete model of
computation on C[T, A]. Computable stream transformations on C[T, A] have been studied
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using domains in [BSHT98]. An alternative treatment of concrete computation on the
space C[X, Y ] with the compact-open topology can be found in [Wei00], in the case that
X ⊆ Rm and Y = Rn. Here we will give a new model, inspired by the approximation of
C[T, A] by the metric spaces C[[0, k], A].

For reasons to be explained below, we will assume that A is separable.

5.1 Topological algebras of continuous streams

For our investigation of computation on C[T, A], we must consider the many-sorted
topological algebra

algebra C[T, A]
carriers A, R, T, C[T, A], N
functions dA : A2 → R,

eval : C[T, A] ×T→ A
end

where dA : A2 → R and eval : C[T, A] × T → A are, respectively, the distance function
on A and the evaluation function

eval(u, t) = u(t).

We call the algebra C[T, A] or just C. It is a topological algebra, because each of the five
carriers has an associated topology, as we have described (the usual one for R, and the
discrete one for N), with respect to which the basic functions (dA and eval) are continuous.

The carrier R is needed for the metric operation on A.

The set of sorts of the signature Σ of C is

Sort = Sort(Σ) = {A, R, T, C, N }

For ease of notation, we also refer to the five carriers of C as Cs for s ∈ Sort .

5.2 Enumerations of subfamilies of C

The following is an extension of the concepts in [TZ04, §§6,7] on concrete computation
on metric algebras to the case of the non-metric, topological algebra C[T, A]. We repeat
some of the definitions there.

We will fix an enumeration of certain subsets of the carriers, i.e., a family α of surjections

αs : N ։ Xs ⊆ Cs (s ∈ Sort)

of N with certain subsets Xs of Cs. The pair (Xs, αs) is called an enumerated subset of
Cs for s ∈ Sort .

The enumerations are as follows. First, the mapping

αA : N ։ X ⊆ A
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is an enumeration of some dense subset X of A. It is here that we need a separability
assumption, failing which any enumerated subset of A could not be dense in A, thus
trivialising the concrete model.

Assumption 5.2.1. A is separable.

This enumeration αA (or rather its “computational closure” αA, see below) must also
satisfy a Σ-effectivity property, to be described below (5.4.4).

From Assumption 5.2.1 it follows that C[T, A] is also separable [TZ07]. However we
will need a stronger assumption than mere separability of C[T, A], namely effective local
uniform continuity of the countable dense subset of C[T, A] (see Assumption 5.2.2 below).

The mapping
αR : N ։ Q ⊂ R

is a standard enumeration of the rationals. (In case A = R, αA would be the same as αR.)
Similarly

αT : N ։ Q+ ⊂ T
is a standard enumeration of the non-negative rationals. The mapping

αN : N ։ N
is just the identity on N. Finally, and most interestingly, the mapping

αC : N ։ Z ⊂ C[T, A]

is a “standard” enumeration of some countable dense subset Z of C[T, A], which must
satisfy the Σ-effectivity property (5.4.4) referred to above, as well as the following

Assumption 5.2.2 (Effective locally uniform continuity for (Z, αC)). There is a
recursive function µ : N3 → N (an effective locally uniform modulus function) such that
for all n, k, ℓ, writing zn = αC(n):

∀t1, t2 ∈ [0, k] : |t1 − t2| < 2−µ(n,k,ℓ) ⇒ dA(zn(t1), zn(t2)) < 2−ℓ,

or, more simply but equivalently: There is a recursive function µ′ : N2 → N such that for
all n, k, writing zn = αC(n):

∀t1, t2 ∈ [0, k] : |t1 − t2| < 2−µ′(n,k) ⇒ dA(zn(t1), zn(t2)) < 2−k.

5.3 Computational closure

For our model of concrete computation on C[T, A], we are interested in the computational
closures Cαs

(Xs) of the enumerated subsets (Xs, αs) of the spaces Cs (s ∈ Sort), with
enumerations

αs : Ωαs
։ Cαs

(Xs)
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so that
Xs ⊆ Cαs

(Xs) ⊆ Cs (s ∈ Sort)

as we now describe.

First, for the complete metric space A, let we define the set CαA(X) of α-computable
elements of A, to be the limits in A of effectively convergent Cauchy sequences of elements
of the enumerated subset X , with the corresponding enumeration

αA : ΩαA ։ CαA(X).

Details of the construction of CαA(X) and αA can be found in [TZ04]. We omit them,
since below, for the computational closure of Z ∈ C[T, A], we describe a model of concrete
computability for a more general situation — the non-metric topological space C[T, A].

The computational closures CαR(Q) and CαT(Q+) in R and T respectively are defined
in the same way.

The computational closure of N is, trivially, N, with (again) the identity enumeration.

Finally, for the space C[T, A] with its enumerated subset (Z, αC) (where we henceforth
usually drop the subscripts of α and α), let

Cα(T, A) =df Cα(Z) ⊂ C[T, A]

be the set of all limits in C[T, A] of α-effectively locally uniform Cauchy sequences of
elements of Z — such limits always existing by the completeness of C[T, A] (Lemma 3.1.4)
— and let Ωα ⊂ N be the set of codes for Cα(T, A). More precisely, Ωα consists of pairs
of numbers c = 〈e,m〉 where

(i) e is an index for a total recursive function defining a sequence

z0, z1, z2, . . . (5.1)

of elements of Z, where zn = α({e}(n)), and

(ii) m is an index for a modulus of local uniform convergence for this sequence; i.e., for
all k:

∀n, p ≥ {m}(k), ∀t ∈ [0, k] : dA(zn(t), zp(t)) ≤ 2−k

or, equivalently:
∀n, p ≥ {m}(k), dk(zn ↾k, zp ↾k) ≤ 2−k. (5.2)

For any such code c, α(c) is defined as the limit in C[T, A] of the Cauchy sequence (5.1),
and Cα(T, A) is the range of α:

Z ⊂ Cα(T, A) ⊂ C[T, A]

α
6

α
6N Ωα
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The effective locally uniform continuity property (Assumption 5.2.2) “lifts” from (Z, αC)
to (Cα(T, A),αC):
Lemma 5.3.1 (Effective locally uniform continuity for Cα(T, A)). If (Z, αC)
satisfies effective locally uniform continuity, then so does (Cα(T, A), αC)
Proof: An effective locally uniform continuity modulus function for (Cα(T, A), αC) can be
constructed from the one for (Z, αC) (see Assumption 5.2.2) by essentially constructivising
the classical proof [Rud76] of the theorem that a limit of a uniform Cauchy sequence of
uniformly continuous functions is uniformly continuous. �

Note that in the case of (Cα(T, A), αC), the effectively locally uniform modulus function
µ is partial, defined only on inputs (n, . . . ) for which n ∈ Ωα.

5.4 Concrete computation on C[T, A]

For a tuple of sorts σ = (s1, . . . , sm), we have the product space

Cσ =df Cs1
× · · · × Csm

,

and product domain
Ωσ

α =df Ωαs1
× · · · × Ωαsm

⊆ Nm

and define the product enumeration

ασ = (αs1
, . . . , αsm

) : Ωσ
α → Cσ

in the obvious way.

We are interested in (partial) functions on C[T, A] of type

f : Cσ ⇀ Cs.

Definition 5.4.1 (Tracking function). Let f : Cσ ⇀ Cs, where σ = (s1, . . . , sm). A
function ϕ : Ωσ

α ⇀ Ωαs
is an α-tracking function for f if the following diagram commutes:

Cσ f - Cs

ασ
6 6

αs

Ωσ
α

-
ϕ Ωα

in the sense that for all k ∈ Ωσ
α,

f(ασ(k)) ↓ =⇒ ϕ(k) ↓ ∧ϕ(k) ∈ Ωαs
∧ f(ασ(k)) = αs(ϕ(k)).

Definition 5.4.2 (Concrete computability on C[T, A]). Suppose f, g1, . . . , gk are
functions on C[T, A] with α-tracking functions ϕ, ψ1, . . . , ψk respectively. Then f is α-
computable in (or relative to) g1, . . . , gk iff ϕ is partially recursive in ψi, . . . , ψk.
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Remarks 5.4.3.

(a) (Locally fast Cauchy sequences.) We may assume, when convenient, that the
modulus of convergence for a given code is the identity , i.e., replace (5.2) by the simpler

∀m, l ≥ n : dk(zm ↾n, zl ↾n) < 2−n,

or equivalently,

∀m > n : dk(zm ↾n, zn ↾n) < 2−n, (5.3)

because any code c = 〈e,m〉 satisfying (5.2) can be effectively replaced by a code for the
same element of Cα(T,R) satisfying (5.3), namely c′ = 〈e′, m1〉, where m1 is a standard
code for the identity function on N, and {e′}(n) = {e}({m}(n)) = z{m}(n). In the case of
a code c = 〈e,m1〉 satisfying (5.3) (with α({e}(n)) = zn), the sequence (5.1) is called a
locally fast Cauchy sequence. We may then, for simplicity, call e itself the “code”, and the
argument of α. So we can shift between “c-codes” and “e-codes” as convenient.

(b) (Computational closure of Cα(T, A).) The subspace Cα(T, A) is computationally
closed in C[T, A], in the sense that the limit of a α-effectively locally uniformly Cauchy
sequence of elements of Cα(T, A) is again in Cα(T, A), i.e., Cα(Cα(T, A)) = Cα(T, A).

There is one more assumption needed on the choice of the enumerations α (specifically
αA and αC) from which α was constructed:

Assumption 5.4.4 (Σ-effectivity of α). The basic functions of the algebra C[T, A],
namely dA and eval, are α-computable.

This is used in the proof of the following corollary, which in turn is used in the proof of
Theorem 5.

Corollary 5.4.5. The function

f : N× C[T, A]m × C[T, A]m → R
defined by

f(k,u, v) = dk(u, v)

is α-computable.

Proof: It is required to find, α-effectively and uniformly in k,

sup
0≤t≤k

dA(u(t), v(t)).

For this we can follow the technique of [PER89] (Chapter 0, Theorem 7) using the effective
locally uniform continuity of u and v. By Assumption 5.4.4 the function dA in the above
expression is α-computable, as is the function evalm(u, t) =df u(t). �
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Example 5.4.6 (Concrete computation on C[T,R]). Consider, in particular, the
case that the metric space A is R. As stated above, for αA we would take the same as αR,
i.e., a standard enumeration of the rationals.

As an example of a countable and locally uniformly dense subset of C[T,R], take Z =
ZZ, the set of all continuous rational “zigzag functions” from T to R with finite support ,
a typical example of which is shown in Figure 10, where we require that the starting and
turning points (p1, . . . , p7 in the figure) have rational coordinates, and which are zero from
some point on (p7 in the figure).

It is clear that the set ZZ, under any reasonable enumeration αC, satisfies the effective
locally uniform continuity assumption (5.2.2). Also, the enumeration α derived from α is
clearly Σ-effective (Assumption 5.4.4).

0 t

p2

p3

p4 p5

p6

p7

p1

Figure 10: Zigzag function (points p1, . . . , p7 are rational)

Note that we could have used, as our starting point, the set of polynomial functions
of t with rational coefficients. This would produce the same set Cα(T,R) of computable
elements of C[T,R].

5.5 Relative concrete computability of functions defined by analog networks

Given a network N as in §2.3, we want to show that the network function ΦN is α-
computable relative to the module functions, provided it is contracting at the parameter
and stream inputs.

For this we need a constructive concept of contraction, namely that a contraction mod-
ulus λ < 1 can be found effectively in the parameters c and stream inputs x.

Definition 5.5.1 (Effectively contracting network). Given a subset U ⊆ Ar ×
C[T, A]p, the network N is (α)-effectively contracting on U if a contraction modulus λ,x
can be found α-effectively in (c, x) ∈ U .
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This means that there is a recursive partial function ϕ : Nr ×Np ⇀ N which α-tracks
λ,x as a function of (c, x) restricted to U .

Note that this is certainly the case with the two case studies in Section 4. In Case
Study 1, for example, a value for λ can be found effectively in the parameters M,K,D
(and independent of the input stream f), by equation (4.7), in the region

U =df { (M,K,D) ∈ R3 |M > max(K,D) }.

Similarly for Case Study 2.

We want to prove the following.

Theorem 5. Suppose the network N satisfies the condition Caus , the enumerated sets
(X,αA) and (Z, αC) are dense in A and C[T, A] respectively, (Z, αC) satisfies effective local
uniform continuity, and α is Σ-effective. Suppose also N is α-effectively contracting on
U ⊆ Ar × C[T, A]p. Then the network function

ΦN : Ar × C[T, A]p ⇀ C[T, A]q

is defined (at least) on U , and is α-computable relative to the module functions of N .
Hence if the module functions are α-computable, then so is ΦN .

From now on, by “computable” we mean α-computable.

Consider, then, a network N satisfying Caus , and enumerations α of C[T, A] satisfying
effective local uniform continuity and Σ-effectivity. Recall the definitions and notation in
§3.2.

Lemma 5.5.2. The composition of two computable functions is computable.

Lemma 5.5.3. The function

ΨN : Ar × C[T, A]p × C[T, A]m−p → C[T, A]m−p

defined by
ΨN (c, x,u) = ΨN,x(u) = (Fp+1(u1, c1), . . . , Fm(um, cm))

(cf. (3.10), (3.11)) is computable relative to F1, . . . , Fm.

We need an effective version of the notion of locally uniform Cauchy sequence (Definition
3.1.1).

Definition 5.5.4 (Effectively locally uniform Cauchy sequence). A sequence
(u0,u1,u2, . . . ) of elements of C[T, A]p is effectively locally uniformly Cauchy if there is a
recursive function ν : N→ N such that for all k and all m,n ≥ ν(k), dk(um,un) ≤ 2−k.
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Lemma 5.5.5. Let
f : Ar × C[T, A]m ×N ⇀ C[T, A]

be a function such that for all (c, x) ∈ U ⊆ Ar ×C[T, A]m and all n, f(c, x, n) ↓, and for
all (c, x) ∈ U the sequence

f(c, x, 0), f(c, x, 1), f(c, x, 2), . . .

of elements of C[T, A] is effectively locally uniformly Cauchy. Define

g : Ar × C[T, A]m ⇀ C[T, A]

by
g(c, x) ≃ lim

n
f(c, x, n).

Then g is defined (at least) on U , and if f is computable, then so is g.

Proof: Essentially, one takes a “diagonal sequence” of approximations of the sequence
f(c, x, n) for n = 0, 1, 2, . . . (as in the proof of Remark 5.4.3(b)). �

Recall now that the network function

ΦN : Ar × C[T, A]p ⇀ C[T, A]q,

ΦN (c, x) ↓ y (say),with

assuming (c, x) ∈ U , is obtained from the fixed point u of the function

ΨN,x : C[T, A]m−p ⇀ C[T, A]m−p,

ΨN,x(u) = ui.e.,

since for a given input (c, x) ∈ U , the output y of ΦN is just a sub-tuple of this fixed point
u.

So it is sufficent to show that the function from (c, x) ∈ U to this u is computable
(relative to the module functions) — or, as we will express it, u is computable in (c, x)
(relative to the module functions).

Now consider the sequence of stream tuples un, defined in the proof of Theorem 1,
taking f = ΨN,x, for some (c, x) ∈ U .

(1) The streams un are computable in (c, x), for all n. This is shown by induction on n:

Basis. For n = 0, this is clear: take for u0 any stream with a computable constant value.

Induction step. Suppose un is computable in (c, x) (relative to the module functions).
Then un+1 = ΨN,x(un) is also computable in (c, x) (relative to the module functions) by
Lemmas 5.5.3 and 5.5.2.

(2) Further, (un) is an effectively locally uniform Cauchy sequence. This is because, by
assumption, a value for the contraction modulus λ can be found effectively in (c, x) ∈ U .
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Hence a value for N in the inequality (3.8), as a witness to the local uniform convergence
of this sequence, can be found effectively in (c, x) (relative to the module functions) by
Corollary 5.4.5. Hence, by Lemma 5.5.5, the limit u of this sequence, which is the fixed
point of the function ΨN,x as desired, is also computable in (c, x) (relative to the module
functions).

This completes the proof of Theorem 5.

5.6 Concrete computability of module functions

We show that various standard module functions on C[T,R] are α-computable.

• The identity function

• Addition

• Multiplication by a constant

These are all obvious.

• Integration . This is the interesting case. Suppose

F(u, c) = v, where v(t) = (

∫ t

0

u) + c.

By the effective locally uniform continuity assumption (5.2.2, Version 2) for αC, applied
to αC by Lemma 5.3.1, let µ be the effective locally uniform continuity modulus function
for C[T,R]. Define

g : C[T,R] ×N→ C[T,R]

by
g(u, n) = vn,

where vn(t) is the Riemann sum for u from 0 to t, using rectangles of width ≤ 2−µ(e,2n),
where e is a code for u. Then

dn(vn, v) ≤ 2−2n · n < 2−n,

and so (vn) is a locally fast Cauchy sequence, with limit v. Since g is easily seen to be
computable, so is F, by Lemma 5.5.5.

It follows that all the module functions in the case studies in Section 4 are computable.
Combining this with Theorem 5, we conclude that the functions which solve the network
equations in these two case studies are computable.

6 Concluding Remarks

The contemporary literature is focussed on mathematically modelling analog computation
and characterising its computational power, commonly using schemes to define classes
of functions on the real numbers. The base functions of the schemes are normally the
traditional functions of analog computation (adders, integrators etc.).
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Our network models, involving arbitrary processing units on arbitrary data in continuous
time, are new. They emphasise the fundamental role of a physical technology on which
analog computation is based.

6.1 What is analog computation?

A comprehensive model of analog computation should cover these six aspects:

1. Identifying the motivating problem P .

2. Specifying the problem P by a system E of differential equations.

3. Designing a network N from P to solve E.

4. Calculating conditions on the data and parameters of P to ensure good experimental
behaviour of N .

5. Constructing an analog machine M from N using a particular technology.

6. Using the machine M for measurements/experimental procedures.

Our network model concentrates on aspects 3 and 4, though in our case studies in Section
4 we consider aspects 1 and 2, and comment upon the implementation aspects 5 and 6.

6.2 Problems about networks, related to the present research

Several questions and problems concerning analog networks are left open:

1. The modules of our theory are essentially “black boxes”. For the module functions, it
turned out (surprisingly?) that we did not need the assumption of time invariance at
all. This assumption, as well as causality (which we did need) are both satisfied by the
standard module functions listed in §5.6, and are common in dynamical system theory
[Hay89, OW97]. What is the significance of such assumptions — or their absence — in
the present setting?

2. Nor did we need the assumption of continuity of the modules for the existence of the
network function (part (a) of Theorem 2), only for its continuity (part(b)). Again,
this assumption is satisfied by the standard module functions listed in §5.6. Note also
that the input and output streams are continuous. The interest of all this is related to
Hadamard’s principle (as already noted in Remark 3.3.2). What happens if we weaken
our continuity assumption for modules — or for streams — by postulating, for example,
piecewise continuous streams? This is a common natural phenomenon: consider phase
changes in thermodynamics.

3. What is the consequence of allowing
(a) module functions that are partial or many-valued?
(b) partial streams?

4. Find reasonable conditions, other than the contraction property, that guarantee “good
behaviour” of these networks.

5. Characterise the networks that produce all (and only) concretely computable functions
on C[T, A].

To the above technical questions can be added one of a more conceptual nature:
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6. How can we be certain that our constructed solution, as the fixed point of a certain
function, indeed represents the behaviour of the network N — or, for that matter, that
N faithfully represents the original physical system P? Eugene Wigner’s celebrated
paper [Wig60] may be relevant here, at least for the first question.

6.3 General problems concerning analog computation

Widening our considerations from networks to other paradigms of analog computation, we
have the following two general problems, complementing the two questions about analog
technology given in the Introduction:

1. Classification of analog models: Classify the disparate models of analog computa-
tion, by establishing equivalences or inequivalences between them.

This would seem to require a substantial research programme. In addition to schemes
[Moo96] and systems of differential equations [Sha41, PE74] there are models with quite
different motivations. For example, a generalisation of the theory of finite state automata
to continuous time has been proposed by Trakhtenbrot, Rabinovich and others [Tra66,
RT98, Rab03], which features data signals modelled by piecewise constant functions. In
addition, there are models of continuous neural nets that are relevant for any general theory
of analog computation [Cul91]. Finally, control systems provide a wealth of theories and
examples that must be considered in a comprehensive classification programme [Son90].

2. Technology integration: How can analog and digital models be integrated, either in
hybrid systems, or in analog implementations of digital systems, or in digital implemen-
tations of analog systems?

We conclude with a question of a more speculative or philosophical nature, possibly related
to question 6 of the previous subsection.

3. Given that scientific measurements produce rational numbers, how is it that such ex-
perimental procedures, applied to analog machines, can calculate functions on the real
continuum?

Clearly there is a great deal to theorise about.
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