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Abstract. We consider convex polyhedra with applications to well-
known combinatorial optimization problems: the metric polytope m,
and its relatives. For n < 6 the description of the metric polytope is
easy as my has at most 544 vertices partitioned into 3 orbits; mrz - the
largest previously known instance - has 275 840 vertices but only 13 or-
bits. Using its large symmetry group, we enumerate orbitwise 1 550 825
600 vertices of the 28-dimensional metric polytope mg. The description
consists of 533 orbits and is conjectured to be complete. The orbitwise in-
cidence and adjacency relations are also given. The skeleton of mg could
be large enough to reveal some general features of the metric polytope
on n nodes. While the extreme connectivity of the cuts appears to be
one of the main features of the skeleton of m,, we conjecture that the
cut vertices do not form a cut-set. The combinatorial and computational
applications of this conjecture are studied. In particular, a heuristic skip-
ping the highest degeneracy is presented.

1 Introduction

Combinatorial polytopes, i.e. polytopes arising from combinatorial optimization
problems, are often trivial for the very first cases and then suddenly the so-called
combinatorial explosion occurs even for small instances. While these polytopes
turn out to be quickly intractable for enumeration algorithm designed for general
polytopes, tailor-made algorithms using their rich combinatorial features can ex-
hibit surprisingly strong performances. For example, CHRISTOF AND REINELT [2]
computed large instances of the traveling salesman polytope, the linear ordering
polytope and the cut polytope exploiting their symmetry groups. In a similar
vein, in addition to its symmetry group, we used its combinatorial structure to
orbitwise enumerate the vertices of another combinatorial polytope: the met-
ric polytope. Let first recall basic definitions and present some applications to
well-known combinatorial optimization problems.
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The (g)—dimensional cut polytope ¢, is usually introduced as the convex hull
of the incidence vectors of all the cuts of K,,. More precisely, given a subset S of
Vo, ={1,2,...,n}, the cut determined by S consists of the pairs (7, j) of elements
of V,, such that exactly one of 7, j is in S. By §(S) we denote both the cut and

its incidence vector in ]RG), that is, (5);; = 1 if exactly one of 4, j isin S and 0
otherwise for 1 < i < j < n. By abuse of notation, we use the term cut for both
the cut itself and its incidence vector, so 6(.5);; are considered as coordinates of

a point in ]I{(g) The cut polytope ¢, is the convex hull of all 2"~ ! cuts, and
the cut cone C,, is the conic hull of all 2"~! — 1 nonzero cuts. The cut polytope
and one of its relaxation - the metric polytope - can also be defined in terms of
a finite metric space in the following way. For all 3-sets {7, j,k} C {1,...,n}, we
consider the following inequalities:

Tij — Ty — T <0, (1)

(1) induce the 3(3}) facets which define the metric cone M,. Then, bounding
the latter by (2) we obtain the metric polytope m,,. The 3(}) (resp. (3)) facets
defined by (1) (resp. by (2)) can be seen as triangle (resp. perimeter) inequalities
for distance z;; on {1,2,...,n}. While the cut cone is the conic hull of all, up to a
constant multiple, {0, 1}-valued extreme rays of the metric cone, the cut polytope
¢n, 1s the convex hull of all {0, 1}-valued vertices of the metric polytope. The link
with finite metric spaces is the following: there is a natural 1 — 1 correspondence
between the elements of the metric cone and all the semi-metrics on n points,
and the elements of the cut cone correspond precisely to the semi-metrics on n
points that are isometrically embeddable into some I7*. It is easy to check that
such minimal m is smaller or equal to (2)

One of the motivations for the study of these polyhedra comes from their ap-
plications in combinatorial optimization, the most important being the max-cut
and multicommodity flow problems. Given a graph G = (V},, F) and nonnegative
weights we, e € F, assigned to its edges, the maz-cut problem consists in finding
a cut 6(S) whose weight } . csg) we is as large as possible. It is a well-known
N P-complete problem. By setting w. = 0 if e is not an edge of G, we can con-
sider without loss of generality K, the complete graph on V,,. Then the max-cut
problem can be stated as a linear programming problem over the cut polytope
Cn, as follows: max w”x subject to & € ¢,. Since the metric polytope is a re-
laxation of the cut polytope, optimizing w” z over ¢, instead of m,, provides an
upper bound for the max-cut problem. Consider now the complete graph K,;
an instance of the multicommodity flow problem is given by two nonnegative
vectors indexed by E: a capacity c(e) and a requirement r(e) for each e € E.
Let U = {e € E : r(e) > 0}. If T denotes the subset of V,, spanned by the edges
in U, then we say that the graph G = (T,U) denotes the support of r. For each
edge e = (s,t) in the support of r, we seek a flow of r(e) units between s and ¢ in
the complete graph. The sum of all flows along any edge ¢’ € E must not exceed
c(e’). If such a set of flows exists, we call ¢, r feasible. A necessary and sufficient
condition for feasibility is: a pair ¢, 7 is feasible if and only if (c—7)Tz > 0 is valid
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over the metric cone, see [7]. For example, the triangle facet induced by (1) can
be seen as an elementary solvable flow problem with ¢(ij) = r(ik) = r(jk) =1
and c¢(e) = r(e) = 0 otherwise, so (1) corresponds to (¢ —r)Tx > 0 for z in the
metric cone. Therefore, the metric cone is the dual cone to the cone of feasible
multicommodity flow problems. For a detailed study of those polytopes and their
applications in combinatorial optimization we refer to DEZA AND LAURENT [4]
and POLJAK AND TuzA [9].

2 Vertices of the Metric Polytope

2.1 Combinatorial and Geometric Properties

The polytope ¢, is a (g) dimensional 0—1 polyhedron with 2"~! vertices and
m,, is a polytope of the same dimension with 4(2) facets inscribed in the cube

[0, 1](3) We have ¢, C m,, with equality only for n < 4. It is easy to see that the
point w,, = (%, %, ceey %) is the center of gravity of both ¢,, and m,, and is also the
center of the sphere of radius r = 11/n(n — 1) where all the cuts lie. Any facet
of the metric polytope contains a face of the cut polytope and the vertices of the
cut polytope are vertices of the metric polytope. In fact, the cuts are precisely
the integral vertices of the metric polytope. The metric polytope m,, wraps the
cut polytope ¢, very tightly. Indeed, in addition to the vertices, all edges and
2-faces of ¢, are also faces of m,,, for 3-faces it is false for n > 4. Any two cuts
are adjacent both on ¢, and on m,,; in other words m,, is quasi-integral; that is,
the skeleton of the convex hull of its integral vertices, i.e. the skeleton of ¢, is
an induced subgraph of the skeleton of the metric polytope itself. We recall that
the skeleton of a polytope is the graph formed by its vertices and edges. While
the diameters of the cut polytope and the dual metric polytope satisfy §(c,) =1
and §(m}) = 2, the diameters of their dual are conjectured to be §(c) = 4 and
d(my) = 3.

One important feature of the metric and cut polytopes is their very large
symmetry group. We recall that the symmetry group Is(P) of a polytope P is the
group of isometries preserving P. More precisely, for n > 5, Is(my) = I's(¢p,) and
both are induced by permutations on V,, = {1, ..., n} and switching reflections by
a cut and, for n > 5, we have |Is(m,,)| = 2"~ Inl. Given a cut §(S), the switching
reflection 755y is defined by y = rss)(z) where y;; = 1 — xy; if (i,7) € 0(5)
and y;; = x;; otherwise. As these symmetries preserve the adjacency relations
and the linear independency, all faces of m,, are partitioned into orbits of faces
equivalent under permutations and switchings.

2.2 Vertices of the Metric Polytope

We recall some results on the vertices of the metric polytope and the LAURENT-
PoLJAK dominant clique conjecture. The cuts are the only integral vertices of
my,. All other vertices with are not fully fractional are so-called trivial extensions
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of a vertex of m,_1. Consider the following two mappings

r("z) — RrE) R("Y — REG)

v — ¢o(v) v — ¢1(v)

bo(v)ij = vij b1(v)ij = vij for1<i<j<n-—1
¢0('U)i,n = V1,4 ¢1('U)i,n =1-vy, for2<i<n-1
¢0(’U)1,n =0 ¢0(’U)1,n =1.

The vertices ¢g(v) and ¢1(v) are called trivial extensions of v. Note that ¢1(v) =
75({n})(¢0(v)). In other words, the new vertices are the fully fractional ones. The
(3, 2)-valued fully fractional vertices are well studied and include the anticut
orbit formed by the 2”71 anticuts 6(S) = 2(1,...,1)-36(5). If G = (V,,, E)
is a connected graph, we denote by d¢ its path metric, where dg(i,7) is the
length of a shortest path from i to j in G for i # j € V,. Then 7(dg) =
maz(da(i,7) + da(i, k) +da (4, k) 1 1,7,k € G) is called the triameter of G and
we set xg = %dc. Any vertex of m,, of the form x¢ for some graph is called

a graphic vertex, see Fig. 1 for the graphs of 2 graphic (%, %)—valued vertices of

mg. Note that for any connected graph G = (V,,, E), we have 7(dg) < 2(n —1)
and that any (1, 2)-valued vertex of m,, is (up to switching) graphic. Let the
incidence Icd, denotes the number of facets containing the vertex v and the
adjacency Icd, denotes the number of vertices adjacent to v (i.e. forming an

edge with v). The following is straigtforward to prove.

Proposition 1. The vertices of the metric polytope m,, are partitioned into or-
bits of its symmetry group. Let v be a vertex of my, Icd, its incidence, Adj,
its adjacency, O, the orbit generated by the action of Is(my) on v, and ¥ the
canonical representative of O,. Then Icd, = Icdy, Adj, = Adj; and O, = Oy.

Since mz = c3 and my = ¢4, the vertices of ms and my4 are made of 4 and 8
cuts forming 1 orbit. The 32 vertices of ms are 16 cuts and 16 anticuts, i.e.,
form 2 orbits. The metric polytope mg has 544 vertices, see [8], partitioned
into 3 orbits: cuts, anticuts and 1 orbit of trivial extensions; and m7 has 275
840 vertices, see [3], partitioned into 13 orbits: cuts, anticuts, 3 orbits of trivial
extensions, 3 (%, %)—Valued orbits and 5 other fully fractional orbits. See Table 1,
where the 13 canonical representative vertices of the metric polytope on 7 nodes
are given with their incidence and adjacency.

Property 1. Let v be a vertex of m, and §(S) any cut. Then one has: Icd, <
Ieds(sy = 3(’;) with equality only for v = §(S). Moreover, if v is a trivial exten-
sion, Icd, < 2(’3’) and, if v is fully fractional, Icd, < Teds gy = (g) with equality
only for v = §(9).

Property 1 is illustrated in Table 1 where the orbits O3, are ordered by decreasing
values of the incidence Iedy,. The first orbit Op, is the cut orbit and all fully
fractional orbits are after the anticut orbit Og,. The trivial extension orbits are
Oj, for i = 2,3 and 4.
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Table 1. The 13 orbits of vertices of m7

‘ Orbit Oz, Canonical representative vertex ; ‘ICd'Di Adjg, | 10s,] ‘
Oz, (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) | 105 |55 226| 64
Os,  |2(1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)| 49 | 496 | 2 240
Os,  |2(1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1, 1, 1,1,1)| 45 | 594 | 6 720
Os,  |2(1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 40 | 763 | 1 344
Osy  |2(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| 35 | 896 | 64
Oss  |2(1,2,3,1,2,1,1,2,2,1,2,1,1,2,3,2,3,2,1,2,1)[ 30 | 96 |20 160
Osr  |2(2,1,1,1,1,2,2,1,1,1,1,2,1,1,1,2,1,1,2,1,2)| 28 | 57 |23 040
Os  |2(1,1,1,1,1,1,2,2,1,1,1,2,1,1,1,1,1,1,2,2,2)| 26 | 76 | 4480
Os,  |2(1,2,3,2,1,2,1,2,1,2,1,1,2,1,1,1,2,2,1,1,1)| 25 | 30 |40 320
Osy  |2(3,2,3,3,1,1,1,2,2,2,2,3,3,3,3,4,4,2,2,4,2)| 25 | 27 |16128
Os,  |3(1,1,1,1,1,1,2,2,1,1,1,2,1,1,1,2,1,1,2,2,2)| 23 | 39 |40 320
O |2(1,2,4,2,2,2,1,3,3,3,3,2,2,2,4,2,2,2,4,4,4)| 23 | 24 |80 640
O3y %(221112211112.1.1.1.2.1.1.2,1.2) 22 46 |40 320

‘ Total ‘ ‘ ‘ ‘275 840‘

Conjecture 1. [8] Any vertex of the metric polytope is adjacent to a cut.

Conjecture 1 underlines the extreme connectivity of the cuts. Recall that the cuts
form a clique in both the cut and metric polytopes. Therefore, if Conjecture 1
holds, the cuts would be a dominant clique in the skeleton of m,, implying that
its diameter would satisfy §(m,,) < 3.

3 Orbitwise Enumeration Algorithm

As stated in Proposition 1, the neighborhood, that is, the set of vertices adjacent
to a given vertex, is equivalent up to permutations and switchings for all ver-
tices belonging to the same orbit. This property leads to the following orbitwise
enumeration algorithm. The main two subroutines are the computation of the
canonical representative ¥ of the orbit generated by a vertex v and the enu-
meration of the neighborhood Ny of the vertex v. Starting from an initial vertex
Vstart the algorithm computes the canonical representative Ugzq.¢, enumerates its
neighborhood Nj_, .., identifies new orbits contained in N3, ,, updates the list
L of canonical representatives and then picks up the next canonical representa-
tive in L whose neighborhood is not yet computed. The algorithm terminates
when there is no more such canonical representative in L and outputs L. Since
the skeleton of a polytope is connected, this algorithm finds all orbits.
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Orbitwise Enumeration Algorithm
begin
find an initial vertex vgqre;
compute the canonical representative Ugsq,+ Of the orbit Oj,,, ., ;
mark ¥gsqr+ with 0;  /* neighborhood not yet computed */
initialized the list of canonical representatives L := {Ussqrt };
while L contains a 0-marked vertex v; do
begin
compute the neighborhood N, of ¥;;
for each vertex v adjacent to 7;
compute the canonical representative ¥ of the orbit Og;
if o ¢ L then mark ¢ with 0 and L := L U {0}; endif;

endfor;

mark ¢; with 1;  /* neighborhood computed */ ;
endwhile;
sort L by decreasing values of Icd,, decreasing Adj;, and increasing |Og, |;
output L;

end.

Lemma 1. Let I be the number of orbits, Ieds, and Adj;, the incidence and
the adjacency of the orbit Oy, for i = 1,...,1. The neighborhood enumera-
tion subroutine is called exactly I times and each meighborhood is generated by
Iedy, facets. The canonical representative computation subroutine is called ex-
actly 35 Adjg, times.

Remark 1.

1. The orbitwise enumeration algorithm performs I classic vertex enumerations
for smaller sub-polytopes (one for each orbit of neighborhoods) instead of
performing one large classic vertex enumeration (the whole polytope).

2. The computation is independent of the choice of the initial vertex vgsqrt.
Among the known vertices of m,; an easy choice for vss.,+ is the anticut
5(0) = 2(1,...,1).

3. In case of very high degeneracy, the subroutine computing the canonical
representative has to be called a large number of times and some of the
neighborhoods might represent a large fraction of the whole polytope. It is
the case for the neighborhood of a cut Ns(g) as Ieds(sy = 3(’;)

For ¢ = 1,...,1I, the algorithm gets the orbitwise incidence Ied;, (by simply
checking which inequality is satisfied with equality) as input for the neighbor-
hood enumeration subroutine and produces the adjacency Adj;, as output of
this subroutine. By counting the number of times a vertex equivalent to the
canonical representative ¥; is found in NNg,, we get the orbitwise adjacency table,
that is, the I x I matrix Adj with Adj; ; = Adjﬁi’ﬁj the number of vertices of the
orbit Oz, adjacent to @;. The orbits Oz, are ordered first by decreasing values of
the incidence Icdy,, then by decreasing adjacency Adj;, and then by increasing
orbitsize |Oy,|. Let us assume we know the size of one orbit; for example, we have
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|05s)| = 27~ Then, from the matrix Adj, we can usually get the size of the
other orbits using the following easy relation: Adjy, ;. x |Og,| = Adjy, 5, % |Og,|.
See, for example, Table 2 where the orbitwise adjacency table is given for the
metric polytope on 7 nodes. The first row of Table 2 lists orbitwise Ng,; that
is, the 55 226 neighboors of a vertex belonging to Oy, , that is a cut. For exam-
ple, Adj;, 5, = 945 in the fourth column means that a cut is adjacent to 945
vertices belonging to the orbit Og,. Since all the facets incident to the origin
5(0) are precisely the 3(3) triangle facets, an extreme ray of the metric cone M,
corresponds to each vertex adjacent to 91 = 6((). In other words, the adjacency
Adjs(sy = Adjy, of a cut equals the number of extreme rays of the metric cone
M,,. We recall that the 41 orbits under permutations of the extreme rays of M7
were found by GRISHUKHIN [6].

Table 2. Orbitwise adjacency table of the skeleton of m7

104,103, O3, [03,]03,] O | O,

Oy | Oy, |Oﬂ710 |Oﬁ11 | O3, |Oﬁ13 || Adj@- |

Og, || 63 [980[3 570]945] 56 |7 560[5 400[1 120]6 930[2 772[6 930]10 0808 820[[55 226
Os, |[28 24| 132 45| 3 [ 18 | 0 | 12 | 0 | 36 | 72 | 108 | 18 | 496
Op, |[34[44 [ 126 [42 [ 4 | 60 | 48 | 8 | 48 | 12 | 48 | 48 | 72 || 594
Os, |[45 (75210 |20 3 [ 60 | O | 20 | 0 | 60 | 60 | 180 | 30 | 763
O, |[56 [105] 420 [63[ 0] 0 | 0 | 0 | 0 [252] 0 | 0 | 0 | 89
O |[24] 220 4]0 8 | 8 | 2 4] 0] 8] 8 | 8| 9
On|[15]0] 14|00 7 | 707 0]o0] o |7 57
On|[16] 6] 1260 9] 0] 0] 0] 0] 9] 18] 0] 76
On|[11]0] 8 |O]O] 2 | 40001 0 4] 30
Owoll11[5 | 5 |5]1] 0] 0]0] 0] o000 0] o] 27
O l11[ 4| 8 |[2]0] 4]0 1] 1] 00 4 | 47 39
O, 83| 4 [3]0| 2 0] 1]o0]o0] 2] 0 1 || 24
Osalll4| 1|12 |1]0] 4 | 4 0] 4]0 4] 2 | 0| 46

Remark 2. The output, that is, the list L of canonical representatives o; for i =
1,...,1, is extremely compact. Apart from vertex enumeration, the algorithm
computes the orbits invariants Adj;, , Icds;, and |Oz,|. The orbitwise adjacency
table Adj reveals the skeleton. The total number of vertices is simply ; |Og|
and the full list of vertices can be generated by the action of the symmetry group
on each representative v;.

4 Generating Vertices of the Metric Polytope

The heuristics presented in this section are valid for other combinatorial poly-
topes, but for convenience we restrict ourselves to the metric polytope. Inser-
tion algorithms usually handle high degeneracy better than pivoting algorithms,
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see [1] for a detailed presentation of the main vertex enumeration methods.
The metric polytope m,, is quite degenerate (the cut incidence Iedssy = 3(2) is
much larger than the dimension d = (g) ). Thus we choose an insertion algorithm
for the neighborhood enumeration subroutine: the cddlib implementation of the
double description method [5]. In the remainder, we always assume that the
neighborhood enumeration subroutine is performed by an insertion algorithm.
Item 3 of Remark 1 indicates that even the neighborhoods of highly degenerate
polytopes might lie beyond the range of problems currently solvable by insertion
algorithms. In Sect. 4.2, we present heuristics addressing this issue.

4.1 A Conjecture on the Skeleton of the Metric Polytope

If true, the LAURENT-POLJAK Conjecture 1 would give the following computa-
tional implication: the enumeration of the extreme rays of M,, gives all the orbits
of the my,. Since the number of extreme rays of the metric cone |M,| = Adjs(s)
might be a large fraction of the number of vertices of the metric polytope, the
computational gain would be limited. Therefore, we propose a no cut-set conjec-
ture which can be seen as complementary to the LAURENT-POLJAK conjecture
both graphically and computationally.

Conjecture 2. For n > 6, the restriction of the skeleton of the metric polytope
m,, to the non-cut vertices is connected.

For any pair of vertices, while Conjecture 1 implies that there is a path made
of cuts joining them, Conjecture 2 means that there is a path made of non-cuts
vertices joining them. In other words, the cut vertices would form a dominating
set but not a cut-set in the skeleton of m,,. On the other hand, while Conjecture 1
means that the enumeration of the metric cone M, is enough to obtain the metric
polytope m,,; Conjecture 2 means that we can obtain m,, without enumerating
M, = Ns@), see Sect. 4.2. Note that for arbitrary graphs these are clearly
independent. Both are strongly believed to be true and hold for n < 7.

4.2 Heuristic: Skipping High Degeneracy

If Conjecture 2 holds, all orbits can be found by the following metric cone skip-
ping heuristic: disregard ¢ if ¥ = §(S). In other words, disregard the neighbor-
hood of the cuts, that is, essentially the metric cone M,,. This neighborhood is be-
lieved to be by a large margin the largest, as we expect that Adj(;(s) > Adjv#(s),
see Property 1 and Item 1 of Remark 3. In other words, the heuristic removes the
hardest neighborhood enumeration. Note that cuts are easy to recognize as §(S)
is uniquely characterized by its incidence: lcdss) = 3(2) Therefore, disregard-
ing the metric cone M,,, consists simply in choosing a non-cut as initial vertex
Vstart and modifying the main loop of the orbitwise enumeration algorithm in
the following way:
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Metric Cone Skipping Heuristic
if 9 ¢ L then L:= LU {0};
if Ied, = 3(;’) then mark ¥ with 1
else mark ¥ with 0; endif;
endif;

For the metric on 8 nodes, while Adjsg) > 119 269 588 - i.e. 7.7% of the total
number of vertices of mg - the enumeration of the other 532 neighborhoods
generates (with multiplicity) > ; 5.5 Adjs, = 780 T11 vertices - i.e. less than
0.05% of the total number of vertices. One can easily get the neighborhood of
the cut from the orbitwise adjacency table Adj. Taking the column and the row
corresponding to the cuts as we have: Adjjs(g) 5, X nl = Adj, 5(s) % |0z, | where
Adjy, 5(s) is the number of cuts adjacent to v;.

Proposition 2. If true, Conjecture 2 would be a certificate that the “Metric
Cone Skipping Heuristic” gives a complete description of the metric polytope by
generating only a very small fraction of the vertices.

One can further decrease the computation time by skipping not only the orbit
with the highest incidence (the cuts) but all orbits with arbitrarily set in advance
upper bound Icd,,q; on the incidence. Skipping high degeneracy consists simply
in the following modification of the main loop of the orbitwise enumeration
algorithm:

Skipping High Degeneracy Heuristic
if v ¢ L then L:=LU{7};
if Iced, > Icd,,q, then mark © with 1
else mark v with 0; endif;
endif;

In this case, a certificate for a complete description is that the restriction of the
skeleton of m,, to O and the low incidence orbits O, . 1.0 < Jcd is con-

Ustart
nected. This heuristic is particularly suitable for partial enumeration purpose
and the choice of the initial vertex vg:qr+ could become a critical factor, see Item
2 of Proposition 5. For the metric polytope on 8 nodes, we can take vgqrt = 04;
that is, the trivial extension with the fourth highest incidence Icdy, = 74. We
expected this type of vertex to be connected to many orbits and, indeed, the
neighborhood N;, contains representatives of 450 different orbits out of 533. An-
other choice is vstqrt = U41 With Ieds,, = 42 and Adj;,, = 533. The neighborhood
computation subroutine was restricted to vertices satisfying led;, < 40 < %(né"l)
- l.e. halfway from the dimension (g) to the anticut incidence Ieds gy = (g)
Besides Nj,,, the algorithm computed 485 neighborhoods with low incidences

generating > . .- <40 Adjp, = 63 095 vertices - i.e. less than 0.005% of the
total number of vertices. Still, this heuristic approach proved to be enough as
this tiny number of vertices contains representatives of all 533 orbits. Another
remarkable feature is that since all the 485 neighborhoods are generated by few
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facets - 389 have even less than 34 facets - the neighborhood enumeration subrou-
tine is performing extremely well. Similarly to the previous metric cone skipping
heuristic case, missing entries of the table Adj (i.e. the rows corresponding to the
orbits with high incidence ch,;i > Iedpaz) can be computed using the relations:
Adjy, 5, < |O3,| = Adj, 5, % |Og,|. In particular, we can first compute Nj(g )'
that is, all nonzero values of Adjs () 3, and, using the fact that |O(;(S)| =2""

get all corresponding |Og;| and then use them iteratively to obtain some of the
remaining unknown |Og, |.

5 Vertices of the Metric Polytope on 8 Nodes

Using the metric cone skipping heuristic presented in Sect. 4.2, we enumerate
533 orbits of mg. The list of canonical representative with their adjacency and in-
cidence and, especially, the adjacency table Adj being too large to be included in
this paper, we refer to http://www.is.titech.ac.jp/~ deza/deza.html where
a detailed presentation is available. For example, the anticut row of Adj has only
15 nonzero entries Adjsgy ;- A summary description is given in Proposition 4.

Proposition 3.

1. The metric polytope mg has at least 1 550 825 600 vertices and the metric
cone Mg has at least 119 269 588 extreme rays; we conjecture that both
descriptions are complete.

2. Fori=1,...,533 each orbit representative v; is adjacent to at least 2 cuts
implying that the LAURENT-POLJAK dominant clique conjecture holds for
these 533 orbits of ms.

Proposition 4. The 1 550 825 600 vertices of the metric polytope on 8 nodes
are partitioned into 533 orbits:

(4) 1 cut orbit Oy(s) with Ieds(sy = 168, Adjssy > 119269588 and [O5(s)| = 128

(i) 28 trivial extensions orbits O with Icds, = 88,79,74,...,42, Adj;, =
137758, ..., 127 and |0, = 1290 240, ..., 3 584

(#i1) 504 fully fractional orbits Oy, :
L anticut orbit Oggy with leds gy = 56, Adjsisy = 52 367 and |O5(g)| = 128
37 (3, 3) -valued orbits Oy, with Ieds, = 44,40,...,28, Adj;, = 6 285,5247,

.28 and |05, | = 5 160 960, . . ., 35 840
466 non (%, %)—valued fully fmctional orbits Oz, with Ieds, = 48,45,...,29,
Adj;, =22300,4 906, ...,29 and |Og,| = 5160 960, . . ., 40 320.

Proposition 5.

1. Exactly two of the 5383 orbits of mg described in Proposition j are orbits of
simple vertices; that is, satisfying Icdg, = Adj;, = (g) Both representative
vertices Usz2 and Uszz are graphic (%, %)—valued vertices, see Fig. 1.
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Fig. 1. Two simple graphic vertices of msg

2. The Oy, row of the adjacency table has only 3 nonzero entries: Adjg, ., 55y =
14, Adjs,,, 5, = 7 and Adjs,,, 5,, = 7 with ledg,, = 42. It implies that,
among the 532 non-cut orbits, the vertices of Oy, and Og,, are the only ini-
tial vertices such that the restriction of the skeleton of my to Os,,,,., and
Oﬁi Teds, <41 could be connected. One can easily check that it holds for both
Ustart = U4 aNd Vspart = Va1.

3. One can easily check that the set Ng,,, of the neighbors of Ussa and the set
Nisiiay (is33) Of the neighbors of the switching of Tsss by the cut 6({1}) are
disjoint. It implies that the diameter §(m3>3) of the restriction of the skeleton
of mg to the 533 orbits described in Proposition j satisfies 6(m33®) > 3. Since
the LAURENT-POLJAK conjecture holds for these 533 orbits, see Item 2 of

Proposition 3, we have §(m333) = 3.
Remark 3.

L. For n <7, we have Adj; < Adjss) for o # 6(S) and it is conjectured in [3]
to be true for any n. For n = 8, it holds for the 533 orbits described in
Proposition 4 as we have 865 x Adj;, < Adjs(g) for i =2...533.

2. For any n, we have |O3| < |Is(m,,)| = 2" tn!. While for n < 7, this inequal-
ity is strict for all orbits, it is satisfied with equality for the largest (fully
fractional) orbits of ms.

3. Tt is conjectured, see [3], that for n large enough, at least one vertex of m,,
is simple. While it is false n = 6 and 7, Item 1 of Proposition 5 implies that
it holds for n = 8.

6 Conclusions

We presented an orbitwise enumeration algorithm for combinatorial polytopes
with large symmetry group. In particular, we computed 1 550 825 600 vertices of
a highly degenerate 28-dimensional polytope defined by its 224 facets: the metric
polytope on 8 nodes. The description consists of only 533 canonical representa-
tives and we conjecture it is complete. The orbitwise incidence, adjacency and
skeleton are also given. While the extreme connectivity of the cuts (LAURENT-
PoLJAK conjectured they form a dominating set) appears to be one of the main
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features of the skeleton of m,,, we conjecture that the cut vertices do not form
a cut-set in the skeleton of m,. The combinatorial and computational applica-
tions of this conjecture are studied. In particular, a heuristic skipping the metric
cone is presented. The algorithm can be parallelized very easily and, combined
with the heuristic, higher-dimensional instances of the metric polytope and other
combinatorial polyhedra vertex enumeration problems could be solvable. While
the largest previously computed metric polytope m; has only 13 orbits of ver-
tices, mg has at least 533 orbits and therefore could be large enough to reveal
some general features of the metric polytope on n nodes. In particular, the skele-
ton of mg suggests the orbitwise adjacency relations between the cuts, anticuts,
the trivial extensions and the fully fractional orbits: The row Adjsg) ; and the
column Adj; 5y should have only nonzero entries (LAURENT-POLJAK dominat-
ing set conjecture). The anticuts are mainly orbitwise adjacent to (few) trivial
extensions and the fully fractional orbits are badly orbitwise connected among
themselves. The trivial extensions are well connected among themselves and not
so well to the fully fractional orbits but still the restriction to the non-cut orbits
is connected (no cut-set conjecture).
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