
AUTHOR
COPY

Computability 3 (2014) 9–44
DOI 10.3233/COM-14024
IOS Press

9

Computability of Operators on Continuous and Discrete Time Streams

J.V. Tucker
Department of Computer Science
Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
J.V.Tucker@swansea.ac.uk

J.I. Zucker
Department of Computing and Software
McMaster University, Hamilton, Ontario L8S 4K1, Canada
zucker@mcmaster.ca

Abstract. A stream is a sequence of data indexed by time. The behaviour of natural and artificial systems can be modelled by
streams and stream transformations. There are two distinct types of data stream: streams based on continuous time and streams
based on discrete time. Having investigated case studies of both kinds separately, we have begun to combine their study in a
unified theory of stream transformers, specified by equations. Using only the standard mathematical techniques of topology, we
have proved continuity properties of stream transformers. Here, in this sequel, we analyse their computability. We use the theory
of computable functions on algebras to design two distinct methods for defining computability on continuous and discrete time
streams of data from a complete metric space. One is based on low-level concrete representations, specifically enumerations, and
the other is based on high-level programming, specifically ‘while’ programs, over abstract data types. We analyse when these
methods are equivalent. We demonstrate the use of the methods by showing the computability of an analog computing system.
We discuss the idea that continuity and computability are important for models of physical systems to be “well-posed”.

Keywords: analog computing, computing on streams, many-sorted algebras, topological algebras, stream operators,
synchronous concurrent algorithms

1. Introduction
1.1. On Generalising Computability Theory and Streams
The generalisation of computability theory to arbitrary data types aims at models analysing the computability of
functions f : A→ B on any sets A and B. At the origins of the theory are countable sets of discrete data that can be
faithfully coded by strings and natural numbers, since our understanding of algorithms and computability is founded
upon the data types of strings and natural numbers.

However, many applications require us to compute on uncountable sets of continuous data, including: real and
complex numbers; bit streams, signals and waveforms; spatial objects, scenes and animations; scalar and vector
fields; and probability distributions. The importance of such data types motivates generalisations of computability
theory. In our view,

Each data type requires its own computability theory, one that is capable of (i) analysing the special
nature of computation with the data and (ii) illuminating the use of the data in applications.

A generalization of computability theory to arbitrary data types should expand and deepen our understanding of
finite computation, and be a practical tool for developing useful computability theories for particular data types.

Data distributed in space and time are to be found everywhere. For the examples of continuous data mentioned,
we can expect the custom-made computability theories to have much in common mathematically. For example, they
would involve the approximation of functions on topological, metric, normed and ordered spaces of various kinds.
In many contexts, one finds that continuous data are represented by functions of the form u : X → A, where X is a
set of points in time or space, and A is a set of data. More specifically, in some cases the sets X and A have a topology

2211-3568/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

AUTHOR
COPY

10 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

(possibly discrete) and the functions of interest are those in the set

C[X, A] = {u : X → A | u is a continuous total function}.

Thus, mathematically, we are interested in models of computability for functions of the form

Φ : Ar × C[X, A]m → C[X, A]n.

Now, a stream is a sequence of data indexed by time. There are two distinct types of data stream: streams based
on continuous time and streams based on discrete time. The behaviour of systems in time can be modelled by streams
and stream transformations. Continuous time is used in models based on ordinary and partial differential equations
(ODEs and PDEs), and in networks of analog devices. Discrete time is used in cellular automata, neural nets and
other concurrent algorithms, and in approximations to ODEs and PDEs. Thus, we will concentrate on the special
case that X represents time. Although there are many ways of modelling time, we choose X = T, where T is either
the non-negative reals R≥0 or the non-negative integers N, to represent continuous and discrete time respectively.

In these two cases, the functions u ∈ C[T, A] will be called streams , and C[T, A] will be called a stream space .
We call the streams continuous or discrete, according as T = R≥0 or T = N. In [34] we established a basic theory
of the specification of functions Φ on streams as fixed points of operators with contracting properties; the existence,
uniqueness and continuity of the Φ were proved.

Computability theories for C[T, A] should be useful for developing particular computability theories for all sorts
of streams. In general, we have found [30–32] that computability models fall into one of two classes: concrete
models, which involve building a specific representation of the data type; and abstract models, which involve
programming directly with the primitive operations of the data type in ways that are independent of specific
representations. We will consider concrete and abstract computability models for functions Φ on the data type
C[T, A], and compare them. Our choice of concrete model is based on enumeration theory. Our choice of abstract
model is based upon high-level programming with ‘ while’ programs over algebras.

Let us examine these ideas in more detail.

1.2. Stream Transformers as Fixed Points
Each data type of the form C[T, A] arises typically in some practical situation, and has its own special features.
The algorithmic models that are characteristic of that situation determine, or at least suggest, a corresponding
computability theory. For example, we will motivate and illustrate our computability theories using these examples:

(i) Analog streams: X is continuous time T = R≥0, the non-negative reals, and the data are reals A = [0, 1] or
A = R or spectra modelled by continuous mappings from a compact space to the reals.

(ii) Digital streams: X is discrete time T = {0, 1, 2, . . . }, and the data are bits A = {0, 1}.
We have encountered these data types before: continuous streams processed by analog networks [33]; discrete
streams processed by digital networks [23, 27].

Here, we investigate stream transformers of the form

Φ : Ar × As × C[T, A]p → C[T, A]m (1.1)

where for tuples of system parameters c ∈ Ar, initial values a ∈ As and input streams x ∈ C[T, A]p, the value
Φ(c, a, x) ∈ C[T, A]m is obtained as the fixed point of a contracting operator

Fc, a, x : C[T, A]m → C[T, A]m (1.2)

where

F : Ar × As × C[T, A]p → (C[T, A]m → C[T, A]m)

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 11

is represented more conveniently in the uncurried form:

F : Ar × As × C[T, A]p × C[T, A]m → C[T, A]m,

so that F(c, a, x, ·) = Fc, a, x in (1.2). We assume that F satisfies a causality condition which is natural in the
context of stream processing, because of time, and turns out to be crucial in the proofs of the theorems.

1.3. Concrete and Abstract Computability
For a huge range of spaces T and A, we can equip C[T, A] with the compact-open topology and consider the partial
functions on C[T, A] that are computable or approximably computable with respect to this topology. In this paper
we will develop two computability models for C[T, A] in the case that A is a complete metric space:

(1) a concrete computability model, in which computations are based on concrete representations of the space
C[T, A] constructed from N, and

(2) an abstract computability model, independent of representations of the space C[T, A], in which computations
are based on programs from a high level imperative language, using a suitable set of algebraic operations on
C[T, A].

Thus, this paper plays a role in advancing our general theory of computability [29]. In general, abstract computability
implies concrete computability but not conversely [32]. Indeed, the converse is quite subtle even in the case of
simple algebras. We have studied the problem for computable algebras in [32] and, more significantly, for metric
algebras A in [30], and shown that equivalence theorems are possible. One aim of this paper is to show how to use
these general cases to design solutions for the stream space C[T, A].

Designing abstract models capable of capturing concrete models is an important general problem, one that is
surprisingly tricky. It has the general form:

Given a class ConcR(A) of concrete computable functions on a set A via representation R, find
algebraic operations on A to make an algebra A and an abstract programming language L such that

ConcR(A) = AbsL(A),

where AbsL(A) is the class of L-computable functions over A, or L-approximable functions over A,
assuming A is a metric algebra.

The concrete model of computability for the space C[T, A] is constructed using the theory of enumerations of
countable sets, started by Malcev [15]. The abstract model of computability for the space C[T, A] is constructed using
the theory of ‘ while’ programs over many-sorted algebras. There are dozens of different choices of computability
models for algebras, many of which we have classified [22, 28, 29].

The high level language we actually used in (2) is a significant expansion of the While language. It must be
equipped with a “countable choice” operation and finite arrays, and is denoted WhileCC∗ [30]; and we consider
approximability of functions by such programs. In [30] we proved the equivalence of these imperative and
enumeration models, i.e., the soundness and completeness of the abstract model with respect to the concrete model
over certain algebras.

We will first prove concrete computability of Φ, assuming concrete computability of F, and then, by applying
this completeness result to the space C[T, A], prove abstract computability of Φ, assuming abstract computability
of F.

1.4. Outline of Paper and Results
In Section 2 we review the stream space C[T, A], and summarise the theory and results from [34], which proves,
firstly, the existence and uniqueness, and secondly, continuity of the fixed point function Φ for the contracting
operator F, under some reasonable assumptions, such as continuity of F.

AUTHOR
COPY

12 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

In Section 3 we develop our concrete model of computability on C[T, A], and prove:

Theorem A (Concrete computability): Under some reasonable assumptions, if F is concretely computable, then
so is Φ.

Finally, in Section 4, we develop the abstract model of computability (WhileCC∗ approximability) on C[T, A]. By
means of Theorem A, together with the completeness theorem for abstract vs concrete computability [30], applied
to the space C[T, A], we prove

Theorem B (Abstract computability): Under some further reasonable assumptions, notably effective uniform local
continuity of F, if F is WhileCC∗ approximable, then so is Φ.

One of the aims of this paper is to develop computability theories that can analyse applications. We wish to
consider networks processing continuous and discrete streams — introduced in [33] and [23], respectively – from a
common standpoint. In Section 5, these applications are illustrated by two examples:

(1) analog networks , with continuous time T = R≥0, using the theory developed in [33], and specifically the case
study of a mass/spring/damper system investigated there;

(2) synchronous concurrent algorithms (SCAs), with discrete time T=N, using the theory developed in [23].

These are both archetypal discrete space models, which formally include a huge range of mathematical models of
natural and artificial systems.

This paper is a sequel to [34]. We have tried to minimise its dependence on that paper with a short review of
the latter in §2.1, and also to make it independent of [23, 33]. However, the motivation and technicalities are best
apprehended in the light of our entire work.

A remark about notation: on the whole it is fairly standard. The symbol ‘⇀’ will denote a partial function.

Acknowledgments
We thank Jens Blanck (Swansea), Nick James (McMaster University) and Ken Johnson (INRIA, France) and three
anonymous referees for many useful comments and suggestions on earlier drafts of this paper.

The research of the second author was supported by a grant from the Natural Sciences and Engineering Research
Council (Canada). The second author also appreciates the generosity of the Computer Science Department of
Swansea University, which has hosted a number of his visits for the purpose of collaborating with the first author.

2. Background
2.1. Review of the Stream Space C[T, A]
As in [34], we will investigate the space C[T, A] of continuous or discrete A-valued streams , i.e., continuous
functions from T to A, where T is either R≥0 or N, representing continuous and discrete time respectively, and
(A, dA) is a complete metric space. (Note that in the case T = N, all functions from T to A are trivially continuous.)

We will also assume that A is separable, which will be relevant for concrete computability in Section 3.
The stream space C[T, A] is given the local uniform (or compact-open) topology, generated by the

pseudometrics

d T(u, v) = sup
0≤t≤T

dA(u(t), v(t))

for all T ≥ 0, where in fact T can be restricted to ranging over a sequence T0 < T1 < T2 < . . . of increasing
unbounded values, defining a compact exhaustion (Kk) of T, with Kk = [0, Tk] (k = 0, 1, 2, . . .) [34]. In this paper
we will take Tk = kτ , for some fixed τ > 0, to give the “standard exhaustion” Kk = [0, kτ], and perforce taking
τ = 1 when T = N. (In practice τ will be chosen as the “contraction increment” for a contracting operator: see
Definition 2.2 below.)

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 13

This topology is metrisable [34, §2.3], with the metric

dC[T, A](u, v) =df

∞∑
k=0

min
(
dkτ (u, v), 2−k). (2.1)

However it turns out to be easier to take C[T, A] as a “pseudometric algebra” with global pseudometric function

D : N× T× C[T, A]2 → R
where D(k, τ , u, v) = dkτ (u, v) (2.2)

as basic, rather than the metric dC[T, A]. In any case, dC[T, A] is easily computable from D by (2.1) and (2.2). We also
have an evaluation function for streams

eval : C[T, A]× T → A

where eval(u, t) = u(t).

So we gather these functions into a many-sorted topological algebra1:

algebra C[T, A]
carriers A, T, C[T, A], R, N
functions dA : A2 → R,

dT : T2 → R,
D : N× T× C[T, A]2 → R,
eval : C[T, A]× T → A

end

(2.3)

where dT and dA are the metrics on T and A respectively.
C[T, A] is a topological algebra, because each of the five carriers has an associated topology (i.e., the compact

open topology for the function space, together with the usual one for R, and the discrete one for N) with respect
to which the basic functions are continuous. The carrier R is needed for the metric operations on A and T. The
carrier N is needed for (i) the domain of the global pseudometric function D, and (ii) the “N-standardness” of the
algebra [23, 30, 31] so as to facilitate the completeness theorem for abstract vs concrete computability on C[T, A]
(Theorem 4.7).

The signature2 Σ of C[T, A] can be inferred from (2.3). First, corresponding to the five carriers of C[T, A], there
are five sorts in the set Sort(Σ) of Σ-sorts:

• A of data, i.e., points in the metric space A,
• T of instants of time in T,
• C of streams, i.e., elements of C[T, A],
• R of reals R, for the metrics
• N of naturals N, for use in computation.

1 That is, a many-sorted algebra in which the carriers have topologies, relative to which each of the basic functions is continuous
2 A signature Σ for a many-sorted algebra A consists of a set of Σ-sorts, one for each carrier of A, and (typed) Σ-function symbols,

one for each basic function of A.

AUTHOR
COPY

14 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

Next, for each function shown in (2.3), the signature Σ has a function symbol of the corresponding type. Hence
Σ can be displayed as follows:

signature Σ
sorts A, T, C, R, N
functions dA : A2 → R,

dT : T2 → R,
D : N× T× C2 → R,
eval : C× T→ A

end

(2.4)

This is quite rudimentary — it ignores the basic functions in the algebraic structures of A, T, R and N. This is
irrelevant for concrete computation on C[T, A], which derives computational power from tracking functions on N
(as we will see). It is relevant for abstract computation, as studied in the next section, where we will find it necessary
to expand the algebraic structure of C[T, A] (§4.1).
For ease of notation, we will sometimes refer to the five carriers of C[T, A] as Cs for s ∈ Sort(Σ).

2.2. Causality, Contraction and Continuity: A review
We briefly review the main definitions and theorems of [34]. First, we define the concepts of causality and
contraction for stream operators [34, §§3.2, 3.3] which are crucial assumptions in all the following theorems. We
use the following notation: for u, v ∈ C[T, A]m and 0 ≤ a ≤ b:

d a,b(u, v) =df sup
a≤t≤b

dA(u(t), v(t)).

Now consider an operator F : C[T, A]m → C[T, A]m.

Definition 2.1 (Causality). F is causal if for all u, v ∈ C[T, A]m:

∀T ≥ 0, u�[0,T) = v�[0,T) =⇒ F(u)(T) = F(v)(T).

Definition 2.2 (Contracting operator). Let 0 < λ < 1 and τ > 0.
F is contracting w.r.t. (λ, τ), or F ∈ Contr(λ, τ), if for all u, v ∈ C[T, A]m:

for all T ≥ 0 u�T = v�T =⇒ dT , T+τ (F(u), F(v)) ≤ λ · dT , T+τ (u, v) (2.5)

where we write u�T for u�[0,T].
We call λ and τ the contraction modulus and contraction increment respectively.

Note that if F is causal, (2.5) can be rewritten as

for all T ≥ 0 u�T = v�T =⇒ dT+τ (F(u), F(v)) ≤ λ · dT+τ (u, v).

Also, if F is causal and F ∈ Contr(λ, τ) and 0 < τ ′ < τ , then F ∈ Contr(λ, τ ′).

Theorem 1 (Fixed point of contracting and causal operator).
Given a stream transformer F : C[T, A]m → C[T, A]m, suppose

(i) F ∈ Contr(λ, τ) for 0 < λ < 1 and τ > 0, and
(ii) F is causal.

Then F has a unique fixed point, i.e., there is a unique u = FP(F) ∈ C[T, A]m such that F(u) = u.

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 15

This is proved in [34, §3].
Now, with applications in mind, we consider operators of the form

F : Ar × As × C[T, A]p → (C[T, A]m → C[T, A]m) (2.6)

(0 ≤ r, 0 ≤ s ≤ m, p > 0, m > 0) or, in uncurried form,

F : Ar × As × C[T, A]p × C[T, A]m → C[T, A]m (2.7)

where Ar contains the r system parameters c = (c1, . . . , cr), As contains the s initial constants a = (a1, . . . , as),
and C[T, A]p contains the p input streams x = (x1, . . . , xp). Think of a as the initial values of the first s of the m
non-input stream variables u. Then for c ∈ Ar, a ∈ As and x ∈ C[T, A]p, Fc, a, x is the operator

Fc, a, x = F(c, a, x, ·) : C[T, A]m → C[T, A]m. (2.8)

Next we restrict the parameters (c, a, x) to an open subset U ⊆ Ar × As × C[T, A]p, which we call the “contraction
domain” for F, and assume that we have U-indexed families of contraction moduli 〈λc, a, x | (c, a, x) ∈ U〉 and
increments 〈τc, a, x | (c, a, x) ∈ U〉 such that Fc, a, x is contracting with respect to (λc, a, x, τc, a, x), for all (c, a, x) ∈ U.
We write (boldface) ‘λ’ and ‘τ ’ for the functions corresponding to these two families, thus:

λ : Ar × As × C[T, A]p ⇀ R
and τ : Ar × As × C[T, A]p ⇀ T

(2.9a)

which are defined (at least) on U, such that for all (c, a, x) ∈ U:

λ(c, a, x) = λc, a, x,
τ (c, a, x) = τc, a, x.

(2.9b)

Then, by Theorem 1, for all (c, a, x) ∈ U, Fc, a, x has a unique fixed point u = FP(Fc, a, x), depending on the
parameters and inputs (c, a, x). We now want to consider this fixed point as a function of (c, a, x) ∈ U. Hence we
define the fixed point function

Φ : Ar × As × C[T, A]p ⇀ C[T, A]m (2.10a)

by: dom(Φ) = U, and for (c, a, x) ∈ U,

Φ(c, a, x) = FP(Fc, a, x). (2.10b)

We must also define the concepts of shift invariance of operators and closure of domains under shifts [34,
§§4.1, 4.2] which are crucial assumptions in Theorem B. Briefly, a stream operator F is shift invariant if its behaviour
is invariant under time shifts, with suitable changes made to the initial constants .

More precisely, we first define, for any u ∈ C[T, A]m and T ≥ 0, the shifted stream tuple

shift T(u)(t) =df u(T + t).

We also use the following notation: for u ∈ C[T, A]m, s ≤ m and T ≥ 0, we write us(T) for the s-tuple
(u1(T), . . . , us(T)).

AUTHOR
COPY

16 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

Definition 2.3 (Shift invariance with updated initial values). An operator F as in (2.7) is shift invariant if for all
(c, a, x, u) ∈ Ar × As × C[T, A]p × C[T, A]m and T ≥ 0, if F(c, a, x, u)�T = u�T (i.e., u is a T-approximate fixed
point of Fc, a, x), then

(i) us(0) = a (i.e., the inputs are “compatible”), and
(ii) F(c, us(T), shift T(x), shift T(u)) = shift T(F(c, a, x, u)).

This is the “invariance property” of F, subject to the “updating” of the initial values from us(0) (= a) to us(T).
We conclude this survey of [34] with a theorem on the continuity of the fixed point function Φ. First we need

one more definition.

Definition 2.4 (Closure of domain under shifts). Given Φ as in (2.10), with dom(Φ) = U, we say that U is
closed under shifts w.r.t. Φ if for all T > 0 and all (c, a, x):

(c, a, x) ∈ U =⇒ (c, Φ(c, a, x)s(T), shift T(x)) ∈ U.

Theorem 2 (Continuity of FP).
Given stream operators F and Fc, a, x as in (2.7) and (2.8), an open set U ⊆ Ar × As × C[T, A]p, and U-indexed
families of contraction moduli λ = 〈λc, a, x | (c, a, x) ∈ U〉 and increments τ = 〈τc, a, x | (c, a, x) ∈ U〉, suppose

(i) Fc, a, x ∈ Contr(λc, a, x , τc, a, x) for all (c, a, x) ∈ U,
(ii) Fc, a, x is causal,

(iii) F is shift invariant,
(iv) F is continuous3 on U,
(v) λ and τ are locally bounded on U, and

(vi) U is closed under shifts w.r.t. Φ,

where Φ is the fixed point function for F as in (2.10), given by Theorem 1.
Then Φ is continuous on U.

3. Concrete Computability in C[T, A]
3.1. Enumerations α; α-tracking Functions
The simplest way to make a concrete model is to start with the theory of enumerated sets begun by Malcev [15]. We
have applied this theory to complete separable metric spaces [30, 31], and will now construct an enumeration-based
model for the space C[T, A], and prove concrete computability of the fixed point of a contracting operator.4

We begin with enumerations of elements of the algebra C[T, A]. We fix a family

α = 〈αs | s ∈ Sort(Σ)〉

of enumerations of certain subsets Zs of the carriers Cs of C[T, A], i.e., surjections

αs : Ωα,s � Zs ⊆ Cs (s ∈ Sort(Σ))

of some subset Ωα,s of N with Zs. The set Zs is called the (αs-)enumerated subset of Cs. The elements of Ωα,s can
be thought of as codes (via the coding given by the inverse of α) for the elements of Zs, and Ωα,s is an (α-)code set
for Zs.

The family of enumerations α is said to represent A.

3 This continuity assumption is made with respect to the first 3 arguments of F only, i.e., (c, a, x) ∈ U ⊆ Ar × As × C[T, A]p. No
assumption of continuity need be made for the fourth (stream) argument.

4 An alternative treatment of concrete computation on C[T, A] in the case that T ⊆ Rm and A = Rn, also using the compact-open
topology, can be found in [35, Ch. 6].

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 17

Our concrete model (§3.2) will be built from such a family of enumerations α.
Let us consider the nature of these enumerations. To summarise their construction: the carriers of C[T, A] are

the sets

A, T, C[T, A], R, N,

with (respectively) enumerated subsets

ZA, ZT = Q≥0 or N, ZC, ZR = Q, ZN = N.

The enumeration αA will be, typically, a “standard” enumeration of ZA ⊂ A, with code set Ωα,A a decidable
subset of N. For example, if A = R, we can take ZA = Q and αA to be a standard coding of Q. The mapping αT is
a standard enumeration of the non-negative rationals (if T = R≥0) or the identity (if T = N). The mapping αR is a
standard enumeration of the rationals, and αN is the identity on N.

Suitable enumerations αc of subsets ZC of C[T, A] are not quite so trivial to construct from αA and αT, especially
if density of ZC in C[T, A] is required (see the following definition).

Definition 3.1 (Density of α). The family α of enumerations is dense in C[T, A] if for all Σ-sorts s, Zs is a dense
subset of As.

The assumption of density is needed to obtain an interesting concrete computability theory (as described in
§3.2). In fact, this assumption is non-trivial only for two sorts: the data sort A, and the stream sort C.

So A must be chosen to be separable. What about C[T, A]? It can be shown that separability of C[T, A] follows
from separability of T and A. However this is of no use in constructing an enumerated subset of C[T, A], since we
cannot simply use the enumeration of C[T, A] given by such a proof to construct an enumerated subset of C[T, A],
because the family α of enumerations must satisfy certain effectivity conditions, which will be needed in Theorem
A: effective local uniform continuity of α-streams, and Σ-effectivity of α (Definitions 3.3 and 3.21).

Definition 3.2 (α-streams). Streams in ZC, i.e., in the range of αc, will be called α-streams .

Another desirable property of the enumerations α (specifically αc) is effective locally uniform continuity of
α-streams:

Definition 3.3 (Effective locally uniform continuity of α-streams). The α-streams are said to be effectively
locally uniformly continuous if there is a recursive function µ : N3 → N (an effective locally uniform continuity
modulus) such that for all k, ` and n ∈ Ωα,c, writing zn = αc(n):

∀t1, t2 ∈ [0, kτ] : |t1 − t2| < 2−µ(n,k,`) =⇒ dA(zn(t1), zn(t2)) < 2−`,

or, more simply but equivalently: There is a recursive function µ′ : N2 → N such that for all n, k, writing
zn = αc(n):

∀t1, t2 ∈ [0, kτ] : |t1 − t2| < 2−µ
′(n,k) =⇒ dA(zn(t1), zn(t2)) < 2−k.

Remark 3.4. When T = N, this condition is trivially satisfied, since (by the discreteness of N) all streams are
continuous — in fact, effectively globally uniformly continuous.

The value of this assumption of effective locally uniform continuity of α-streams may not be immediately
obvious. Note that the streams are, in any case, continuous by definition, and hence locally uniformly continuous.
The extra assumption here, namely effectivity of local uniform continuity for the α-streams, is conceptually

AUTHOR
COPY

18 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

reasonable5. Its value will become clearer when we consider α-computability (§3.2), as it will permit proofs of
useful results, such as α-computability of integration in our analog network example (see §5.1).

For convenience, we combine the above two useful conditions on α (density and effective local uniform
continuity of α-streams) into a “regularity” condition for α, which will be assumed in the rest of the paper; in
particular, in Theorems A and B, the Completeness Theorem 4.7, and the discussion in §6.2.

Definition 3.5 (Regularity of α). The family α of enumerations of C[T, A] is regular if it satisfies the two
conditions:

(a) α is dense in C[T, A] (Definition 3.1),
(b) α-streams are effectively locally uniformly continuous (Definition 3.3),

We introduce some terminology and notation. For a Σ-product type u = s1 × · · · × sm, we have the product
space

Cu =df Cs1 × · · · × Csm ,

and the product αu-enumeration

αu =df (αs1 , . . . ,αsm) : Ωu
α � Zu

(defined in the obvious way) of the subset

Zu =df Zs1 × · · · × Zsm ⊆ C
u

with the product domain

Ωu
α =df Ωα,s1 × · · · × Ωα,sm ⊆ Nm.

Definition 3.6 (α-tracking functions6). Let f : Cu ⇀ Cs and ϕ : Nm ⇀ N.

(a) ϕ is a tracking function with respect to α, or α-tracking function , for f , if the following diagram commutes:

Zu f �Zu

−−−−→ Zs

αu

x xαs

Ωu
α −−−−→

ϕ�Ωu
α

Ωα,s

(3.1)

in the sense that for all k ∈ Ωu
α

f (αu(k)) ↓ =⇒ ϕ(k) ↓ ∧ϕ(k) ∈ Ωα,s ∧ f (αu(k)) = αs(ϕ(k)). (3.2a)

(b) ϕ is a strict α-tracking function for f if in addition, for all k ∈ Ωu
α

f (αu(k)) ↑ =⇒ ϕ(k) ↑ . (3.2b)

Here we use the notation αu(k) = (αs1(k1), . . . , αsm(km)), where k = (k1, . . . , km). (We will sometimes drop
the type super- and subscripts.)

5 This can be compared to clause (ii) in Definition A of computability of functions in [17, p. 25], which is actually an assumption of
effective global uniform continuity, since the domain is compact.

6 These are called realizations in [35]

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 19

Note that we are not concerned with the behaviour – or the (un)definedness – of f off Zu, or of ϕ off Ωu
α.

We are looking for sufficient conditions for a function on C[T, A] to have an α-tracking function, and a function
on N to be an α-tracking function.

Let f : Cu ⇀ Cs, where u is an m-ary product type, and let ϕ : Nm ⇀ N.

Definition 3.7 (α-closedness of functions on C[T, A] and tracking functions).

(a) f is α-closed iff for any x ∈ Zu, if f (x) ↓ then f (x) ∈ Zs, i.e., f ! �Zu : Zu ⇀ Zs.
(b) ϕ is α-closed iff for any k ∈ Ωu

α, if ϕ(k) ↓ then ϕ(k) ∈ Ωα,s. i.e., ϕ! �Ωu
α : Ωu

α ⇀ Ωα,s.

Definition 3.8 (α-equivalence).

(a) For k1, k2 ∈ Ωα,s, k1≈s
αk2 iff αs(k1) = αs(k2).

(b) For k1, k2 ∈ Ωu
α, k1≈u

αk2 iff αu(k1) = αu(k2).

Note that ≈s
α and ≈u

α are equivalence relations on Ωα,s and Ωu
α respectively.

We will often drop the type symbols ‘s’ and ‘u’ from this notation.

Definition 3.9 (α-compatibility7). A function ϕ : Ωu
α ⇀ Ωα,s is compatible with α, or α-compatible, iff for all

k1, k2 ∈ Ωu
α,

k1≈αk2 =⇒ either ϕ(k1) ↓ ∧ ϕ(k2) ↓ ∧ ϕ(k1)≈αϕ(k2) (3.1)
or ϕ(k1) ↑ ∧ ϕ(k2) ↑ . (3.2)

Lemma 3.10. Suppose ϕ is an α-tracking function for f . Then

(a) f is α-closed,
(b) ϕ is α-closed,
(c) ϕ is α-compatible.

In the other direction:

Lemma 3.11. (a) If f is α-closed, then f has an α-tracking function.
(b) If ϕ is α-compatible and α-closed, then ϕ is an α-tracking function for some function.

Remark 3.12 (Σ-subalgebra generated by α)).
Suppose every basic function of C[T, A] is α-closed. (This is the case, for example, with Example 3.25 below.) Then
α generates a Σ-subalgebra of C[T, A], based on the family of α-enumerated sets Z = 〈Zs | s ∈ Sort(Σ)〉 and the
restrictions of these functions to Z:

algebra Z
carriers ZA, ZT, ZC, ZR, ZN
functions dA �Z : ZA

2 → ZR,
dT �Z : ZT

2 → ZR,
D�Z : ZN × ZT × ZC

2 → ZR,
eval�Z : ZC × ZT → ZA

end

7 This is called extensionality in [35]

AUTHOR
COPY

20 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

3.2. α-computability on C[T, A]
We turn to considerations of computability with respect to an enumeration α.

First note that typically,

Ωα is a decidable subset of N, and ≈α is a decidable relation, (3.3)

in which case, α can be effectively modified in a standard way so as to further satisfy

Ωα = N and α is 1-1.

Definition 3.13 (α-computability). Suppose ϕ is a (strict) α-tracking function for f , and ϕ is a computable (i.e.,
recursive) partial function. Then f is said to be (strictly) α-computable.

The enumerations α satisfying (3.3) are insufficient, in general, to study computability theory in structures such
as R, and stream spaces. For example, a standard enumeration αR of the rationals Q ⊂ R does not by itself produce a
satisfactory model of computation on the reals. We have to go beyond such enumerated sets to their computational
closures , as we now describe.

We assume Zs is dense in Cs. We can use the elements of Zs to computably approximate elements of Cs. Those
elements of Cs that are approximated in this way are called the α-computable elements of Cs.

For each Σ-sort s, the α-computational closure of Zs is constructed as the set C`α(Zs) of α-computable
elements of Cs, where Zs ⊆ C`α(Zs) ⊆ Cs. This will be a countable set with its own enumeration

α : Ωα,s � C`α(Zs). (3.4)

where the code set Ωα,s ⊆ N is the domain of the enumeration αs, to be defined below. This gives the enumerated
space (C`α(Zs), αs) and the picture:

Zs
⊆−−−−→ C`α(Zs)

⊆−−−−→ Cs

αs

x αs

x
N Ωα,s

(3.5)

The elements of C`α(Zs) in (3.4) are the α-computable elements of Cs, i.e., limits in Cs of α-effective Cauchy
sequences (to be defined below) of elements of Zs. Then Ωα,s is the set of α-codes c of the α-computable elements
αs(c) ∈ C`α(Zs).

We now describe the construction of the family α = 〈αs | s ∈ Sort(Σ)〉 of enumerations (3.4) of the sets
C`α(Zs).

First, the metric space A: details of the construction of C`α(ZA) and αA can be found in [30, 31]. We repeat them
here for the reader’s convenience.

The set Ωα,A ⊆ N consists of codes for C`α(ZA) (w.r.t. α), i.e., pairs of numbers c = 〈e, m〉 where

(i) e is an index for a total computable function {e} defining a Cauchy sequence
αA ◦ {e} : N→ ZA, i.e., the sequence

αA({e}(0)), αA({e}(1)), αA({e}(2)), . . . , (3.6)

of elements of Zs,
(ii) m is an index for a computable modulus of convergence for this sequence:

∀k, l ≥ {m}(n) : d(αA({e}(k)), αA({e}(l))) < 2−n. (3.7)

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 21

For any such code c = 〈e, m〉 ∈ Ωα, α(c) is defined as the limit in A of the Cauchy sequence (3.6), and C`α(ZA)
is the range of αA, as shown in diagram (3.5).

Remark 3.14 (Fast Cauchy sequences). We may assume, when convenient, that the modulus of convergence for a
given code is the identity , i.e., replace (3.7) by the simpler

∀k, l ≥ n : ds(αA({e}(k)), αA({e}(l))) < 2−n

or, equivalently, ∀k > n : ds(αA({e}(k)), αA({e}(n))) < 2−n (3.8)

because any code c = 〈e, m〉 satisfying (3.7) can be effectively replaced by a code for the same element of
C`α(ZA) satisfying (3.8), namely c′ = 〈e′, m1〉, where m1 is a standard code for the identity function on N, and
e′ = comp(e, m), where comp(x, y) is a primitive recursive function for “composition” of (indices of) computable
functions, i.e., { comp(e, m) }(x) ' { e }({m }(x)). In the case of a code c = 〈e, m1〉 satisfying (3.8), the sequence
(3.6) is called a fast (α-effective) Cauchy sequence . We may then, for simplicity, call e itself the “code”, and the
argument of αA. So we can shift between “c-codes” and “e-codes” as convenient.

Lemma 3.15 (Closure of α-computability operation). The enumerated subset (C`α(Z), α) is “computationally
closed in A”, in the sense that the limit of a (fast) α-effective Cauchy sequence of elements of C`α(Zs) is again in
C`α(Zs), i.e.,

C`α(C`α(Zs)) = C`α(Zs).

The proof uses the well-known technique of taking “diagonal approximating sequences” from double
sequences.8

We turn to the definitions of αs and αs for the other sorts s in Σ, i.e., s ∈ {R, N, T, C }.
For the reals R: αR is a standard enumeration of the rationals ZR = Q, and the computational closure of Q in R

(defined as for A) is the set Cα(Q) of computable reals .
For the naturals N: the enumerations αN and αN are both taken to be simply the identity enumeration. Hence

any function from Nm to N has itself as a tracking function.
For the time line T: The enumerations αT and αT resemble one of the previous two cases, depending on whether

T = R≥0 or T = N.
Finally, for the stream space C[T, A] with its enumerated subset (ZC,αc), we first define9 a sequence (un) of

elements of C[T, A] to be locally uniformly Cauchy if

∀T ∀ε > 0 ∃N ∀m, n ≥ N : d T(um, un) ≤ ε.

Now let

Cα[T, A] =df C`α(ZC) ⊂ C[T, A]

be the set of all limits in C[T, A] of α-effectively locally uniform Cauchy sequences of elements of ZC (i.e., effective
in their αc-codes) — such limits always existing by the (local uniform) completeness of C[T, A]10 — and let Ωα,c ⊂
N be the set of α-codes for elements of Cα[T, A]. More precisely, Ωα,c consists of pairs of numbers c = 〈e, m〉
where

(i) e is an index for a total recursive function defining a sequence

z0, z1, z2, . . . (3.9)

of elements of ZC, where zn = α({e}(n)), having a limit z ∈ C[T, A], and

8 See, e.g., [17, p. 20, Prop. 1]
9 [34, Definition 2.2.4]
10 [34, Lemma 2.2.5]

AUTHOR
COPY

22 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

(ii) m is an index for a modulus of local uniform convergence for this sequence; i.e., for all k:

∀n, p ≥ {m}(k), dkτ (zn, zp) ≤ 2−k. (3.10)

For any such code c, αc(c) is defined as the limit z ∈ C[T, A] of the sequence (3.9). This defines (cf. (3.4), with
s = C) the function

αc : Ωα,c � Cα[T, A].

Definition 3.16 (α-streams). The elements of Cα[T, A], i.e. streams in the range of αc, are called α-streams or
α-computable streams (cf. Definition 3.2: α-streams).

Definitions 3.17 (α-tracking functions and α-computability). The concepts of (strict) α-tracking function and
(strict) α-computability are defined analogously to the corresponding concepts for α (Definitions 3.6 and 3.13), by
replacing ‘α’ by ‘α’ in (3.1) and (3.2).

Note that since α, like α, is an enumeration of a countable set, the basic properties of α in §3.1 apply also to α.
However, the code sets Ωα are not generally decidable, in contrast with Ωα (cf. (3.3)).

Remark 3.18 (Terminology). α-streams, i.e., streams considered as points in the space C[T, A] which are in the
range of αc, should not be confused with α-computable streams, i.e. streams considered as functions from T to
A, which have computable α-tracking functions. The relation between these two concepts is considered further in
connection with the notion of “functional adequacy” in Section 6 (see Definition 6.2 and the surrounding discussion).

Remark 3.19 (Value of τ). Recall that τ (occurring in (3.10)) is a fixed positive real, defining a standard exhaustion
of T (cf. §2.1). We will assume from now on that if T = N then τ = 1, and if T = R≥0 then τ is some α-computable
real, which we can take to be (in Theorem A) the value of the contraction increment τc, a, x, or (in Theorem 2 and
Theorem B) a local minimum for that value. Note that notwithstanding the appearance of ‘τ ’ in (3.10), the concept
of “α-stream” is independent of the choice of value for τ , as can easily be checked.11

Remark 3.20 (Locally fast Cauchy sequences). We may assume, when convenient, that the modulus of
convergence for a given code is the identity , i.e., replace (3.10) by the simpler

∀n, p ≥ k : dkτ (zn, zp) < 2−k,

or equivalently, ∀n > k : dkτ (zn, zk) < 2−k,

by an argument similar to the one in Remark 3.14.

Another desirable property of a family of enumerations α is:

Definition 3.21 (Σ-effectivity of α). α is (strictly) Σ-effective if the basic functions of the Σ-algebra C[T, A],
namely dT, dA, D, and eval, are (strictly) α-computable.

Notation 3.22 (α-enumerated subsets of carriers). We use the notation

• Aα for C`α(ZA), the set of α-computable points in A,
• Tα for C`α(ZT), the set of α-computable time instants,
• Cα[T, A] for C`α(ZC), the set of α-computable streams, and
• Rα for C`α(ZR), the set of α-computable reals.

(Recall that C`α(ZN) = ZN = N.)

11 Cf. Lemmas 3.1.3 and 3.2.11 in [34], which hold for any compact exhaustion (Kk).

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 23

Remark 3.23 (Computable subalgebra generated by α). (Cf. Remark 3.12.) The family of enumerations α is
said to generate a computable subalgebra of the Σ-algebra C[T, A] if the family of α-enumerated subsets of the
carriers of C[T, A] (at all Σ-sorts) forms a Σ-subalgebra of C[T, A]:

algebra Cα[T, A]
carriers Aα, Tα, Cα[T, A], Rα, N
functions dA,α : A 2

α → Rα,
dT,α : T 2

α → Rα,
Dα : N× Tα × Cα[T, A]2 → Rα,
evalα : Cα[T, A]× Tα → Aα

end

A sufficent condition for α to generate a computable subalgebra is given by

Lemma 3.24. If α is Σ-effective (Definition 3.21), then α generates a computable subalgebra of C[T, A].

This follows immediately from Lemma 3.10(a) applied to α.

Example 3.25 (Computable streams). As a simple example of a computable subalgebra of a stream algebra: take
T = R≥0 and A = R, and let αA be a standard enumeration of Q ⊂ R. For a countable, dense and effectively locally
uniformly continuous subset of C[R≥0, R], we can take ZC = ZZ, the set of all continuous rational “zigzag
functions” from R≥0 to R with finite support , a typical example of which is shown in Figure 1, where we
require that the starting and turning points (p1, . . . , p7 in the figure) have rational coordinates, and which are zero
from some point on (p7 in the figure).

We let αc be some standard enumeration of ZZ. This enumeration is easily seen to be regular (Definition 3.5).
We could also have used, as our starting point ZC, the set of polynomial functions of t with rational coefficients,

which is dense in C[R≥0, R], by Weierstrass’s theorem [20]. This would produce the same set Cα[R≥0, R] of
computable elements of C[R≥0, R]. (This is easily proved by showing that the basic functions in each of these
two systems — rational zigzag functions and rational polynomial functions — are effective local uniform limits of
basic functions in the other system.)

This example will be used again in §5.2, Example 1(i), dealing with analog networks.

The following lemma is used in the proof of Theorem A.

Lemma 3.26. If effective locally uniform continuity (Definition 3.3) holds for α-streams, then it also holds for
α-streams.

This is proved by adapting the proof for preservation of effective (globally) uniform continuity under effective
(globally) uniform convergence in [17, Ch. 0, Thm 4].

We are ready for the first of the two main theorems of this paper.

0 t

p1

p2

p3

p4 p5

p6

p7

Figure 1. Zigzag function (points p1, . . . , p7 are rational)

AUTHOR
COPY

24 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

Theorem A (α-computability of FP).
Suppose the Σ-algebra C[T, A] is represented by an enumeration α such that

(i) α is regular (Definition 3.5), and
(ii) α is Σ-effective (Definition 3.21).

Given stream operators F and Fc, a, x as in (2.7) and (2.8), open U ⊆ Ar+s × C[T, A]p, and (as in (2.9)) families
of contraction moduli λ = 〈λc, a, x | (c, a, x) ∈ U〉 and increments τ = 〈τc, a, x | (c, a, x) ∈ U〉, suppose for all
(c, a, x) ∈ U

(iii) Fc, a, x ∈ Contr(λc, a, x , τc, a, x),
(iv) Fc, a, x is causal,
(v) F is α-computable,

(vi) λ and τ are α-computable.

Let

Φ : Ar × As × C[T, A]p ⇀ C[T, A]m (3.11a)

be the unique fixed point function for F given by Theorem 1 with dom(Φ) = U, so that for all (c, a, x) ∈ U,

Φ(c, a, x) = FP(Fc, a, x). (3.11b)

Then Φ is α-computable.

Proof. (Outline.) It is a lengthy but straightforward exercise to show that the fixed point of F, constructed according
to the proof of Theorem 1 [34, §3], is computable in (c, a, x), under the given assumptions on the α-computability
of F, λ and τ , and assuming we begin with an α-computable stream tuple u 0 such that v(0)

1 = Fc, a, x(u 0). The
important thing to show is that the double sequence of stream tuples v(n)

k is computable in k and n, as well as
(c, a, x). At kτ -approximate limits (τ = τc, a, x, k = 1, 2, . . .) we take effective “diagonal approximating sequences”
as in the proof of Lemma 3.15, to show that Φ is α-computable. Some details are given in [33] (for a stronger
definition of contracting operators).

One point worth noting is that we have to check that α-computability , as well as effective local uniform
continuity , are preserved by these iterated sequences and their limits. For this we must use a property of sequences
of streams stronger than local uniform convergence, namely effective local uniform convergence of α-computable
streams. �

Remark 3.27 (Type of F for α-computability). The assumption of α-computability of F in Theorem A and
elsewhere is with respect to the uncurried typing in (2.7). (Cf. [34, Remark 4.1.1].)

Corollary 3.28. If, in Theorem A, we add the assumption:

(vii) U is α-semicomputable ,

then the conclusion can be strengthened to:

Then Φ is strictly α-computable.

Proof. The distinction between α-computability and strict α-computability of f vanishes in the case that dom(f)
is α-semicomputable, i.e., the domain of a strictly α-computable function [30, Lemma 10.2.4]. �

3.3. Relative α-computability
We want to develop a concept of “relative α-computability”, so that Theorem A could have a more general form, in
which assumption (v) is deleted , (vi) is replaced by (something like)

(v′) λ and τ are α-computable relative to F,

and the conclusion is changed to (something like)

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 25

Then Φ is α-computable relative to F.
In order to do this, we must re-define the objects of our computation theory so that the α-tracking functions are made
explicit. (The reason for this will emerge below — see Remark 3.32.) So we define:

Definition 3.29 (α-tracked function).
(a) An (α-)tracked function on C[T, A] is a pair (f ,ϕ) where f is a function on C[T, A] and ϕ is a tracking function

for f .
(b) A strictly (α-)tracked function is defined similarly, with the added condition thatϕ is a strict tracking function

for f .

Suppose (f ,ϕ) is an α-tracked function on C[T, A]. We can think of ϕ as a concrete implementation of f
(whether computable or not). Hence the objects of our study here are not simply functions f on C[T, A], but rather
functions-together-with-implementations (f ,ϕ).

Note also that although f is uniquely determined by ϕ, ϕ is not uniquely determined by f . In fact (assuming
dom(f) is infinite and ignoring considerations of computability of ϕ) if f has one tracking function then it has
uncountably many (even strict) tracking functions.

Definition 3.30 (Relative α-computability). Given two α-tracked functions (f ,ϕ) and (g,ψ) on C[T, A], we say
that (f ,ϕ) is α-computable in (or relative to) (g,ψ) if ϕ is computable in ψ.

Lemma 3.31 (Transitivity of relative α-computability).
Suppose (f ,ϕ) and (g,ψ) are α-tracked functions on C[T, A].

(a) If (f ,ϕ) is α-computable in (g,ψ), and (g,ψ) is α-computable in (h, θ), then (f ,ϕ) is α-computable in (h, θ).
(b) If (f ,ϕ) is α-computable in (g,ψ), and (g,ψ) is α-computable, (f ,ϕ) is α-computable.

Remark 3.32. The need to prove this transitivity lemma is the reason we formulated our α-computability theory in
terms of α-tracked functions.

Theorem A can then be re-formulated in terms of relative computability:

Theorem Arel (Relative α-computability of FP).
Suppose the Σ-algebra C[T, A] is represented by an enumeration α such that

(i) α is regular (Definition 3.5), and
(ii) α is Σ-effective (Definition 3.21).

Given stream operators F as in (2.7) with α-tracking function ϕ, and Fc, a, x as in (2.8), open U ⊆
Ar+s × C[T, A]p, and (as in (2.9)) families of contraction moduli λ = 〈λc, a, x | (c, a, x) ∈ U〉 and increments
τ = 〈τc, a, x | (c, a, x) ∈ U〉, with α-tracking functions ψ and θ respectively, suppose for all (c, a, x) ∈ U

(iii) Fc, a, x ∈ Contr(λc, a, x , τc, a, x),
(iv) Fc, a, x is causal,
(v) (λ,ψ) and (τ , θ) are α-computable in (F,ϕ).

Φ : Ar × As × C[T, A]p ⇀ C[T, A]m

be the unique fixed point function for F given by Theorem 1, with dom(Φ) = U, so that for all (c, a, x) ∈ U,

Φ(c, a, x) = FP(Fc, a, x).

Then Φ (together with a suitable α-tracking function) is α-computable in (F,ϕ).

We omit the proof, which is a “relativised” version of the proof of Theorem A.
Theorem A follows immediately from this, by Lemma 3.31(b).
Similarly, there is a relativised version of the “strictly α-computable” version of Theorem A (Corollary 3.28).

AUTHOR
COPY

26 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

4. Abstract Computability in C[T, A]
In this section we investigate abstract computability in C[T, A], using the imperative programming language
WhileCC∗ over the algebra C[T, A].

At the heart of all our abstract models of computability are algebraic structures. The abstract models esentially
schedule the basic operations and relations of these algebraic structures in ways that are independent of the
representation of the data and the implementation of these operations and relations. In the case of an imperative
abstract model, algebraic terms are evaluated by assignments and control structures such as ‘ while’. In topological
algebras, abstract models typically do not compute directly all the concretely computable functions; rather they
effectively approximate them to arbitrary precision [28].

In [30, 31] we investigated, and compared, abstract and concrete models of computability on metric algebras.
The concrete model considered was α-computability, as described in the previous section, and the abstract model was
approximable WhileCC∗(Σ) computability (for the appropriate signatureΣ), to be described below. A completeness
theorem was proved, asserting their equivalence under quite general conditions.

In the previous section we proved (Theorem A) concrete computability of the fixed point FP(F) of a stream
transformer F, assuming concrete computability of F. From this, and a version of the completeness theorem in [30],
we will in turn infer (Theorem B) abstract computability of FP(F), assuming abstract computability of F.

4.1. Expanding the Stream Algebra C[T, A] to C[T, A](αC)
Recall the definitions of the stream algebra C[T, A] (2.3) and its signature Σ (2.4).

In order to have a satisfactory abstract model of computing on C[T, A], which will satisfy the completeness
theorem for abstract vs concrete computability, we must expand its algebraic structure and signature. This is done in
three ways:

(1) Since the boolean datatype B is needed for abstract computation models, specifically boolean tests in high level
programming languages, we adjoin to Σ the boolean sort B and the standard boolean operations (∧, ∨, ¬) as
well as equality on some of the sorts, such as N. Correspondingly, we adjoin to C[T, A] the set B of booleans
and the boolean operations.

(2) We add operations and constants at each sort. This will be explained in detail in Discussion 4.9.

(3) We add the enumeration function αc : N→ C[T, A] as a basic algebraic operation.

The motivations for these expansions to C[T, A], with an example, will be given in Discussion 4.9.
We will denote the expanded algebra by C[T, A](αc), with signature Σ(αc).

4.2. WhileCC∗(αC) Computability
The syntax and semantics of the WhileCC∗ programming language are discussed in detail in [30, 31]. To give a brief
review: it extends the While∗ language (i.e., the ‘ while’ programming language with arrays) with a new ‘choose’
assignment construct to model nondeterministic countable choice .

The syntax of the WhileCC∗ statements is defined essentially (following the version in [31]) by extending the
assignment statement with a new case:

x := choose z : P(z, . . .)

where x and z are variables of sort nat, and P(z, . . .) is a semicomputable predicate of z (and other variables),
i.e., the halting set of a WhileCC∗ boolean-valued procedure with z among its input variables.

Intuitively, ‘choose z : P’ selects some value n such that P(n, . . .) is true, if any such n exists (and is undefined
otherwise). Any concrete model will select a particular such n, according to the implementation. In our abstract
semantics, the meaning is given as the set of all possible such n’s (hence “countable choice”), together (possibly)
with the divergence symbol ‘↑’.

We then write WhileCC∗(αc) computability to mean WhileCC∗ computability on C[T, A](αc).

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 27

4.3. WhileCC∗(αC) Approximability
The basic notion of abstract computability that we will be working with, for the sake of comparison with
concrete computability on C[T, A], is WhileCC∗ approximable computability , or WhileCC∗ approximability , on
C[T, A](αc), which we now define.

Here we write C for anyΣ-algebra, with carriers Cs for theΣ-sorts s, and product spaces C u = Cs1 × · · · × Csm

for product types u = s1 × · · · × sm. Thereafter we will apply these definitions to the special case C = C[T, A](αc).
Let u be a Σ-product type and s a Σ-sort. Let P : nat× u → s be a WhileCC∗ procedure. Then the semantics

of P is given by the multivalued function

P C
n =df P C(n, ·) : C u ⇒ C↑s

where C↑s =df Cs ∪ {↑} and ‘⇒’ means that P C
n is multivalued, i.e., for all x ∈ C u, P C

n (x) is a (non-empty)
countable subset of C↑s . Now let f : C u ⇀ Cs be a single-valued partial function on C. Then we define: (a) f is
WhileCC∗ approximable by P on C iff for all n ∈ N and all x ∈ C u:

x ∈ dom(f) =⇒ ↑ /∈ P C
n (x) ⊆ B(f (x), 2−n)

where the open ball B(· , ·) is defined with respect to the metric on Cs. (b) f is strictly WhileCC∗ approximable
by P on C iff in addition to (a),

x /∈ dom(f) =⇒ P C
n (x) = {↑}.

Now, in the particular case that C = C[T, A](αc), we write WhileCC∗(αc) approximability to mean WhileCC∗

approximability on C[T, A](αc).

Remark 4.1 (Equivalence of ordinary and strict WhileCC∗ approximability). The distinction between
WhileCC∗(αc) approximability and strict WhileCC∗(αc) approximability of f vanishes in the case that dom(f)
is WhileCC∗(αc) semicomputable [30, §9.3]. This is again the case in our analog network example (cf.
Corollary 3.28).

4.4. Concrete and Abstract Computability Compared; Completeness Theorem
We are ready to make the connection between concrete and abstract computability on stream algebras.

We will re-state the completeness theorem of [30] as it applies to the stream algebra C[T, A]. For this we need
an important concept.

Definition 4.2 (Open exhaustion). Let U be an open subset of Ar × As × C[T, A]p. An open exhaustion of U is a
sequence (U`) of open subsets of Ar × As × C[T, A]p such that

U1 ⊆ U2 ⊆ U3 ⊆ . . . and
∞⋃
`=1

U` = U.

We also need an effective notion of open exhaustion.

Definition 4.3 (WhileCC∗(αC)-effective open exhaustions).
An open exhaustion (U`) of U ⊆ Ar × As × C[T, A]p is WhileCC∗(αc)-effective in C[T, A] if it satisfies the
following two conditions:

(a) (WhileCC∗(αc)-effective Archimedean property of (U`) in U.)
There is a WhileCC∗(αc) procedure

Ploc : Ar × As × C[T, A]p ⇒ N↑

AUTHOR
COPY

28 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

which, given (c, a, x) ∈ U, produces some ` which “locates” (c, a, x) ∈ U`; more precisely:

Ploc(c, a, x) =

{
{ ` | (c, a, x) ∈ U` } if (c, a, x) ∈ U
{ ↑ } otherwise.

Typically, the procedure Ploc(c, a, x) is realised in the form of a construct

choose ` : “(c, a, x) ∈ U`”.

(b) (WhileCC∗(αc)-effective openness of (U`).)
There is a WhileCC∗(αc) computable function

γ : N× T× Ar × As × C[T, A]p ⇀ N

such that for all ` ∈ N, τ ∈ T and (c, a, x) ∈ U`,

γ(`, τ , c, a, x) ↓ k for some k such that Nkτ ((c, a, x), 2−k) ⊆ U`

where Nkτ (. . .) is the open neighbourhood of (c, a, x) determined by the pseudometric dkτ in C[T, A].

Remark 4.4. If U has a WhileCC∗(αc)-effective open exhaustion, then U is WhileCC∗(αc) semicomputable [30].

Now we want to define the concept of local uniform continuity with respect to some open exhaustion, as
well as an effective version of this. The most suitable form of these definitions for our purposes is in terms of the
pseudometrics dkτ (k = 0, 1, 2, . . .). (See Remark 3.2.6 concerning the value of τ .)

For the rest of this subsection, assume

f : Ar × As × C[T, A]p ⇀ C[T, A]m

and let (U`) be a WhileCC∗(αc)-effective open exhaustion of U = dom(f). It follows from Remarks 4.1 and 4.4
that WhileCC∗(αc)-approximability of f is equivalent to strict WhileCC∗(αc)-approximability of f .

Definition 4.5 (Local uniform continuity). f is locally uniformly continuous with respect to (U`) iff for all `, n, τ
there exists j such that for all (c, a, x), (c′, a′, x′) ∈ U`,

djτ ((c, a, x), (c′, a′, x′)) < 2−j =⇒ dnτ (f (c, a, x), f (c′, a′, x′)) < 2−n.

This concept is made effective by taking j to be recursive in `, n.

Next, we use a modified version of [34, Lemma 3.2.10] as a test for local uniform continuity:

Lemma 4.6 (Test for local uniform continuity). Suppose f is causal, and for all u ∈ C[T, A]m and all k, `, n, τ
there exists j such that for all (c, a, x), (c′, a′, x′) ∈ U`

dkτ ((c, a, x), (c′, a′, x′)) < 2−j =⇒ dkτ (f (c, a, x), f (c′, a′, x′)) < 2−n.

Then f is locally uniformly continuous w.r.t. (U`).
This test is made effective by taking j to be recursive in k, `, n.

We are ready for the completeness theorem.

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 29

Theorem 4.7 (Completeness for abstract vs concrete computability on C[T, A]).
Suppose the Σ-algebra C[T, A] is represented by an enumeration α such that

(i) α is regular (Definition 3.5),
(ii) α is Σ(αc)-effective (Definition 3.21), and

(iii) for all12 sorts s, αs is WhileCC∗(αc) approximable on C[T, A].

Let (U`) be an open exhaustion of U = dom(f) such that

(iv) (U`) is WhileCC∗(αc)-effective (Definition 4.3), and
(v) f is effectively locally uniformly continuous w.r.t. (U`) (Definition 4.5).

Then
f is WhileCC∗(αc) approximable on C[T, A] ⇐⇒ f is α-computable on C[T, A].

Proof. From Theorem C in [30, §10]. �

Remark 4.8 (Use of assumptions (ii) and (iii) in the completeness theorem). Assumptions (ii) and (iii) are each
crucial in proving one of the two directions of the completeness theorem. Assumption (ii) (Σ(αc)-effectivity of α)
means, roughly, that the enumerations α are “strong” enough to compute the basic functions of C[T, A](αc), and
hence also functions WhileCC∗(αc) approximable in them:

WhileCC∗(αc) approx. =⇒ α-comp.

Assumption (iii) (WhileCC∗(αc) approximability of α) means, conversely, that WhileCC∗ approximability w.r.t.
the basic functions of C[T, A](αc) is “strong” enough to compute the enumerations αs : N→ Cs, and hence also
α-computable functions:

WhileCC∗(αc) approx. ⇐= α-comp.

Discussion 4.9 (Expanding C[T, A] to C[T, A](αC): Explanation and example). In connection with the
completeness theorem above, let us return to the three points listed in §4.1, and consider each of them in turn.

(1) As stated above, the boolean datatype B is needed in order to include boolean tests in WhileCC∗ programs.
(2) The point here is to expand the algebraic structures at the various sorts s by adding enough basic functions to

ensure that the enumerations αs of Cs are WhileCC∗(αc) approximable (assumption (iii)). In more detail, we
add the following:

• For A: this depends on the set A. Let us take the most important case for our examples, namely A = R.
We then adjoin the following constants and operations over the reals: 0, 1, +, −, ×, as well as the
(continuous, partial) inverse invR : R→ R, where

invR(x) =

{
1/x if x 6= 0
↑ if x = 0,

and the (continuous, partial) equality and order operations eqR, lessR : R2 ⇀ B where

eqR(x, y) =

{
↑ if x = y
f if x 6= y,

and lessR(x, y) =


t if x < y
f if x > y
↑ if x = y.

The significance of these partial inverse, equality and order operations, in connection with computability
and continuity, is discussed in [30].

12 Actually here we only need sorts s 6= C, since αc is trivially a basic operation of C[T, A](αc).

AUTHOR
COPY

30 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

Note also that in connection with the use of this structure on the reals in the completeness theorem and
Theorem B, we could just as well replace the (partial) real inverse operation invR by the (total) natural
inverse operation invN : N→ R, where

invN(n) =

{
1/n if n 6= 0
0 if n = 0.

which is continuous, like any function on the discrete space N.
• For R: this datatype is expanded in exactly the way described above for A (assuming A = R).
• For N: 0 and successor, and (continuous, total) equality and order on N:

eqN(m, n) =

{
t if m = n
f otherwise,

and lessN(m, n) =

{
t if m < n
f otherwise.

• For T: this is expanded either like R (assuming T = R≥0)13 or like N (assuming T = N).

(3) In our first example (Example 3.2.12 above, which we will revisit in §5.2), with T = R≥0 and A = R, the
enumeration αc (see Figure 1) is easily seen to satisfy the regularity condition (i) in the completeness theorem.
However, αc itself is not WhileCC∗ computable (or even approximable).14 In fact, none of the streams in this
algebra is WhileCC∗ computable, not even the zigzag streams, nor even the stream with constant value 0 !
That is why we have to include αc as one of the primitive operators on C[T, A], i.e., work with WhileCC∗(αc)
instead of WhileCC∗ computability on C[T, A] here and in Theorem B below.

4.5. Abstract Computability of FP of Contracting Operator
We can now prove a theorem on abstract computability of the FP of a contracting stream space operator by combining
the corresponding theorem for concrete computability (Theorem A) with the above completeness theorem.

Theorem B (Approximable WhileCC∗(αC) computability of FP).
Suppose the Σ-algebra C[T, A] is represented by an enumeration α such that

(i) α is regular (Definition 3.5),
(ii) α is Σ(αc)-effective (Definition 3.21), and

(iii) for all sorts s, αs is WhileCC∗(αc) approximable on C[T, A].

Given stream operators F and Fc, a, x as in (2.7) and (2.8), U ⊆ Ar × As × C[T, A]p, and families of contraction
moduli λ = 〈λc, a, x | (c, a, x) ∈ U〉 and increments τ = 〈τc, a, x | (c, a, x) ∈ U〉 as in (2.9), such that for all
(c, a, x) ∈ U

(iv) Fc, a, x ∈ Contr(λc, a, x, τc, a, x),
(v) Fc, a, x is causal,

(vi) F is WhileCC∗(αc) approximable,
(vii) F is shift invariant (Definition 2.3),

(viii) λ and τ are WhileCC∗(αc) approximable, and
(ix) λ and τ are continuous, with WhileCC∗(αc)-computable moduli of continuity.

13 modified suitably for R≥0, e.g., redefining x−y as max(x−y, 0)
14 Note that the cartesian form cart(α) : N× T→ R of α : N→ C[T, R] is While∗ computable on the field R. This is discussed

further in Section 6.

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 31

Let (U`) be an open exhaustion of U such that

(x) (U`) is WhileCC∗(αc) effective (Definition 4.3), and
(xi) F is effectively locally uniformly continuous15 w.r.t. (U`) (Definition 4.5).

Let Φ be the fixed point function for F as in (2.10), given by Theorem 2, and suppose also

(xii) U is closed under shifts w.r.t. Φ (Definition 2.4).

Then Φ is strictly WhileCC∗(αc) approximable.

Proof. The main idea is to apply the α-computability theorem for the FP (Theorem A), together with the
completeness theorem for stream spaces (Theorem 4.7) in both directions, to obtain the result. The main problem
here is in applying the completeness theorem to Φ in the direction

Φ is α-computable =⇒ Φ is WhileCC∗(αc) approximable,

where we need the condition that Φ is (not just continuous, but) effectively locally uniformly continuous w.r.t. a
suitable WhileCC∗(αc)-effective open exhaustion of U.

We prove this by assuming that F is effectively locally uniformly continuous w.r.t. an open exhaustion (U`),
and using this to show that Φ is effectively locally uniformly continuous w.r.t. (not necessarily (U`), but) some
refinement of (U`). This is done by a careful analysis, and adaptation, of the proof of continuity of Φ in Theorem 2
[34, §4].

The main point is to control the variation of the contraction modulus λc, a, x and increment τc, a, x for (c, a, x) ∈ U,
as well as the value of

Dc,a,x =df D1 = dτ (v(0)
1 , v(1)

1)
= dτ (Fc, a, x(u 0), Fc, a, x(Fc, a, x(u 0)))

(4.1)

(for a fixed u 0) [34, (4.16)]. So, defining the function

D =df 〈Dc,a,x | (c, a, x) ∈ U〉,

we note that by assumptions (viii) and (ix) on λ and τ , and (vi) and (xi) on F,

the functions λ, τ and D are WhileCC∗(αc) approximable and continuous, with a WhileCC∗(αc)
computable modulus of continuity.

(4.2)

Further, for each (c, a, x) ∈ U there is some ` ∈ N such that

λc, a, x < λ` =df 1− 1/` (4.3a)
and τc, a, x > τ` =df 1/` (4.3b)
and Dc,a,x < D` =df `. (4.3c)

So we define the exhaustion

(V1, V2, V3, . . .) (4.4a)

of U, where

V` =df {(c, a, x) ∈ U | λc, a, x < λ` and τc, a, x > τ` and Dc,a,x < D`}. (4.4b)

15 This assumption of effective local uniform continuity of F is made w.r.t. the first 3 arguments of F only, i.e., (c, a, x) ∈ U ⊆
Ar × As × C[T, A]p. No continuity assumption need be made for the fourth (stream) argument. (Cf. the footnote for condition (iv) in
Theorem 2 in §2.2.)

AUTHOR
COPY

32 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

From (4.2) it follows that this exhaustion of U is open, and moreover, WhileCC∗(αc) effective (Definition 4.3.
Now in applying the proof of continuity of Φ in Theorem 2 in [34] to the present proof of effective local uniform

continuity of Φ (as stated above), note the following:

(1) In the inductive proof of in [34, (4.14)], in the base case, λc, a, x, τc, a, x and Dc,a,x (=D1) can be replaced,
respectively, by λ`, τ` and D` (4.3), which are constant over V`. Note we can also take τ` for the value of τ in
‘dτ ’ in (4.1).

(2) The choice of N in the inequality [34, (4.17)] depends on the values of λ and D1, which (as we have seen) can
be taken as constant over V`, and hence N can also be taken as constant over V`.

(3) In the inductive step [34, (4.25), (4.26)] δ1 and δ2 can also be taken as constant over V` (the latter by induction
hypothesis).

Next, define the open exhaustion

(W1, W2, W3, . . .)

of U as the common refinement of the open exhaustions (U`) and (V`) of U (4.4), i.e.,

W` =df U` ∩ V`

for ` = 1, 2, Then by assumption (xi), F is effectively locally uniformly continuous w.r.t. (U`), and hence w.r.t.
(W`). Hence (in the notation in the proof of Theorem 2 in [34]) we can show, by induction on k, that Φk is effectively
locally uniformly continuous w.r.t. (W`), with modulus of continuity computable in k.

Next we apply the test in Lemma 4.6 to show that Φ is effectively locally uniformly continuous w.r.t. (W`).
Now we apply the completeness theorem to infer that Φ is WhileCC∗(αc) approximable. Finally, with the help of
Remarks 4.1 and 4.4, we conclude that Φ is strictly WhileCC∗ approximable. �

Remark 4.10 (Type of F for WhileCC∗(αC) approximability). The assumption of WhileCC∗(αc) approximabil-
ity of F in Theorem B and elsewhere is with respect to the uncurried typing in (2.7). (Cf. Remark 3.27.)

Remark 4.11 (Continuity assumption for λ and τ). The list of assumptions in Theorem B includes a continuity
assumption (vii) for λ and τ . (Cf. [34], Remark 4.2.9 and Theorem 2, where the weaker assumption of local
boundedness was made for λ and τ .) This continuity assumption is used to show that the exhaustion (V`) is open
(see (4.4)). In fact we could replace (ix) here by a boundedness assumption: (vii′) λ and τ are effectively locally
uniformly bounded w.r.t. (U`) where this concept is defined in the obvious way. Such an assumption would actually
simplify the proof of Theorem B, by obviating the need for a refinement of the given exhaustion (U`) of U. The
problem would, however, then be shifted to finding, in any particular application, an open exhaustion (U`) of U
which would have all the required properties at the outset. (See also the discussion in Example 1(ii) in §5.2 below.)

Remark 4.12 (Relative abstract computability: Conjecture). A stronger formulation of Theorem B results from
deleting assumption (vi), replacing (viii) by (viii′) λ and τ are WhileCC∗(αc) approximable relative to F, and
changing the conclusion to:
Then Φ is WhileCC∗(αc) approximable relative to F.

(Compare Theorem Arel in §3.3.) We conjecture that this formulation is true. One possible proof would depend on a
relativised version of the abstract/concrete Completeness Theorem 4.7.

5. Examples
Recall that in [34] we used two running examples to illustrate the theory: analog networks and synchronous
concurrent algorithms (SCAs).16 We continue with these two examples. We first note that both these examples

16 See §§2.1.1, 4.4.4 and 5.2.13 in [34].

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 33

involve networks N, with modules and channels, and make a few general remarks about module functions, and their
relationship to the network state functions FN .

5.1. Networks and Modules: Some Remarks
We will assume that the module functions, and (hence) the network state function F, are total , so as to ensure the
Network Determinacy Assumption :

For a certain domain of system parameters, initial stream values and input streams, there is a well-determined
value for the stream on each channel at all times.

This implies the totality of the network state function and hence of the module functions , and hence the totality
of the streams . This is the case (for now) with all our examples below.

It would be interesting to consider the consequences of dropping these totality assumptions. We will revisit this
point in §6.3(3).

For convenience, we repeat Remark 4.1.6 in [34].

Remark 5.1 (Network state function formed by simple vectorisation). In the case of an analog network N, the
fact that the network state function FN is formed from the module functions of N by simple vectorisation means
that many interesting properties of the module functions, such as continuity and computability, are easily seen to be
inherited by FN .

We now give two applications of this remark to Theorems A and B.17

Remark 5.2 (Theorems A and B in terms of module functions). Suppose F is the network state function for a
network N. Then

(a) Theorem A holds if assumption (v) is replaced by:

(v′) the module functions of N are α-computable.
(b) Theorem B holds if in any of assumptions (v), (vi) and (vii), “F” is replaced by

“the module functions of N”.

Similarly, the “relativised” versions of Theorems A and B (cf. Theorem Arel in §3.3 and Remark 4.12) could
(presumably) be re-formulated in terms of module functions.

5.2. Two Examples
• Example 1: Analog networks

In this example, F represents a state function for a network with r parameters c ∈ Ar, s initial values a ∈ As, p
input channels with input streams x ∈ C[T, A]p, and m modules. The output channels of the network will form a
subset of the m module output channels. For simplicity, we can assume that all the module output channels are also
network output channels. The input/output function for the network, or network function , will then be the fixed
point function Φ (2.10).

(i) Concrete computability; Applying Theorem A
Here T = R≥0, with the standard exhaustion Kk = [0, kτ], where τ is the relevant value of the contraction increment
τc, a, x. Suppose also A = R and αA is a standard enumeration of Q ⊂ R. The construction of a countable, dense and
effectively locally uniformly continuous subset ZC of C[R≥0, R] was described above in Example 3.2.12.

As a particular case of this example, consider (Figure 2) the mass/spring/damper case study described in [33],
with the “improved” network N2 constructed in [9, §3.1.2] (cf. also [34, Example 3.3.5(1)]18).

17 See Remark 5.2.11 in [34] for an application to Theorem 2.
18 Note that on p. 3390, line 10 of [34], the reference should be to eqn (3.9c), not (3.9a).

AUTHOR
COPY

34 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

K D

x

f

M

Figure 2. Case Study: Mass/spring/damper system

Regarding the assumptions of Theorem A: assumption (i) (regularity of α) was noted in Example 3.25.
Assumption (ii) (Σ-effectivity of α) amounts to α-computability of the basic functions (dT, dA, D, eval) of the
Σ-algebra C[T, A], which can easily be checked.

Assumption (iii) (the contracting property) was proved for this case in [34, Example 4.2.13(1)]. Regarding
assumptions (iv) and (vi): causality is discussed in [34, Example 3.4.9(1)], and α-computability of λ and τ is
obvious from their definitions [34, (4.27)].

For assumption (v): The α-computability of the module functions used in this case study (pointwise addition,
scalar multiplication and integration) is proved in [33, Sec. 5]. Note that effective locally uniform continuity of
(ZC,αc) (part of assumption (ii)) is used to prove α-computability of integration19. This gives assumption (v) — or,
more simply, assumption (v′) (see Remark 5.2).

Hence Theorem A, as well as Theorem 2 (as discussed in [34, Example 4.2.13(1)]) can be applied to the system
shown in Figure 2, to give:

Proposition 1. In the system in Figure 2, the displacement x is continuous and α-computable as a function of the
mass M, spring constant K, damping constant D, initial displacement x0, initial velocity v0, external force f and
time t.

Note that the “function” referred to in the statement of this proposition is essentially the cartesian form of the
fixed point function Φ (2.10, 3.11) constructed in Theorems 2 and A, where if

Φ : U → C[T, A]m

then

cart(Φ) : U × T → Am (5.1a)

is defined by

cart(Φ)(c, a, x, t) = Φ(c, a, x)(t). (5.1b)

19 Cf. the proof of Theorem 5 in [17, Ch. 0]

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 35

This is discussed further in §6.2 below.
We return to the subject of cartesian forms in considering abstract computability for this example (below), as

well as in Example 2 (SCAs), and in Section 6.
The second case study from [33], for an iterated mass/spring/damper system, can be handled similarly.

(ii) Abstract computability: Applying Theorem B

Most of the conditions in Theorem B have already been checked in part (i) above for Theorem A. The “new”
conditions (ii) (Σ(αc)-effectivity of α), (iii) (WhileCC∗(αc) approximability of α), (vii) (shift invariance), and (ix)
(closure of U under shifts) can easily be checked.

The important thing to check in our list of assumptions in Theorem B turns out to be (xi): the effective
local uniform continuity of the network state function F with respect to a suitable open exhaustion (U`) of
U ⊆ Ar × As × C[T, A]p, since we must find an open exhaustion (U`) which works correctly for the particular
network under consideration. We return to this below.

Now if all the module functions are effectively globally uniformly continuous, then so is F by Remark 5.1, and
there is no problem.

However the assumption of global uniform continuity does not always hold. Consider the functions associated
with the three classical examples of modules in our two case studies : addition , scalar multiplication and
integration . Of these, the first and third are (effectively) globally uniformly continuous. However scalar
multiplication of a function:

F : R>0× C[T, R] → C[T, R]

with F(c, u)(t) = c · u(t), is (just like multiplication of reals on R) not globally uniformly continuous on its
domain. It is locally uniformly continuous with respect, e.g., to the exhaustion (U`) of R>0× C[T, R], where
U` = { x ∈ R>0 | x < ` } × C[T, R].

These considerations motivate the following, in the general case for Example 1. Let U ⊆ Ar × As × C[T, A]p,
and let F and Fc, a, x be as in equations (2.7) and (2.8).

To ensure local uniform continuity of F with respect to a suitable open exhaustion, we try to construct, by
inspection, such an exhaustion

(U1, U2, U3, . . .)

of Ar+s × C[T, A]p, where

U` =df A`,1 × · · · × A`,r+s × C[T, A]p ⊆ Ar+s × C[T, A]p

for suitable A`,i ⊆ A.
Returning to the special case of the mass/spring/damper problem (Figure 2) with network N2 [34, Example

3.3.5(1)]: we have A = R and the network state function has the form

F = FN2 : (R>0)3 × R2 × C[T, R]× C[T, R]2 → C[T, R]2

where we will use the notation

F(M, K, D, x0, v0, f , x, v) = (y, w)

with the system parameters M (mass), K (spring constant) and D (damping constant); initial values x0 (initial
displacement) and v0 (initial velocity); input stream f (external force), and remaining streams x (displacement)
and v (velocity), with corresponding outputs y and w respectively. Each of the last two is produced [34, eqns (3.11)]

AUTHOR
COPY

36 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

by one of the module functions:

y(t) = Fx(x0, v)(t) =
∫ t

0
v(s)ds + x0 (5.2a)

w(t) = Fv(M, K, D, v0, f , x, v)(t) =
1
M

∫ t

0
(f (s)− Kx(s)− Dv(s))ds + v0. (5.2b)

For convenience, we will use, for now, the word “parameters” to refer to the system parameters M, K, D, initial
values x0, v0 and input stream f .

In calculating the contraction domain U in this example, the system of equations originally used for this example
in [33] produced a contraction domain

U = { (M, K, D, x0, v0, f) ∈ (R>0)3 × R3 | M > max(K, 2D) }.

In [8, 9], it was shown how, by changing the system of equations to the form shown in (5.2) above (by eliminating
the acceleration parameter), the result could be improved to produce a contraction domain of

U = (R>0)3 × R3.

(Some details are given in [34, Example 3.3.5(1)].)
We must still show that F is effectively locally uniformly continuous as a function from the parameters (only!)

(M, K, D, x0, v0, f), to the outputs (y, w).20 In the following computation, therefore, we must consider other values
of the parameters (M′, K′, D′, x′0, v′0, f ′), with corresponding outputs (y′, w′), and changes in their values δM =
|M′ −M|, δx0 = |x′0 − x0|, δf = |f ′ − f |, etc. (meaning, in the last case, pointwise subtraction).

However we hold x and v fixed, i.e., δx = δv = 0.
Hence, for any T > 0, writing ‖u‖T = supt≤T |u(t)| for the pseudonorm [19] corresponding to the pseudometric

d T , we have from (5.2):

‖δy‖T = δx0, (5.3a)

‖δw‖T .
T
M

(
‖δf‖T + ‖x‖T δK + ‖v‖T δD

)
+

+ T · δM
M2

(
‖f‖T + K‖x‖T + D‖v‖T

)
(5.3b)

since δx = δv = 0, and δ(
1
M

) ≈ δM
M2 , and using the general formula δ(a · b) ≈ a · δb + b · δa.

It follows immediately from (5.3a) that Fx is (globally) uniformly continuous.
What about Fv? Since the tuple of parameters and input stream

(M, K, D, x0, v0, f)

is in the region

U = (R>0)3 × R2 × C[T, R]

it follows from (5.3b) that Fv is not uniformly continuous in the arguments M, K, D and f , since 1
M , K, D and f can

be made arbitrarily large.

20 See footnote to condition (xi) in Theorem B

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 37

We therefore construct an exhaustion (U1, U2, . . .) of (R>0)3 × R2 × C[T, R], the individual members of
which constrain M from below, and K, D and f from above:

U` =df R` × R2 × C[T, R]` ⊆ (R>0)3 × R2 × C[T, R]

(` = 1, 2, . . .), where

R` =df { (M, K, D) ∈ (R>0)3 | M > 1/`, K < `, D < ` },
C[T, R]` =df { f ∈ C[T, R] | ‖f‖T < ` }.

Then, by Lemma 4.6, the module functions Fv and (of course) Fx are both effectively locally uniformly continuous
on each U`. Hence so is the network state function F, by the reasoning in Remark 5.1.

Hence Theorem B, applied to the system in Figure 2, gives us:

Proposition 2. In the system in Figure 2, the displacement x is WhileCC∗(αc) approximable as a function of the
mass M, spring constant K, damping constant D, initial displacement x0, initial velocity v0, external force f and
time t.

Again, we are using the cartesian form of the function Φ in Theorem B.
The reasoning for the second case study (iterated mass/spring/damper system) is similar.

Remark 5.3. The rather formidable list of assumptions in Theorem B is satisfied by both our examples (this one,
and Example 2 below), and in particular these two mass/spring/damper case studies, which have acted as a “reality
check” for much of the research described in this and related papers [33, 34].21

• Example 2: Synchronous concurrent algorithms (SCAs)

These were investigated in [23], where it was shown how the network stream transformer Φ could be obtained by a
simultaneous primitive recursion, and again (from the present viewpoint) in [34], where it was shown [34, Examples
3.3.5(2) and 3.4.9(2)] how Φ could also be obtained as the fixed point of a contracting stream transformer. Continuity
of Φ followed [34, Example 4.2.13(2)] as a simple special case of Theorem 2.

(i) Concrete computability: Applying Theorem A We turn to the question of concrete computability of Φ.

Now T = N, with the standard exhaustion Kk = {0, 1, . . . , k}. For ZC we can take, for example, the set of
functions u such that for all i, u(i) ∈ ZA, and further, for some fixed z0 ∈ ZA, u(i) = z0 for i sufficiently large.
Then ZC is countable and dense in C[N, A] [23]. We let αc be some “standard” enumeration of ZC, based on the
enumeration αA of ZA. This enumeration is easily seen to be regular: density and Σ-effectivity of α are clear, while
effective local uniform continuity of (ZC,αc) is not an issue (Remark 3.1.4).

Again we have a very simple special case of Theorem A:

Theorem A′. Suppose a Σ-algebra C[T, A], based on an SCA network N, is represented by a regular enumeration
α. If the module functions of N are α-computable, then so is the network function Φ.

This is because Φ is defined from the module functions by PR (primitive recursion), which preserves α-
computability. The latter fact follows, for example, from the sequence of results

PR computability =⇒ While∗ computability
=⇒ WhileCC∗(αc) computability
⇐⇒ α-computability.

21 The book [7] by D.E. Hyndman was very helpful as the source of these two case studies.

AUTHOR
COPY

38 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

Caution! It is actually the cartesian form of Φ, cart(Φ), that is defined by PR, and hence α-computable [34,
Example 4.2.13(2)]. However, as we will see in §6.2 (Lemma 6.5),

cart(Φ) is α-computable =⇒ Φ is α-computable, (5.4)

at least in the case that T = N.
(ii) Abstract computability: Applying Theorem B
We turn to the question of abstract computability of SCAs.

Here we can simplify the statement of Theorem B slightly, by recalling (from [34, Example 3.3.5(2)]) that
Fc, a, x is automatically causal and contracting for all (c, a, x) ∈ dom(F), with constant contraction modulus and
increment. Hence assumptions (iv), (v), (viii) and (ix) are redundant.

The attentive reader may ask: why can’t we drastically simplify Theorem B in this case, along the lines of
Theorem A′ above in the case of α-computability, by noting simply that Φ is defined from the module functions
by primitive recursion, which preserves WhileCC∗ (and, for that matter, While∗) computability? The answer (as
pointed out in the cautionary comment above) is that actually it is not Φ, but cart(Φ), that is defined by primitive
recursion, and we do not have a result analogous to (5.4) for abstract computability. In fact, the analogous assertion
is known to be false for While∗ computability [27]. What about WhileCC∗ computability? This is discussed further
in Section 6 (Lemma 6.6).

Hence the only proof of Theorem B that we have at present, even in the case of SCA networks, proceeds via
α-computability and the completeness theorem for abstract/concrete computability.

6. Concluding Remarks
Stream processing occurs everywhere, often without being recognised as such. There are many occasions where a
theoretical analysis of a computation has led to a model of stream processing [21]. We have used basic topological
notions to model stream processing in continuous and discrete time, in a uniform way, and applied our general
models of concrete and abstract computability [30] to establish the computability of stream processing. We have
used, as examples, two simple, commonly found paradigms of stream processing: analog networks and synchronous
concurrent algorithms (SCAs) which we previously studied independently [23, 33].

There are many further examples of discrete space stream processing (such as dataflow networks, networks of
sensors, coupled map lattices, finite element modelling) and many other relevant computability models (such as
TTE, higher type computability) waiting to be combined and investigated. First (§6.1) we will elaborate on the idea
that discrete space models of natural and artificial systems lead directly to the study of continuous and computable
discrete and continuous time stream processing. Secondly (§6.2) we will comment on some technical issues in
our formulation of stream transformers and their computability, and then (§§ 6.3, 6.4) note some topics for future
research.

6.1. Modelling Systems by Continuous and Computable Stream Transformers
The source of much computation lies in mathematical models of natural and artificial systems. The architectures
of these systems are described in terms of components distributed in space. The properties of these systems are
measured by data assigned to the components. The dynamic behaviours of these systems are described in terms of
processes in which the data measuring the state of the components change in time. In general, models of systems
can be classified by choosing each of space, time and data to be either discrete or continuous (8 possibilities). In the
case of systems made from components, the existence of a system architecture requires discrete space only. Thus the
models can use either discrete or continuous time T and discrete or continuous data A (4 possibilities). Specifically,
the points of the discrete space are assigned components — such as units, cells, neighbourhoods, etc. — which are
observed or measured by data that changes in time. Thus, the local behaviour of a model at a point is given by a
stream of data from A timed by T, i.e., an element of C[T, A]. These observations lead us to propose the following
thesis:

Any discrete space model of system behaviour in time can be represented by a family of stream transformers
indexed by an architecture.

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 39

A consequence of this thesis is that whenever we find a discrete space mathematical model based on equations, we
can reformulate it as a system of equations for defining stream transformers.

In [34] we showed (using the notation of §1.2):

If F is contracting and causal, then Φ exists and is unique. If, in addition, F is continuous, then so is Φ.

As discussed in [34], continuity has long been recognised as a fundamental property of models because continuity
implies the physical stability of the fixed point solution Φ to the specification given by F. For example, repeating
an experiment to observe a physical process requires this stability since initial conditions and other parameters can
never be exactly determined or, therefore, reproduced. Hadamard [5, 6], Courant and Hilbert [4] and others required
that for a scientific problem to be “well posed”, the solution should depend continuously on the parameters; or, in
another formulation suitable for our present purposes:

For a model of a physical system to be well posed, its behaviour should depend continuously on the data.

This can be viewed as motivating our investigation in [34], by requiring that Φ be continuous in the data.
Another necessary condition for a model to serve a useful purpose is that system behaviour can be simulated.

This leads to a further, related, desideratum:

For a model of a physical system to be well posed, its behaviour should be computable in the data. (6.1)

Kreisel has explored this idea in [13]. Interestingly, he uses Hadamard’s principle there in order to reject certain
proposed physical experiments aimed at refuting (6.1). It can, likewise, be viewed as motivating the present
investigation. In the present context, it amounts to requiring that Φ be computable in the data.

Although for some models computability implies continuity [14, 25, 26] the properties of computability and
continuity are conceptually quite distinct, and should be considered separately.

6.2. Computability of Cartesian Forms of Stream-valued Functions
An essential technique throughout this paper and [34] has been to reduce higher type definitions to lower type, by
an “uncurrying” process (see Remarks 3.27 and 4.10, and [34, Remark 4.1.1]). This allows us to use (relatively)
elementary technical concepts from topology and computability theory.

Another form of type reduction (or uncurrying) that we find ourselves working with repeatedly is in the
construction of the cartesian forms of stream operators: cf. the cautionary comment in §5.2, Example 2(i).

In order to investigate this situation more systematically, we first consider the general phenomenon of a
“mismatch” between concrete and abstract computability on stream algebras. As an example, take a simple stream-
valued function

f : Aq × C[T, A]p → C[T, A] (6.2)

where for any input data a ∈ Aq and u = (u1, . . . , up) ∈ C[T, A]p, f (a, u) is (to take some simple examples) the
pointwise doubling of u1, or the pointwise sum of u1 and u2, or the constantly zero stream. Now any of these
operations is easily seen to be concretely computable; however, none of them is While∗ computable. The only
While∗ computable function of the form (6.2) is the input dependent stream projection

f (a, u) = uf0(a,u)

for some (computable) f0 : Aq × C[T, A]p → {1, . . . , p}. This is proved by the subalgebra property [29]: the value
f (a, u) must lie in the subalgebra generated by the inputs, which consists only of u. Further discussion of this, in the
case T = N, can be found in [23, 27], where we worked mainly with primitive recursive computability over C[T, A].

Now let f be a (partial) stream-valued function on C[T, A], say

f : D ⇀ C[T, A]m (6.3)

AUTHOR
COPY

40 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

where D is some product of carriers in the stream algebra C[T, A]. Note that although f in (6.3) may be partial, all
streams, i.e., elements of C[T, A], are still total (and continuous, by definition). Hence, for any x ∈ D, if f (x)↓,
then for all t ∈ T, f (x)(t)↓.

Recall the definition of the cartesian form of f (cf. (5.1)):

cart(f) : D× T ⇀ Am (6.4)

where for all x ∈ D and t ∈ T,

cart(f)(x, t) ' f (x)(t)

where ‘'’ is “Kleene equality”: the two sides are either both defined and equal, or both undefined.
Unlike the type transformation (2.6)⇒ (2.7) (cf. Remarks 3.27 and 4.10), the ‘cart’ operation is not, strictly

speaking, an uncurrying operation, for two reasons:

(1) The type of the curried form of (6.4) is not D ⇀ C[T, A]m as in (6.3), but D ⇀ C[T, Am]. However, these two
function spaces are homeomorphic [34, Cor. 2.5.2].

(2) More interestingly, the type shown in (6.3) is actually a subtype of the curried form of (6.4), since it consists
only of functions of that type which are continuous in the second argument (by continuity of streams).

In any case, like the transformation (2.6)⇒ (2.7), ‘cart’ is a very useful “type lowering” technique.
Now, given a model of computability M (C[T, A]) on the stream algebra C[T, A], we define the model

M cart(C[T, A]) by

f ∈M cart(C[T, A]) ⇐⇒df cart(f) ∈M (C[T, A]).

It is easy to see that the stream operations listed above (pointwise doubling etc.) are all in Whilecart(C[T, A]).
This suggests that Whilecart, While∗cart, etc., are better models of computation on C[T, A] than (respectively) While,
While∗, etc.

In general we have M (C[T, A]) ⊆ M cart(C[T, A]), i.e.,

f is M-computable =⇒ cart(f) is M-computable.

We have seen that the reverse implication

cart(f) is M-computable =⇒ f is M-computable (6.5)

fails for deterministic abstract models like While∗, because of the subalgebra property of these models. What about
concrete computability? In other words, under what conditions does the implication

cart(f) is α-computable =⇒ f is α-computable (6.6)

(effectively in α-codes) hold for all stream transformers f on C[T, A]?
This turns out to be linked to the following problem. Note first that a stream can be “computable” in two senses:

as a function from T to A, or as a point in the stream space, i.e., in the range of αc. What is the relation between these
two notions of computability for streams? This is problem is formalised by the concept of functional adequacy ,
which says that every computable function from T to A can be “represented” by a computable stream:

Notation 6.1. Given a stream u ∈ C[T, A], let

fun(u) : T → A

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 41

be the “corresponding” function, i.e., for all t ∈ T,

fun(u)(t) = eval(u, t).

Definition 6.2 (Functional adequacy of α).
(a) The family of enumerations α of C[T, A] is functionally adequate if for any stream u ∈ C[T, A], if fun(u) is

α-computable (as a function), then u is an α-stream (i.e., a stream in the range of αc (Def. 3.16)).
(b) α is effectively functionally adequate if (a) holds, effectively in α-codes.

Note that the converse of functional adequacy, i.e., “for every α-stream u, fun(u) is α-computable ”, is trivially true.
For the rest of §6.2, we assume α is a regular enumeration of C[T, A] (Definition 3.1.5), and so α-streams, and

hence also α-streams, are effectively locally uniformly continuous (by Lemma 3.2.13).

Lemma 6.3. (a) If α is effectively functionally adequate then the implication (6.6) holds for every stream
transformer f on C[T, A].

(b) Conversely, if (6.6) holds for every f , then α is functionally adequate.

The proof of (a) uses the S-m-n theorem [12, 18] on the tracking function for cart(f) to construct a tracking function
for f . The proof of (b) follows easily from the definitions.

Examples 6.4 (Functional adequacy). We continue with our two examples from Section 5.
• Example 1: Analog networks . Here T = R≥0. Assume (continuing with Example 1 in §5.2) that A = R.
Now the α-computable functions from T to R are continuous by the Kreisel-Lacombe-Shoenfield-Tseitin theorem
[14, 25, 26]22, and hence (classically) locally uniformly continuous. However, this does not imply that they are
effectively locally uniformly continuous. In fact a counterexample is given by M. Beeson in [1, p. 71, Exc. 2]. This
function23 uB : T→ R is α-computable as a function, but not effectively locally uniformly continuous, and hence
not an α-stream. This function uB then also provides a counterexample to functional adequacy for α. Hence, by
Lemma 6.3(b), (6.6) fails.
• Example 2: SCAs . Here T = N, and so (by Remark 3.4) all functions on T are automatically continuous —
in fact effectively globally uniformly continuous. From this it is easy to prove effective functional adequacy of α:
Given an α-computable f : N→ A, we can define an effective sequence of elements of ZC (see Example 2(i) in §5.2)
which approaches f effectively locally uniformly, and hence forms an effectively locally uniform Cauchy sequence,
which has a limit u in Cα[T, A] (see §3.2) (all effective in codes). Clearly, u is extensionally equivalent to f . Hence
by Lemma 6.3(a) we have:

Lemma 6.5. (6.6) holds for SCAs.

This result was used in Section 5 (in the form (5.5)) to give a simple proof of α-computability of the network
function Φ of an SCA, assuming α-computability of the network module functions (Theorem A′ in §5.2, Example 2).

Next, we can ask whether (6.5) holds in the case that M is WhileCC∗(αc) approximability, i.e., whether (or
under what circumstances)

cart(f) is WhileCC∗(αc) approx. =⇒ f is WhileCC∗(αc) approx. (6.7)

But this follows from Lemma 6.5 and the Completeness Theorem:

Lemma 6.6. Under the assumptions of the Completeness Theorem 4.7, (6.7) holds for SCAs.

More on the ‘cart’ operation on stream-valued functions, and its relation to models of (deterministic, abstract)
computation, can be found in [27].

22 For expositions of this theorem, see [1, pp. 61–62] and [24, vol. 1, pp. 321–322]
23 Actually Beeson’s counterexample has domain [0, 1], but that can be easily modified.

AUTHOR
COPY

42 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

6.3. Future Research on Stream Spaces
The study of computation on stream algebras provides a rich source of topics for future research. We mention four
such topics here:

(1) Relative computability of fixed point. In §3.3 we proved a relativised version (Theorem Arel) of Theorem
A, on concrete (α-)computability of the fixed point Φ of the contracting stream operator F. However we were unable
to prove an analogous relativised version of Theorem B, on abstract computability of the FP (see Remark 4.12).

Two possible approaches to such a proof would be (i) proving a relativised version of the completeness theorem
(4.7), and then using Theorem Arel, by analogy with our proof of Theorem B; or (ii) finding a direct proof of the
result, not relying on the completeness theorem or Theorem A. In the latter case, we would not need to work with
WhileCC∗ approximability as our model of abstract computation. This brings us to another point:

(2) Other models of abstract computability. Our use of WhileCC∗ approximability in Section 4 was
motivated by the proof method of Theorem B, which used the completeness theorem (4.7). Now WhileCC∗

computability (or approximability) is clearly nondeterministic, which is a valuable property in investigating
computation on topological models in general [30, 31], but may be less appropriate with the analog networks studied
in this paper (cf. the Network Determinacy Assumption in §5.1).24

Since the FP is computed by a system of (determinisitic) approximations, a more appropriate abstract
computability model (in the present context) might be While∗ approximability.

(3) Partial and nondeterministic module functions. As noted above, from considerations of continuity ,
we are nevertheless led to consider module functions that are nondeterministic (or many-valued) and partial [30, 31].

These features (which imply discarding our Network Determinacy Assumption in §5.1) will complicate the
theory considerably — for example, in the case of SCAs, they would require replacing a single global clock by a
system of local clocks [23, §8.2(1)]. However, they constitute an important generalisation, because of the desirability
of continuity by Hadamard’s principle [34, Discussion 4.2.14].

Continuity considerations are especially significant with hybrid systems , at analog/digital interfaces [16].

(4) Generalisation of stream concept. The considerations in (3) will lead to the investigation of streams
which are also partial and nondeterministic. Note again that the Network Determinacy Assumption will no
longer hold.

The use of piecewise continuous streams (in the case T = R≥0) forms another important generalisation of the
stream concept. For example, points of discontinuity in such streams could correspond to boundaries in phase space.

6.4. Future Research on Computability of Spatial Objects
Returning to the general ideas of the Introduction, each data type of the form C[X, A] arises typically in some
practical situation, and has its own special features. The algorithmic models that are characteristic of that situation
determine, or at least suggest, a corresponding computability theory. We have considered the case that X is time ,
but alternatively, the case of space is also fundamentally important:

(i) Graphic scenes: In 3-dimensional volume graphics, X can be continuous space, X = R3, and data are
attributes of spatial objects, such as colour or opacity, measured by A = {0, 1}k or A = [0, 1].

(ii) Machine states: In machine states, X could be a 2-dimensional discrete address space, X = Z2, and data are
k-bit words A = {0, 1}k.

(iii) Analog fields: Quite generally, X can be a continuous space modelled by a manifold, and data can be
measurements from a normed vector space.

We have encountered such data types before. In particular, we have considered spatial objects in volume graphics
and there arise several interesting open graphics questions involving computability [2, 3, 10, 11].

Do the mathematical methods we have used to study streams apply to spatial objects? On the face of it, much of
our mathematics ought to apply to arbitrary function spaces C[X, A]. Interestingly, this does not seem to be the case.

24 But see (3) and (4) below!

AUTHOR
COPY

J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams 43

For example, in the data type of spatial objects, the important notion of causality does not seem to have a natural
counterpart.

Even in simple geometric spaces such as X = Rn, the theory of spatial objects and their specifications by
operations and equations raises several questions where an appropriate computability theory is necessary for the
answer. One such question, raised in [11, Sec. 8], is the following: For a given set of basic spatial objects, and
high level operations on them, is every computable spatial object effectively approximable by objects built
up from these basic objects by these operations?

Some interesting work in generalising the concept of causality for spaces C[X, A] where X is an arbitrary
σ-compact space, has been done in [8, Ch. 4].

References
[1] M. Beeson. Foundations of Constructive Mathematics. Springer-Verlag: Berlin, Heidelberg, 1985.
[2] J. Blanck, V. Stoltenberg-Hansen, and J.V. Tucker. Streams, stream transformers and domain representations.

In B. Möller and J.V. Tucker, editors, Prospects for hardware foundations, volume 1546 of Lecture Notes in
Computer Science. Springer-Verlag: Berlin, Heidelberg, 1998.

[3] M. Chen and J.V. Tucker. Constructive volume geometry. Computer Graphics Forum, 19:281–293, 2000.
[4] R. Courant and D. Hilbert. Methods of Mathematical Physics, Vol. II. Interscience: New York, 1953. Translated

and revised from the German edition [1937].
[5] J. Hadamard. La Théorie des Équations aux Dérivées Partielles. Éditions Scientifiques: Paris, 1964.
[6] Jacques Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover: Mineola,

NY, USA, 1952. Translated from the French edition [1922].
[7] D.E. Hyndman. Analog and Hybrid Computing. Pergamon Press: Oxford, 1970.
[8] N.D. James. Existence, Continuity and Computability of Unique Fixed Points in Analog Network Models.

Ph.D. Thesis, Department of Computing & Software, McMaster University, 2012.
[9] N.D. James and J.I. Zucker. A class of contracting stream operators. The Computer Journal, 56:15–33, 2013.

[10] K. Johnson. Algebraic Specifications of Spatial Data Types with Applications to Constructive Volume
Geometry. Ph.D. Thesis, Department of Computer Science, Swansea University, Swansea, Wales, 2006.

[11] K. Johnson and J.V. Tucker. The data type of spatial objects. Formal Aspects of Computing, 25:189–218, 2013.
[12] S.C. Kleene. Introduction to Metamathematics. North Holland: Amsterdam, 1952.
[13] G. Kreisel. A notion of mechanistic theory. Synthese, 29:11–26, 1974.
[14] G. Kreisel, D. Lacombe, and J. Shoenfield. Partial recursive functions and effective operations. In A. Heyting,

editor, Constructivity in Mathematics: Proceedings of the Colloqium in Amsterdam, 1957, pages 290–297.
North Holland: Amsterdam, 1959.

[15] A.I. Malcev. Constructive algebras I. In The metamathematics of algebraic systems. A.I. Malcev, Collected
papers: 1936–1967, pages 148–212. North Holland: Amsterdam, 1971.

[16] A. Nerode and W. Kohn. Models for hybrid systems: Automata, topologies, controllability, observability. In
R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes
in Computer Science, pages 317–356. Springer-Verlag: Berlin, Heidelberg, 1993.

[17] M.B. Pour-El and J.I. Richards. Computability in Analysis and Physics. Springer-Verlag: Berlin, Heidelberg,
1989.

[18] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill: New York, 1967.
[19] H.L. Royden. Real Analysis. Macmillan: London, 1963.
[20] G.F. Simmons. Introduction to Topology and Modern Analysis. McGraw-Hill: New York, 1963.
[21] R. Stephens. A survey of stream processing. Acta Informatica, 34:491–541, 1997.

AUTHOR
COPY

44 J.V. Tucker and J.I. Zucker / Computablity of Operators on Streams

[22] V. Stoltenberg-Hansen and J.V. Tucker. Concrete models of computation for topological algebras. Theoretical
Computer Science, 219:347–378, 1999.

[23] B.C. Thompson, J.V. Tucker, and J.I. Zucker. Unifying computers and dynamical systems using the theory of
synchronous concurrent algorithms. Applied Mathematics and Computation , 215:1386–1403, 2009.

[24] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction, Vols I and II. North Holland:
Amsterdam, 1988.

[25] G.S. Tseitin. Algebraic operators in constructive complete separable metric spaces. Doklady Akademii Nauk
SSSR, 128:49–52, 1959. In Russian.

[26] G.S. Tseitin. Algebraic operators in constructive metric spaces. Tr. Mat. Inst. Steklov, 67:295–361, 1962. In
Russian. Translated in AMS Translations (2) 64:1–80. MR 27#2406.

[27] J.V. Tucker and J.I. Zucker. Computable functions on stream algebras. In H. Schwichtenberg, editor, Proof and
Computation: NATO Advanced Study Institute International Summer School at Marktoberdorf, 1993, pages
341–382. Springer-Verlag: Berlin, Heidelberg, 1994.

[28] J.V. Tucker and J.I. Zucker. Computation by ‘while’ programs on topological partial algebras. Theoretical
Computer Science, 219:379–420, 1999.

[29] J.V. Tucker and J.I. Zucker. Computable functions and semicomputable sets on many-sorted algebras. In
S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 5, pages
317–523. Oxford University Press: Oxford, 2000.

[30] J.V. Tucker and J.I. Zucker. Abstract versus concrete computation on metric partial algebras. ACM Transactions
on Computational Logic, 5:611–668, 2004.

[31] J.V. Tucker and J.I. Zucker. Computable total functions, algebraic specifications and dynamical systems.
Journal of Logic and Algebraic Programming, 62:71–108, 2005.

[32] J.V. Tucker and J.I. Zucker. Abstract versus concrete computability: The case of countable algebras. In
V. Stoltenberg-Hansen and J. Väänänen, editors, Logic Colloquium ’03, Proc. Annual European Summer
Meeting, Association for Symbolic Logic, Helsinki, August 2003, volume 24 of Lecture Notes in Logic, pages
377–408. Association for Symbolic Logic: Poughkeepsie, NY, USA, 2006.

[33] J.V. Tucker and J.I. Zucker. Computability of analog networks. Theoretical Computer Science, 371:115–146,
2007.

[34] J.V. Tucker and J.I. Zucker. Continuity of operators on continuous and discrete time streams. Theoretical
Computer Science, 412:3378–3403, 2011.

[35] K. Weihrauch. Computable Analysis: An Introduction. Springer-Verlag: Berlin, Heidelberg, 2000.

