
Unifying computers and dynamical systems using the
theory of synchronous concurrent algorithms

B.C. Thompson a

aDepartment of Computer Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales

J.V. Tucker b

bDepartment of Computer Science, Swansea University, Singleton Park, Swansea SA2 8PP, Wales

J.I. Zucker c

cDepartment of Computing and Software, McMaster University, Hamilton, Ontario L8S 4K1, Canada

Abstract

A synchronous concurrent algorithm (SCA) is a parallel deterministic algorithm based on a
network of modules and channels, computing and communicating data in parallel, and synchro-
nised by a global clock with discrete time. Many types of algorithms, computer architectures,
and mathematical models of physical and biological systems are examples of SCAs. For example,
conventional digital hardware is made from components that are SCAs and many computational
models possess the essential features of SCAs, including systolic arrays, neural networks, cellular
automata and coupled map lattices.

In this paper we formalise the general concept of an SCA equipped with a global clock in order
to analyse precisely (i) specifications of their spatio-temporal behaviour; and (ii) the senses
in which the algorithms are correct. We start the mathematical study of SCA computation,
specification and correctness using methods based on computation on many-sorted topological
algebras and equational logic. We show that specifications can be given equationally and, hence,
that the correctness of SCAs can be reduced to the validity of equations in certain computable
algebras. Since the idea of an SCA is general, our methods and results apply to each of the
particular classes of algorithms and dynamical systems above.

Key words: synchronous concurrent algorithm; dynamical systems; many sorted algebras; equational
specifications; streams; computability on topological algebras; computable physical systems.

Email addresses: J.V.Tucker@swansea.ac.uk (J.V. Tucker), zucker@mcmaster.ca (J.I. Zucker).

Preprint submitted to Elsevier 30 October 2008

1. Introduction

1.1. The concept

A synchronous concurrent algorithm (SCA) is an algorithm based on a network of
modules and channels, computing and communicating data in parallel, and synchronised
by a global clock with discrete time. The etymology of ‘synchronous’ is Greek: “at the
same time”. SCAs can process infinite streams of input data and return infinite streams
of output data. Most importantly, an SCA is a parallel deterministic algorithm.

Many types of algorithms, computer architectures, and mathematical models of physi-
cal and biological systems are examples of SCAs. First and foremost, conventional digital
hardware, including all forms of serial and parallel computers and digital controllers, are
made from components that are SCAs. In many cases, complete specifications of com-
puters at different levels of abstraction are SCAs. Interestingly, the structure of Charles
Babbage’s Analytical Engine (developed from 1833 onwards) is that of an SCA.

Further, many specialised models of computation possess the essential features of
SCAs, including systolic arrays, neural networks, cellular automata and coupled map
lattices.

The parallel algorithms, architectures and dynamical systems that comprise the class
of SCAs have many applications, ranging from their use in special purpose devices (for
communication and signal processing, graphics and process control) to computational
models of biological and physical phenomena.

From the point of view of computing, an SCA can be considered to be a type of
deterministic data flow network, in which time is explicit and enjoys a primary role.
SCAs require a new specialised mathematical theory with applications of its own.

From the point of view of mathematical physics and biology, an SCA can be considered
to be a type of spatially extensive discrete space, discrete time, deterministic dynami-
cal system that is studied independently or as an approximation to continuous space,
continuous time dynamical systems.

In most cases, SCAs are complicated and require extensive simulation and mathe-
matical analysis to understand their operation, behaviour and verification. In fact, in
the independent literatures on the above types of SCAs it is often difficult to formulate
precisely

(i) specific SCAs and their operation in time;
(ii) specifications of their spatio-temporal behaviour; and

(iii) the senses in which the algorithms are correct.

In the case of neural networks, correctness is further complicated by the difficulty of writ-
ing problem specifications, the existence of a learning phase, and notions of approximate
correctness. In the case of non-linear dynamical systems, correctness is concerned with
properties such as chaotic, stable, emergent and coherent behaviour over time. Thus,
SCAs constititute a wide ranging class of useful algorithms for which many basic ques-
tions concerning their structure and design remain unanswered.

In this paper we formalise the general concept of an SCA equipped with a global
clock and analyse precisely ideas about the specification and correctness of SCAs. Our
mathematical study of SCA computation, specification and correctness provides a unified
theory of deterministic parallel computing systems and deterministic, spatially extensive,

2

non-linear dynamical systems.
The methods are based on abstract computability theory on many-sorted topological

algebra and equational logic. We show how to define SCAs by equations over stream
algebras in a simple way. We also show that specifications can be given equationally and,
hence, that the correctness of SCAs can always be reduced to the validity of equations in
certain algebras. Thus, a natural method for verification of SCAs is equational reasoning,
although this is incomplete.

Our methods and results apply to each of the classes of algorithms and architectures
listed above. In particular, they can be used in case studies and software tools for design
and verification of specific classes of SCAs, and as a starting point for a general theoretical
analysis of hardware verification.

1.2. The theory

Data is modelled by an algebra

A = (A, B, T; F1 . . . Fk)

with three carrier sets: the set A of data, B of booleans and T of naturals {0, 1, 2, . . .}
(written T instead of N because it represents the discrete time on the global clock),
and functions F1, . . . , Fk which include the standard boolean operations (with possibly
equality on A) and the arithmetic operations of 0 and successor t + 1.

The behaviour of SCAs in time is modelled using streams of elements of A, which are
infinite sequences indexed by (discrete) time. Let [T → A] be the set of all streams. The
operations on data, time and streams are combined to form a stream algebra:

Ā = (A, B, T, [T → A]; F1 . . . Fk, eval).

Typically, in models of hardware systems, SCAs compute with streams of bits, integers or
terms. In dynamical systems, SCAs compute with streams of real and complex numbers.
To prepare for this mathematical view, we provide some preliminaries on topological
algebras in Section 2 and stream algebras and computable algebras in Section 3. We note
that all stream algebras are topological algebras and often have certain dense subalgebras
that are computable.

In Section 4 we define synchronous concurrent algorithms and architectures and for-
malise their semantics by means of functions defined by simultaneous primitive recursion
equations over Ā.

More specifically, an SCA based on a network N with m modules and p input streams
is specified by a network state function

V N : Am × [T → A]p × T → Am

in which V N (a ,x , t) denotes the state of the SCA on processing p input streams x ∈
[T → A]p from initial state a ∈ Am at time t ∈ T.

In Section 5 we give a sketch of the broad range of types of SCAs (systolic arrays,
neural networks, cellular automata and coupled map lattices) with an bibliography.

In Section 6 we consider specifications and correctness criteria for a simple form of the
space-time behaviour of SCAs: correctness based on specifications with respect to a single
system clock of the SCA. Other forms of correctness are possible, such as correctness
based on specifications with respect to a second clock external to the SCA [30].

3

In Section 7 we consider the SCA equational models from the point of view of com-
putability theory. We define two classes of predicates on Ā, broader than the class of PR
(primitive recursive) predicates: equational PR, which includes the (not necessarily com-
putable) equality relation as primitive, and equational λPR, which also includes stream
abstraction.

We consider specifications and correctness relations which should be algorithmically
testable, e.g., by primitive recursive computations. We prove some results concerning
the logical and computational structure of SCA correctness, including results having the
following form:

Theorem 1. The network state function V N is PR on the stream algebra Ā.

Theorem 2. Suppose A is a Hausdorff algebra, and further
(a) P , Q and R are equationally λPR on Ā,
(b) A has a dense computable subalgebra D.

Then we can effectively construct a computable algebra CV,P,Q,R with signature ΣV,P,Q,R

that expands by functions the stream subalgebra of eventually constant streams over D,
and equations eP , eQ, eV,R over ΣV,P,Q,R such that the following are equivalent:

(i) V N is correct w.r.t. P , Q and R, i.e., (7.4) holds;
(ii) CV,P,Q,R |= eP ∧ eQ → eV,R.

Thus, the correctness of the SCA (as in (i)) can be reduced to the validity of a conditional
equation in a computable algebra (as in (ii)). Through our definitions, this reduction to
conditional equations applies to a wide variety of complex space-time behaviours for a
wide variety of computing devices and dynamical systems,

This has several consequences, including the fact that SCA correctness is co-recursively
enumerable. This suggests there are no effectively axiomatisable complete proof systems
for SCA verification. However, we do have the following result in this direction.

Theorem 3. Given the hypotheses of Theorem 2, we can effectively construct a finite
equational specification (ΣV,P,Q,R, EV,P,Q,R) and equations eP , eQ, eV,R over ΣV,P,Q,R

s.t. the following are equivalent:

(i) V N is correct w.r.t. P , Q and R, i.e., (7.4) holds;
(ii) T (ΣV,P,Q,R, EV,P,Q,R) |= eP ∧ eQ → eV,R.

Section 8 contains some concluding remarks, concerning the issues of (a) a common
theoretical framework for SCA networks and analog networks, and (b) generalising the
model to allow for partial module functions and streams.

Since the emphasis in this paper is on the a general mathematical model of SCAs, it will
be helpful if the reader has some familiarity with theory for algorithmic computability
on discrete and continuous data [54,74,65,68,58].

1.3. Origins

The idea of a making a mathematical theory of SCAs that would uncover and analyse
common structures and properties between hardware, parallel algorithms, and dynamical
systems modelling natural phenomena arises in the work of the second author (JVT) at
Leeds University, starting in 1981. Over many years, the SCA notion was developed

4

primarily through studying applications, in work with, for example:

• N.A. Harman on hardware design and verification [19,22,21,23–26,17,18,20]
• A.V. Holden and M.J. Poole on non-linear dynamical systems [32,33,31,52,53]

The first two authors (BCT and JVT) started work on these mathematical foundations
for SCA theory in 1987, leading to the report [60]. Although unpublished, it was widely
circulated (forming, e.g., part of JVT’s lecture notes for the NATO Summer School
on Logic and algebra of specification, Marktoberdorf, Germany, 1991). There is a full
conceptual analysis and extensive reflection on correctness and examples in [60].

However, the subtlety of the connections between the SCA models and abstract and
concrete computability theories for continuous data types, such as streams of real num-
bers, was a problem. Thus, a gap of 17 years is partly excused by the need to master
computability theories for topological algebras, to which JVT and the third author (JIZ)
have devoted many pages in the period [63–69]. Our current understanding enabled us
to look at continuous time, continuous state and discrete space systems in our paper
[70], where we were motivated by the idea of models capable of unifying disparate ana-
logue technologies. Clearly, this application to analogue computation was inspired by the
earlier unification of models work on SCAs.

2. Topological algebras

We briefly survey the basic concepts of topological and metric many-sorted algebras.
More details can be found in [65,64,68].

2.1. Basic algebraic definitions

A signature Σ (for a many-sorted algebra) is a pair consisting of (i) a finite set Sort(Σ)
of sorts, and (ii) a finite set Func (Σ) of (basic) function symbols, each symbol F having
a type s1 × · · · × sm → s, where s1, . . . , sm, s ∈ Sort(Σ); in that case we write F :
s1 × · · · × sm → s. (The case m = 0 corresponds to constant symbols.)

A Σ-product type has the form u = s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are
Σ-sorts.

A Σ-algebra A has, for each sort s of Σ, a non-empty carrier set As of sort s, and
for each Σ-function symbol F : u → s, a function FA : Au → As, where, for the
Σ-product type u = s1 × · · · × sm, we write Au =df As1

× · · · ×Asm
. For m = 0, FA

is an element of As.
The algebra A is total if FA is total for each Σ-function symbol F .

Remark 2.1.1 (Assumption of total algebras). For the purpose of this paper, we work
only with total algebras, for the sake of simplicity. The interesting generalisation to the
framework of partial algebras (with partial operations and partial streams) is left to a
future paper (see Section 8).

Given an algebra A, we write Σ(A) for its signature.

Example 2.1.2. (a) The algebra B of booleans has the carrier B = {
�
, �} of sort

bool:
B = (B;

�
, � , and, or, not)

5

(b) The algebra T 0 of naturals has a carrier T of sort nat, together with the zero
constant and successor function:

T 0 = (T; 0, S)

Note that here and elsewhere we use the notation

T =df N = { 0, 1, 2, . . .}

for the set of natural numbers (denoted t, t′, . . .), since the interpretation of N throughout
this paper will be almost exclusively as a discrete global clock .

(c) The ring R0 of reals has a carrier R of sort real:

R0 = (R; 0, 1, +,×,−).

We make the following

Instantiation Assumption. For every Σ-sort s, there is a closed term of that sort,
called the default term δ

s of that sort. In any Σ-algebra A, it names an element of As,
called the default element of As.

2.2. Adding booleans: Standard signatures and algebras

Definition 2.2.1 (Standard signature). A signature Σ is standard if it includes the
signature of booleans, i.e., Σ(B) ⊆ Σ.

Given a standard signature Σ, a sort of Σ is called an equality sort if Σ includes an
equality operator eqs : s2 → bool.

Definition 2.2.2 (Standard algebra). Given a standard signature Σ, a Σ-algebra A is
standard if (i) it is an expansion of B; (ii) the equality operator eqs is interpreted as
identity on the carrier of each equality sort s.

An example of an equality sort is the sort nat of naturals, with carrier T. Intuitively,
equality is “computable” or “decidable” on T.

A non-equality sort is the sort real of reals. Intuitively, equality is (“co-semi-decidable”,
but) not (totally) decidable on R.

Any many-sorted signature Σ can be standardised to a signature ΣB by adjoining
the sort bool together with the standard boolean operations; and, correspondingly, any
algebra A can be standardised to an algebra AB by adjoining the algebra B, together
with equality at the equality sorts.

Example 2.2.3. (a) A standard algebra of naturals T is formed by standardising the
algebra T 0 (Example 2.1.2(b)), with (total) equality and order operations on T:

T = (T 0, B; eqnat, lessnat)

(b) The standardised ring of reals (cf. Example 2.1.2(c)):

R = (R0, B).

Note that there is no (total) equality on R, as discussed above.

6

2.3. Adding the naturals: T-standard signatures and algebras

Definition 2.3.1 (T-standard signature). A signature Σ is T-standard if (i) it is
standard, and (ii) it contains the standard signature of naturals, i.e., Σ(T) ⊆ Σ.

Definition 2.3.2 (T-standard algebra). Given an T-standard signature Σ, a corre-
sponding Σ-algebra A is T-standard if it is an expansion of T .

Any standard signature Σ can be T-standardised to a signature (Σ, T) by adjoining
the sort nat and the operations 0, S, eqnat and lessnat. Correspondingly, any standard
Σ-algebra A can be T-standardised to an algebra AT by adjoining the carrier T together
with the corresponding standard functions.

Throughout this paper, we will assume:

T-standardness Assumption. The signature Σ, and the Σ-algebra A, are T-standard.

Definition 2.3.3. (a) A topological Σ-algebra is a Σ-algebra with topologies on the
carriers such that each of the basic Σ-functions is continuous.

(b) A (T-)standard topological algebra is a topological algebra which is also a (T-)standard
algebra, such that the carriers B (and T) have the discrete topology.

Example 2.3.4. (a) Discrete algebras: The standard algebras B and T of booleans
and naturals respectively (§§2.1, 2.2) are topological (total) algebras under the discrete
topology. All functions on them are trivially continuous, since the carriers are discrete.

(b) The T-standard topological total real algebra RT is defined by

RT = (R, T ; divnat)

where R is the standardised ring of reals (Example 2.2.3(b)), T is the standard algebra of
naturals (Example 2.2.3(a)), and divnat : R×T → R) is the total (continuous!) function
defined by

divnat(x, t) =

{
x/t if t 6= 0

0 if t = 0

Note that RT does not contain (total) boolean-valued functions ‘<’ or ‘=’ on the reals,
since they are not continuous; nor does it contain division of reals by reals, since that
cannot be total and continuous. See [64,68,69] for discussions of these issues.

2.4. Metric algebra

A particular type of topological algebra is a metric algebra. This is a many-sorted
standard algebra A with an associated metric:

A = (A1, . . . , Ar,R; FA
1 , . . . , FA

k , dA
1 , . . . , dA

r)

where R is the standardised ring of reals (Example 2.2.3(b)), the carriers Ai are metric
spaces with metrics dA

i : A2
i → R, (i = 1, . . . , r), F1, . . . , Fk are the Σ-function symbols

other than d1, . . . , dk, and the functions FA
i are all continuous with respect to these

metrics. The carriers B and T (included among the Ai) are given the discrete metric,
which induces the discrete topology.

7

Clearly, metric algebras can be viewed as special cases of topological algebras.

Example 2.4.1. The real algebra RT (Example 2.3.4(b)) can be recast as a metric
algebra in an obvious way.

3. Stream algebras; Computable algebras

3.1. Adding streams to algebras: Algebras Ā of signature Σ

LetΣ be a T-standard signature, and A a T-standard Σ-algebra. We define an extension
of Σ and a corresponding expansion of A.

We choose a set S ⊆ Sort(Σ) of pre-stream sorts, and then extend ΣN to a stream

signature Σ
�

relative to S , as follows. With each s ∈ S , associate a new stream sort s̄,
also written nat → s. Then

(a) Sort(Σ
�
) = Sort(Σ) ∪ {s̄ | s ∈ S};

(b) Func(Σ
�
) consists of Func (Σ), together with the evaluation function

evals : (nat → s) × nat → s,

for each s ∈ S .

Now we can expand AT to a (Σ
�
)-stream algebra Ā

�
by adding for each s ∈ S :

(i) the carrier for s̄, which is the set

As̄ = Ās = [T → As]

of all streams on As i.e., functions u : T → As;
(ii) the interpretation of evals on A as the function evalAs : [T → As]×T → As which

evaluates a stream at a time instant: evalAs (u, t) = u(t).

The algebra Ā
�

is the (full) stream algebra over A with respect to S . (We will usually
omit explicit reference to the set S .)

Note that the Instantiation Assumption does not hold (in general) for the signature of
a stream algebra.

3.2. Expanding topological algebras to stream algebras

The algebraic expansion of an algebra A to a stream algebra Ā induces a corresponding
topological expansion:

(a) The topological T-standardisation AT , of signature (Σ, T), is constructed from A by
giving the new carrier T the discrete topology.

(b) Next, a topology on AT can be extended to one on Ā by giving the stream carriers
[T → As] the product topology based on As, where the basic open sets have the form

U = { u ∈ Ās | u(ti) ∈ Ui for i = 1, . . . , n } (3.1)

for some n > 0, t1, . . . , tn ∈ T and U1, . . . , Un open subsets of As.

With this topology, the operator evalAs is continuous.

8

Remark 3.2.1.

(a) This topology is the same as the inverse limit topology on [T → As] [71, §2.1].

(b) If As is metrisable by the metric ds, then so is [T → As] [71, §3.1], by the metric

ds̄(u, v) =df

∞∑

t=0

min
(
ds(u(t), v(t)), 2−t

)

3.3. Regular streams

Let B be a Σ-subalgebra of A. Then the stream algebraB over B is a Σ-subalgebra
of the stream algebra Ā. Further, for any stream sort s, if we replace [T → Bs] by any
nonempty subset of it in the definition ofB, then we again obtain a “stream subalgebra”
of Ā. All subalgebras of Ā are obtained in this way.

Of special interest is the following subset of the set Ās of all streams in Ā of sort s.
Define the set of regular streams of A of sort s by

(Ās)reg = [T → As]reg = { u ∈ [T → As] | ∃t0 ∀t ≥ t0 (u(t) = δ
s) }

where δ
s is the default element of As (§2.1).

Further, for each T-standard Σ-algebra A we define Āreg, the regular stream algebra
over A, to be the Σ-subalgebra of the stream algebra Ā obtained by restricting, at each
stream sort s, Ās to the set (Ās)reg of regular streams of sort s̄.

Lemma 3.3.1. If B is a Σ-subalgebra of A then the regular stream algebra (B)reg over

B is a Σ-subalgebra of the stream algebras B, Āreg, and Ā.

3.4. Dense regular subalgebras

We need the following general topological result.

Lemma 3.4.1. If X is a topological space and Y a Hausdorff space, and f : X → Y and
g : X → Y are both continuous, with f �D = g �D for some dense subset D of X, then
f = g.

Let A be a Σ-algebra.

Definition 3.4.2 (Dense subset). A Sort(Σ)-indexed subset D is dense in A if for all
Σ-sorts s, Ds is dense in As.

Lemma 3.4.3. Let A be a T-standard topological Σ-algebra. Then

(a) if A is Hausdorff then so is Ā;
(b) if D is a dense Σ-subalgebra of A then D and Dreg are dense Σ-subalgebras of Ā.

Proof. We prove the second part of (ii). Note first that Dbool = Abool = B and
Dnat = Anat = N. Now, for any stream sort s, by assumption Ds is dense in As. It
remains to show that (Ds)reg is dense in Ās = [T → As]. Choose any basic open set

U in [T → As], as in (3.1). Since Ds is dense in As, we can find di ∈ Ui ∩ Ds for
i = 1, . . . , n. Now define a stream u by

9

ui(t) =

{
di if t = ti for i = 1, . . . , n

δ
s otherwise.

Then u ∈ U ∩ (Ds)reg. 2

From now on, we will assume that all our topological algebras satisfy the

Hausdorff Assumption. A is a Hausdorff topological algebra.

3.5. Computable algebras; Computable stream algebras

In order to investigate effective aspects of correctness specification of SCAs (Section
8), we need the concept of a computable algebra [4].

Definition 3.5.1 (Recursive number algebra). A recursive number Σ-algebra Ω is a Σ-
algebra in which for each Σ-sort s, Ωs is a recursive subset of N and for each Σ-function
symbol F : u → s,

FΩ : Ωu → Ωs

is a total recursive function.

Let A be a T-standard Σ-algebra.

Definition 3.5.2 (Effectively presented algebra). An effective presentation (α, Ω) for
A consists of a recursive number Σ-algebra Ω and a Σ-epimorphism α : Ω → A.
We assume that Ωnat = N and αnat = idN.
A is said to be effectively presented by (α, Ω).

Next we define the Sort(Σ)-sorted congruence relation

≡α = 〈≡α,s| s ∈ Sort(Σ)〉

induced by α on Ω:

x ≡α,s y ⇐⇒ αs(x) = αs(y)

for all x, y ∈ Ωs. Note also that A ∼= Ω/ ≡α.

Definition 3.5.3 (Computable algebra). A is computable if it has an effective presen-
tation (α, Ω) in which ≡α is decidable on Ω; that is, for each s ∈ S, ≡α,s is decidable.

Note, next, that the stream algebra Ā has uncountable carrier sets Ās and so it cannot
be effectively presented. We therefore work with a regular subalgebra of Ā.

Lemma 3.5.4. Let D be a computable dense Σ-subalgebra of A. Then Dreg is a com-
putable dense Σ-subalgebra of Ā.

Proof. It is easy to extend an effective presentation for A with decidable equality to
one for Ā. The denseness of Dreg in Ā follows from Lemma 3.4.3. 2

Remark 3.5.5. An example of a computable dense subalgebra of an algebra, satisfying
the assumptions of Lemma 3.5.4, is in the real algebra RT (Example 2.3.4(b)), in which
the rationals Q form a dense subset of R.

10

4. Synchronous concurrent algorithms

4.1. Introduction to SCAs

An SCA is an algorithm given by a network N of modules , channels , sources and sinks .
The modules compute and communicate in parallel; computation and data flow between
modules is synchronised by a single global clock measuring discrete time, with values in
T.

For simplicity, assume that our T-standard Σ-algebra A contains only one carrier
(apart from B and T), also called A, of sort data. The data flowing between modules are
taken from this set.

The SCA processes streams or infinite sequences u(0), u(1), u(2), . . . of data from A,
clocked by T. Such a stream is represented as a function u : T → A. Let [T → A] be the
set of all streams over A.

Miki

Mi

Mi1

yq(t)

y1(t)x1(t)

xp(t)

ui1(t)

uiki
(t)

ui(t)

Figure 1. An SCA network

The network N in Figure 1 is made from a sequence M1, . . . , Mm of modules, a set Iin
of p sources and a set Iout of q sinks. For simplicity we represent the modules, sources
and sinks as natural numbers: I = {1, . . . , m}, Iin = {1, . . . , p} and Iout = {1, . . . , q}.

Communication between modules occurs by means of the channels . These have unit
bandwidth and are unidirectional; that is, they can transmit only a single datum a ∈ A
at any one time in one direction. Channels may branch with the intention that the datum
transmitted along the channel is “copied” and transmitted along each branch. However,
channels may not merge.

A module is an atomic computing device capable of some specific internal processing.
If module Mi has ki(> 0) input channels and one output channel then we assume the
processing of Mi to be specified by a total function Fi : Aki → A with the intention that
if a1, . . . , aki

∈ A arrive on the module’s ki input channels (one datum per channel) at
time t then Mi computes Fi(a1, . . . , aki

), and transmits it at time t + 1.
A source has no input and one output channel (which may branch). A network with

p sources will process p input streams x1, . . . , xp ∈ [T → A], or, equivalently, a vector-
valued input stream x ∈ [T → A]p with x (t) = (x1(t), . . . , xp(t)).

The sinks each have one input and no output channel. They transmit the q output

11

streams.
An SCA’s architecture is given by three wiring functions

α : I × N → Iin ∪ I

β : I × N → {M, S} (these symbols explained below)

out : Iout → I.

The map out is such that for each sink i, out(i) is the module that supplies i.
The maps α and β are partial functions that enumerate the inputs to a given module

in the following way. Given a module i ∈ I with ki input channels, for j = 1, . . . , ki:

• if β(i, j) = M then input channel j of module i is the output channel of module α(i, j);
• if β(i, j) = S then input channel j of module i is the output channel of source α(i, j).

If j 6∈ {1, . . . , ki} then α(i, j) and β(i, j) are undefined.
Note that feedback is characterised by a module i with input j, where β(i, j) = M and

α(i, j) = i.

4.2. Informal Explanation of Operation

Initially, at time t = 0, each module i has some initial value ai ∈ A on its output
channel. The initial state of N is specified by the vector a = (a1, . . . , am) ∈ Am. Thus
we have:

Initialisation Assumption. At time t = 0 there is a single datum on every channel
in the network.

Each module i now computes by first reading its input data and then evaluating Fi on
these data. The result of this evaluation is stored on the module’s output channel.

From the above, we can infer two related assumptions:

Module Totality and Determinism Assumptions.
(a) For each module in N , there is a datum on its output channel at time t + 1.
(b) This item is uniquely determined by the data on its input channels at time t.

Remark 4.2.1 (Unit delay assumption). The module totality and determinism assump-
tions entail a unit delay assumption: that it takes at most one time cycle for every module
to read, evaluate and store in some order, and that any module taking less than one time
unit is forced to wait until any slower modules have finished. Hence, as the clock beats
t = 0, 1, 2, . . ., the modules concurrently pass data and compute with each module per-
forming its t-th read/evaluate/store sequence starting at time t and ending by time t+1.
This is a reasonable assumption (assuming module totality!) since, even if we assume that
computation time of a module function is (in principle) unbounded for arbitray inputs,
we can always “re-scale” time intervals to bound the computation time by one unit, for
any given inputs.

We return to a discussion of the module totality and determinism assumptions in
Section 4.6.

12

4.3. Algebraic Formalisation

We start with a T-standard signature (Σ, T) and Σ-algebra A (§2.3). As stated above,
we assume for convenience that there are only three carriers: A of data, B of booleans
and T of naturals (i.e., discrete time instants). Apart from the standard boolean and
arithmetic operations, there may be other functions, including (perhaps) equality on A.

Now we form the module algebra AF by adding the module functions to A:

AF = (A; F1, . . . , Fm).

Note that if A is a topological algebra (as we are generally assuming) then in order that
AF can also be considered a topological algebra (with the given topology on A), we must
assume:

Continuity of Module Functions Assumption. The module functions are all con-
tinuous on A.

Next, we extend the algebra AF to the algebra AF of streams over AF (§3.1), which
we call the module stream algebra:

AF = (AF, [T → A]; eval).

Recall that the input to the network N consists of a tuple of initial values a =
(a1, . . . , am) ∈ Am and a stream tuple x = (x1, . . . , xp) ∈ [T → A]p.

Lemma 4.3.1 (Network totality and determinism properties).. At each time t ∈ T there
is a value output from each module, which can be determined uniquely from t, u and a .

Proof. By a simple induction on t, using the initialisation assumption at t = 0, and
the module totality and determinism assumptions at the induction step. 2

For each module i ∈ I we define its module value function

V i : Am × [T → A]p × T → A

where V i(a ,x , t) is the value output by the module i at time t when the network is
executed with initial data a and input streams x . Note that these functions are total,
by the network totality property.

Thus, the state of the network N is given by combining the module value functions
V 1, . . . ,V m into the single network state function

V N : Am × [T → A]p × T → Am (4.1a)

defined by

V N (a ,x , t) = (V 1(a ,x , t) . . . ,V m(a ,x , t)). (4.1b)

This defines the state of N at each time cycle. (We will sometimes drop the “network
superscript” ‘N’.)

The concurrent execution of the modules of N is modelled by the parallel evaluation
of V 1, . . . ,V m. We now develop general formulae for the computation of V 1, . . . ,V m

and hence of V N .

13

4.4. SCA network equations

We define V 1(a ,x , t), . . . ,V m(a ,x , t) for a = (a1, . . . , am) ∈ Am, x = (x1, . . . , xp) ∈
[T → A]p, and t = 0, 1, 2, . . . , by simultaneous recursion on t.

Base case: Initialisation. For i = 1, . . . , m:

V i(a ,x , 0) = ai (4.2)

Recursion step: State transition. Each module i has a functional specification
Fi : Aki → A, where, if b1, . . . , bki

arrive on i’s input channels at time t then the value
output by the module at time t + 1 is Fi(b1, . . . , bki

). Let the SCA have wiring functions
α and β as described in §4.1. Then for i = 1, . . . , m and all t ≥ 0

V i(a ,x , t + 1) = Fi(bi1, . . . , biki
) (4.3a)

where for j = 1, . . . , ki

bij =

{
V α(i,j)(a ,x , t) if β(i, j) = M

xα(i,j)(t) if β(i, j) = S.
(4.3b)

Remark 4.4.1. The equations (4.2) and (4.3) together form a definition by simultane-
ous primitive recursion.

Remark 4.4.2 (Stream transformation). We can rewrite the network state function V

(4.1) as a stream transformation by “abstraction” or “currying”; i.e., define

V̂ : Am × [T → A]p → [T → A]m (4.4a)

where

V̂ (a ,x)(t) = V (a ,x , t). (4.4b)

We will reconsider these two forms, from a computational point of view, in §7.2.

4.5. Output specification

Note that the network state function V N gives the values output by every module in
the network. In many cases we are interested only in the values sent to the network’s
sinks. When the network has q > 0 sinks with Iout = {1, . . . , q} we use the function
out : Iout → I (§4.1). Now define the network output function

V out : Am × [T → A]p × T → Aq (4.5a)

by

V out(a ,x , t) = (V out(1)(a ,x , t), . . . ,V out(q)(a ,x , t)), (4.5b)

so that V out(a ,x , t) is the vector of q values at the sinks of N at time t.
Note (cf. Remark 4.4.2) that we can also reformulate V out as a stream transformation

by abstraction:

V̂ out : Am × [T → A]p → [T → A]q

14

where
V̂ out(a ,x)(t) = V out(a ,x , t).

4.6. Generalisation of the model

There are many fruitful generalisations of our mathematical model, defined by weak-
ening or generalising some of the conditions in our definition. We mention four here, of
which the first two have already been studied, and the last two are suitable for future
investigation.

(i) Infinite SCAs. These consist of infinitely many modules, each of which has only
finitely many input and output channels, but each output channel may branch
infinitely, copying data to infinitely many modules. There are many interesting
examples, including infinite hardware systolic arrays [41,57] and infinite cellular
automata. Infinite SCAs are useful for modelling parameterised families of finite
SCAs.

(ii) Non-unit delays. One can generalise the timing properties of SCAs by relaxing
the unit delay assumption (§4.2). Many interesting algorithms have this property.
Note that the network totality and determinism properties still hold. Generalisation
of the theory to such a network requires course-of-values recursive functions, and
course-of-values inductive proofs [29], but is otherwise straightforward.

(iii) Partial algebras of data. This is a particularly interesting — and theoretically non-
trivial — generalisation. Here we drop the module totality assumption, and (more
generally) the assumption that the algebra A is total. This is of practical impor-
tance, in the case, for example, that A is an algebra of reals, that includes the
operation of real division, and the boolean operations of equality and order . In or-
der that these operations be continuous , we must make them partial , as discussed
in Example 3(b) and [64,68,69]. In such a framework, the module functions will
also be partial, as will the network state function. We will also have to work with
partial streams . We discuss this further in §8.2(i).

(iv) Nondeterministic SCAs. This is a closely related to the previous generalisation.
(The connection between partiality and nondeterminism and continuity is discussed
in [68].) Here we drop the Module Determinism Assumption (§4.2).

5. Examples of synchronous concurrent algorithms

Before developing our theory, and to illustrate the breadth of the concept of an SCA,
we give, very briefly, five types of SCA, to which our theory has been applied. For all these
examples (and especially neural networks) correctness is treated poorly in the existing
literature. A number of examples are worked out in detail in [60].

5.1. Clocked digital systems

Here we have in mind electronic circuits made from Boolean logic, a global clock,
and clocked storage elements such that every closed signal path passes through at least
one such storage element [44]. Useful references on the specification and verification of

15

such hardware systems are [6,8,38,34,28,49,56]. Case studies on modelling hardware with
SCAs have been made in connection with

(i) components : in particular, the modelling of fixed length buffers and RS flip-flops
as SCAs over bit strings [75,29,11];

(ii) computers : cf. our work with Harman cited in §1.3; and
(iii) graphics processors: cf. our work with Eker [12–15].

5.2. Systolic Arrays

This notion was developed by H.T. Kung and others to isolate a class of algorithms
particularly well-suited to avoiding the Von Neumann bottleneck and to special-purpose
implementation in VLSI circuits. As explained informally in [37], a systolic array is a
(synchronous, concurrent) network of processing elements with the following properties:

(i) the network comprises a small number of different types of simple processor;
(ii) the network data and control flows have a regular and modular structure;

(iii) the array is such that each piece of input data is used many times, and
(iv) the algorithm employs much parallelism through pipelining and multiprocessing.

As an example, the buffer mentioned in the previous subsection has all these properties.
Further examples and discussion can be found in [37,44,72,45,50,16,51,46,43]. We have
applied our tools to the specification and verification of systolic arrays of many types
[59,39,30,29,41,47,48,57].

5.3. Neural Networks

The notion of an (artificial) neural network is due to W.S. McCulloch and W. Pitts [42].
These networks were first defined in order to provide a mathematical characterisation of
logical aspects of activity levels in nervous systems in living organisms. Since then they
have become of interest to researchers in mathematics, physics and engineering sciences,
artificial intelligence and cognitive science. As witnessed by the many publications in this
field, neurocomputation is a very active subject area [27,40,1].

Formalisation of the models as SCAs leads to clarification of the models’ operation
and specification [32,61].

5.4. Cellular automata

The notion of a cellular automaton was invented by J. von Neumann [73] in order
to study evolution and self-reproduction in biological systems. Recently, many disparate
applications of cellular automata have been discovered in mathematics, physics, chemistry
and biology [7,76,55,77]. In general a cellular automaton can be described as a finite or
infinite two-dimensional array of cells. Our tools are currently limited to algorithms with
finitely many cells, so we can interpret finite cellular automata as SCAs.

16

5.5. Coupled Map Lattices

A coupled-map lattice (or CML) is a dynamical system based on discrete space, discrete
time and continuous state. It is a generalisation of iterated map dynamical systems [10].
It can also be considered as a generalisation of a cellular automaton (which has a discrete
state). CMLs are surveyed in [9,35]. They can also be interpreted as SCAs [33,31].

6. Specifications and Correctness

First, we define the concept of S-indexed sets and mappings.
Let S be a finite non-empty set. An S-indexed set A is a family A = 〈As | s ∈ S〉.
Given two S-indexed sets A = 〈As | s ∈ S〉 and B = 〈Bs | s ∈ S〉, an S-indexed

mapping from A to B is a family f = 〈fs | s ∈ S〉 where fs : As → Bs for each s ∈ S.
In symbols we write f : A → B.

6.1. Syntax: Terms and conditional equations

(a) T (Σ) is the Sort(Σ)-indexed set of Σ-terms (denoted t, . . .), where the set T s(Σ)

of such terms of sort s (denoted ts, . . .) is defined (simultaneously over S) by

ts ::= x
s | c | F (ts1

1 , . . . , tsm

m)

where x
s is a variable of sort s, c is a constant symbol of sort s, and F is a Σ-function

symbol of type s1 × · · · × sm → s (m > 0).

(b) Eq(Σ) is the set of Σ-equations (ts1 = ts2) between Σ-terms of the same Σ-sort. We
also write equations as e, e′,

(d) CondEq(Σ) is the set of Σ-conditional equations

e1 ∧ . . . ∧ en → e (n ≥ 0).

6.2. Semantics: Satisfaction

A Σ-conditional equational specification is a pair (Σ, E) where E ⊆ CondEq(Σ).
Let A be a Σ-algebra. The concepts:

(a) A satisfies the Σ-conditional equation e, written A |= e, and
(b) A satisfies the conditional equational specification (Σ, E), written A |= E,

are defined in the standard way.

6.3. Correctness of an SCA

We introduce the concept of relational correctness of an SCA.
Suppose that a computational task or behaviour is specified by a relation of the form

R ⊆ Am × [T → A]p × T × Aq (6.1)

17

such that for each a ∈ Am, x ∈ [T → A]p, t ∈ T and y ∈ Aq,

R(a ,x , t,y)

means that y is acceptable as an output for an initial state a and input stream x at
time t. We call R the specifying relation.

There are various ways of formulating correctness w.r.t. a specifying relation R, de-
pending on how we treat initialisations and inputs : We can consider a particular ini-
tialisation, or all initialisations from some subset of Am (possibly all of Am). Similarly,
we can consider a particular input stream, or all inputs from some subset of [T → A]p

(possibly all of [T → A]p). To take a typical (and useful) case:

Definition 6.3.1 (Correctness for initialisations and inputs from some set). For any
sets P ⊆ Am of initialisations and Q ⊆ [T → A]p of inputs, the SCA is correct w.r.t. P ,
Q and R if

(∀a ∈ P) (∀x ∈ Q) (∀t ∈ T) R(a ,x , t,V out(a ,x , t)). (6.2)

Here the output value function V out : Am × [T → A]p × T → Aq (4.5) is a selection
function for the relation R, relative to P and Q.

Note that if we want to specify the behaviour of the whole state of the SCA, we can
simply modify the above definition by replacing V out by V .

7. Primitive recursive computability on stream algebras

7.1. Simultaneous primitive recursion on abstract algebras

In [62] we developed a theory of abstract computability on standard abstract many-
sorted algebras . We formulated a generalised Church-Turing thesis, which identifies a
certain class of functions (namely, ‘µPR’ or ‘While’ computable) with functions algo-
rithmically computable on such structures.

We also developed a theory of generalised primitive recursion over T-standard algebras
A. These generalise Kleene’s primitive recursion functions on N [36], and form a proper
subclass of the class µPR.

Briefly, we define a class PR(A) of PR (primitive recursive) functions on A, generated
by schemes for (i) the initial functions and constants, i.e., the interpretations on A
of the Σ-functions, (ii) projections, (iii) definition by cases, (iv) composition, and (v)
simultaneous primitive recursion, where the function

f : Am × [T → A]p × T → Am

is defined by
f (a ,x , 0) = g(a ,x)

f (a ,x , t + 1) = h(a ,x , t, f (a ,x , t))
(7.1)

with
g : Am × [T → A]p → Am

h : Am × [T → A]p × T × Am → Am.

This is a simple recursion for an Am-valued function, equivalent to an m-fold simultaneous
recursion defining m A-valued functions. Note that the defining equations (4.2) and (4.3)
for the network value functions in §4.4 are a special case of this.

18

Note also that the class µPR(A) is formed from PR(A) by adding a scheme for the
(constructive) least number operator.

Lemma 7.1.1. For any topological algebra A, all functions in PR(A) are continuous.

This is proved, in fact for all µPR functions, in [65].
We now consider a class of relations on algebras broader than primitive recursiveness.

Definition 7.1.2 (Equationally PR definable relations). A relation R ⊆ Au on an
algebra A is equationally PR definable on A (PR=(A)) if there are PR(A) functions
fR, gR : u → s for some Σ-sorts u, s such that for all a ∈ Au

a ∈ R ⇐⇒ fR(a) = gR(a). (7.2)

We call the r.h.s. of (7.2) a PR defining equation for R, and the pair (fR, gR) PR defining
functions for R.

Remark 7.1.3 ((Comparison of PR and PR= computability). Note that PR=(A) is
(in general) a strictly broader concept than PR(A). For on the one hand, any PR(A)
relation R is also PR=(A), since (if χR is the characteristic function of R)

a ∈ R ⇐⇒ χR(a) = true

(a special case of (7.2)).But on the other hand, the range sort s (in Definition 7.1.2) need
not be an equality sort (cf. §2.2), i.e., equality at sort s is not necessarily PR.

7.2. Primitive recursion on stream algebras

Assume for simplicity (as stated in Section 4) that our T-standard Σ-algebra A contains
(apart from B and T) only one carrier A of data.

Consider now PR stream valued functions or stream transformers on Ā:

f : [T → A]m × An → [T → A]. (7.3)

It has been shown [63] that all PR stream transformers f of type as in (7.3) have the
form

f(u1, . . . , um, a1, . . . , an) = uf0(u1,...,um,a1,...,an)

for some PR function
f0 : [T → A]m × An → T.

In other words, PR stream transformers are not “interesting”: they only return one of
the input streams, the choice of which one depending primitive recursively on the inputs.

We therefore consider a broader, more interesting class of stream transformers, namely
the class λPR(Ā) formed from PR(Ā) by adding a scheme for stream (λ)-abstraction.
Note that a function f as in (7.3) will be in λPR(Ā) if its “cartesian” or “uncurried”
form

f̌ : [T → A]m × An × T → A

is in PR(Ā), where
f̌(u ,a , t) = f(u ,a)(t).

Note also that we can define the class λPR=(A) of equational λPR definable relations on
A, analogously to PR=(A) (Definition 7.1.2).

19

Now assume A, and hence Ā, are topological algebras.

Lemma 7.2.1. For f as in (7.3), f is continuous iff f̌ is continuous.

Hence, from Lemma 7.1.1:

Lemma 7.2.2. All functions in λPR(Ā) are continuous.

Corollary 7.2.3. Let A be Hausdorff T-standard algebra, and D a dense subalgebra of
A. Let f and g be λPR functions on Ā. Then the following are equivalent:

(i) f = g on Ā
(ii) f = g on D
(iii) f = g on Āreg

(iv) f = g on Dreg.

Proof. From Lemmas 3.4.1, 3.4.3 and 7.2.2. 2

7.3. Primitive recursiveness of SCA state function

Recall the module algebra AF, module stream algebra AF, module value functions
V 1, . . . ,V m, network state function V and network output function V out. (§§4.3–4.5).

Theorem 1. For any SCA over a T-standard algebra A, with module algebra AF:

(a) The module value functions V 1, . . . ,V m, network state function V and network

output function V out are in PR(AF).

(b) The abstracted forms V̂ and V̂ out are in λPR(AF).

Proof. The main step in (a) is to show that V is definable (uniquely) from the module
functions by simultaneous primitive recursion (equations (4.2), (4.3) as special cases of
scheme (7.1)), using a simple inductive argument parallelling the PR definition. 2

7.4. Computability of relational correctness specification

Recall the definition (6.3.1) of correctness for a specifying relation R with initialisations
and input streams from sets P ⊆ Am and Q ⊆ [T → A]p respectively:

(∀a ∈ P) (∀x ∈ Q) (∀t ∈ T) R(a ,x , t,V out(a ,x , t)). (7.4)

Theorem 2. For an SCA over a Hausdorff T-standard algebra A, with continuous
module functions, and module algebra AF, suppose

(a) P , Q and R are λPR= on AF,
(b) AF has a dense computable subalgebra D.

Then we can effectively construct a computable algebra CV,P,Q,R with signature ΣV,P,Q,R

that expands Dreg by functions, and equations eP , eQ, eV,R over ΣV,P,Q,R such that the
following are equivalent:

(i) V is correct w.r.t. P , Q and R, i.e., (7.4) holds;
(ii) CV,P,Q,R |= eP ∧ eQ → eV,R.

20

Consequently, correctness in the sense of (i) can be effectively reduced to the validity of
conditional equations in a computable algebra and is co-recursively enumerable.

Proof. We prove (i)⇒(ii). Consider the statement

a ∈ P ∧ x ∈ Q −→ R(a ,x , t,V out(a ,x , t)). (7.5)

Let (fP , gP), (fQ, gQ) and (fR, gR) be λPR defining functions for the sets P , Q and R
respectively. By assumption and Theorem 1, these functions, as well as V , are all λPR

on AF. By assumption (i), (7.5) holds on AF, and therefore it holds on Dreg, by Corollary

7.2.3 (with A replaced by AF). Since D is a computable algebra, so is Dreg, by Lemma
3.5.4, with effective presentation (α, Ω) say (recall §3.5). Now expand Dreg to the algebra

CV,P,Q,R =df (Dreg; V , fP , gP , fQ, gQ, fR, gR) (7.6)

with signature ΣV,P,Q,R. Since the seven functions shown in (7.6) are all λPR over Dreg,
they are “α-computable” on Dreg. (This follows from the soundness theorem for abstract
computability [68]). Hence, CV,P,Q,R is also a computable algebra. Moreover (7.5) has
the form of a conditional equation eP ∧ eQ → eV,R over CV,P,Q,R. Hence (ii) follows.
2

That the correctness problem is co-r.e. follows from the α-computability of the func-
tions noted above, together with the decidability of ≡α.

Example 7.4.1. Let A be the T-standard topological algebra RT (Example 2.3.4(b)).
A has a dense computable subalgebra D = QT consisting of the rationals Q with the
same signature as A. As a very simple example of a specifying relation that is λPR= over

AF (in fact, PR= over Ā), we could take

R(a, x1, x2, t, y) ⇐⇒ x1(t)
2 + x2(t)

2 = y2

where x1 and x2 are input stream variables and y is an output variable. A more interesting
example would be something like

R′(a, x1, x2, t, y) ⇐⇒ (0 < y2) ∧ (y2 < x1(t)
2 + x2(t)

2),

i.e., a boolean combination of equalities and inequalities between λPR terms.
The problem here is that equality and order, as total predicates on R, are not com-

putable [64,68,69]. In this paper we have solved this problem for equality by using the
computable subalgebra QT of RT , together with the concept of equational PR definability
(Definition 7.1.2).

To handle ‘<’, we can proceed similarly, extending the model of PR computability on
stream algebras PR(Ā) to a model PR=,<(Ā), in which ‘<’, as well as ‘=’, is allowed
as an extra basic predicate. And so on, for other non-computable predicates used in
specifications.

We could ask if condition (ii) in Theorem 2 could be replaced by a statement that the
conditional equation is a valid consequence of a certain set of axioms, i.e., a completeness
result. However the correctness problem for conditional equations in stream algebras is
complete Π0

1 [4] and so completeness fails. In this direction, however, we can prove the
following, using results of Bergstra and Tucker on initial algebra semantics [2–5].

21

Theorem 3. With the hypotheses of Theorem 2, we can effectively construct a finite
equational specification (ΣV,P,Q,R, EV,P,Q,R) and equations eP , eQ, eV,R over ΣV,P,Q,R

such that the following are equivalent:

(i) V is correct w.r.t. P , Q and R, i.e., (7.4) holds;
(ii) T (ΣV,P,Q,R, EV,P,Q,R) |= eP ∧ eQ → eV,R,

where T (ΣV,P,Q,R, EV,P,Q,R) is the ΣV,P,Q,R-term model generated by EV,P,Q,R.

Other work on the use of higher order equational methods in hardware verification is
presented in [47,48,57].

8. Concluding remarks

Since the concept of an SCA is quite general, our methods and results provide a unified
model for the various classes of algorithms, architectures and physical models mentioned
in the introduction, as well as for several others.

We can also construct a unified model for SCA networks and analog networks. This is
done in [71], and summarised in the following subsection.

8.1. Comparison with continuous-time analog networks

In [70] we develop a theory of analog networks. There are some striking resemblances
— and differences — between that theory and the theory of SCAs developed here.

Both models have global clocks. Whereas the SCA model has discrete time, modelled
by the naturals, the analog model has continuous time, modelled by the set T = R

≥0

of non-negative reals. Now streams on A are taken to be continuous functions from R≥0

to A, and the set of all such streams is denoted C[T, A]. Nevertheless, there are formal
resemblances in the networks of modules: compare Figure 1 in this paper and Figure 2 in
[70]. The main difference is this (writing Fi for the module function for Mi). In SCAs (cf.
Figure 1) if the input channels to module Mi carry streams ui1 , . . . , uiki

and the output
channel carries the stream ui, then for all t ∈ T

Fi(ui1(t), . . . , uiki
(t)) = ui(t + 1), (8.1)

i.e., Fi acts on input data u1(t), . . . , uki
(t) to produce an output datum ui(t + 1).

In analog networks, by contrast, the module functions (which we now write as F̂i) act
on input streams to produce output stream:

F̂i(ui1 , . . . , uiki
) = ui. (8.2)

The main consequence of this is that whereas with SCAs, it is very simple to find (or
construct) the network state function, by a simultaneous primitive recursion (§4.4); for
analog networks a much more sophisticated approach is required. To make any progress,
we must first assume that Fi is causal , where F : C[T, A]

k
→ C[T, A] is said to be causal

if for all u , v ∈ C[T, A]
k

and t > 0,

u�[0,t) = v�[0,t) =⇒ F(u)(t) = F(v)(t).

In such a case we can find the network state function as the fixed point of a contracting
functional [70].

22

In order to provide a unified model for these two types of networks, we first define, for
an SCA, an “abstracted” version of the network state function

F̂i(ui1 , . . . , uiki
)(t) =df

{
ai if t = 0

Fi(ui1(t − 1), . . . , uiki
(t − 1)) if t > 0

(8.3)

(where ai is the output of Fi at t = 0) to mimic the analog stream transformer (8.2).
Note now that in the case of SCAs,
(1) streams on T are automatically continuous, since T is a discrete set;
(2) from (8.3) it can easily be seen that the module functions, and hence the network

state function V (or V̂ ; cf. 4.4), are automatically causal — something that can
by no means be assumed for analog networks.

These points explain the comparative simplicity of construction of network state functions
for SCAs, compared to analog networks, as noted above. But note two further points:

(3) The SCA state function V can also be constructed as the fixed point of a con-
tracting functional, thus providing a unified model for these two types of networks.
Details are given in [71].

(4) The construction in (3) is along the lines of Kleene’s proof of his first recursion the-
orem [36, Thm XXVI]. However the fixed point in Kleene’s construction is obtained
as a limit of a sequence of partial streams , starting with the empty stream, whereas
the fixed point in [71] is obtained as a limit of a sequence of total streams , starting
with an arbitrary stream. (At stage n, the approximations by these two methods
give identical values at the first n places.) Thus, Kleene’s framework involves partial
functions, unlike the framework here and in [70,71]. See, however, §8.2(1) below.

8.2. Proposed generalisations of the theory

(1) Partial module functions. We want to investigate the theory of some of the general-
isations of SCAs listed in §4.6, particularly the last two, where, from considerations of
continuity, we may have to drop the module totality and determinism assumptions, and
(hence also) the unit delay assumption, (§4.2), and deal with models based on partial
data algebras [68], with partial (and nondeterministic) module and network functions,
and partial (and nondeterministic) streams. We will also have to replace our global clock
model with a system of local clocks . We conjecture that this will be equivalent to the
global clock model, with the totality, determinism and unit delay assumptions, in the
special case that the algebra A, and the function modules, are total.

(2) Specifiability based on µPR (semi-)computability. In Section 7 we investigated com-
putability of specifications based on PR(Ā) computable relations. It would be worth
investigating the same problem for µPR(Ā) computable — or semicomputable — rela-
tions. In this way we could get non-total relational specifications, which might fit in well
with a partial function / partial stream model (see point (1) above).

Acknowledgements

We thank the following colleagues for many useful and stimulating discussions on the
subject: J.A. Bergstra, B.R.J. McConnell, M.J. Poole, R. Stephens, W.B. Yates, S.M.

23

Eker, K. Hobley, A.R. Martin, and A.V. Holden. We also thank two anonymous referees
for helpful comments. The research of the second and third authors was supported in
part by a grant from EPSRC (Engineering and Physical Sciences Research Council, UK).
The research of the third author was supported in part by a grant from NSERC (Natural
Sciences and Engineering Research Council, Canada).

References

[1] J. Anderson, E. Rosenfeld (eds.), Neurocomputing: Foundations of Research, MIT Press, 1988.

[2] J. Bergstra, J.V. Tucker, A characterisation of computable data types by means of a finite equational
specification method, in: J. de Bakker, J. van Leeuwen (eds.), 7th International Colloquium on
Automata, Languages and Programming, Noordwijkerhout, The Netherlands, July 1980, vol. 85 of
Lecture Notes in Computer Science, Springer-Verlag, 1980, pp. 76–90.

[3] J. Bergstra, J.V. Tucker, The completeness of the algebraic specification methods for data types,
Information and Control 54 (1982) 186–200.

[4] J. Bergstra, J.V. Tucker, Algebraic specifications of computable and semicomputable data types,
Theoretical Computer Science 50 (1987) 137–181.

[5] J. Bergstra, J.V. Tucker, Equational specifications, complete term rewriting systems and computable
and semicomputable algebras, Technical Report CS-20-92, Department of Computer Science,
Swansea University, Swansea, Wales (1992).

[6] G. Birtwhistle, P. Subrahmanyam (eds.), VLSI Specification, Verification and Synthesis, Kluwer,
1988.

[7] C. Choffrut (ed.), Automata networks: LITP Spring School on Theoretical Computer Science, vol.
316 of Lecture Notes in Computer Science, Springer-Verlag, 1986.

[8] L. Claesen (ed.), Proceedings of the IMEC-IFIP Workshop on Applied Formal Methods for Correct
VLSI Design, Elsevier, 1989.

[9] J. Crutchfield, K. Kaneko, Phenomenology of spatio-temporal chaos, in: H. Bai-lin (ed.), Directions
in Chaos, University of Illinois Press, 1987.

[10] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1989.

[11] A. Dew, A. King, J.V. Tucker, A. Williams, The prioritiser experiment: Estimation and
measurement of computation time in VLSI, in: K. McEvoy, J.V. Tucker (eds.), Theoretical
foundations of VLSI design, vol. 10 of Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press, 1990, pp. 347–401.

[12] S. Eker, Foundations for the design of rasterisation algorithms and architectures, PhD Thesis, School
of Computer Studies, University of Leeds (1990).

[13] S. Eker, V. Stavridou, J.V. Tucker, Verification of synchronous concurrent algorithms using obj3.
A case study of the pixel planes architecture, in: G. Jones, M. Sheeran (eds.), Designing Correct
Circuits, Springer-Verlag, 1991, pp. 231–252.

[14] S. Eker, J.V. Tucker, Specification, derivation and verification of concurrent line drawing algorithms
and architectures, in: R. Earnshaw (ed.), Theoretical Foundations of Computer Graphics and CAD,
Springer-Verlag, 1988, pp. 449–516.

[15] S. Eker, J.V. Tucker, Specification and verification of synchronous concurrent algorithms: a case
study of the pixel planes architecture, in: P. Dew, R. Earnshaw, T. Heywood (eds.), Parallel
Processing for Computer Vision and Display, Addison-Wesley, 1989, pp. 16–49.

[16] D. Evans (ed.), Systolic Algorithms, Gordon and Breach, 1992.

[17] A. Fox, N. Harman, Algebraic models of correctness for microprocessors, Formal Aspects of
Computer Science 12 (2000) 298–312.

[18] A. Fox, N. Harman, Algebraic models of correctness for abstract pipelines, Journal of Logic and
Algebraic Programming 57 (2003) 71–107.

[19] N. Harman, Formal specifications for digital systems, PhD Thesis, School of Computer Studies,
University of Leeds (1989).

[20] N. Harman, Algebraic models of behaviour and correctness of smt and cmt processors, Journal of
Logic and Algebraic Programming 74 (2007) 32–56.

24

[21] N. Harman, J.V. Tucker, Clocks, retimings, and the formal specification of a UART, in: G. Milne
(ed.), The Fusion of Hardware Design and Verification (Proceedings of the IFIP Working Group
10.2 Working Conference), North Holland, 1988, pp. 375–396.

[22] N. Harman, J.V. Tucker, Formal specifications and the design of verifiable computers, in: Proceedings
of 1988 UK IT Conference, held under the auspices of the Information Engineering Directorate of
the Department of Trade and Industry, Institute of Electrical Engineers, 1988, pp. 500–503.

[23] N. Harman, J.V. Tucker, The formal specification of a digital correlator, I: User specification process,
in: K. McEvoy, J.V. Tucker (eds.), Theoretical Foundations of VLSI Design, Cambridge University
Press, 1990, pp. 161–262.

[24] N. Harman, J.V. Tucker, Consistent refinements of specifications for digital systems, in: P. Prinetto
(ed.), Correct hardware design methodologies (Proceedings ESPRIT BRA 3216 Workshop), Elsevier,
1991, pp. 281–304.

[25] N. Harman, J.V. Tucker, Algebraic methods and the correctness of microprocessors, in: G. Milne,
L. Pierre (eds.), Correct Hardware Design and Verification Methods, vol. 683 of Lecture Notes in
Computer Science, Springer-Verlag, 1993, pp. 92–108.

[26] N. Harman, J.V. Tucker, Algebraic models of microprocessors: architecture and organisation, Acta
Informatica 33 (1996) 421–456.

[27] R. Hecht-Nielson, Neurocomputation, Addison-Wesley, 1990.
[28] C. Hoare, M. Gordon (eds.), Mechanical Reasoning and Hardware Design, Prentice Hall, 1992.
[29] K. Hobley, The specification and verification of synchronous concurrent algorithms, PhD Thesis,

School of Computer Studies, University of Leeds (1990).
[30] K. Hobley, B. Thompson, J.V. Tucker, Specification and verification of synchronous concurrent

algorithms: A case study of a convoluted algorithm, in: G. Milne (ed.), The Fusion of Hardware
Design and Verification (Proceedings of IFIP Working Group 10.2 Working Conference), North
Holland, 1988, pp. 347–374.

[31] A. Holden, M. Poole, J.V. Tucker, H. Zhang, Coupled map lattices as computational systems, Chaos
2 (1992) 367–376.

[32] A. Holden, B. Thompson, J.V. Tucker, The computational structure of neural systems, in: A. Holden,
V. Kryukov (eds.), Neurocomputers and Attention I: Neurobiology, Synchronisation and Chaos,
Manchester UnivṖress, 1990, pp. 223–240.

[33] A. Holden, B. Thompson, J.V. Tucker, Can excitable media be considered as computational
systems?, Physica D 49 (1991) 240–246.

[34] G. Jones, M. Sheeran (eds.), Designing Correct Circuits, Springer-Verlag, 1991.
[35] K. Kaneko (ed.), Coupled Map Lattices: Theory and Applications, John Wiley & Sons, 1993.
[36] S. Kleene, Introduction to Metamathematics, North Holland, 1952.
[37] H.-T. Kung, Why systolic arcitectures?, Computer 15 (1982) 37–47.
[38] A. Leeser, G. Brown (eds.), Hardware specification, verification and synthesis: Mathematical aspects,

vol. 408 of Lecture Notes in Computer Science, Springer-Verlag, 1989.
[39] A. Martin, J.V. Tucker, The concurrent assignment representation of synchronous systems, Parallel

Computing 9 (1988) 227–256.
[40] J. McClelland, D. Rumelhart, Parallei Distributed Processing, vol. 1, Bradford Books, MIT Press,

1986.
[41] B. McConnell, J.V. Tucker, Infinite synchronous concurrent algorithms: The specifiation and

verification of a hardware stack, in: H. Schwichtenberg (ed.), Logic and Algebra for Specification,
Springer-Verlag, 1993.

[42] W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of
Mathematical Biophysics, Series 2 5 (1942) 115–133.

[43] K. McEvoy, J.V. Tucker (eds.), Theoretical Foundations of VLSI Design, vol. 10 of Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, 1990.

[44] C. Mead, L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.
[45] A. Megson, An Introduction to Systolic Algorithm Design, Oxford University Press, 1992.
[46] A. Megson (ed.), Transformational Approaches to Systolic Design, Chapman and Hall, 1993.
[47] K. Meinke, L. Steggles, Specification and verification in higher order algebra: A case study of

convolution, in: J. Heering, K. Meinke, B. Möller, T. Nipkow (eds.), Higher order algebra, logic and
term rewriting, vol. 816 of Lecture Notes in Computer Science, Springer-Verlag, 1994, pp. 189–222.

[48] K. Meinke, L. Steggles, Correctness of dataflow and systolic algorithms using algebras of streams,
Acta Informatica 38 (2001) 45–88.

25

[49] G. Milne, L. Pierre, Correct hardware design and verification methods, vol. 683 of Lecture Notes in
Computer Science, Springer-Verlag, 1993.

[50] L. Moore, Systolic Arrays, Oxford University Press, 1988.
[51] N. Petkov, Systolic Parallel Processing, Elsevier, 1993.
[52] M. Poole, J.V. Tucker, A. Holden, Hierarchies of spatially extended systems and synchronous

concurrent algorithms, in: B. Möller, J.V. Tucker (eds.), Prospects for hardware foundations, vol.
1546 of Lecture Notes in Computer Science, Springer-Verlag, 1998, pp. 184–235.

[53] M. Poole, J.V. Tucker, A. Holden, Hierarchical reconstructions of cardiac tissue, Chaos, Solitons
and Fractals 13 (2002) 1581–1612.

[54] M. Pour-El, J. Richards, Computability in Analysis and Physics, Springer-Verlag, 1989.
[55] F. F. Soulié, Y. Robert, M. Tchuente (eds.), Automata networks in computer science, Manchester

University Press, 1986.
[56] V. Stavridou, Formal specifications for digital design, vol. 37 of Cambridge Tracts in Theoretical

Computer Science, Cambridge University Press, 1993.
[57] L. Steggles, Verifying an infinite systolic algorithm using third-order equational methods, Journal

of Logic and Algebraic Programming 69 (2006) 75–92.
[58] V. Stoltenberg-Hansen, J.V. Tucker, Effective algebras, in: S. Abramsky, D. Gabbay, T. Maibaum

(eds.), Handbook of Logic in Computer Science, vol. 4, Oxford University Press, 1995, pp. 357–526.
[59] B. Thompson, A mathematical theory of synchronous concurrent algorithms, PhD Thesis, School

of Computer Studies, University of Leeds (1987).
[60] B. Thompson, J.V. Tucker, Algebraic specification of synchronous concurrent algorithms and

architectures (Revised), Research Report 9-91, Department of Computer Science, Swansea
University, Swansea, Wales (1991).

[61] B. Thompson, J.V. Tucker, W. Yates, Algebraic specification of neural networks and correctness,
Technical Report, Department of Computer Science, Swansea University, Swansea, Wales (1993).

[62] J.V. Tucker, J.I. Zucker, Program Correctness over Abstract Data Types, with Error-State
Semantics, vol. 6 of CWI Monographs, North Holland, 1988.

[63] J.V. Tucker, J.I. Zucker, Computable functions on stream algebras, in: H. Schwichtenberg (ed.),
Proof and Computation: NATO Advanced Study Institute International Summer School at
Marktoberdorf, 1993, Springer-Verlag, 1994, pp. 341–382.

[64] J.V. Tucker, J.I. Zucker, Computation by ‘while’ programs on topological partial algebras,
Theoretical Computer Science 219 (1999) 379–420.

[65] J.V. Tucker, J.I. Zucker, Computable functions and semicomputable sets on many-sorted algebras,
in: S. Abramsky, D. Gabbay, T. Maibaum (eds.), Handbook of Logic in Computer Science, vol. 5,
Oxford University Press, 2000, pp. 317–523.

[66] J.V. Tucker, J.I. Zucker, Abstract computability and algebraic specification, ACM Transactions on
Computational Logic 3 (2002) 279–333.

[67] J.V. Tucker, J.I. Zucker, Infinitary initial algebra specifications for stream algebras, in: W. Sieg,

R. Sommer, C. Talcott (eds.), Reflections on the Foundations of Mathematics: Essays in honor of
Solomon Feferman, vol. 15 of Lecture Notes in Logic, Association for Symbolic Logic, 2002, pp.
234–256.

[68] J.V. Tucker, J.I. Zucker, Abstract versus concrete computation on metric partial algebras, ACM
Transactions on Computational Logic 5 (2004) 611–668.

[69] J.V. Tucker, J.I. Zucker, Computable total functions, algebraic specifications and dynamical systems,
Journal of Logic and Algebraic Programming 62 (2005) 71–108.

[70] J.V. Tucker, J.I. Zucker, Computability of analog networks, Theoretical Computer Science 371 (2007)
115–146.

[71] J.V. Tucker, J.I. Zucker, Computation on algebras of continuous functions, in preparation (2008).
[72] J. Ullman, Computational Aspects of VLSI, Addison-Wesley, 1984.
[73] J. von Neumann, Theory of self-reproducing automata, in: A. Burks (ed.), Papers of John von

Neumann on Computing and Computing Theory, University of Illinois Press, 1966.
[74] K. Weihrauch, Computable Analysis: An Introduction, Springer-Verlag, 2000.
[75] A. Williams, Theoretical and empirical studies in vlsi complexity theory, PhD Thesis, School of

Computer Studies, University of Leeds (1989).
[76] S. Wolfram (ed.), Theory and Applications of of Cellular Automata, World Scientific, 1986.
[77] S. Wolfram, A new kind of science, Wolfram Media, 2002.

26

