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Abstract

The aim of this research is to compare and contrast specifiability and computability of

functions on many-sorted partial algebras A by systems of equations and conditional

equations. As our model of computability, we take the system µPR*(A) of primitive

recursive schemes over A with added array sorts and the µ (least number) operator.

We show:

(1) Any µPR*-computable function is specifiable (i.e. uniquely definable) by a

finite set of conditional equations over A, using either Kleene’s semantics, or

a “strict” semantics, for the equality relation between partially defined terms;

but not conversely, i.e., not all conditionally equationally specifiable functions

are computable.

(2) If however we replace “unique definability” by “definability as a minimal solu-

tion” in Kleene equational logic, and if we consider only equations, not con-

ditional equations, then we obtain the class of functions ED*(A), which is

shown to be equal to µPR*(A). This equivalence provides added support for

a Generalized Church-Turing Thesis. However the class CED*(A) of minimal

solutions of conditional equations goes beyond µPR*(A) computability. In

fact such functions are in µPR*(Aeq), i.e., µPR* over A extended by equality

operators at all sorts.
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Chapter 1

Introduction

Computability theory of functions over abstract algebra is a central concern in math-

ematics and computer science. Since the 1960s, many computation models, such

as imperative programming language and function schemes, have been developed to

describe ways of computing functions on many-sorted algebras.

All of our investigation in computability and specification is based on an abstract

data model: a partial algebra A, which is given by a finite family of non-empty sets

As1 , . . . , Asn called carriers of the algebra; and finite sets of constants c1, . . . , cn and

partial functions F1, . . . , Fn with a type:

F : s1 × · · · × sm → s

We are mostly interested in N -standard partial algebras which are formed by including

the set B of booleans and the set N of naturals, as well as the standard operations

such as equalities on these sets.

In this chapter, we will first give a brief introduction to the background and our

research objective, and then give an overview of the chapters in this thesis.

1



2 1. Introduction

1.1 Background

1.1.1 µPR* computability

Schemes for inductive definability over abstract structure have been developed by

Platek [Pla66], Moschovakis [Mos84, Mos89] and Feferman [Fef96]. Tucker and Zucker

generalized Kleene’s schemes over N [Kle52] to µPR schemes over N-standard alge-

bras [TZ88, TZ00].

µPR schemes define functions by starting with basic functions and applying

composition, definition by cases, simultaneous primitive recursion and the constructive

least number operator µ to these functions. A function on A is µPR*(Σ) computable

if it is defined by a µPR scheme over Σ∗, where Σ∗ expands Σ by including the

new starred (array) sorts s∗ for each sort s of Σ as well as standard array operations.

These define a broader class of functions than µPR, providing a better generalization

of Kleene’s schemes, as we will see below.

By [TZ00], generalizing a classical result over N [MR67, BL74], we have

µPR∗(A) = While∗(A) (1.1)

where µPR*(A) denotes the class of µPR* computable functions on a many-sorted

N -standard partial algebra A and While*(A) denotes the class of While* (i.e.

While with arrays) computable functions on A. While is an imperative program-

ming language constructed from concurrent assignments, sequential composition, the

conditional and the ‘while’ command. The Generalized Church-Turing Thesis [TZ88,

TZ00] states that the the class of functions computable by finite deterministic algo-

rithms on A are precisely the class given in (1.1).
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1.1.2 Algebraic specification

The theory of algebraic specification, i.e, specification by formulae of a restricted

syntactic class, such as equations or conditional equations, is a well-established field

interesting for theoreticians and practitioners in both mathematics and computer

science. It originated in the mid-seventies and has been developed in various areas,

such as pure mathematics, abstract data types and software systems.

Algebraic specification of abstract data types as a rigorous mathematical approach

was introduced by the ADJ-group [GTW77, GTW78], and has been further investi-

gated, extended and defended by others [GH78, EM85]. Most writers are interested

in initial algebra semantics, i.e. definability of an initial Σ-algebra A by a given set

of equations or conditional equations. Our viewpoint is rather: given a Σ-algebra

A, to consider the functions on A which are specified by a system of (conditional)

equations, and show that

Computability ⇒ Specifiability (1.2)

This has already been done in [TZ02] for total algebras. In this thesis, we extend (1.2)

to partial algebras.

Equational definability as a model of computation has been investigated by Kleene

over N [Kle52], and Moldestad and Tucker over many-sorted total algebras [MT81].

We investigated equational and conditional equational definability on many-sorted

partial algebras from two viewpoints:

(a) unique definability, i.e. specifiability, and

(b) definability as a minimal solution, which provides a model of computability.
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1.1.3 Computability of minimal solutions of systems of equa-

tions or conditional equations

Minimality of solutions of systems of recursive equations is connected with the fixed

point (or denotational) semantics of a recursive formalism, given as the least fixed

point of a continuous higher order functional Φ, i.e. a function f such that

Φ(f) = f

which, by the Knaster-Tarski theorem [Kna28, Tar55], is obtained as the limit of a

sequence of “approximation from below”, i.e.

f =
∞⋃
i=0

fi

where f0 is the completely undefined function and fi+1 = Φ(fi). Fixed point seman-

tics have been investigated by Kleene for his recursive schemes [Kle52, §66], Stoy

and De Bakker for the semantics of programming language [Sto77, dB80], Platek,

Moschovakis and Feferman in connection with their inductive schemes (see §1.1.1

above), and also by Moldestad et al. [MSHT80].

We use this technique in a new setting, i.e. conditional equations on many sorted

partial algebras.

1.2 Objectives

We compare specifiability and computability of functions on abstract partial algebras

of a given signature Σ by systems of equations and conditional equations. Here,

“specifiable” means uniquely definable, and “computable” corresponds (as we will

see) to definable as the minimal solution of a set of equations.
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Our work consists of two parts:

(1) To show:

µPR∗(Σ)-computable on A ⇒ conditional equational specifiable on A

This was already shown in [TZ02] for total algebras. The new feature here is

working on partial algebras (which are important for topological consideration

[TZ99]). It is necessary to choose a logic for equations between partially defined

terms. We consider and compare two kinds of logics: one based on Kleene

equality “'” [Kle52], and the other based on strict equality “=” [Far90, Par93,

Fef95].

Note that the reverse of the above implication does not hold, i.e., specification

goes beyond computability. (A counterexample is given in Remark 5.15.)

(2) To characterize a form of equational definability which does correspond to com-

putability. We find that the existence of minimal solutions of a set of equations

(using Kleene equality) gives rise to a new model of computability ED*(Σ).

We show that

ED∗(A) = µPR∗(A) (1.3)

by proving a circle of relations

µPR∗(A) ⊆ ED∗(A) ⊆ Rec∗(A) ⊆While∗(A) ⊆ µPR∗(A)

where Rec∗(A) is a class of functions which can be computed by procedures

with recursive procedure calls (the stars ‘*’ refer to presence of array sorts).

Then, (1.3) together with (1.1) gives a further confirmation to the Generalized

Church-Turing Thesis.
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We will also see (Theorem 7.19) that the class CED*(A) of minimal

solutions of conditional equations (with Kleene equality in the consequent and

strict equality in the antecedent) takes us beyond µPR* computability on A.

However, if we expand A to Aeq by adding equality at all sorts, we get

CED∗(A) ⊆ µPR∗(Aeq).

1.3 Overview of the thesis

This thesis consists of seven chapters.

Chapter 1 gives a brief introduction to the background and research aims, and

then outlines the structure of the thesis.

Chapter 2 supplies the reader with some basic concepts and notations on many-

sorted partial algebras, especially three kinds of expansions of such algebras: standard

algebras, N-standard algebras and starred algebras (i.e. with array sorts) which have

significant use in the later chapters.

Chapter 3 introduces the specification languages used in our research, and the two

semantics (Kleene and strict) for equations between partially defined terms.

In Chapter 4, we investigate µPR* computability on many-sorted N -standard

partial algebras A, with the syntax and semantics of µPR* schemes.

In Chapter 5, we investigate specification theories for µPR* computable functions

on A. We show that µPR* computable functions on A are specifiable in both Kleene

and strict equational logic (Theorems 5.6 and 5.12).

In Chapter 6, we prove (Theorem 6.10) the existence of a minimal solution for

any system of equations, and also conditional equations (with Kleene equality in

the consequent and strict equality in the antecedent) on A, by extending Kleene’s
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approach used in his investigation of recursive functionals on N.

In Chapter 7, we prove (Theorem 7.7) that the minimal solutions on A of equa-

tions (with Kleene equality) are computable by recursive programs. Hence, we derive

(Theorem 7.18) the equivalence of the models ED*(Σ), Rec*(Σ), While*(Σ) and

µPR*(Σ). We also show (Theorem 7.19) that class CED*(A) of minimal solutions

of conditional equations goes beyond µPR*(A), but lies in µPR*(Aeq). We con-

jecture the equivalence of CED*(A) and µPR*(Aeq) when ‘eq’ is interpreted as

semi-equality (see Definition 2.17) at all sorts.



Chapter 2

Signatures and algebras

We start with some basic concepts and important notations to supply the readers with

necessary fundamentals. Adding new data sets and operators is a key activity in our

research, so, expansions and reducts of algebras are defined to track this change. We

will introduce three kinds of expansions of algebras: standard algebras, N-standard

algebras and starred algebras, which are formed by equipping algebras with Booleans,

counters and arrays respectively. These three algebras have significant use in our

research.

In this thesis, we are particularly interested in partial algebras, so we have:

Assumption 2.1 (Partial functions and algebras). All functions and algebras

discussed below are partial except where specified as total.

Much of the content in this chapter is taken from [TZ00, §2], except for making

relevant changes from total algebras to partial algebras.

8
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2.1 Signature

Definition 2.2 (Many-sorted signatures). A signature Σ for a many-sorted al-

gebra is a pair consisting of:

• a finite set Sort(Σ) of sorts

• a finite set Func(Σ) of primitive function symbols. Each symbol F has a

type s1 × · · · × sm → s, where m ≥ 0 is the arity of F, and s1, . . . , sm ∈
Sort(Σ) are the domain sorts and s ∈ Sort(Σ) is the range sort ; in such

a case we write

F : s1 × · · · × sm → s.

The case m = 0 corresponds to constant symbols; we write F: → s or just

F : s. For convenience, we often consider constant c separately from F in

inductive proof.

Remark 2.3. Our signatures do not explicitly include relation symbols; relation will

be interpreted as Boolean-valued functions.

Definition 2.4 (Product types over Σ). A product type over Σ, or Σ-product

type, is a symbol of the form s1× · · · × sm (m ≥ 0), where si ∈ Sort(Σ), called

its component sorts. We define ProdType(Σ) to be the set of Σ-product types,

with elements u, v, w,...

For a Σ-product type u and Σ-sort s, let Func(Σ)u→s denote the set of Σ-function

symbols of type u → s. Let Func(Σ) be the set of function symbols on Σ.
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Definition 2.5 (Partial Algebras). A partial algebra A for Σ is given by:

• a non-empty set As for each sort in Sort(Σ), called the carrier of sort s

• a partial function FA: Au → As for each Σ-function symbol F : u → s,

where Au =df As1 × · · · × Asm for a Σ-product type u = s1 × · · · × sm.

Remarks 2.6.

1. We use f : A → B to denote a partial function f from A to B. if a /∈ dom(f),

we say f(a) is undefined (or divergent), written f(a) ↑; if a ∈ dom(f), we say

f(a) is defined (or convergent), written f(a) ↓; if a ∈ dom(f) and (a, b) ∈ f ,

we say f(a) converges to b, written f(a) ↓ b or f(a) = b .

2. If u is empty, then F is a constant symbol and FA is an element of As.

3. Total functions are special cases of partial functions. A Σ-algebra A is a total

algebra if FA is total for each Σ-function F . In this thesis, all the functions and

algebras are partial by default.

For notational simplicity, We will sometimes use the same notation for a function

symbol F and its interpretation FA. The meaning will be clear from the context.

We will use the following notation for signatures Σ:
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signature Σ

sorts

...

s, (s ∈ Sort(Σ))

...

functions

...

F : s1 × . . .× sm → s, F ∈ Func(Σ)

...

end

and for Σ-algebras A:

algebra A

carriers

...

As, (s ∈ Sort(Σ))

...

functions

...

FA : As1 × . . .× Asm → As, (F ∈ Func(Σ))

...

end

Examples 2.7.

1. The ring of reals R0 = (R; 0, 1, +,−,×) has a signature containing the sort
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real and the function symbols 0, 1 : → real, +,−,× : real2 → real. Since the

signature can be inferred from the algebra, we only display the algebra in the

following examples:

algebra R0

carriers R

functions 0, 1 : → R

+,× : R2 → R

− : R→ R

end

All the functions in this algebra are total, so this is a total algebra.

2. The field Rinv = (R; 0, 1, +,−,×, inv) is formed by adding inv to the ring R0

where inv is the multiplicative inverse:

inv(x) =





1/x if x 6= 0

↑ otherwise.

algebra Rinv

import R0

functions inv : R→ R

end

This is a partial algebra since inv is a partial function.

Definition 2.8 (Reducts and expansions). Let Σ and Σ′ be signatures.

1. We write Σ ⊆ Σ′ to mean Sort(Σ) ⊆ Sort(Σ′) and Func(Σ) ⊆ Func(Σ′).
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2. Suppose Σ ⊆ Σ′. Let A and A′ be algebras with signatures Σ and Σ′

respectively.

• The Σ-reduct A′|Σ of A′ is the algebra of signature Σ, consisting

of the carriers of A′ named by the sorts of Σ and equipped with the

functions of A′ named by the function symbols of Σ.

• A′ is a Σ′-expansion of A if and only if A is the Σ-reduct of A′.

Example 2.9. Rinv (Example 2.7.(2)) is an expansion of R0 (Example 2.7.(1)) .

2.2 Σ -Terms

2.2.1 Syntax of terms

Let Var(Σ) be the class of Σ-variables x, y, z. . . , and for each Σ-sort s, let Var s(Σ)

be the class of variables of sort s. Then x : s means x is a variable of sort s. For

u = s1 × · · · × sm, ~x :u means x is a tuple of distinct variables of sorts s1, . . . , sm.

We define the set Terms(Σ) of Σ-terms of sort s by an inductive definition:

Base clauses:

(i) Every variable x : s is in Terms(Σ)

(ii) Every Σ-constant c : s is in Terms(Σ)

Inductive clauses:

(iii) If F ∈ Funcu→s(Σ), u = s1 × · · · × sm (m > 0)

and ti ∈ Termsi
(Σ) (1 ≤ i ≤ m), then F(t1, . . . , tm) is in Terms(Σ).
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(iv) If bool ∈ Sort(Σ), t1 ∈ Termbool(Σ), t2, t3 ∈ Terms(Σ), then

if t1 then t2 else t3 fi is in Terms(Σ).

Let

Term(Σ) = < Terms(Σ)| s ∈ Sort(Σ) >

be the set of Σ-terms. We write ts, ts1, . . . for Σ-terms of sort s and t, t′, t1, . . . for

Σ-terms.

Note that if · · · then · · · else · · · fi is not a Σ-function but a term generation rule.

2.2.2 Semantics of terms

Definition 2.10.(States) For each Σ-algebra A, a state on A is a family of functions

< σs| s ∈ Sort(Σ) >, where

σs : Var s → As

Let State(A) be the set of states σ on A. Note that State(A) is the product of

States(A) for all s ∈ Sort(Σ), where each States(A) is the set of all states over As.

For notational simplicity, we write σ(x) for σs(x) where x ∈ Var.

For t ∈ Terms(Σ), we define the function

[[t]]A : State(A) → As

[[t]]Aσ is the value of t in A at state σ and the definition is given by structural induction

on t:

(i) t ≡ x

[[x]]Aσ = σ(x)



2. Signatures and algebras 15

(ii) t ≡ c

[[c]]Aσ = c

(iii) t ≡ F(t1, . . . , tm)

[[F(t1, . . . , tm)]]Aσ '





FA([[t1]]
Aσ, . . . , [[tm]]Aσ) if [[ti]]

Aσ ↓ ai (m > 0, 1 ≤ i ≤ m) and

FA(a1, . . . , am) ↓

↑ otherwise

(iv) t ≡ if t1 then t2 else t3 fi

[[if t1 then t2 else t3 fi]]Aσ '





[[t2]]
Aσ if [[t1]]

Aσ ↓ tt

[[t2]]
Aσ if [[t1]]

Aσ ↓ ff

↑ if [[t1]]
Aσ ↑

Remarks 2.11.

1. We introduce a new equality “ ' ” for partial algebra; it means both sides

of the equation converge and are equal, or both sides diverge.

2. In clause (iii), terms have a strict valuation rule, i.e., for every term t in

this clause, if the value of any of its subterms diverges, then the value

of t diverges. However, in clause (iv), terms have a non-strict valua-

tion rule, for example, when [[t1]]
Aσ ↓, [[t2]]

Aσ ↓, even though [[t3]]
Aσ ↑,

[[if t1 then t2 else t3 fi]]Aσ ↓ [[t2]]
Aσ.

2.2.3 Default term, default value

Definition 2.12 (Closed terms over Σ). We define the set CT (Σ)s of closed

terms of sort s by inductive definition:
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• if c : s, then c ∈ CT (Σ)s

• if F ∈ Func(Σ)u→s, u = s1 × . . . , sm (m > 0) and ti ∈ CT (Σ)si
for

i = 1, ..., m, then F(t1, . . . , tm) ∈ CT (Σ)s

We also define the set

CT (Σ) = < CT (Σ)s | s ∈ Sort(Σ) >

of closed terms over Σ.

In our research, we are only concerned with the situation where CT (Σ)s is non-

empty for each s ∈ Sort(Σ). So, we make the following assumption throughout this

thesis:

Assumption 2.13 (Instantiation). For each s ∈ Sort(Σ), CT (Σ)s is non-empty.

We need to introduce default term and default values for the construction of

arrays in (§2.6).

Definition 2.14 (Default terms, default values).

• For each sort s, we pick a closed term (there is at least one by the instantiation

assumption) as the default term of sort s, written δs. Further, for each product

type u = s1× . . .× sm of Σ, the default term tuple of type u, written δu, is the

tuple of default terms(δs1 ,. . . ,δsm).

• Given a Σ-algebra A, for any sort s, the default value of sort s in A is the

valuation δs
A ∈ As of the default term δs; and for any product type

u = s1 × . . .× sm, the default value tuple of type u in A is the tuple of default

values δu
A = (δs1

A , . . . , δsm
A ) ∈ Au.
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2.3 Homomorphisms and isomorphisms

Definition 2.15 (Homomorphism). A Σ-homomorphism from A to B is a total

function h : A → B such that for all f ∈ Func(Σ), a1, . . . , an ∈ A:

fA(a1, . . . , an) ↓⇔ fB(h(a1), . . . , h(an)) ↓

and when fA(a1, . . . , an) ↓,

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

Notes: For n = 0 (i.e., Σ-constants c), h(cA) = cB

Definition 2.16 (Isomorphism). A homomorphism h is a (Σ)-isomorphism from

A to B if and only if h has an inverse homomorphism h−1 : B → A, with

h−1 ◦ h = IA and h ◦ h−1 = IB, written A ∼= B.

2.4 Adding Booleans: Standard signatures and al-

gebras

The signature of booleans plays an essential role in our work:

signature Σ(B)

sorts bool

functions true, false : → bool

and, or : bool2 → bool

not : bool → bool

end

with algebra:
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algebra B

carriers B

functions tt, ff : → B

andB, orB : B2 → B

notB : B→ B

end

The algebra B has the carrier B = {tt, ff} of sort bool and the standard interpre-

tations of the function and constant symbols of Σ(B). For example, trueB = tt and

falseB = ff.

We are particularly interested in those signatures and algebras which contain

Σ(B) and B, called standard signatures and algebras.

Definition 2.17 (Standard signatures and algebras).

• A signature Σ is standard if:

1. Σ(B) ⊆ Σ, and

2. it has function symbols of the equality operator

eqs : s2 → bool

for certain sorts s of Σ, called equality sorts.

• Given a standard signature Σ, a Σ-algebra A is standard if:

1. it is an expansion of B

2. the equality operator eqs is interpreted on each Σ-equality sort s in one of

the following three ways:
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(a) total equality in As.

(b) semi-equality in As, i.e.

eqA
s (x, y) '





tt if x = y

↑ if x 6= y

(c) co-semi-equality, i.e.

eqA
s (x, y) '





↑ if x = y

ff if x 6= y

Remark 2.18. Semi-equality arises typically in term models, when a semi-decidable

test for equality of closed terms is given by reducing them to normal form. Semi-

equality is also important for our later work (cf. Remark 7.17 and Conjecture

7.20). Co-semi-equality arises e.g. in algebras of reals (see Example 2.20(2)

below) and infinite streams.

Remark 2.19. Any many-sorted signature Σ can be standardized to a signature

ΣB by adjoining the sort bool together with the standard boolean operations;

and, correspondingly, any algebra A can be standardized to an algebra AB by

adjoining the algebra B as well as equality operators.

Examples 2.20.

1. The simplest standard algebra is the algebra B of the Booleans.

2. A standard algebra RB is formed by standardizing Rinv of example 2.7(2) with

partial equality operation on R:



20 2. Signatures and algebras

algebra RB

import Rinv,B

functions eqreal : R2 → B

end

where

eqreal(x, y) =





↑ if x = y

ff if x 6= y.

Here, eqreal is a partial function, because intuitively given two reals x, y repre-

sented with infinite decimal extensions, if x 6= y, we will discover this in finitely

many steps; but if they are equal, we may not be able to, so eqreal diverges. In

terms of computability, this equality operator is co-semicomputable. It also has

connections with continuity: If we accept the principle

Computable ⇒ Continuous

the total equality operation on R is not continuous ; and therefore not com-

putable. But the partial equality operation defined above is continuous and

co-semicomputable.

( See [TZ03, §2] for a thorough discussion of these issues).

2.5 Adding counters: N-standard signatures and

algebras

The algebra of naturals N0 = (N; 0, S) is also important for our work:
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algebra N0

carriers N

functions 0 : → N

S : N→ N

end

Then, we can standardize it to N:

algebra N

import N0,B

functions eqnat, lessnat : N2 → B

end

Definition 2.21.

• A standard signature Σ is called N-standard if it includes the numerical

sort nat, as well as function symbols 0, S, eqnat, lessnat.

• The corresponding Σ-algebra A is N-standard if the carrier Anat is the set

of natural numbers N = 0, 1, 2, . . ., and the standard operations have their

standard interpretations on N.

Remark 2.22. Any standard signature Σ can be N -standardized to a signature ΣN

by adjoining the sort nat and the operations 0,S,eqnat, lessnat. Accordingly, any

standard Σ-algebras A can be N -standardized to an algebra AN by adjoining

the carrier N together with corresponding standard operations on N.

Examples 2.23.

1. The simplest N-standard algebra is the algebra N.
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2. We can N -standardize the standard real field RB to form the algebra RN

Assumption 2.24 (N-standardness). From now on, we will assume that the sig-

natures and algebras both are N -standard throughout this thesis.

2.6 Adding arrays: Algebras A∗ of signature Σ∗

Given a standard signature Σ, and standard Σ-algebra A, we expand Σ and A in two

stages:

1. N -standardize these to form ΣN and AN , as in section 2.5.

2. Define a “starred sort” s∗ for each sort s ∈ Sort(Σ) and let carrier A∗
s be the

set of finite sequences or arrays a∗ over As

The resulting algebras A∗ have signature Σ∗, which expands ΣN by including the new

starred sort s∗ for each sort s of Σ as well as the following new function symbols:

(i) the operator Lgths : s∗ → nat, where LgthA
s (a∗) is the length of the array a∗;

(ii) The application operator Aps : s∗ × nat → s, where

ApA
s (a∗, k) =





a∗[k] if k < LgthA
s (a∗)

δs otherwise.

where δs is the default value at sort s ( Instantiation Assumption 2.13);

(iii) the null array Nulls : s∗ of zero length;
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(iv) the operator Updates : s∗ × nat× s → s∗, where UpdateA
s (a∗, n, x) is the array

b∗ ∈ A∗
s of length Lgth(b∗) = Lgth(a∗), such that for all k < LgthA

s (a∗)

b∗[k] =





a∗[k] if k 6= n

x if k = n

(v) the operator Newlengths : s∗ × nat → s∗, where NewlengthA
s (a∗,m) is the array

b∗ of length m such that for all k < m,

b∗[k] =





a∗[k] if k < LgthA
s (a∗)

δs if LgthA
s (a∗) ≤ k < m

(vi) the equality operator eq∗s : s∗ × s∗ → bool for each equality sort s, where

eqA∗
s (a∗1, a

∗
2) '





tt if LgthA
s (a∗1) = LgthA

s (a∗2) and ∀i < LgthA
s (a∗1) (eqA

s (a∗1[i], a
∗
2[i]) = tt)

ff if ( LgthA
s (a∗1) 6= LgthA

s (a∗2) )

or ( ∃i < LgthA
s (a∗1) (eqA

s (a∗1[i], a
∗
2[i]) = ff)

and ∀j < i (eqA
s (a∗1[j], a

∗
2[j]) = tt) )

↑ otherwise

Remarks 2.25.

1. The introduction of starred sorts provides an effective coding of finite sequences

within abstract algebra.

2. A∗ is an N-standard Σ∗-expansion of A.
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Remark 2.26 (Equality of arrays). By clause (vi), if a sort s is an equality sort,

then so is the sort s∗, since testing equality on s∗ amounts to testing equality

of finitely many pairs of objects of sort s. Note that all the array operators

are total except possibly for the array equality operator eq∗s, since equality

on sort s may be partial. In clause (vi), eqA∗
s (a∗1, a

∗
2) is defined by testing the

equality of pairs of elements of these two arrays from left to right, i.e, from

a∗[0] to a∗[LgthA
s (a∗) − 1]. When LgthA

s (a∗1) = LgthA
s (a∗2) = l, for the minimal

i (0 ≤ i ≤ l) such that eqA
s (a∗1[i], a

∗
2[i]) 6=tt, if eqA

s (a∗1[i], a
∗
2[i]) = ff, then the

test for the equality of the whole array returns value ff; if eqA
s (a∗1[i], a

∗
2[i]) ↑,

then the test for the equality of the whole array diverges, no matter what is

eqA
s (a∗1[j], a

∗
2[j]) for all i < j < l. If we test the equality of every pair of el-

ements of these two arrays simultaneously, then we can get a different definition:

eqA∗
s (a∗1, a

∗
2) '





tt if LgthA
s (a∗1) = LgthA

s (a∗2) and ∀i < LgthA
s (a∗1) (eqA

s (a∗1[i], a
∗
2[i]) = tt)

ff if ( LgthA
s (a∗1) 6= LgthA

s (a∗2) )

or ( ∃i < LgthA
s (a∗1) (eqA

s (a∗1[i], a
∗
2[i]) = ff)

↑ otherwise

This definition means that when LgthA
s (a∗1) = LgthA

s (a∗2) = l, if only the test

for the equality of any pair of elements returns value ff, then the test for the

equality of the whole array returns value ff. The reason for our choice of

definition of eqA∗
s is the simplicity of the equational specification for arrays.

(see §5.1.3 and Remark 5.7)



Chapter 3

Specifiability of functions by

theories

3.1 Theories for Σ-algebras

For specification and reasoning about algebras, we use a first order language with

equality based on Σ as a specification language. The equality predicate in formulae

is different from the equality operator eqs (§2.4). The former is, in general, not com-

putable or testable and will be used at all sorts; while the latter is used for tests in

computation and only applied to the equality sorts s. Note that the equality predicate

in the specification language does not form part of the signature. Intuitively, think

of the equality operation as a computable boolean test, but the equality predicate as

a provable assertion of equality between two terms.

Section 3.1 is essentially taken from [TZ01, §2] which dealt with total algebras

since partial and total algebras have much in common in connection with specification

theories.

25
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Let Form(Σ) be the set of first order formulae over the signature Σ, with the

equality predicate at all sorts. It is built up by the following inductive definition:

Base

(i) ts1 = ts2 is in Form(Σ) where ti ∈ Terms(Σ), s ∈ Sort(Σ) .

Inductive clauses

(ii) If P is in Form(Σ), then so is ¬P .

(iii) – (v) If P , Q are in Form(Σ), then so are P ∧Q, P ∨Q, P ⊃ Q.

(vi), (vii) If P is in Form(Σ) and x ∈ Var s(Σ), then ∀xP and ∃xP are in Form(Σ)

Then, Form(Σ) constitutes an specification language. A Σ-theory is a set

T ⊆ Form(Σ). In our “algebraic approach”, we are only interested in three kinds

of formulae: equations, conditional equations and conditional BU equations .

3.1.1 Equational theories over Σ

An equation is a formula of the form:

ts1 = ts2

where ti ∈ Terms(Σ), s ∈ Sort(Σ). A equational theory is a set of such formulae.

In the next chapter, we will discuss two kinds of 2-valued logic for specification

theory: one based on Kleene equality “'”, called Kleene equational logic, and the

other based on strict equality “=”, called strict equational logic. The former was used

by Kleene in [Kle52]; The latter has been investigated independently by a number of

researchers including Farmer, Parnas and Feferman [Far90, Par93, Fef95].
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The semantics of Kleene equality is given by:

[[t1 ' t2]]
Aσ =





tt if [[t1]]
Aσ ↓ and [[t2]]

Aσ ↓ and [[t1]]
Aσ = [[t2]]

Aσ

or [[t1]]
Aσ ↑ and [[t2]]

Aσ ↑

ff otherwise

For strict equality:

[[t1 = t2]]
Aσ =





tt if [[t1]]
Aσ ↓ and [[t2]]

Aσ ↓ and [[t1]]
Aσ = [[t2]]

Aσ

ff otherwise.

These two different semantics for equality give rise to two kinds of specification the-

ories, as we will see in §5.

3.1.2 Conditional equational theories over Σ

A conditional equation is a formula of the form:

P1 ∧ . . . ∧ Pn ⊃ P (3.1)

where n ≥ 0 and Pi and P are equations. A conditional equational theory is a set of

such formulae. An equational sequent is a sequent of the form:

P1, . . . , Pn → P (3.2)

where n ≥ 0 and Pi and P are equations. This sequent corresponds to the condi-

tional equation (3.1).

3.1.3 Conditional BU equational theories over Σ

A BU (bounded universal) quantifier is a quantifier of the form ∀z < t, where z:nat

and t:nat. A Σ-BU equation is formed by prefixing an equation by a string of 0 or more
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bounded universal quantifiers. A conditional BU equation is a formula of the form of

(3.1) where Pi and P are BU equations. A conditional BU equational theory is a set

of such formulae (or their universal closures). A BU equational sequent is a sequent

of the form of (3.2) where Pi and P are BU equations. This sequent corresponds to

the conditional BU equation of the form of (3.1).

3.2 Specification over algebras

Assume that Σ, Σ′ and Σ′′ are N-standard partial signatures with Σ ⊂ Σ′ ⊂ Σ′′. Let

A be an N -standard Σ-algebra, A′ an N-standard Σ′-algebra and A′′ an N-standard

Σ′′-algebra. Also, Let T be a Σ-theory, T ′ a Σ′-theory and T ′′ a Σ′′-theory. We use

‘f’ as symbol for the function f . The following definitions will be used in Chapter 5

for specification.

Definition 3.1(Relative isomorphism). Let A′
1 and A′

2 be two Σ′-algebras with

A′
1|Σ = A′

2|Σ. Then A′
1 and A′

2 are Σ′/Σ isomorphic, written A′
1
∼=Σ′/Σ A′

2, if

there is a Σ′-isomorphism from A′
1 to A′

2 whose restriction to Σ is the identity

on A′
1|Σ.

Definition 3.2 (Subfunction).

• Given two functions f, g : Au → As, we write f ⊆ g (f is a subfunction of

g) to mean for all ~x ∈ Au,

f(~x) ↓ ⇒ ( g(~x) ↓ and f(~x) = g(~x) )

• Given two function tuples: ~f ≡ f1, . . . , fm and ~g ≡ g1, . . . , gm of matching

types, we write ~f ⊆ ~g to mean

fi ⊆ gi for i = 1, . . . , m
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Remarks 3.3

1. The completely undefined function λx. ↑ is a subfunction of every function

of the same type.

2. f = g ⇔ ( f ⊆ g and g ⊆ f )

Definition 3.4. Suppose A′ is a Σ′-expansion of A. We say that (Σ′,T ′) specifies A′

over A if and only if A′ is the unique (up to Σ′/Σ isomorphism) Σ′-expansion

of A satisfying T ′, in other words:

(i) A′ |= T ′ and

(ii) for any Σ′ expansion B′ of A, if B′ |= T ′, then B′ ∼=Σ′/Σ A′

An important special case of Definition 3.4 is as the following.

Definition 3.5. Suppose Σ′ = Σ∪{f}. We say that (Σ′,T ′) specifies f over A if and

only if it uniquely defines f over A, i.e., f is the unique function on A (of the

type of f) such that (A, f) |= T ′, i.e.

(i) (A, f) |= T ′ and

(ii) for any function f ′, if (A, f ′) |= T ′, then f = f ′.

There is a minimal definability version for Theorem 3.5:

Definition 3.6. Suppose Σ′ = Σ ∪ {f}. We say that (Σ′,T ′) minimally defines f

over A if and only if f is the minimal function on A (of the type of f) such that

(A, f) |= T ′, i.e.

(i) (A, f) |= T ′ and

(ii) for any function f ′, if (A, f ′) |= T ′, then f ⊆ f ′.
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Definition 3.7. Suppose A′ is a Σ′-expansion of A. We say that (Σ′′,T ′′) specifies

A′ over A with hidden sorts and/or functions if and only if A′ is the unique

(up to Σ′/Σ isomorphism) Σ′-expansion of A such that some Σ′′-expansion of

A′ satisfies T ′′; in other words:

(i) A′ is a Σ′-reduct of a Σ′′-model of T ′′, and

(ii) for all Σ′-expansions B′ of A, if B′ is a Σ′-reduct of a standard Σ′′-model

of T ′′, then B′ ∼=Σ′/Σ A′.

Again, as a special case and its “minimal” version, we have:

Definition 3.8. Suppose Σ′ = Σ∪ {f}. We say that (Σ′′,T ′′) specifies f over A with

hidden sorts and/or functions if and only if f is the unique function on A (of

the type of f) such that some Σ′′-expansion of (A, f) satisfies T ′′.

Definition 3.9. Suppose Σ′ = Σ∪{f}. We say that (Σ′′,T ′′) minimally defines f over

A with hidden sorts and/or functions if and only if f is the minimal function

on A (of the type of f) such that some Σ′′-expansion of (A, f) satisfies T ′′.



Chapter 4

Computable functions

We will consider four notions of computability on N -standard algebras, formalized

by schemes. Two computability classes, PR(Σ) and PR*(Σ) are introduced, then

two more classes are formed by adjoining the µ operator to these. These models of

computation were developed in [TZ88] by Tucker and Zucker as a generalization of

Kleene’s PR schemes over N [Kle52] to total many-sorted abstract algebras.

4.1 PR(Σ) and PR*(Σ) computable functions

Given an N -standard signature Σ and Σ-algebra A, we define PR computable

functions over A by starting with some initial functions (as in the base cases(i)-(ii)

below) and applying composition, definition by cases and simultaneous primitive

recursion to these functions (as in the inductive cases (iii)-(v)). Here, for the partial

functions, we introduce another kind of equality symbol ‘'’, which means both sides

of the equality converge with equal values, or both sides diverge. Let ~x ≡ x1, . . . , xm.

31
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Base:

(i) Primitive Σ-functions :

f(~x) ' FA(~x)

f(~x) = cA

of type u → s, for all the primitive function symbols F : u → s and

constant symbols c of Σ, where ~x : u, u = s1 × . . .× sm.

(ii) Projection:

f(~x) = xi

of type u → si, where ~x ∈ Au and is of type u = s1 × · · · × sm.

Inductive clauses:

(iii) Composition:

f(~x) ' h(g1(~x) . . . gm(~x))

of type u → s, where gi : u → si (i = 1, . . . , m) and h : s1 × · · · × sm →
s. If gi(~x) ↓ ai ∈ Au (1 ≤ i ≤ m) and h(a1, . . . , am) ↓ a ∈ As, then

f(~x) ↓ a; otherwise, f(~x) ↑. This is a strict composition rule, i.e, if any

value occurring in this composition is undefined, then the final result is

undefined.

(iv) Definition by cases :
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f(~x) '





g1(~x) if h(~x) ↓ tt

g2(~x) if h(~x) ↓ ff

↑ if h(~x) ↑
of type u → s. Note that when h(~x) ↓ tt, the value of f(~x) is determined

only by g1(~x), no matter whether g2(~x) converges or not, i.e. if g1(~x) ↓,
then f(~x) ↓ g1(~x); if g1(~x) ↑, then f(~x) ↑. Similarly, for the case of

h(~x) ↓ ff, the value of f(~x) is independent of the convergence of g1(~x). So,

this is not a strict computation rule, unlike clauses (iii) and (v).

(v) Simultaneous primitive recursion on N:

fi(0, ~x) ' gi(~x)

fi(z + 1, ~x) ' hi(z, ~x, f1(z, ~x) . . . fm(z, ~x))

where gi : u → si and hi : nat × u × v → si (i = 1, . . . ,m). This defines

an m-tuple of functions ~f = (f1, . . . , fm) with fi : nat× u → si, for fixed

degree of simultaneity m > 0 and product types u and v = s1 × · · · × sm.

The strict composition rule still applies on the second scheme, that is to

say, fi(z + 1, ~x) ↓ if and only if fi(z, ~x)) ↓ ai ∈ Asi
(1 ≤ i ≤ m) and

hi(z, ~x, a1, . . . , am) ↓.

PR(Σ) schemes are notation symbols for PR(Σ) functions. We write σ, τ . . . for

these. Corresponding to every PR computable functions defined as above, there is a

PR scheme. For example, for the case (i) primitive functions, the scheme is:

< P, F, n, u, s >

where ‘P’ means that it is a scheme for primitive function, ‘F’ is a Σ-function symbol,

n is the arity of F and u, s mean that the type of F is u → s. For case (iii) composition,
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the scheme is:

< C, n, m, σ1, . . . σm, τ >

where ‘C’ means it is a scheme for composition, σi is the scheme for gi (1 ≤ i ≤ m),

τ is the scheme for h, n is the arity of gi and m is the arity of h. Note that a

scheme for a PR function contains the schemes for all the auxiliary functions used

in its definition. The actual details of the syntax of schemes is not important for our

purpose; see [TZ88, §4.1.5] for details of a possible syntax for schemes, like the one

above.

In the context of algebraic specification theory, it is more convenient to work with

PR derivations [TZ01, §4.1] than with PR schemes. A PR derivation is a “linear

version” of a PR scheme, in which all the auxiliary functions are displayed in a list.

More precisely:

Definition 4.1 (PR derivation). A PR(Σ) derivation

α = ((f0, σ0), (f1, σ1), . . . , (fn, σn))

is a list of pairs of function symbols fi and PR schemes σi(i = 1, . . . , n) where

for each i, either fi is an initial function, or fi is defined by σi from functions fj, for

certain j < i. The derivation α is called a PR derivation of fn, with auxiliary

functions f0, . . . , fn−1. The type of α is the type of fn. We use α, β, γ, . . . for

derivation.

Remark 4.2. The formalism of PR(Σ) derivations is equivalent to that of PR(Σ)

schemes: from a PR scheme we derive an equivalent PR derivation by ‘lin-

earizing’ the subschemes, and conversely, given an derivation, the scheme σn is

equivalent to it.
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Notation 4.3. A PR (Σ)u→s scheme (or derivation) is a PR(Σ) scheme (or deriva-

tion) of type u → s. It defines, or computes, in each N-standard algebra A, a

function fAα : Au → As.

Now we introduce another, broader class of functions providing a better gener-

alization of the notion of primitive recursiveness, namely PR* computability. A

function on A is PR*(Σ) computable if it is defined by a PR derivation over Σ∗, i.e,

this function have sorts in Σ while the auxiliary functions used in its definition may

be of the starred sorts.

4.2 µPR(Σ) and µPR* (Σ) computable functions

The µPR schemes over Σ are formed by adding to the PR schemes in §4.1 a new

scheme for the following least number functions:

(vi) Least number or µ operator :

f(~x) ' µz[g(~x, z) = tt]

'





z if ∀y < z(g(~x, y) ↓ ff) and g(~x, z) ↓ tt

↑ otherwise

of type u → nat, where g : u× nat → bool.

Remark 4.4. This is a “constructive” version of the least number operator.

For example, if g(~x, 0) ↓ ff, g(~x, 1) ↑ and g(~x, 2) ↓ tt, f(~x) ↑
(it does not converge to 2).

A function on A is µPR*(Σ) computable if it is defined by a µPRderivation over

Σ∗.
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Remark 4.5. The notion of µPR*(Σ) computation is important in our computabil-

ity theory, in connection with the Generalized Church-Turing Thesis(§1.1.1)



Chapter 5

Algebraic specifications for

computable functions

Computable functions can be specified by algebraic formulae which consist of equa-

tions, conditional equations and conditional BU equations. The specifications for

computable functions in total algebra have been discussed in [TZ02]. Both in theory

and in practice, there is also an interest in the specification for computable functions

in partial algebras. In this chapter, we will consider functions f computable over

partial algebras by PR, PR*, µPR, µPR* derivations, and show that they are

specifiable by algebraic formulae.

We will define Σ-theories E that specify computable functions in two kinds of

2-valued logic: one using Kleene equality [Kle52], and the other using strict equal-

ity [Far90, Par93, Fef95]. These two logics give rise to different interpretations of

equations between two terms.
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For Kleene equality:

[[t1 ' t2]]
Aσ =





tt if ([[t1]]
Aσ ↓ and [[t2]]

Aσ ↓ and [[t1]]
Aσ = [[t2]]

Aσ)

or ([[t1]]
Aσ ↑ and [[t2]]

Aσ ↑)

ff otherwise

For strict equality:

[[t1 = t2]]
Aσ =





tt if [[t1]]
Aσ ↓ and [[t2]]

Aσ ↓ and [[t1]]
Aσ = [[t2]]

Aσ

ff otherwise.

So, it is easy to see that these two kinds of logic will give different specification

theories for computable functions.

Remarks 5.1.

1. One may wonder why we need to discuss specifications in two kinds of logic.

That is because each of them has its own advantages for our work. As we will see,

Kleene equality provides simpler specification theories than strict equality does.

However, strict equality (at least for closed terms with effective normalization)

is semicomputable, while the Kleene equality is not. (How could it be tested if

both sides of an equality diverge?)

2. One may also ask why we don’t discuss specification theories in 3-valued logic.

The reason is that we get equivalent conditional equational specification theories

in strict 2-valued logic and in 3-valued logic. This is discussed further in Remark

5.16 below.

In the specification theories below, f, g, h are function symbols corresponding to

functions f, g, h.
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5.1 Algebraic specification for computable func-

tions in Kleene equational logic

The semantics for equations, conditional equations and conditional BU equations in

Kleene equational logic are:

1. A |=σ t1 ' t2 iff

([[t1]]
Aσ ↓ and [[t2]]

Aσ ↓ and [[t1]]
Aσ = [[t2]]

Aσ) or ([[t1]]
Aσ ↑ and [[t2]]

Aσ ↑)

2. A |=σ ∀y < t(t1(~x, y) ' t2(~x, y)) iff

for all i < k, A |=σ t1(~x, ī) ' t2(~x, ī)

(where [[t]]Aσ = k, ī is the numeral of i. )

3. A |=σ P1, . . . , Pn → P iff

A |=σ Pi for i = 1, . . . , n ⇒ A |=σ P

4. A |= E iff for all σ, A |=σ E

Remark 5.2. Clause 2 is not a “constructive interpretation” of bounded qualifica-

tion. (Cf. Remarks 4.4 and 5.1(1).)

5.1.1 Algebraic specification for PR computable functions

For each PR derivation α and N -standard Σ-algebra A, let fAα be the function on A

computed by α, and ~gA
α , ~h

A

α be the corresponding auxiliary functions on A.

For each PR(Σ) derivation α, there is a finite set Eα of specifying equations for

the function fAα . The set Eα consist of conditional equations in an expanded signature

Σα = Σ ∪ {~gα, fα,~hα} where ~gα ≡ gα1
, . . . , gαm

, ~hα ≡ hα1 , . . . , hαm are the auxiliary
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functions in the derivation of fα. The set Eα is defined by CV (course of values)

induction on the length of the derivation α (see §4.1 and Definition 4.1)

(i) Primitive Σ-functions: α ≡ (f, σ) where σ is the scheme for a primitive Σ-function

F. Then

Eα = {f(~x) ' F(~x)}

Constant: α ≡ (f, σ) where σ is the scheme for a Σ-constant c. Then

Eα = {f(~x) ' c}

(ii) Projection: α ≡ (f, σ) where σ is the scheme for projection. Then

Eα = {f(~x) ' xi}

(iii) Composition: α ≡ ((g1, σ1), . . . , (gm, σm), (h, σm+1), (f, σm+2)) where σm+2 is the

scheme for composition. Suppose the derivation for gA
αi is

βi (1 ≤ i ≤ m), and that for hA
α is γ. Then

Eα = Eβ1 ∪ · · · ∪ Eβm ∪ Eγ ∪ {f(~x) ' h(g1(~x), . . . , gm(~x))}

(iv) Definition by cases: α = ((h, σ1)(g1, σ2), (g2, σ3), (f, σ4)) where σ4 is the scheme

for definition by cases. Suppose the derivation for gA
α1, gA

α2, hA
α are β1, β2, γ

respectively. Then

Eα = Eβ1 ∪ Eβ2 ∪ Eγ ∪ {f(~x) ' if h(~x) then g1(~x) else g2(~x) fi}

(v) Simultaneous primitive recursion: α = ((gi, σ1i), (hi, σ2i), (fi, σ3i)) where σ3i is

the scheme for simultaneous primitive recursion (i = 1, . . . , m). Suppose the

derivation for gA
αi is βi, and that for hA

αi is γi. Then
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Eα = Eβ1 ∪ · · · ∪ Eβ2 ∪ Eγ1 ∪ · · · ∪ Eγm∪
{ fi(0,~x) ' gi(~x),

fi(z + 1,~x) ' hi(z,~x, f1(z,~x), . . . , fm(z,~x))

(1 ≤ i ≤ m)

}

Remark 5.3. The specifications Eα for partial functions are similar to those for total

functions [TZ02,§5].

Theorem 5.4 (Kleene equational specification of PR functions). For each

PR(Σ) derivation α and N -standard Σ-algebra A, the Kleene equational specifi-

cation (Σα, Eα) specifies the PR computable function fAα with hidden functions.

Proof: By CV induction on the length of the derivation α. We do not give a complete

proof here since it is simpler than the proof described in detail for the strict

conditional equational specifications of PR functions (Theorem 5.12. below).

2

Remark 5.5. The specifications Eα specify the auxiliary functions ~gA
α , ~h

A

α as well as

fAα .

5.1.2 Algebraic specification for µPR computable functions

Now, we will consider µPR derivations. For each such derivation, there is a finite

set E ′
α of “specifying conditional BU equations” for the function fAα . This set is

constructed by CV induction on α, like Eα in §5.1.1, except adding some conditional

BU equations to E ′
α for the new case, i.e, the scheme for the µ-operator.
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Suppose the derivation for gA
α is β, then the E ′

α for the function fAα with µ-operator

is as follows:

E ′
α = E ′

β ∪ { ∀y < z(g(~x, y) ' false), g(~x, z) ' true → f(~x) ' z,

f(~x) ' z→ g(~x, z) ' true,

f(~x) ' z→ ∀y < z(g(~x, y) ' false) }
Next, we will reduce conditional BU equations to conditional equations by the

method discussed in [TZ02,§3], i.e. eliminate the bounded quantifiers by incorporating

into the signature, for each BU quantifier occurring in the theory, a function which

computes that quantifier.

In the theory E ′
α, there is a conditional BU equation of the form

∀y < z (g(~x, y) ' false) (5.1)

So, we will first define a boolean valued function symbol:

h : u× nat → bool

which is interpreted in A as:

hA
α (~x, z) = tt ⇔ ∀y < z (gA

α (~x, y) = ff)

and then adjoin to the specifying theory the following axioms giving the inductive

definition for hA
α :

h(~x, 0) ' true

h(~x, z + 1) ' h(~x, z) and (not(g(~x, z)))

and replacing (5.1) in the theory Fα by

h(~x, z) ' true
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By this method, we can eliminate the BU quantifiers in E ′
α and replace E ′

α by a

conditional equational theory Eα as the following:

Eα = Eβ ∪ { → h(~x, 0) ' true,

→ h(~x, z + 1) ' h(~x, z) and (not(g(~x, z))),

h(~x, z) ' true, g(~x, z) ' true → f(~x) ' z,

f(~x) ' z → g(~x, z) ' true,

f(~x) ' z → h(~x, z) ' true

}

Theorem 5.6 (Kleene conditional equational specification of µPR functions).

For each µPR(Σ) derivation α and N -standard Σ-algebra A, the Kleene condi-

tional equational specification (Σα, Eα) specifies the µPR computable function

fAα .

Proof: By CV induction on the length of α. The reader can refer to the (more

complicated) proof of Theorem 5.12 for details. 2

5.1.3 Algebraic specification for µPR* computable functions

Recall from §4.2 that a µPR*(Σ) function is defined by a µPR derivation over

Σ∗. Let the Σ-array axioms ArrAx (Σ) be the following theory (dropping sort

subscripts):
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ArrAx (Σ) = { Lgth(Null) ' 0, (1)

Ap(a∗, z) ' if lessnat(z, Lgth(a∗)) then Ap(a∗, z) else δ fi, (2)

Lgth(Update(a∗, z, x)) ' Lgth(a∗), (3)

Ap(Update(a∗, z1, x), z) ' if eqnat(z, z1) then x else Ap(a∗, z) fi, (4)

Ap(Update(a∗, z, x), z) ' if lessnat(z, Lgth(a∗)) then x else δ fi, (5)

Lgth(Newlength(a∗, z)) ' z, (6)

Ap(Newlength(a∗, z1), z)) ' if lessnat(z, z1) then Ap(a∗, z) else δ fi, (7)

equpto(a∗1, a
∗
2, 0) ' ture, (8)

equpto(a∗1, a
∗
2, z + 1) ' equpto(a∗1, a

∗
2, z) cand eq(Ap(a∗1, z), Ap(a∗2, z)), (9)

eq∗(a∗1, a
∗
2) ' eqnat(Lgth(a∗1), Lgth(a∗2)) cand equpto(a∗1, a

∗
2, Lgth(a∗1)) (10)

}

Where the boolean operator ‘cand’ (“conditional and”) can be defined as an

abbreviation:

t1 cand t2 ≡ if t1 then t2 else false fi

It has the following truth table:

t1 \ t2 tt ff ↑
tt tt ff ↑
ff ff ff ff

↑ ↑ ↑ ↑
Equations (8), (9) specify an auxiliary function equpto, which is interpreted in A as:

equptoA(a∗1, a
∗
2, k) '





tt if ∀i < k (eqA(a∗1[i]), a
∗
2[i]) = tt)

ff if ∃i < k (eqA(a∗1[i]), a
∗
2[i]) = ff) and ∀j < i (eqA(a∗1[j], a

∗
2[j]) = tt)

↑ otherwise
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We introduced this function to reduce BU equations in array axioms to equations.

Remark 5.7. As shown in Remark 2.26, there is another reasonable interpretation

for array equality eq∗. To specify this function, we need a new boolean operator

sand (“strict and”), which has the truth table:

t1 \ t2 tt ff ↑
tt tt ff ↑
ff ff ff ff

↑ ↑ ff ↑

Compared to the truth table for ‘cand’ above, this operator can not be defined

by the term construction rules in (§2.2). So, in order to specify eq∗, we would

have to redefine the term construction rules to include ‘sand’. for the sake of

simplicity, we choose the definition in §2.6.

Theorem 5.8. Let T be the Σ-theory, A be an N -standard Σ-algebra and

T ∗ = T ∪ ArrAx(Σ)

Then the specification(Σ∗, T ∗) specifies A∗ over A.

Proof: According to the definition of the array and A |= T , it is obvious that A∗ |=
T ∗. Now, we need to prove for all Σ∗-expansions A′ of A, if A′ |= T ∗ then

A∗ ∼=Σ∗/Σ A′.

Suppose A′ |= T ∗ and the corresponding operators in A′ are Null′, Lgth′, Ap′,

Update′, Newlength′ and eq′.
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Suppose a′ ∈ A′, Ap′(a′, i) = ai (i < Lgth′(a′)) and write a′(l + 1) for a′ whose

length is l + 1.

Define [a0, . . . , al]
′ by recursion:

Base:

[ ]′ = Null′

Induction:

[a0, . . . , al]
′ = Update′(Newlength′([a0, . . . , al−1]

′, l + 1), l, al)

Then we will show a′(l + 1) = [a0, . . . , al]
′ by simple induction on l.

Base: l = 0

a′ = Null′ = [ ]′

Inductive step:

Suppose for l, a′(l) = [a0, . . . , al−1]
′, then for l + 1,

Lgth′([a0, . . . , al]
′) = Lgth′(Update′(Newlength′([a0, . . . , al−1]

′, l + 1), l, al))

= Lgth′(Update′(Newlength′(a′(l), l + 1), l, al)) (by i.h.)

= Lgth′(Newlength′(a′(l), l + 1)) (by (3))

= l + 1 (by (6))

and for i < l + 1,



5. Algebraic specifications for computable functions 47

Ap′([a1, . . . , al]
′, i) = Ap′(Update′(Newlength′([a0, . . . , al−1]

′, l + 1), l, al), i)

= Ap′(Update′(Newlenth′(a′(l), l + 1)l, al), i) (by i.h.)

=





Ap′(Newlenth′(a′(l), l + 1), i) if i < l

al if i = l

by (4), (5)

=





Ap′(a′(l), i) if i < l

al if i = l

by (7)

= Ap′(a′(l), i)

Then, by the array equality axiom (10),

a′(l + 1) = [a0, . . . , al]
′

Now, we can define a function h : A∗ 7→ A′ by:

h(a∗) = a′

where

Lgth(a∗) = Lgth′(a′) = l + 1

∀i < l + 1 (Ap(a∗, i) = Ap′(a′, i))

and the reduct of h on A is the identity. Then prove that h is the isomorphism

from A∗ to A′.

First prove h preserves the functions: Null, Lgth, Ap, Update, Newlength and

eq∗.

When Lgth(a∗) = Lgth(a′) = 0, a∗ = Null, a′ = Null′, then

h(Null) = Null′
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h(Lgth(a∗)) = h(l + 1)

= l + 1

= Lgth′(a′)

h(Newlength(a∗, k)) =





h[a0, . . . , ak−1] if k < Lgth(a∗),

h[a0, . . . , al, δ, . . . , δ︸ ︷︷ ︸
k−l−1

] otherwise.

=





[a0, . . . , ak−1]
′ if k < Lgth(a∗),

[a0, . . . , al, δ, . . . , δ︸ ︷︷ ︸
k−l−1

]′ otherwise.

= Newlength′(a′, k)

h(Ap(a∗, k)) =





h(Ap(a∗, k)) if k < Lgth(a∗),

δ otherwise

=





Ap(a∗, k) if k < Lgth(a∗)

δ otherwise

=





Ap(a′, k) if k < Lgth(a∗)

δ otherwise

= Ap′(a′, k)

h(Update(a∗, k, x)) = h[a0, . . . , x . . . , al]

= [a0, . . . , x . . . , al]
′

= Update′(a′, k, x)



5. Algebraic specifications for computable functions 49

We will prove h preserves equpto by simple induction on z.

Base:

h(equpto(a∗1, a
∗
2, 0)) = tt = equpto′(a′1, a

′
2, 0)

Inductive step:

Suppose

equpto(a∗1, a
∗
2, z) ↓ ⇔ equpto′(a′1, a

′
2, z) ↓

and when equpto(a∗1, a
∗
2, z) ↓

h(equpto(a∗1, a
∗
2, z)) = equpto′(a′1, a

′
2, z)

then for z + 1:

equpto(a∗1, a
∗
2, z + 1) ↓

⇒ equpto(a∗1, a
∗
2, z + 1) = tt or equpto(a∗1, a

∗
2, z + 1) = ff

⇒ (equpto(a∗1, a
∗
2, z) = tt and eq(Ap(a∗1, z), Ap(a∗2, z)) = tt)

or equpto(a∗1, a
∗
2, z + 1) = ff

⇒ (h(equpto(a∗1, a
∗
2, z)) = tt and eq(h(Ap(a∗1, z)), h(Ap(a∗2, z))) = tt)

or h(equpto(a∗1, a
∗
2, z + 1)) = ff

So, h(equpto(a∗1, a
∗
2, z + 1)) = tt or h(equpto(a∗1, a

∗
2, z + 1)) = ff

Also, by i.h. and h preserves Ap, we can get:

(equpto′(a′1, a
′
2, z) = tt and eq(Ap′(a′1, z), Ap(a′2, z)) = tt) or equpto′(a′1, a

′
2, z) = ff

and then

equpto′(a′1, a
′
2, z + 1) = tt or equpto′(a′1, a

′
2, z + 1) = ff

Thus

h(equpto(a∗1, a
∗
2, z + 1)) = equpto′(a′1, a

′
2, z + 1)
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If equpto′(a′1, a
′
2, z + 1) ↓, we can similarly get

h(equpto(a∗1, a
∗
2, z + 1)) = equpto′(a′1, a

′
2, z + 1)

So, we proved h preserves equpto.

Then, we can prove h preserves eq∗ by the method similar to that for equpto.

Now, we will show that h is 1-1 and onto.

Suppose h(a∗1) = a′1, h(a∗2) = a′2,

h(a∗1) = h(a∗2) ⇒ a′1 = a′2

⇒ Lgth′(a′1) = Lgth′(a′2), equpto′(a′1, a
′
2, z) = tt

⇒ Lgth(a∗1) = Lgth(a∗2), equpto(a∗1, a
∗
2, z) = tt

⇒ a∗1 = a∗2

So, h is 1-1.

For any a′ ∈ A′,

a′ = [a0, . . . , al]
′

= Update′(Newlength([a0, . . . , al−1]
′, l + 1), l, al))

= Update′(Newlength′(· · ·Newlength′(Null′, 1), 0, a0 · · · ), l, al)

= Update′(Newlength′(· · ·Newlength′(h(Null), 1), 0, a0 · · · ), l, al)

= Update′(Newlength′(· · ·h(Newlength(Null, 1), 0, a0 · · · )), l, al)

= h(Update(Newlength(· · · (Newlength(Null, 1), 0, a0 · · · )), l, al))

= h(a∗)
So, for any a′ ∈ A′, we can find an a∗ ∈ A∗ such that h(a∗) = a′. i.e., h is onto.

So, A∗ ∼=Σ′/Σ A′.

According to Definition 3.4 for specification, (Σ∗, T ∗) specifies A∗ 2

For an N -standard Σ-algebra A and a µPR* derivation α, let fAα be the function

on A defined by α and let ~gA
α , ~h

A

α be the corresponding auxiliary function tuple on

A∗.
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Corollary 5.9. For each µPR* derivation and N -standard Σ-algebra A, let

Σ∗
α = Σ∗ ∪ {fα,~gα

~hα}

and

E∗
α = ArrAx(Σ) ∪ Eα

Then the Kleene conditional equational specification(Σ∗
α, E∗

α) specifies fAα with

hidden functions and sorts.

Proof: By Definition 3.8 and Theorems 5.6 and 5.8. 2

Remark 5.10 (Minimal definability of µPR functions).

For each µPR derivation α, we can also give sets of equations Fα which

minimally define fAα . They are the same as the specifications Eα shown in §5.1.1

except for the case of the µ-operator. Suppose the derivation for gA
α is β, then

the minimal definition for the µ-operator is (using an auxiliary function h):

Fα = Fβ ∪ { h(~x, z) ' if g(~x, z) then z else h(~x, S(z)) fi,

f(~x) ' h(~x, 0)

}

This defines the µ-operator minimally (see Theorem 6.10) but not uniquely. So,

as we can see, the minimal definition theory for µPR* computable functions is

a set of equations, i.e, an equational minimal definition theory, which is simpler

than unique definition theory, and its relation to computability will be discussed

in Chapter 6 and 7.
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5.2 Algebraic specification in strict equational

logic for computable functions

The semantics for equations, conditional equations and conditional BU equations in

strict equalitional logic are:

1. A |=σ t1 = t2 iff [[t1]]
Aσ ↓ and [[t2]]

Aσ ↓ and [[t1]]
Aσ = [[t2]]

Aσ

2. A |=σ ∀y < t(t1(~x, y) = t2(~x, y)) iff

for all i < k, A |=σ t1(~x, ī) = t2(~x, ī)

(where [[t]]Aσ = k, and ī is the numeral of i. )

3. A |=σ P1, . . . , Pn → P iff

A |=σ Pi for i = 1, . . . , n ⇒ A |=σ P

4. A |= E iff for all σ, A |=σ E

Note that clauses (2)–(4) are the same as the corresponding clauses in §5.1.

5.2.1 Algebraic specification for µPR computable functions

For each µPR(Σ) derivation α, there is a finite set Eα of specifying conditional

equation for the function fAα defined by α, as well as the auxiliary functions ~gA
α and

~h
A

α . The set Eα is defined by CV induction on the length of the derivation α as shown

in cases (i)-(vi) below:

(i) Primitive Σ-functions: α = (f, σ) where σ is the scheme for a Σ-primitive function

F . Then
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Eα = { F(~x) = F(~x) → f(~x) = F(~x), (1)

f(~x) = f(~x) → F(~x) = F(~x) (2)

}

Note for a function fAα which is the Σ-primitive function F, if FA is total, then

fAα can be specified by the single equation

f(~x) = F(~x)

but if FA is partial, the equation can not specify fAα since when FA(~x) diverges,

the equation does not hold. So, we need conditional equations here.

Constants : α = (f, σ) where σ is the scheme for a constant c. Then

Eα = {f(~x) = c}

(ii) Projection: α = (f, σ) where σ is the scheme for projection. Then

Eα = {f(~x) = ~xi}

(iii) Composition: α = ((g1, σ1), . . . , (gm, σm), (h, σm+1), (f, σm+2)) where σm+2 is the

scheme for composition. Suppose the derivation for gA
αi is βi (1 ≤ i ≤ m), for

hA
α is γ. Then

Eα = Eβ1 ∪ · · · ∪ Eβm ∪ Eγ∪
{ g1(~x) = y1, · · · gm(~x) = ym, h(y1, . . . , ym) = y → f(~x) = y, (1)

f(~x) = f(~x) → gi(~x) = gi(~x) (1 ≤ i ≤ m), (2)

f(~x) = y → h(g1(~x) . . . gm(~x)) = y (3)

}
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(iv) Definition by cases: α = ((h, σ1)(g1, σ2), (g2, σ3), (f, σ4)) where σ4 is the scheme

for definition by cases. Suppose the derivation for gA
α1, gA

α2, hA
α are β1, β2, γ

respectively. Then

Eα = Eβ1 ∪ Eβ2 ∪ Eγ∪
{ h(~x) = true , g1(~x) = y → f(~x) = y, (1)

h(~x) = false, g2(~x) = y → f(~x) = y, (2)

f(~x) = f(~x) → h(~x) = h(~x), (3)

f(~x) = y, h(~x) = true → g1(~x) = y, (4)

f(~x) = y, h(~x) = false → g2(~x) = y (5)

}

(v) Simultaneous primitive recursion: α = ((gi, σ1i), (hi, σ2i), (fi, σ3i)) where σ3i is

the scheme for simultaneous primitive recursion (i = 1, . . . , m). Suppose the

derivation for gA
αi is βi, and that for hA

αi is γi. Then

Eα = Eβ1 ∪ · · · ∪ Eβ2 ∪ Eγ1 ∪ · · · ∪ Eγm

{ gi(~x) = y → fi(0, x) = y, (1)

fi(0,~x) = fi(0,~x) → gi(~x) = gi(~x), (2)

f1(z,~x) = y1, · · · fm(z,~x) = ym, hi(z + 1,~x, y1, . . . , ym) = y

→ fi(z + 1,~x) = y, (3)

fi(z + 1,~x) = fi(z + 1,~x) → fj(z,~x) = fj(z,~x), (4)

fi(z + 1,~x) = y → hi(z,~x, f1(z,~x) . . . fm(z,~x)) = y (5)

(i, j = 1, . . . , m)

}

(vi) µ-operator: α = ((g, σ1), (f, σ2)) where σ2 is the scheme for the µ-operator.
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Define a boolean-valued function symbol:

h : u× nat → bool

that satisfies in A:

hA
α (x, n) = tt ⇔ ∀y < z (gA

α (x, z) = ff)

by which we can reduce BU conditional equation to conditional equations ac-

cording to the method in §5.1.2.

Suppose the derivation for gA
α is β, then

Eα = Eβ ∪ { → h(x, 0) = true,

h(x, z) = true, g(x, z) = false → h(x, z + 1)) = true,

h(x, z + 1) = true → h(x, z) = true,

h(x, z + 1) = true → g(x, z) = false,

h(x, z) = true, g(x, z) = true → f(x) = z,

f(x) = z → g(x, z) = true,

f(x) = z → h(x, z) = true

}

Remark 5.11. Note how complicated the specifications for µPR computable func-

tions are in strict equational logic, compared to Kleene equational logic (cf.

Remark 5.1(1)).

Theorem 5.12 (Strict conditional equational specification of µPR functions).

For each µPR(Σ) derivation α and N -standard Σ-algebra A, the strict con-

ditional equational specification (Σα, Eα) specifies the µPR computable

function fAα with hidden functions.
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Proof: By course of values induction on the length of α. (The equation numbers

below refer to the definition of Eα above).

Base case:

(i) Primitive Σ- functions :

It is clear that (A, fAα ) |= Eα (see definition of Eα above).

Suppose that (A, f) |= Eα, then for any ~x:

f(~x) ↓ ⇒ FA(~x) ↓ ( by (2) )

⇒ f(~x) = FA(~x), fAα (~x) = FA(~x) ( by (1))

⇒ f(~x) = fAα (~x)

So, f ⊆ fAα .

Similarly, we can get fAα ⊆ f , then f = fAα , i.e. fAα is unique.

Hence, (Σα, Eα) specifies fAα (by Definition 3.5)

Constants:

It is obvious that (A, fAα ) |= Eα and fAα is unique

Hence, (Σα, Eα) specifies fAα

(ii) Projection:

It is obvious that (A, fAα ) |= Eα and fAα is unique

Hence, (Σα, Eα) specifies fAα

Induction steps:

(iii) Composition:

Clearly, (A,~gA
α , hA

α , fAα ) |= Eα.

Suppose (A,~g, h, f) |= Eα, then for any ~x:

f(~x) ↓ ⇒ gi(~x) ↓ , h(g1(~x), . . . , gm(~x)) ↓ (by (2),(3))
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Suppose gi(~x) = yi and h(y1, . . . , ym) = y,

then f(~x) = y (by (1))

By i.h., ~g = ~gA
α , h = hA

α , then:

fAα (~x) = y (by (1))

So, f ⊆ fAα .

Similarly, we can get fAα ⊆ f , then f = fAα , i.e. fAα is unique.

Hence, (Σα, Eα) specifies fAα with hidden functions.

(iv) Definition by cases:

Clearly, (A,~gA
α , hA

α , fAα ) |= Eα.

Suppose (A, g1, g2, h, f) |= Eα, then

f(~x) ↓ ⇒ h(~x) ↓ (by (3))

⇒ (h(~x) = tt and g1(~x) ↓) or (h(~x) = ff and g2(~x) ↓) (by (4), (5))

⇒ f(~x) = g1(~x) or f(~x) = g2(~x) (by (1), (2))

by i.h., h = hA
α , ~g = ~gA

α , then:

(hA
α (~x) = tt and gA

α1(~x) ↓) or (hA
α (~x) = ff and gA

α2(~x) ↓)
⇒ fAα (~x) = gA

α1(~x) or fAα (~x) = gA
α2(~x) (by (1), (2))

⇒ fAα (~x) = g1(~x) or fAα (~x) = g2(~x)

So, f ⊆ fAα .

Similarly, we can get fAα ⊆ f , then f = fAα , i.e. fAα is unique.

Hence, (Σα, Eα) specifies fAα with hidden functions.

(v) Simultaneous primitive recursion on N:

Clearly, (A,~gA
α ,~h

A

α , fAα ) |= Eα.
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Suppose (A,~g,~h, f) |= Eα, then prove for any ~x,

fi(n, ~x) ↓ ⇒ fAαi(n, ~x) = fi(n, ~x)

by simple induction on n.

Base: n = 0

fi(0, ~x) ↓ ⇒ fi(0, ~x) = gi(~x) = gA
αi(~x) = fAαi(0, ~x).

Induction step:

Suppose fi(n, ~x) ↓ ⇒ fAαi(n, ~x) = fi(n, ~x), then

fi(n + 1, ~x) ↓ ⇒ fj(n, ~x) ↓ (j = 1, . . . ,m), hi(n, ~x, f1(n, ~x) . . . , fm(n, ~x)) ↓
( by(4), (5) )

Suppose fj(n, ~x) = yj (1 ≤ j ≤ m), hi(n, ~x, y1, . . . , ym) = y,

then fi(n + 1, ~x) = y (by (1))

By i.h. hi = hA
αi and fAαi(n, ~x) = fi(n, ~x), then

fAαj(n, ~x) = yj (1 ≤ j ≤ m), hA
αi(n, ~x, y1, . . . , ym) = y

So, fAα (n + 1, ~x) = y (by (3)

Therefore, fi(n + 1, ~x) ↓ ⇒ fAαi(n + 1, ~x) = fi(n + 1, ~x)

So, we can get f ⊆ fAα .

Similarly, we can get fAα ⊆ f , then f = fAα , i.e. fAα is unique.

Hence, (Σα, Eα) specifies fAα with hidden functions.

(vi) µ-operator:

It is clear that (A, gA
α , fAα ) |= Eα.

Suppose (A, g, f) |= Eα. By i.h., gA
α is unique and we can prove hA

α is

unique by simple induction on N.
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Then for any ~x

f(~x) ↓ z ⇒ h(~x, z) = tt, g(~x, z) = tt (by (4), (5))

⇒ hA
α (~x, z) = tt, gA

α (~x, z) = tt

⇒ fAα ↓ z (by (3’))

Similarly, we can get fAα ⊆ f , then f = fAα , i.e. fAα is unique.

Hence, (Σα, Eα) specifies fAα with hidden functions. 2

5.2.2 Algebraic specification for µPR* computable functions

For the specification of µPR* functions, we need a conditional equational theory in

strict equational logic for the array operators added to Σ.
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ArrAx (Σ) = { → Lgth(Null) = 0, (1)

→ Ap(a∗, z) = if lessnat(z, Lgth(a∗)) then Ap(a∗, z) else δ fi, (2)

→ Lgth(Update(a∗, z, x)) = Lgth(a∗), (3)

→ Ap(Update(a∗, z1, x), z) = if eqnat(z, z1) then x else Ap(a∗, z) fi, (4)

→ Ap(Update(a∗, z, x), z) = if lessnat(z, Lgth(a∗)) then x else δ fi, (5)

→ Lgth(Newlength(a∗, z)) = z, (6)

→ Ap(Newlength(a∗, z1), z)) = if lessnat(z, z1) then Ap(a∗, z) else δ fi, (7)

→ equpto(a∗1, a
∗
2, 0) = ture, (8)

equpto(a∗1, a
∗
2, z) = true, eq(Ap(a∗1, z), Ap(a∗2, z)) = x

→ equpto(a∗1, a
∗
2, z + 1) = x, (9)

equpto(a∗1, a
∗
2, z) = false → equpto(a∗1, a

∗
2, z + 1) = false, (10)

equpto(a∗1, a
∗
2, z + 1) = equpto(a∗1, a

∗
2, z + 1)

→ equpto(a∗1, a
∗
2, z) = equpto(a∗1, a

∗
2, z), (11)

equpto(a∗1, a
∗
2, z + 1) = x, equpto(a∗1, a

∗
2, z) = true

→ eq(Ap(a∗1, z), Ap(a∗2, z)) = x, (12)

Lgth(a∗1) = Lgth(a∗2), equpto(a∗1, a
∗
2, Lgth(a∗1)) = x → eq∗(a∗1, a

∗
2) = x, (13)

Lgth(a∗1) 6= Lgth(a∗2) → eq∗(a∗1, a
∗
2) = false, (14)

eq∗(a∗1, a
∗
2) = x, Lgth(a∗1) = Lgth(a∗2) → equpto(a∗1, a

∗
2, Lgth(a∗1)) = x (15)

}
Note that equations (1)–(7) here are the same as corresponding ones in ArrAx (Σ)

(§5.1.3) in Kleene equational logic except for the substitution of ‘=’ for ‘'’. But the

axioms for the auxiliary function equpto and the array equality operator eq∗ are

different, since they may be partial.

Theorem 5.13. For any N -standard Σ-algebra A, the specification(Σ∗,ArrAx(Σ))
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specifies A∗ over A.

Proof: Similar to the proof of Theorem 5.8. 2

Corollary 5.14. For each µPR*(Σ) derivation α and N-standard Σ-algebra A, let

Σ∗
α = Σ∗ ∪ {~gα,~hα, fα}

E∗
α = ArrAx(Σ) ∪ Eα

Then the strict conditional equational specification (Σ∗
α, E∗

α) specifies fAα with

hidden functions and sorts.

Proof: Immediate from Definition 3.8 and Theorems 5.12 and 5.13. 2

Remark 5.15 (Converse to Theorem 5.12 fails). The functions specifiable by

conditional equations in strict equational logic need not be computable. The

following are counterexamples.

1. In the algebra N1 = (N, 0, S, +, ∗), define

f(x) =





1 if x ∈ K

0 otherwise

where K is a recursively enumerable, non-recursive subset of N. Then f

is clearly not computable over N, but is uniquely specifiable in the first

order language with equality over N1 (i.e. Form(Σ(N1))). This follows

from the expressibility of K in this language, which can be seen by taking

K to be the set given by the Matiyasevich/Davis/Putnam/Robinson proof

of the unsolvability of Hilbert’s Tenth problem. [MR75].
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2. For a simpler example, take an algebra A of signature Σ with only one

sort s and no function symbols. Let AN be the N -standardization of A.

Assume s is not an equality sort. Then, the total equality function on A

f : A2 → B

defined by

f(x, y) =





tt if x = y

ff if x 6= y

can be specified by the following set of conditional equations in strict equa-

tional logic:

{ → f(x, y) = f(x, y),

→ f(x, x) = true,

f(x, y) = true → x = y}
But, this is not computable on AN .

Remark 5.16 (Three-valued logical specification). There is another kind of

specification logic for partial algebra: 3-valued logic based on strict equality

[[t1 = t2]]
Aσ =





tt if [[t1]]
Aσ ↓ and [[t2]]

Aσ ↓ and [[t1]]
Aσ = [[t2]]

Aσ

ff if [[t1]]
Aσ ↓ and [[t2]]

Aσ ↓ and [[t1]]
Aσ 6= [[t2]]

Aσ

uı otherwise

Define

A |=σ t1 = t2 ⇔ [[t1 = t2]]
Aσ = tt

and

A |=σ P1, . . . , Pn → P iff for all i, A |=σ Pi (i = 1, . . . , n) ⇒ A |=σ P
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Then, it is clear that conditional equations and equations in this logic have the

same semantics as those in strict 2-valued equality logic, and thus they have

the same specification theories.



Chapter 6

Minimal solution for equations and

conditional equations

The algebraic specification method characterizes functions as the solutions of systems

of algebraic formulae. In the last chapter, we discussed algebraic specification for

computable functions and showed that µPR* computable functions can be specified,

i.e. uniquely defined by conditional equational theories in each of two equational

logics, and also defined as minimal solutions of sets of equations in Kleene equational

logics. In this chapter, we will be interested in the reverse direction, i.e., given a

conditional equation, can we find a solution which is unique or (failing that) minimal?

Remark 6.1. Unique solutions of conditional equations are relevant to specification

theories, while minimal solution are relevant to computation theories, cf. Klee-

nee’s theories of recursive functionals [Kle52] and the denotational semantics

of recursive procedures [TZ88]. We will investigate this in Chapter 7.

64
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Notation 6.2.

(a) Given a function tuple ~g ≡ g1, . . . , gm and variables ~x : u, let Σ be an

N -standard signature and Σ′ = Σ ∪ {~g}, then we write a Σ′-term t as

t[~g,~x] to indicate that t is generated from the function symbols ~g as well

as primitive Σ-functions F and the variable tuple ~x only.

(b) We then write tA
′
[~g, ~x] to mean the interpretation of t in the Σ′-algebra A′

when ~g is interpreted as a tuple of functions ~g ≡ g1, . . . , gm of the same

type, and ~x is interpreted as ~x ∈ Au. For simplicity, we write tA[~g, ~x] for

tA
′
[~g, ~x].

Notation 6.3.

(a) For fixed ~g, t defines a function

f : Au → As

by

f(~x) ' tA[~g, ~x] for all ~x ∈ Au

We write f as tA[~g, ·].

Given two functions f, g : Au → As and ~x ∈ Au, we write

f(~x) v g(~x)

to mean

f(~x) ↓ ⇒ g(~x) ↓ and f(~x) = g(~x)

and also write tA1 [~g, ~x] v tA2 [~g, ~x] to mean:

tA1 [~g, ~x] ↓ ⇒ tA2 [~g, ~x] ↓ and tA1 [~g, ~x] = tA2 [~g, ~x]
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Remarks 6.4

1. f(x) ' g(x) ⇔ f(x) v g(x) and g(x) v f(x).

2. f ⊆ g (see Definition 3.2) iff ∀~x ∈ Au (f(~x) v g(~x) and g(~x) v f(~x)).

Theorem 6.5 (Monotonicity). In an N -standard algebra A, let

f = tA[~g, ·], f ′ = tA[~g′, ·]. If ~g ⊆ ~g′, then f ⊆ f ′.

Proof: Structural induction on t.

(i) t ≡ xi

Then for any ~x, f(~x) = xi = f ′(~x)

and so f ⊆ f ′

(ii) t ≡ c

Then for any ~x, f(~x) = c = f ′(~x)

and so f ⊆ f ′

(iii) t ≡ gj(t1, . . . , tn) (j = 1, . . . , m)

By i.h. for any ~x, tAi [~g, ~x] v tAi [~g′, ~x]( (i = 1, . . . , n), then :

tA[~g, ~x] ↓ z ⇒ gj(t
A
1 [~g, ~x], . . . , tAn [~g, ~x]) ↓ z

⇒ for some yi, . . . , ym ∈ A,

tA1 [~g, ~x] = y1, . . . , t
A
m[~g, ~x] = ym and gj(y1, . . . , ym) ↓ z

⇒ tA1 [~g′, ~x] = y1, . . . , t
A
m[~g′, ~x] = ym and g′j(y1, . . . , ym) ↓ z

⇒ g′j(t
A
1 [~g′, ~x], . . . , tAn [~g′, ~x]) ↓ z

⇒ tAi [~g′, ~x] ↓ z

So, for any ~x, f(~x) ↓ z ⇒ f ′(~x) ↓ z

Hence, f ⊆ f ′
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(iv) t ≡ F(t1, . . . , tn) (j = 1, . . . , m)

Similar to case (iii).

(v) t ≡ if t1 then t2 else t3 fi

By i.h. for any ~x, tAi [~g, ~x] v tAi [~g′, ~x] (i = 1, 2, 3), then :

tA[~g, ~x] ↓ z ⇒ ( tA1 [~g, ~x] ↓ tt and tA2 [~g, ~x] ↓ z ) or ( tA1 [~g, ~x] ↓ ff and tA3 [~g, ~x] ↓ z )

⇒ ( tA1 [~g′, ~x] ↓ tt and tA2 [~g′, ~x] ↓ z ) or ( tA1 [~g′, ~x] ↓ ff and tA3 [~g′, ~x] ↓ z )

⇒ tA[~g′, ~x] ↓ z

So, for any ~x, f(~x) ↓ z ⇒ f ′(~x) ↓ z

Hence, f ⊆ f ′ 2

6.1 Minimal solutions of equations

Our major task in this chapter is to discuss solutions of algebraic formulae. Since

equations are special cases of conditional equations, we will start by considering equa-

tions of the form:

f(~x) ' t[f,~g,~x]

Examples 6.6.

1. f(~x) ' f(~x)

In any algebra, any partial function satisfies this equation and the com-

pletely undefined function is the minimal function.

2. f(~x) ' S(f(~x))

In the algebra N0 = (N; 0, S), only the completely undefined function sat-

isfies this equation.
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3. f(n,~x) ' if eqnat(n, 0) then g(~x) else h(n− 1,~x, f(n− 1,~x))) fi

The primitive recursive function defined by

f(0, ~x) ' g(~x)

f(S(n), ~x) ' h(n, ~x, f(n, ~x))

is the unique solution of this equation in A.

From these examples, we can see that not all equations have unique solutions.

But, in fact, we can find a unique minimal solution among all the solutions of the

same equation, i.e. a function which is a subset of all the functions which satisfy the

same equation.

Kleene [Kle52] considers the minimal solution for equations over N in his inves-

tigation of recursive functionals on N. We will extend Kleene’s approach to prove

the existence of a minimal solution for any system of equations and also conditional

equations in any many-sorted partial N -standard Σ-algebra.

Theorem 6.7. Let A be an N -standard Σ-algebra. Given an equation

f(x) ' t[f,~g,~x] (6.1)

in an expanded signature Σ′ = Σ ∪ {f,~g}, there is a minimal solution on A for

this equation, i.e. there is a (unique) function f which satisfies this equation

and is a subset of any function which satisfies this equation.

Proof: Let f0 be the completely undefined function of the type of f, and then define

f1, f2, f3. . . successively by:
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f1(~x) ' tA[f0, ~g, ~x]

f2(~x) ' tA[f1, ~g, ~x]

f3(~x) ' tA[f2, ~g, ~x]

...

Note that f0 ⊆ f1, since f0 is completely undefined.

By induction on i and the Monotonicity Theorem, we can then get:

fi ⊆ fi+1 for all i

Let

f =
∞⋃
i=0

fi (6.2)

This means that for any ~x, if there exists some i such that fi(~x) is defined, then

the value of f(~x) is the common value of fj(~x) for all j ≥ i; f(~x) ↑ iff there is

no such i. Note that for all i, fi ⊆ f .

We first prove that f satisfies the equation (6.1) by proving for all ~x,

f(~x) v tA[f,~g, ~x] (6.3)

and

tA[f,~g, ~x] v f(~x) (6.4)

First prove (6.3):

f(~x) ↓ y ⇒ fi+1(~x) ↓ y for some i (Definition of f(~x))

⇒ tA[fi, ~g, ~x] ↓ y (Definition of fi+1)

⇒ tA[f,~g, ~x] ↓ y (fi ⊆ f and Monotonicity Theorem)

In order to prove the opposite inclusion (6.4), we need the following

lemma:
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Lemma. For all ~x ∈ Au and y ∈ As, if tA[f,~g, ~x] ↓ y, then there exists k ∈ N
such that tA[fk, ~g, ~x] ↓ y.

Proof: Structural induction on t:

(i) t ≡ xi

Then for all ~x

tA[f0, ~g, ~x] = tA[f1, ~g, ~x] = · · · = tA[f,~g, ~x] = xi

and so for all k ≥ 0, tA[f,~g, ~x] = tA[fk, ~g, ~x].

(ii) t ≡ c

Then for all ~x

tA[f0, ~g, ~x] = tA[f1, ~g, ~x] · · · = tA[f,~g, ~x] = c

and so for all k ≥ 0, tA[f,~g, ~x] = tA[fk, ~g, ~x].

(iii) t ≡ f(t1, . . . , tn)

tA[f,~g, ~x] =df f(tA1 [f,~g, ~x], . . . , tAm[f,~g, ~x]).

For any ~x and y, suppose f(tA1 [f,~g, ~x], . . . , tAm[f,~g, ~x]) ↓ y,

then there exists some yi such that tAi [f,~g, ~x] ↓ yi (1 ≤ i ≤ m)

By i.h. ∃k1, . . . , km such that

tA1 [fk1 , ~g, ~x] ↓ y1

...

tAm[fkm , ~g, ~x] ↓ ym

By definition of f (6.2), ∃km+1 such that

fkm+1(y1, . . . , ym) = f(y1, . . . , ym) = y
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Let k = max(k1, . . . , km+1). Then

f(tA1 [f,~g, ~x], . . . , tAm[f,~g, ~x]) ↓ y ⇒ f(y1, . . . , ym) ↓ y

⇒ fk(y1, . . . , ym) ↓ y

⇒ fk((t
A
1 [fk, ~g, ~x], . . . , tAm[fk, ~g, ~x]) ↓ y

and so tA[f,~g, ~x] ↓ y ⇒ tA[fk, ~g, ~x] ↓ y.

(iv) t ≡ gj(t1, . . . , tm)

The proof is similar to that of case (iii) but simpler.

(v) t ≡ F(t1, . . . , tm)

The proof is also similar to that of case (iii) but simpler.

(vi) t ≡ if t1 then t2 else t3 fi

For any ~x and y, suppose tA[f,~g, ~x] ↓ y,

then either

tA1 [f,~g, ~x] ↓ tt and tA2 [f,~g, ~x] ↓ y

or

tA1 [f,~g, ~x] ↓ ff and tA3 [f,~g, ~x] ↓ y

By i.h. ∃ k1, k2, k3 such that

tA1 [fk1 , ~g, ~x] ↓ tt and tA2 [fk2 , ~g, ~x] ↓ y

or

tA1 [fk1 , ~g, ~x] ↓ ff and tA3 [fk3 , ~g, ~x] ↓ y

Let k = max(k1, k2, k3). Then

(if tA1 [f,~g, ~x] then tA2 [f,~g, ~x] elsetA3 [f,~g, ~x]) fi) ↓ y

⇒ (if tA1 [fk, ~g, ~x] then tA2 [fk, ~g, ~x] else tA3 [fk, ~g, ~x] fi) ↓ y

and so, tA[f,~g, ~x] ↓ y ⇒ tA[fk, ~g, ~x] ↓ y

This completes the proof of the Lemma. 2
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Now, suppose tA[f,~g, ~x] ↓ y, then by this Lemma, for some k

tA[f,~g, ~x] ↓ y ⇒ tA[fk, ~g, ~x] ↓ y

⇒ fk+1(~x) ↓ y

⇒ f(~x) ↓ y

So, we have proved (6.4).

We have shown that f satisfies the equation (6.1). The next step is to prove f

is a subfunction of all the solutions of (6.1). So, suppose f ′ satisfies (6.1), we

must show f ⊆ f ′.

Since

f =
∞⋃
i=0

fi

we will completed the proof by showing that

fi ⊆ f ′ for all i

by simple induction on i:

Base: i = 0

f0 ⊆ f ′

since f0 is completely undefined.

Induction step: Suppose for i, fi ⊆ f ′, then for any ~x and y:

fi+1(~x) ↓ y ⇒ tA[fi, ~g, ~x] ↓ y (by definition of fi+1)

⇒ tA[f ′, ~g, ~x] ↓ y (by i.h. and Monotonicity Theorem)

⇒ f ′(~x) ↓ y

So, fi+1 ⊆ f ′, and hence f ⊆ f ′ 2
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Remark 6.8. The minimal solution of (6.1), proved to exist by the above theorem,

is computable, as we will see in Chapter 7.

Now, we look at another simple example:

Example 6.9. Consider the two equations:

f1(n,~x) ' if n = 0 then c1 else h1(n− 1,~x, f1(n− 1,~x), f2(n− 1,~x)) fi

f2(n,~x) ' if n = 0 then c2 else h2(n− 1,~x, f1(n− 1,~x), f2(n− 1,~x)) fi

Here, f1 and f2 are defined by mutual primitive recursion. So, in order to find the

solutions for these two equations, we need to solve them together. In the following

content, we will discuss the general case in which functions are defined by mutual

recursion.

Theorem 6.10. Let A be an N -standard Σ-algebra. Given a finite set of equations:

f1(~x) ' t1[~f,~g,~x]

... (6.5)

fl(~x) ' tl[~f,~g,~x]

in an expanded signature Σ′ = Σ∪{~f,~g} where~f ≡ f1, . . . , fl, there is a minimal

solution for it on A, i.e., we can find a tuple of functions ~f , which satisfies these

equations and is a subset of any solution.

Proof: Let f10, f20, . . . , fl0 be completely undefined functions of type f1, · · · , fl. Then

define

f11, . . . fl1, f12, . . . , fl2 . . . successively by:

f11(~x) ' tA1 [f10, f20, . . . , fl0, ~g, ~x]
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...

fl1(~x) ' tAl [f10, f20, . . . , fl0, ~g, ~x]

...

f12(~x) ' tA1 [f11, f21, . . . , fl1, ~g, ~x]

...

fl2(~x) ' tAl [f11, f21, . . . , fl1, ~g, ~x]

...

fi0 ⊆ fi1 since fi0 is completely undefined.

By the Monotonicity Theorem, we get: fij ⊆ fi(j+1) for all j ∈ N and i = 1, . . . , l.

Define:

f1 =
∞⋃

j=0

f1j

...

fl =
∞⋃

j=0

flj

Just as in Theorem 6.7, we can prove that every function in the tuple f1, . . . , fl

is the minimal solution of the corresponding equation in (6.5) in A, and thus

we can conclude that this tuple is the minimal solution of (6.5) in A. 2

6.2 Minimal solutions of conditional equations

We have shown equations of form (6.1) have minimal solution in an N -standard Σ-

algebra. What about conditional equations?
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Theorem 6.11. Let A be an N -standard Σ-algebra. Given a conditional equation:

t1[~g,~x] ' t′1[~g,~x], . . . , tn[~g,~x] ' t′n[~g,~x] → f(~x) ' t[f,~g,~x] (6.6)

where t ∈ Term(Σ ∪ {~g, f}), and ti, t
′
i ∈ Term(Σ ∪ {~g}), there is a minimal

solution f on A for it.

Proof: Let f0 be the completely undefined function of type f, then define f1, f2 . . .

as following:

f1(x) '





tA[f0, ~g, ~x] if tA1 [~g,~x] ' t′A1 [~g,~x], . . . , tAn [~g,~x] ' t′An [~g,~x]

↑ otherwise

f2(x) '





tA[f1, ~g, ~x] if tA1 [~g,~x] ' t′A1 [~g,~x], . . . , tAn [~g,~x] ' t′An [~g,~x]

↑ otherwise

...

Since f does not occur in the antecedent, as in Theorem 6.7, we can derive:

fi ⊆ fi+1 for all i ∈ N

Let

f '
∞⋃
i=0

fi

The rest of the proof is similar to that of Theorem 6.7. 2

Remarks 6.12.

1. In equation (6.6), f does not occur in the antecedent.
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2. Although equation (6.6) has a minimal solution, it does not give a good

model of computability since the equations ti ' t′i (i = 1, . . . , n) in the

antecedent are highly non-computable. (See Remark 5.1(1).)

3. More interesting from viewpoint of computability is the variant

t1[~g,~x] = t′1[~g,~x], . . . , tn[~g,~x] = t′n[~g,~x] → f(~x) ' t[f,~g,~x] (6.7)

with ti ' t′i replaced by strict equality ti = t′i (see Remark 5.1(1)). The-

orem 6.11 still holds for (6.7). However, we will see that the minimal

solution of (6.7) is not, in general, computable (Remark 7.17(1)).

4. More interesting still from viewpoint of computability is the case in which

the sorts si (i = 1, . . . , n) of all the terms in the antecedent of (6.7) are

equality sorts, where eqA
si

is total equality or semi-equality (Definition 2.17),

so that the conditional equation (6.7) can be replace by the equation

f(~x) ' if eqs1
(t1[~g,~x], t

′
1[~g,~x]) and · · · and eqsn

(tn[~g,~x], t′n[~g,~x])

then t[f,~g,~x] (6.8)

else f(~x)

fi

The minimal solution of this equation is computable. (See Remark 6.8.)

What about the minimal or unique solutions of conditional equations in strict

equational logic:

t1[~g,~x] = t′1[~g,~x], . . . , tn[~g,~x] = t′n[~g,~x] → f(~x) = t[f,~g,~x] ?

Let us look at some simple examples.
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Examples 6.13.

1. f(~x) = f(~x)

Any total function functions in any algebra satisfies this equation and there

is no minimal function among them.

2. f(~x) = S(f(~x))

There is no function that satisfies this in N.

3. x = 1 → f(~x) = S(f(~x))

There is no function that satisfies this in N.

4. x = 1 → f(~x) = f(~x)

All the functions which converge when x = 1 in any algebra whose carrier

includes a closed term ‘1’ satisfy this equation and there is no minimal

among them.

These examples shows that conditional equations in strict equational logic do not

necessarily have unique, or minimal, or indeed any solutions!



Chapter 7

Computability for the minimal

solutions of algebraic specification

We have found in Chapter 6 that there is a minimal solution for a given finite set

of equations, as well as of conditional equations in Kleene equationl logic. Further,

considering that any µPR* computable function can be defined as a minimal solution

of a set of equations (cf. Chapter 5), what can we say about the computability of

the minimal solutions of these algebraic formulae? In this chapter, we will discuss

computability (1) in terms of a simple imperative programming model: a recursive

programming language Rec(Σ) whose programs are constructed from assignments,

procedure calls (possibly recursive), sequential composition and the conditional ; and

also (2) in terms of the schematic model µPR*.

78
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7.1 The recursive programming language Rec

We define four syntactic classes for Rec(Σ): variables, terms, statements and proce-

dures.

1. Var(Σ) is the class of Σ-variables x, y, z. . .

For each s ∈ Sort(Σ), we write x : s to indicate x is a variable of sort s, and for

a product type u = s1 × · · · × sn, write ~x :u to mean ~x is a n-tuple of distinct

variables of sorts s1, . . . , sn.

2. Term(Σ) is the class of Σ-terms t, . . . (defined as in §2.2).

For each s ∈ Sort(Σ), we use t : s to mean t is a term in sort s, and for a product

type u = s1 × · · · × sn, ~t :u means ~t is a n-tuple of terms of sorts s1, . . . , sn.

3. Stmt(Σ) is the class of statements S,. . .

They are generated by the rules:

S ::= skip| x := t| x := P (~t)|S1 ; S2| if b then S1 else S2 fi

where x := P (~t) is a procedure call which calls a procedure with parameters ~t by

its name Pi and returns its value to x. This procedure call can be recursive. In

fact, we can regard procedure calls as a sort of assignment. Atomic statements

include ‘skip’ and the assignments x := t, x := P (~t). The two sides of an

assignment must have the same sort.

4. Proc(Σ) is the class of procedures E, . . . which have the form:
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E ≡ proc P1 ⇐ E1, . . . , Pn ⇐ En

in ~x : u

out y : s

aux ~z : w

begin

S

end

where for i = 1, . . . , n (n ≥ 0), Ei is a procedure with name Pi and ~x, y, ~z

are input variables, output variable and auxiliary variables respectively. We

say that the procedure is of type u → s. Note that all the procedure names

occurring in S must either be declared by Pi ⇐ Ei, or be the name of E,

corresponding to a recursive call.

Remark 7.1 (Semantics of Rec(Σ)). We do not give formal semantics for

Rec(Σ), since that would be a major undertaking which would take us too

far from the main focus of this thesis. Informal semantics of Rec(Σ) is enough

for our purpose. Formal semantics (operational and denotational) for a recur-

sive programming language without parameters on abstract data types have

been given in [TZ88]. Formal semantics for a language like Rec(Σ) is one of

the topics under investigation in [Xu03].

Definition 7.2 ( Rec(Σ)-computable functions). A function f is Rec(Σ)- com-

putable on A if it is computable by a Rec(Σ)-procedure on A. Let Rec(A)

denotes the class of Rec(Σ)-computable functions on A.
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Let ~g ≡ g1, . . . , gm be a tuple of function symbols of given functions ~g (“oracles”).

An oracle statement in gi has the form:

x := gi(~t)

where x : s, ~t :u and gi : u → s . Then, we can expand the recursive language Rec(Σ)

to the relative recursive language Rec(Σ, ~g) by including oracle statements in ~g.

Thus the notion of Rec(Σ)-computable can be relativized to obtain the notion

Rec(Σ)-computable in ~g.

Definition 7.3 (Relative Rec-computable functions). A function f is Rec(Σ)-

computable in ~g on A if it can be computed by a Rec(Σ, ~g)-procedure on A

with ~g = ~gA. Let Rec(A,~g) denotes the class of functions which are Rec(Σ)-

computable in ~g on A.

Lemma 7.4 (Transitivity of relative Rec computability). If a function f is

Rec(Σ)-computable in ~g on A and ~g are Rec(Σ)-computable on A, then f is

Rec(Σ)-computable on A. More generally, if f is Rec(Σ)-computable in ~g on

A and ~g are Rec(Σ)-computable in ~h on A, then f is Rec(Σ)-computable in ~h

on A.

Proof: Since gi ∈ Rec(A,~h) and f ∈ Rec(A,~g), we can construct relative Rec(Σ)-

procedures Pgi
and Pf to compute them. Then we can replace the statement

x := gi(~t) in Pf with the procedure call x := Pgi
(~t) and produce a new Rec(Σ)-

procedure for f relative to ~h. 2

Definition 7.5. A Rec*(Σ)-procedure is a Rec(Σ∗)-procedure in which the input

and output variables have sorts in Σ, while the auxiliary variables may have

starred sorts.
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Definition 7.6 ( Rec*-computable functions). A function f is Rec*(Σ)-comp-

utable on A if it is computable by a Rec*(Σ)-procedure on A. Let Rec*(A)

denotes the class of Rec*(Σ)-computable functions on A.

We can expand Rec*(Σ) to Rec*(Σ, ~g) by including oracle statements x := gi(~t)

and relativize the notion of Rec*-computability to Rec*-computability in ~g as well.

7.2 Rec(Σ)-computability of minimal solutions of

equations and conditional equations

Theorem 7.7. Let A be an N -standard Σ-algebra. For an equation

f(~x) ' t[f,~g,~x] (7.1)

in an expanded signature Σ′ = Σ ∪ {f,~g}, the minimal solution f of it is

Rec(Σ)-computable in ~g on A, i.e. f ∈ Rec(A,~g). Hence if ~g ∈ Rec(A), then

f ∈Rec(A).

Proof: We can use the following Rec(Σ, ~g) procedure to compute the minimal

solution f :

Ef ≡ proc Pt ⇐ Et

in ~x : u

out y : v

begin

y := Pt(~x)

end
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where Et is the procedure for tA[f,~g,~x] (recall Notation 6.1(b).) and is defined

by structural induction on t:

(i) t ≡ xi

Et ≡ proc in ~x : u

out y : s

begin

y := xi

end

(ii) t ≡ c

Et ≡ proc in ~x : u

out y : s

begin

y := c

end

(iii) t ≡ Fi(t1, . . . , tm), (1 ≤ i ≤ m)

By i.h. tA1 , . . . , tAm can be computed with Rec(Σ, ~g)-procedures:

Et1 , . . . , Etm . Then, we can define :
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Et ≡ proc Pt1 ⇐ Et1 , . . . , Ptm ⇐ Etm

in ~x : u

out y : s

aux ~z : w

begin

z1 := Pt1(~x)

...

zm := Ptm(~x)

y := F(z1, . . . , zm)

end

(iv) t ≡ gi(t1, . . . , tm), (1 ≤ i ≤ m)

By i.h. tA1 , . . . , tAm can be computed with Rec(Σ, ~g)-procedures:

Et1 , . . . , Etm . Then, we can define :

Et ≡ proc Pt1 ⇐ Et1 , . . . , Ptm ⇐ Etm

in ~x : u

out y : s

aux ~z : w

begin

z1 := Pt1(~x)

...

zm := Ptm(~x)

y := gi(z1, . . . , zm)

end

(v) t ≡ if t1 then t2 else t3 fi

By i.h. tA1 , tA2 , tA3 can be computed with Rec(Σ, ~g)-procedures:
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Et1 , Et2 , Et3 respectively. Then, we can define:

Et ≡ proc Pt1 ⇐ Et1 , . . . , Pt2 ⇐ Et2 , Pt3 ⇐ Et3

in ~x : u

out y : s

aux z : w

begin

z1 := Pt1(~x)

if z1

then

y := Pt2(~x)

else

y := Pt3(~x)

fi

end

(vi) t ≡ f(t1, . . . , tm)

By i.h. tA1 , . . . , tAm can be computed with Rec(Σ, ~g)-procedures:

Et1 , . . . , Etm . Then, we can define:
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Et ≡ proc Pt1 ⇐ Et1 , . . . , Ptm ⇐ Etm , Pf ⇐ Ef

in ~x : u

out y : s

aux ~z : w

begin

z1 := Pt1(~x)

...

zm := Ptm(~x)

y := Pf (z1, . . . , zm) (∗ Note the recursive call ! ∗)
end

So, we have shown that the minimal solution of (7.1) f can be computed

with a Rec(Σ, ~g) procedure. Hence according to Lemma 7.4, if ~g is Rec(Σ)-

computable on A, so is f . 2

We have defined the procedures for tA[f,~g,~x] by structural induction on t. The

function f is computed by calling these procedures. The case (vi) is the most inter-

esting case with the recursive call. If the minimal solution f is undefined at ~x, then

the procedure will never halt; otherwise, the procedure will return the value of f(~x).

Corollary 7.8. Let A be an N -standard Σ-algebra. For a finite set of equations:

f1(~x) ' t1[~f,~g,~x]

... (7.2)

fk(~x) ' tk[~f,~g,~x]

in an expanded signature Σ′ = Σ ∪ {f,~g}, its minimal solution ~f is Rec(Σ)-

computable in ~g. Hence if ~g are Rec-computable, so are ~f .
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Proof: The proof is similar to that of Theorem 7.7 2.

7.3 ED-computability

The above results give us another model of computability.

Definitions 7.9 (Equational definability). ED(Σ, ~g) consists of all finite sets of

equations of the form (7.2).

Definition 7.10 (ED-computability).

(a) A function f on A is ED(A, ~g)-computable if it is one of the tuple of minimal

solutions of equations (7.2) in ED(Σ, ~g) on A, where ~g is interpreted as ~g.

(b) ED(A)-computability is the special case of (a) without any auxiliary func-

tions.

Definition 7.11 (ED*-computability). A function f on A is ED*(A)-computable

if f ∈ ED(A∗).

Proposition 7.12 (Transitivity of ED-computability).

f ∈ ED(A,~g), ~g ∈ ED(A) ⇒ f ∈ ED(A)

Proof: We combine the systems of equations for f and for ~g into a single system,

and we have the fact that simultaneous least fixed points are equal to iterated

least fixed points [dB80, Theorem 5.14].

Remark 7.13. By Theorem 7.7 (or Corollary 7.8),

ED(A) ⊆ Rec(A)

ED∗(A) ⊆ Rec∗(A)
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Remark 7.14. The minimal solutions of conditional equations of the form

t1[~g,~x] ' t′1[~g,~x], . . . , tn[~g,~x] ' t′n[~g,~x] → f(~x) ' t[f,~g,~x] (7.3)

is not computable since ‘'’ is not testable. (See Remark 6.12(2).)

For the variant of (7.3) with strict equality in the antecedent:

t1[~g,~x] = t′1[~g,~x], . . . , tn[~g,~x] = t′n[~g,~x] → f(~x) ' t[f,~g,~x]

the minimal solution is also not, in general, computable except for the case

in which all the terms in the antecedent are of equality sorts and the equality

operations on them are total equality or semi-equality. (See Remark 7.17 below)

Definition 7.15 (Conditional equational definability). CED(Σ, ~g) consists of

all finite sets of conditional equations

t11[~g,~x] = t′11[~g,~x], . . . , t1n[~g,~x] = t′1n[~g,~x] → f1(~x) ' t1[~f,~g,~x]

... (7.4)

tk1[~g,~x] = t′k1[~g,~x], . . . , tkn[~g,~x] = t′kn[~g,~x] → fk(~x) ' tk[~f,~g,~x]

over an N-standard signature Σ.

Definition 7.16 (CED(A, ~g)-definability). A function f is CED(A, ~g)-definable

if it is one of the tuple of minimal solutions of conditional equations (7.4) in

CED(Σ, ~g).

We can then define CED(A) and CED*(A) similarly to Definitions 7.10, 7.11.

Remark 7.17 (CED definability ; Computability).
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1. CED definability does not imply computability (in general), as the fol-

lowing counterexample shows.

Given the same algebra AN as in Remark 5.15, for the conditional

equation

{x = y → f(x, y) ' true}

the minimal solution is the partial equality function:

f : A2 → B

where

f(x, y) '





tt if x = y

↑ otherwise

This is not computable on AN (since AN has no equality operation).

2. However, if the sorts sij (i = 1, . . . , k, j = 1, . . . , n) of terms tij are equality

sorts and eqA
sij

are total equality or semi-equality, then we can transform

(7.4) to a set of equations (see Remark 6.12(4)), the minimal solution of

which is computable, by Theorem 7.7.

3. In any case, it follows from (2) above that CED definability on A does

imply computability on A expanded by total equality or semi-equality at

all sorts.

7.4 Computability in schemes for minimal solution

In the preceding sections, we have discussed computability by means of an imperative

programming language. Now, we are interested in another model of computability:

µPR* schemes.
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Taking the results

Rec∗(A) ⊆While∗(A) from [Xu03]1

and

While∗(A) ⊆ µPR∗(A) from [TZ00]

and by Theorem 7.7 (or Corollary 7.8), we get

ED∗(A) ⊆ Rec∗(A) ⊆While∗(A) ⊆ µPR∗(A).

Conversely, by Theorem 6.10, for an N -standard Σ-algebra A, any µPR*(Σ)

computable function can be defined as a minimal solution of a set of equations of the

form (7.2) over A, i.e.

µPR∗(A) ⊆ ED∗(A).

Therefore, we close the circle to get the equivalence of equational, schematic and

imperative models:

µPR∗(A) ⊆ ED∗(A) ⊆ Rec∗(A) ⊆While∗(A) ⊆ µPR∗(A).

Thus, we have the main result of this thesis:

Theorem 7.18.

ED∗(A) = µPR∗(A) = Rec∗(A) = While∗(A)

1This is actually proved for total algebras in [Xu03], but the extension to partial

algebras should be routine.
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This gives further confirmation to the generalized Church-Turing Thesis (as dis-

cussed in Chapter 1).

From Remark 7.17, on the other hand, we have:

Theorem 7.19.

(a) CED∗(A) % ED∗(A) = µPR∗(A)

(b) But CED∗(A) ⊆ ED∗(Aeq) = µPR∗(Aeq)

where Aeq is an expansion of A by adding total equalities or semi-equalities on

all sorts.

We conclude with a conjecture:

Conjecture 7.20. When the equality operations at all sorts are semi-equality, “⊆”

can be replaced by “=” in Theorem 7.19(b).

The resolution of this conjecture is an interesting open problem.
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