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Abstract

Various models of computability of partial functions f on the real numbers are

studied: two abstract, based on approximable computation w.r.t high level program-

ming languages; two concrete, based on computable tracking functions on the ratio-

nals; and two based on polynomial approximation. It is shown that these six models

are equivalent, under the assumptions: (1) the domain of f is a union of an effective

sequence of rational open intervals, and (2) f is effectively locally uniformly contin-

uous. This includes the well-known functions of elementary real analysis (rational,

exponential, trigonometric, etc., and their inverses) and generalises a previously know

equivalence result for total functions on the reals.
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Chapter 1

Introduction

1.1 Overview of the thesis

In this thesis, various models of computability of partial functions on the real

numbers are studied: two abstract, based on approximable computation w.r.t high

level programming languages; two concrete, based on computable tracking functions

on the rationals; and two based on polynomial approximation.

In [TZ05] it was shown that a number of such models are equivalent for total

functions on R, under the assumption of effective local uniform continuity. It was

conjectured there that the result also holds for partial function. In this thesis, we

prove that conjecture, for partial functions on R whose domain is a union of an

effective sequence of rational open intervals, which are effectively locally uniformly

continuous.

We shall prove, under these conditions, the equivalence of six models:

1



2 1. Introduction

(i) While∗(RN
t ) approximable computability (where RN

t is a total algebra on R);

(ii) WhileCC ∗(RN
p ) approximable computability (where RN

p is a partial algebra

on R);

(iii) GL-(Grzegorczyk/Lacombe) computability;

(iv) ᾱ0-computability (where α0 is a standard enumeration of the rationals);

(v) Effective local uniform Q-polynomial approximability;

(vi) Effective local uniform Q-multipolynomial approximability.

Models (i) and (ii) are abstract and (iii) and (iv) are concrete.

Model (vi), multipolynomial approximation, is a new model, not considered in

[TZ05], which enables us to generalize the equivalence result to partial functions.

The last two named procedures are illustrated using Maple 9.5.

We will prove the equivalence theorem for partial functions as in the following

diagram:

While∗(RN
t ) approximable computability

-

?¾

(Proved in [TZ05] for

total functions only)

l Lemma 4.17

Effective local uniform multipolynomial approximability

Lemma 4.23 l l Lemma 4.23

GL-computability Effective local uniform polynomial approximability

Lemma 6.8 l
ᾱ0 -computability

l (Proved in [TZ04] for partial functions)

WhileCC ∗(RN
p ) approximable computability



1. Introduction 3

In Chapter 2, we give some basic concepts we will use later, such as N -standard

many-sorted signatures, algebras, topological, and metric partial algebras.

In Chapter 3, we give the syntax and semantics of the While (∗) programming

languages1 as defined in [TZ04]. These form the basic of the first of our two abstract

computation models on R: While (∗) approximable computability on the total metric

algebra RN
t , and we also give the definition of exhaustion and While (∗) approxima-

bility.

In Chapter 4, we define the concepts of Q-polynomial and Q-multipolynomial ap-

proximability, and also give the first concrete computation model, GL-computability.

We also prove the equivalence of the following models of computation for partial

functions:

(i) While∗(RN
t ) approximable computability;

(ii) GL-(Grzegorczyk/Lacombe) computability;

(iii) Effective local uniform Q-polynomial approximability;

(vi) Effective local uniform Q-multipolynomial approximability.

We also give examples of polynomial and multipolynomial approximability for

some well-known partial functions.

In Chapter 5, we explain the syntax and semantics of the WhileCC programming

language (i.e. While with “countable choice”), which forms the basic of the second

of our two abstract computation models on R, using the partial metric algebra RN
p .

In Chapter 6, we present our second concrete model, ᾱ0-computability, and we

give the theorem proving the equivalence of all six models of computability on R

under the assumptions stated above.

1

While∗ means While with arrays. While(∗) means While with or without arrays.



4 1. Introduction

It should be noted that these assumptions on a function f (namely (1) the domain

of f is a union of an effective sequence of rational open intervals, and (2) f is effec-

tively locally uniformly continuous w.r.t. this sequence) hold for all the well-known

functions of elementary real analysis (rational, exponential, trigonometric, etc., and

their inverses) including, for example, f(x) = sin 1
x

with domain U = {x ∈ R | x 6= 0}.
The most challenging part of this thesis turned out to be the proof of Lemma 4.23

and the preparations leading up to it in Section 4.2. It is here that we were able to

generalize the results of [TZ05] to partial functions.

1.2 Abstract and concrete computability

In the theory of computation on topological algebras, there is a considerable gap

between so-called abstract and concrete models of computation. Abstract models of

computation are independent of data representations, while concrete models depend

on data representations [TZ05].

In this thesis, we use the abstract computation models defined in [TZ00, TZ04],

based on a high level imperative programming language While . Many abstract

models of computation have been defined and shown to be equivalent over general

algebras. So, this theory of abstract computation is stable. For a comprehensive

introduction to abstract computation, see [TZ00, TZ04].

The relationship between various concrete models are fairly well understood

[TZ05]. For example, a number of concrete models including TTE (“Type Two

Enumeratility”) of [Wei00] has been shown to be equivalent to GL-Computability

[SHT99]. On the other hand the inequivalences between three well-known mod-

els: Markov, Banach-Mazur and GL-computability have recently been proved in
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[Her05, Her06].

However, the connection between abstract and concrete theories has long been

problematic. Recently, the situation has been clarified [TZ04]. For example, the

equivalence between the abstract model WhileCC (RN
p ) approximability and the

concrete model ᾱ0 computability for partial function was proved in [TZ04]; we merely

quote the result in this thesis.



Chapter 2

Signatures and Topological Partial

Algebras

In this Chapter, we give some basic concepts which will be used in this thesis, such

as signature, partial algebras and topological metric algebra. Most of the definitions

are from [TZ04].

2.1 Signatures

Definition 2.1 (Many-sorted signatures). A many-sorted signature Σ is a pair

〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of sorts,

(b) Func (Σ) is a finite set of (primitive or basic) function symbols F with

F : s1 × · · · × sm → s (m ≥ 0).

Each symbol F has a type s1 × · · · × sm → s, where m ≥ 0 is the arity of F, and

s1, . . . , sm ∈ Sort(Σ) are the domain sorts and s ∈ Sort(Σ) is the range sort

6



2. Signatures and Topological Partial Algebras 7

of F. The case m = 0 corresponds to constant symbols, we then write F : → s.

Definition 2.2 (Product types over Σ). A product type over Σ, or Σ-product

type, is a symbol of the form s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are sorts of

Σ, called its component sorts.

For a Σ-product type u and Σ-sort s, let Func (Σ)u → s denote the set of all

Σ-function symbols of type u → s.

Definition 2.3 (Function types). Let A be a Σ-algebra. A function type over Σ,

or Σ-function type, is a symbol of the form u → s, with domain type u and range

type s, where u is a Σ-product type.

Definition 2.4 (Σ-algebras). A Σ-algebra A has, for each sort s of Σ, a non-

empty set As, called the carrier of sort s, and for each Σ-function symbol F :

s1 × · · · × sm → s, a (partial) function FA : As1 × · · · × Asm → As.

For a Σ-product type u = s1 × · · · × sm, we define

Au =df As1 × · · · × Asm .

Thus x ∈ Au iff x = (x1, . . . , xm), where xi ∈ Asi
for i = 1, . . . , m. So each

Σ-function symbol F : u → s has an interpretation FA : Au → As. If u is empty,

i.e., F is a constant symbol, then FA is an element of As.

The algebra A is total if FA is total for each Σ-function symbol F. Without such

a totality assumption, A is called partial. In this thesis we deal mainly with partial

algebras.



8 2. Signatures and Topological Partial Algebras

We will write Σ(A) to denote the signature of an algebra A.

Example 2.5 (Booleans). The signature of booleans is important. It can be defined

as

signature Σ(B)

sorts bool

functions true, false : → bool,

and, or : bool2 → bool,

not : bool → bool

The algebra B of booleans contains the carrier B = {tt, ff} of sort bool. The algebra

B can therefore displayed as follows:

algebra B

carriers B

functions tt, ff → B,

andB, orB : B2 → B,

notB : B→ B,

Example 2.6 (Naturals). The signature of naturals is defined as
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signature Σ(N0)

sorts nat

functions 0 : → nat,

suc : nat → nat

The algebra N0 of naturals has a carrier N of sort nat, together with the constant

zero and successor function:

algebra N0

sorts N

functions 0N : → N,

sucN : N→ N

Example 2.7 (Reals). The ring R0 of reals has a carrier R of sort real:

algebra R0

carriers R

functions 0, 1 : → R,

+,× : R2 → R

− : R→ R

The field R1 of reals has a carrier R of sort real:
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algebra R1

import R0

functions invR : R→ R,

where

invR(x) =





1/x if x 6= 0

↑ otherwise.

The algebra R1 is thus a partial algebra.

Definition 2.8 (Reducts and expansions). Let Σ and Σ ′ be signatures.

(a) We write Σ ⊆ Σ ′ to mean Sort(Σ) ⊆ Sort(Σ ′) and Func (Σ) ⊆ Func(Σ ′).

(b) Suppose Σ ⊆ Σ ′. Let A and A′ be algebras with signatures Σ and Σ ′ respectively.

• The Σ-reduct A′|Σ of A′ is the algebra of signature Σ, consisting of the

carriers of A′ named by the sorts of Σ and equipped with the functions of

A′ named by the function symbols of Σ.

• A′ is a Σ ′-expansion of A if and only if A is the Σ-reduct of A′.

Definition 2.9 (Σ-variables). For each Σ-sort s, there are (program) variables

as, bs, . . ., xs, ys, . . . of sort s. Let Var s(Σ) be the class of variables of sort s, and

Var(Σ) be the class of all Σ-variables, x, y,. . . . . .
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Definition 2.10 (Σ-terms). Let Term(Σ) be the class of Σ-terms t, . . ., and

Terms be the class of terms of sort s, defined by

ts ::= xs | F(ts1
1 , . . . , tsm

m )| if b then ts1 else ts2 fi

where F ∈ Func (Σ)u → s and u = s1 × · · · × sm. We write ts or t : s to indicate that

t ∈ Terms. Further, we write t : u to indicate that t is a u-tuple of terms, i.e., a

tuple of terms of sorts s1, . . . , sm.

We will often write Var for Var(Σ), Term for Term(Σ), etc.

Definition 2.11 (Closed terms over Σ). We define the class CT (Σ) of closed

terms over Σ, and for each Σ-sort s the class CT (Σ)s of closed terms of sort s.

These are generated inductively by the rule: if F ∈ Func (Σ)u → s, and ti ∈ CTSigs

for i = 1, . . . ,m where u = s1 × · · · × sm, then F(t1, . . . , tm) ∈ CTSigs.

Note that the implicit base case of this inductive definition is the case where

m = 0, which yields: for all constants c : → s, c() ∈ CT (Σ)s. In this case we write

c instead of c(). Hence if Σ contains no constants, CT (Σ) is empty.

Assumption 2.12 (Instantiation) In this thesis, we will assume:

CT(Σ)s is non-empty for each s ∈ Sort(Σ).
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Definition 2.13 (Valuation of closed terms). For a Σ-algebra A and t ∈
CT (Σ)s, we define the valuation tA ∈ As of t in A by structural induction on t:

F(t1, . . . , tm)A ' FA((t1)A, . . . , (tm)A)

(if b then t1 else t2 fi)A '





(t1)A if bA↓tt
(t2)A if bA↓ff
↑ otherwise.

where “ ' ” means that either both sides converge to same value or diverge, and “↑”
means undefined or diverges (“↓” means converges).

In particular, for m = 0, i.e., for a constant c : → s, cA = cA.

Definition 2.14 (Default terms; Default values).

(a) For each sort s, we pick a closed term of sort s. (There is at least one, by the

Instantiation Assumption.) We call this the default term of sort s, written δs.

Further, for each product type u = s1 × · · · × sm of Σ, the default (term) tuple

of type u, written δu, is the tuple of default terms (δs1 , . . . , δsm).

(b) Given a Σ-algebra A, for any sort s, the default value of sort s in A is the valuation

δs
A ∈ As of the default term δs; and for any product type u = s1 × · · · × sm,

the default (value) tuple of type u in A is the tuple of default values δu
A =

(δs1
A , . . . , δsm

A ) ∈ Au.

Definition 2.15 (Standard signatures).

A signature Σ is standard if Σ(B) ⊆ Σ.

Given a standard signature Σ, a sort of Σ is called an equality sort if Σ includes

an equality operator eqs: s2 → bool.
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Definition 2.16 (Standard algebras). Given a standard signature Σ, a Σ-algebra

A is a standard algebra if (i) it is expansion of B; (ii) the equality operator eqs is

interpreted as a partial identity on each equality sort s, i, e., for any two elements of

As, if they are identical, then the operator at these arguments return tt if it returns

anything; and if they are not identical, it returns ff if anything.

Two typical examples of partial identity as an interpretation of eqs are: (1) total

equality, where equality is assumed to be “decidable” at sort s; for example, when

s = nat; (2) the case when s = real:

eqA
real(x, y) =




↑ if x = y

ff otherwise.

Examples 2.17.

(a) A standard algebra of naturals N is formed by standardising the algebra N0, with

total equality and order operations on N.

algebra N

import N0, B

functions eqN
nat, lessN

nat: N2 → B

(b) A standard partial algebra Rp on the reals is formed similarly by standardising

the field R1 itself a partial algebra, with partial equality and order operations on R:
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algebra Rp

import R1, B

functions eqR
real, lessR

real: R2 → B

where

eqR
real(x, y) =




↑ if x = y

ff otherwise.

and

lessR
real =





tt if x < y

ff if x > y

↑ if x = y.

The significance of these partial equality and order operations, in connection with

computability and continuity , is discussed in [TZ04].

Definition 2.18 (N-standard signature). A standard signature Σ is called N-

standard if it includes (as well as bool) the numerical sort nat, and also function

symbols for the standard operations of zero, successor, equality and order on the

naturals:

0 : → nat

S : nat → nat

eqnat : nat2 → bool

lessnat : nat2 → bool.
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Definition 2.19 (N-standard algebra). Given an N-standard signature Σ, a cor-

responding Σ-algebra A is N-standard if the carrier Anat is the set of natural numbers

N= {0,1,2,. . . }, and the standard operations (listed above) have their standard inter-

pretations on N.

Definition 2.20 (N-standardization of Σ). The N-standardization ΣN of a stan-

dard signature Σ is formed by adjoining the sort nat and the operations 0, S, eqnat,

and lessnat.

Definition 2.21 (N-standardization of A). The N-standardization AN of a stan-

dard Σ-algebra A is the ΣN -algebra formed by adjoining the carrier N together with

certain standard operations to A, thus:

algebra AN

import A

carriers N

functions 0: →N,

S: N→N,

eqnat, lessnat: N2 → B

In this thesis, we will assume, unless stated otherwise:

Assumption 2.22 (N-Standardness).

All signatures Σ and Σ-algebras A are N-standard.
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2.2 Algebras A∗ of Signature Σ∗

A standard signature Σ, and standard Σ-algebra A, can be expanded in two stages:

(1◦) N -standardize these to form ΣN and AN .

(2◦) Define, for each sort s of Σ, the carrier As
∗ to be the set of finite sequences or

array a∗ over As of “starred sort” s∗.

The resulting algebras A∗ have signature Σ∗, which extends ΣN by including, for

each sort s of Σ, the new starred sorts s∗, and certain new function symbols to read

and update arrays.

The significance of arrays for computation is that they provide finite but unbounded

memory. The reason for introducing starred sorts is the lack of effective coding of

finite sequences within abstract algebra in general (unlike the case with N).

2.3 Topological partial algebra

Definition 2.23 (Continuity). Given two topological spaces X and Y , a partial

function f : X ⇀ Y is continuous if for every open V ⊆ Y , the pre-image

f−1[V ] =df {x ∈ X|x ∈ dom(f) and f(x) ∈ V }
is open in X.

Definition 2.24 (Topological partial algebra). A topological partial algebra is

a partial Σ-algebra with topologies on the carriers such that each of the basic Σ-

functions is continuous.

Definition 2.25 (N-standard topological partial algebra). An N-standard
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topological partial algebra is a topological partial algebra which is also an N-standard

algebra, such that the carriers B and N have the discrete topologies.

Examples 2.26. (a) Discrete algebras : The standard algebras B and N of booleans

and naturals respectively are topological (total) algebras under the discrete topology.

All functions on them are trivially continuous, since the carriers are discrete.

(b) The topological partial real algebra Rp or its N-standardised version RN
p , by giving

R its usual topology, and B and N the discrete topology. Note that the partial

operations eqR and lessR are continuous.

(c) Partial interval algebras on the closed interval [0,1] have the form

algebra Ip

import Rp

carriers I

functions iI : I → R ,

F1 : Im1 → I

. . .

Fk : Imk → I

where I = [0,1] (with its usual topology), iI is the embedding of I into R, and Fi:

Imi → I are continuous partial functions. There are also N-standard versions:
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algebra IN
p

import RN
p

carriers I

functions iI : I → R ,

. . .

(d) The N-standard total real algebra RN
t is defined by

algebra RN
t

import R0, N, B

functions divR
nat : R× N→ R,

Here R0 is the ring of reals, N is the standard algebra of naturals and divR
nat is division

of reals by naturals, defined by:

divR
nat(x, n) =





x/n if n 6= 0

0 if n = 0

which is total and continuous.

Note that RN
t does not contain (total) boolean-valued functions < or = on the

reals, since they are not continuous (cf. the partial functions eqreal and lessreal of Rp).

2.4 Metric Algebra

A particular type of topological algebra is a metric partial algebra. This is a

many-sorted standard partial algebra with an associated metric:
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algebra A

import B, Rp

carriers A1, . . ., Ar

functions FA
1 : Au1 → Ask

,

...

FA
k : Auk → Ask

,

dA
1 : A2

1 → R,

...

dA
r : A2

r → R,

where B and Rp are, respectively, the algebras of boolean and reals, the carriers

A1, . . ., Ar are metric spaces with metrics dA
1 ,. . .,dA

r , respectively, F1, . . ., Fk are

Σ-function symbols other than d1, . . ., dr, and the (partial) function FA
i are all

continuous with respect to these metrics.

Note that the carriers B and N have the discrete metric, defined by

d(x, y) =





0 if x = y

1 if x 6= y

which induces the discrete topology.



Chapter 3

While computation on partial

algebras; Local uniform While

approximability

In this chapter we present the first of our two models of abstract computation on R,

While(RN
t ) approximability, which is based on the While programming language

[TZ00].

This chapter begin by defining the syntax and semantics of the imperative While

programming language. Most of this is adapted from [TZ00]; we also give some new

definitions, such as cumulative exhaustion, which are used later.

3.1 Syntax of While(Σ)

We define the syntax of the While programming language over the signature Σ.

Definition 3.1 (Atomic statements). AtSt(Σ) is the class of atomic statements

20
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Sat ,. . ., defined by:

Sat ::= skip | x := t

where x := t is a concurrent assignment, i.e., for some product type u, x is a tuple of

distinct variables of type u and t : u.

Definition 3.2 (Statements). Stmt(Σ) is the class of statements S, . . ., generated

by:

S ::= Sat | S1 : S2 | if b then S1 else S2 fi | while b do S0 od

Definition 3.3 (Procedures). Proc(Σ) is the class of procedures P,Q, . . . , which

have the form:

P ≡ func in a out b aux c begin S end

where a, b and c are lists tuples of input variables, output variables and auxiliary (or

local) variables respectively, and S is the body. Further, we stipulate the following:

(i) a, b and c each consist of distinct variables, and they are pairwise disjoint,

(ii) all variables occurring in S must be among a, b or c.

If a : u and b : v, then P is said to have type u → v, written P : u → v. Its input

type is u and output type is v. We write Proc(Σ)u→v for the class of Σ-procedure of

type u → v.

Definition 3.4 (State). For each standard Σ-algebra A, a state on A is a family

〈σs|s ∈ Sort(Σ)〉 of functions

σs : Var s → As
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approximability

Let State(A) be the set of states on A, with elements σ,... Note that State(A) is

the product of the state spaces States(A) for all s ∈ Sort(Σ).

Let σ be a state over A, x ≡ (x1, . . . , xn) : u and a = (a1,. . .,an)∈ Au(for n ≥ 1).

The variant σ{x/a} of σ is the state over A formed from σ by replacing its value at

xi by ai for i = 1, ..., n.

3.2 Semantics of While(Σ)

3.2.1 Semantics of terms

For t ∈ Terms, we define the partial function

[[t]]A : State(A) ⇀ As

where [[t]]Aσ is the value of t in A at state σ.

The definition is by structural induction on t:

[[x]]Aσ = σ(x)

[[F(t1, . . . , tm)]]Aσ '




FA([[t1]]
Aσ, . . . , [[tm]]Aσ) if [[ti]]

Aσ↓ (1 ≤ i ≤ m)

↑ otherwise

[[if b then t1 else t2 fi]]Aσ '





[[t1]]
Aσ if [[b]]A↓tt

[[t2]]
Aσ if [[b]]A↓ff

↑ if [[b]]A↑.

For m = 0, i.e., for constant sympbol c : → s, [[c]]A = cA.

For a tuple of terms t = (t1, . . . , tm), we use the notation

[[t]]Aσ =df ([[t1]]
Aσ, . . . , [[tm]]Aσ).
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3.2.2 Algebraic operational semantics

Algebraic operational semantics is a general method for defining the meaning of a

statement S used in [TZ88], in a wide class of imperative programming languages, as

a partial state transformation, i.e., a partial function

[[S]]A : State(A) ⇀ State(A).

(where “⇀” denotes a partial function.)

Assume, firstly, that (for the language under consideration) there is a class

AtSt ⊂ Stmt of atomic statements for which we have a (partial) meaning func-

tion

〈|S|〉A : State(A) ⇀ State(A),

for S ∈ AtSt , and secondly, that we have two functions

First : Stmt ⇀ AtSt

Rest A : Stmt × State(A) ⇀ Stmt ,

where, for a statement S and state σ, First(S) is an atomic statement which gives

the first step in the execution of S (in any state), and Rest A(S, σ) is a statement

which gives the rest of the execution in state σ.

Then, we define the “one-step computation of S at σ” function

CompA
1 : Stmt × State(A) ⇀ State(A)

by

CompA
1 (S, σ) ' 〈|First(S)|〉Aσ.

Finally, the definition of the computation step function

CompA : Stmt × State(A)× N ' State(A) ∪ {∗}
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follows by a simple recursion on n:

CompA(S, σ, 0) = σ

CompA(S, σ, n + 1) '





∗ if n > 0 and S is atomic

CompA(Rest A(S, σ),CompA
1 (S, σ), n)

otherwise.

Note that for n = 1, this yields

CompA(S, σ, 1) ' CompA
1 (S, σ).

The symbol ‘∗’ indicates that the computation is over.

If we put σn = CompA(S, σ, n), then the sequence of states

σ = σ0, σ1, σ2, . . . , σn, . . .

is called the computation sequence generated by S at σ. There are three possibilities:

(a) the sequence terminates in a final state σl, where CompA(S, σ, l + 1) = ∗;

(b) it is infinite (global divergence);

(c) it is undefined from some point on (local divergence).

In case (a) the computation has an output, given by the final state; in case (b) the

computation is non-terminating, and has no output; and in case (c) the computation

is also non-terminating, and has no output, because a state at one of the time cycles

is undefined, as a result of a divergent computation of a term.

Now, we are ready to derive the i/o (input/output) semantics. First we define the

length of a computation of a statement S, starting in state σ, as the partial function

CompLengthA : Stmt × State(A) ⇀ N
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by

CompLengthA(S, σ) =





least n s.t. CompA(S, σ, n + 1) = ∗
if such an n exists

↑ otherwise.

Note that CompLengthA(S, σ)↓ in case (a) above only. Then we define

[[S]]A(σ) ' CompA(S, σ,CompLengthA(S, σ)).

3.2.3 Operational semantics of statements

We now apply the above theory to the language While(Σ).

There are two atomic statements: skip and concurrent assignment. We define

〈|S|〉A for these:

〈|skip|〉Aσ = σ

〈|x := t|〉Aσ = σ{x/[[t]]Aσ}

Next we define First and Rest A by structural induction on S ∈ Stmt .

Case 1. S is atomic.

First(S) = S

Rest A(S, σ) = skip.

Case 2. S ≡ S1; S2.

First(S) = First(S1)

Rest A(S, σ) '




S2 if S1 is atomic

Rest A(S1, σ); S2 otherwise.



26
3. While computation on partial algebras; Local uniform While

approximability

Case 3. S ≡ if b then S1 else S2 fi.

First(S) = skip

Rest A(S, σ) '





S1 if [[b]]Aσ = tt

S2 if [[b]]Aσ = ff

↑ if [[b]]Aσ↑.
Case 4. while b do S0 od.

First(S) = skip

Rest A(S, σ) '





S0;S if [[b]]Aσ ↓ tt

S2 if [[b]]Aσ ↓ ff

↑ if [[b]]Aσ↑.

Lemma 3.5

(i) For S atomic [[S]]A ' 〈|S|〉A, i.e.,

[[skip]]Aσ = σ

[[x := t]]Aσ ' σ{x/[[t]]Aσ}

(ii)

[[S1; S2]]
Aσ ' [[S2]]

A([[S1]]
Aσ).

(iii)

[[if b then S1 else S2 fi]]Aσ '





[[S1]]
Aσ if [[b]]A↓tt

[[S2]]
Aσ if [[b]]A↓ff

↑ if [[b]]A↑.
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(iv)

[[while b do S0 od]]Aσ '





[[S; while b do S od]]Aσ if [[b]]A↓tt
σ if [[b]]A↓ff
↑ if [[b]]A↑.

Proof. As in [TZ00, § 4.2], adapted to partial algebras.

3.2.4 While computability

We can now give the semantics of While programs. If

P ≡ in a out b aux c begin S end

is a procedure of type u → v, then its meaning is a function

PA : Au → Av

defined as follows. Suppose a : u , b: v, and c : w, let σ be any state such that

σ[a]=a, σ[b]=δv, and σ[c]=δw (by the Instantiation Assumption 2.12).

Then

PA(a) '




σ
′
[b] if [[S]]Aσ ↓ σ

′

↑ if [[S]]Aσ ↑.

Note that PA is well defined by the Functionality Lemma [TZ00], which also

applied to partial algebra [Xie04, Lemma 3.14].

Definition 3.6 (While computable function).
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(i) A function f on A is said to be computable on A by a While procedure P if f =

PA. It is While computable on A if it is computable on A by some While procedure.

(ii) While(A) is the class of functions While computable on A.

Definition 3.7 (Halting set). The halting set of a procedure P : u → v on A is

the set:

HaltA(P ) =df {a ∈ Au|PA(a) ↓}

Definition 3.8 (While semicomputable set). A set R ⊆ Au is While semi-

computable on A if it is the halting set on A of some While procedure.

3.3 Local uniform While approximations on R

3.3.1 Exhaustions; local approximability and continuity

Definition 3.9 (Open exhaustion). Let U be an open subset of R, and (Un) a

sequence of open subset of R, such that
∞⋃

n=1

Un = U . Then (Un) is called an open

exhaustion of U .

Definition 3.10 (Effective exhaustion). The open exhaustion (Un) is effective if

for all n, Un = (an, bn), where an,bn ∈ Q, and the map n 7→ p an q, n 7→ p bn q (where

p x q denotes the Gödel number of x) are recursive.

Definition 3.11 (Cumulative exhaustion). Let (Un) be an open exhaustion of U ,

and let Wn=
n⋃

i=1

Ui. Then (Wn) is called the cumulative exhaustion of U w.r.t (Un).
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Definition 3.12 (Uniform local continuity) . Given a partial function f : R⇀R,

and U=dom(f), we say f is uniformly locally continuous w.r.t an exhaustion (Un)

of U iff ∀ n, ∀ε > 0, ∃ δ > 0, ∀x, y ∈ Un

|x− y| < δ ⇒ |f(x)− f(y)| < ε

Definition 3.13 (Effective local uniform continuity)

Given a partial function f : R⇀R, and U=dom(f), we say f is effectively uniformly

locally continuous w.r.t an effective exhaustion (Un) of U iff there is a recursive

function M : N2 → N such that:

for all n,k and all x, y ∈ Un

|x− y| < 2−M(n,k) ⇒ |f(x)− f(y)| < 2−k

Definition 3.14 (Effective local uniformly approximability)

Given a partial function f : R⇀R and a sequence of functions gm: R⇀R (m =

0, 1, 2, 3, ...), dom(gm)⊇ U=dom(f) and an effective exhaustion (Un) of U , we say

that gn effectively locally uniformly approximates f w.r.t (Un) iff

there is a recursive function M : N2 → N such that

for all m,n, k and ∀ x ∈ Wn=
n⋃

i=1

Ui,

m > M(n, k) ⇒ |gm(x)− f(x)| < 2−k

Lemma 3.15. If gn approximates f effectively locally uniformly on U w.r.t an

effective exhaustion (Un) of U , and each gn is continuous, then so is f .
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Proof. This is a standard result of real analysis [Rud76].

3.3.2 Effectively local uniform While∗ approximability

Definition 3.16 (Effective local uniform While approximability).

(a) Let R be a total or partial metric algebra on R (e.g RN
t or RN

p ) with signature Σ.

Given a partial function f : R⇀R, U=dom(f) and an effective exhaustion (Un) of U ,

we say f is effectively locally uniformly While(R) approximable w.r.t (Un) if there

is a While(ΣN) procedure P : nat ×real → real such that (i) ∀ n, Pn is total on U ,

and (ii) the sequence Pn effectively locally uniformly approximates f w.r.t (Un).

(b)Effective local uniform While∗ approximability is defined analogously.

Lemma 3.17. If f : R→ R is effectively locally uniformly While∗ approximable on

its domain w.r.t an effective exhaustion (Un) of U , then f is continuous on U .

Proof. By Lemma 3.16 and the Continuity Theorem for While computability

[TZ00].



Chapter 4

Polynomial and multipolynomial

approximability; GL-computability

In this Chapter, we give some important definitions, such as Weierstrass approxima-

bility, GL-computability, effective local polynomial approximability and effective local

multipolynomial approximability. We give the theorem that connects these models

and While (∗) approximability presented in Chapter 3, and we also illustrate polyno-

mial and multipolynomial approximability using Maple 9.5.

4.1 Weierstrass, polynomial and multipolynomial

approximability

In order to speak of effective Weierstrass approximability, i, e. effective approx-

imability by a sequence of terms, we need some terminology in connection with the

effective representation of term evaluation.

31



32
4. Polynomial and multipolynomial approximability;

GL-computability

Let Term x(Σ) be the class of all Σ-terms with variables among the variable list

x ≡ x1,. . ., xn, and let Term x,s(Σ) be the class of such terms of sort s. The term

evaluation representing function on A relative to x is the function

te A
x,s : pTerm x,s(Σ)q × Au → As

(where pSq denotes the set of Gödel numbers of the set S) defined by

teA
x,s : (ptq, a1, . . . , an) = [[t]]A(σ)

where ptq is the Gödel numbers of t, and σ is any state on A such that σ(xi) = ai (i =

1, . . . , n).

Definition 4.1 (TEP). The algebra A is said to have the term evaluation property

(TEP) if for all x and and s, the term evaluation respresenting function teA
x,s is While

computable on A.

Many well-known varieties (i.e., equationally axiomatizable classes of algebras)

have the TEP; for example, semigroups, groups and rings, as well as RN
t .

Definition 4.2 (Effective local Weierstrass approximability)

Given a partial function f : R⇀R, U=dom(f) and an effective exhaustion (Un) of U ,

we say that f is effectively locally Σ-Weierstrass approximable w.r.t (Un) if,

for some x : u, there is a total computable function

h : N→ pTermx(Σ)q,

such that, putting gn(a) =df tex(h(n), a), the sequence gn approximates f effectively

locally uniformly w.r.t (Un).
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Lemma 4.3. Given a partial function f : R⇀R, U=dom(f)) and an effective ex-

haustion (Un) of U , f is said to be effectively locally Σ-Weierstrass approximable w.r.t

(Un) iff it is effectively locally Σ∗-Weierstrass approximable on U w.r.t (Un).

Proof: This follows from the Σ∗/ Σ Conservativity Theorem [TZ00,§ 3.15], which

states that every Σ∗-term of a sort in Σ, all of whose variables are also of sorts in Σ

only, can be effectively transformed to a semantically equivalent Σ-term. ¤

We shall therefore speak of “effective local Weierstrass approximability” to mean

effective local Σ or Σ∗-Weierstrass approximability.

Let Polyx be the set of polynomial expressions in x with rational coefficients. Def-

inition 4.4 (Q-polynomial definability on R). A function f : R → R is Q-

polynomially definable on R if it is explicitly definable by a term in Polyx.

Lemma 4.5 (Equivalence of explicit and Q-polynomial definability on R).

A Σ(RN
t )-term of sort real can be effectively transformed to a semantically equivalent

Q-polynomial.

Proof. Briefly: we eliminate all occurrences of the “if” operator in the term, using

totality of RN
t and connectedness of R [TZ00, §9]. The result can easily be expressed

as a Q-polynomial.

Definition 4.6 (Effective local Q-polynomial approximability). Let

val x : pPolyxq× R→ R

be the standard evaluation of Polyx in R.



34
4. Polynomial and multipolynomial approximability;

GL-computability

Given a partial function f : R⇀R, U=dom(f), and an effective exhaustion (Un)

of U , we say f is effectively locally polynomially approximable on U w.r.t (Un) if there

is a total computable function

h : N→ pPolyxq

such that, putting gn(x) =df val x(h(n), x), the sequence gn approximates f effectively

locally uniformly w.r.t (Un).

Lemma 4.7 (Equivalence of Weierstrass and Q-polynomial approximability

on R). Effective local Wererstrass approximbility over RN
t corresponds to effective

local Q-polynomial approximability on R.

Proof : By Lemma 4.5. ¤

Definition 4.8 (Q-multipolynomial). Given a finite sequence of Q-polynomials

(p1, p2,. . . , pn) and a sequence of disjoint intervals (U1, . . . , Un), we can define a Q-

multipolynomial q(x) with domain
n⋃

i=1

Ui as follows:

q(x) =





p1(x) if x ∈ U1

p2(x) if x ∈ U2

...

pn(x) if x ∈ Un

We denote q = [p1 ¹ U1, . . . , pn ¹ Un].
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Definition 4.9 (Partition). Let (Un) be the effective exhaustion of U . Let (Wn)

be the corresponding cumulative exhaustion of U . Wn=
n⋃

i=1

Ui. Note that the Ui are

not in general disjoint. However Wn can be represented uniquely as the union of a

disjoint sequence of open intervals:

Wn =
ln⋃

i=1

V n
i , (ln ≤ n), (∗)

where each V n
i is the union of some Uj (1≤ j ≤ n)

Then, (*) is called the partition of Wn w.r.t (Un).

Example 4.10 (Partition). We give a example of partition of a cumulative exhaus-

tion (Wn) of U w.r.t (Un):
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The partition of Wn w.r.t (Un) is as follows:

Definition 4.11 (Effective local Q-multipolynomial approximability). Given

a partial function f : R⇀R, U=dom(f) and an effectively exhaustion (Un) of U .

Let (Wn) be the cumulative exhaustion of U determined by (Un), with partition

Wn=
ln⋃

i=0

V n
i , ln ≤ n on Wn. Suppose the computable sequence of Q-multipolynomials

(qn) converges effectively locally uniformly to f w.r.t (Wn), then, we say f is effectively

locally Q-multipolynomially approximable w.r.t (Un).

Lemma 4.12 (Equivalence of Weierstrass and multipolynomial approxima-

bility). Given a partial function f : R⇀R, U=dom(f) and an effectively exhaustion

(Un) of U . Then, effective local Weierstrass approximability of f over RN
t w.r.t an

effective exhaustion (Un) is equivalent to effective local Q-multipolynomial approx-

imability of f w.r.t (Un).
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Proof. Let (Wn) be the cumulative exhaustion of U determined by (Un), with par-

tition Wn=
ln⋃

i=1

V n
i , ln ≤ n. Using the connectedness of V n

i , and because Wn ⊆ Wn+1

⊆U , effective local Weierstrass approximability over RN
t w.r.t (Wn) is equivalent to

effective local Q-multipolynomial approximability w.r.t (Wn) (using Lemma 4.7). We

can conclude: effective local Weierstrass approximability over RN
t w.r.t (Un) of U is

equivalent to effective local Q-multipolynomial approximability w.r.t (Un) . ¤

Definition 4.13 (BCP).

A total Σ-algebra A has the boolean computability property (BCP) if for any closed

Σ-boolean term b, its value bA (=tt or ff, by totality) can be effectively computed by

a total recursive function

f : pCT bool(Σ)q → B

where f(pbq) = bA (Note that CT bool(Σ) is the set of closed boolean Σ- terms).

Example 4.14. RN
t has both the TEP and the BCP.

Lemma 4.15. Suppose A has the TEP. Given variables x : u, let

h : N → pTermx,s(Σ)q

be a total recursive function. Then there is a While(Σ) procedure P : nat×u → s

such that for all x ∈ Au and n ∈ N,

PA(n, x) = teA
x,s(h(n), x)

where A=RN
t .
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Lemma 4.16. Let P : nat× R → R be a While (∗) procedure over R which defines

a function

PA : N × R ⇀ R

where A=RN
t . Given an effective exhaustion (Un) of U . U ⊇ dom(PA). Then there

is a total recursive function h: N → pTermx(Σ)q such that for all a ∈ U and n ∈ N

tex(h(n), a) = PA(n, a).

Proof. Let Wn be the cumulative exhaustion of U determined by (Un). The proof use

(i) connectedness of the components of Wn and the totality of RN
t to show that any

boolean test gives a constant value (true or false) independent of the state, and (ii)

the BCP to effectively decide such a test by evaluating a closed instance of the boolean

term b(x), formed by replacing the real variable x by a rational in the relevant interval

V , since by connectedness of V and continuity of b(x), its value must be constant over

V .

Lemma 4.17. Given a partial function f : R⇀R, U=dom(f) and an open exhaustion

(Un) of U . Suppose f is effectively locally uniformly w.r.t (Un). Then the following

are equivalent:

(i) f is effectively locally uniformly While(∗)(RN
t ) approximable w.r.t. (Un);

(ii) f is effectively locally Q-multipolynomially approximable w.r.t. (Un);

Proof. Consider the assertion

(*) f is effectively locally Weierstrass approximable w.r.t (Un)

From Lemma 4.15 and 4.16, we know (i) ⇔ (*), From Lemma 4.12, we know (ii) ⇔
(*). The result follows. ¤
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4.2 GL-computability and Equivalence Theorem

4.2.1 GL-computability

Definition 4.18 (Computable sequence of reals). A sequence of real numbers

(xn) is computable (as a sequence) if there is a computable double sequence of rationals

(rnk) such that, for all k and n:

|rnk − xn| ≤ 2−k

Definition 4.19 (Sequential computability). Given a partial function f : R⇀R,

U=dom(f), we say f is sequentially computable on U iff:

f maps every computable sequence of reals xn ∈ U into a computable sequence (f(xn))

of reals.

Definition 4.20 (GL-computability).

Given a partial function f : R⇀R, U = dom(f) and an effective exhaustion (Un) of

U , we say f is GL-computable w.r.t. (Un) iff:

(i) f is sequentially computable on U , and

(ii) f is effectively locally uniformly continuous w.r.t. (Un).

Note that we use the definition of GL-computability in [PER89].

Remark 4.21. Suppose (Un) is an effective open exhaustion of U = dom(f), and f

is not effectively locally uniformly continuous w.r.t (Un). Then we can often define a
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refined exhaustion (U
′
n) of U . such that:

(i) f is effectively locally uniformly continuous w.r.t (U
′
n);

(ii) ∀ n ∃ m, U ′
n ⊂ Um. (where U ′

n is the topological closure of U
′
n)

Suppose Un = (an, bn), Then, define:

Un,k = (an +
1

k
, bn − 1

k
),

now consider the double array:

U0
0 , U1

0 , U2
0 , . . .

U0
1 , U1

1 , U2
1 , . . .

U0
2 , U1

2 , U2
2 , . . .

. . . , . . . , . . . , . . .

Then form a list, e.g by enumerating along the diagonals of the above array,

U
′
0 = U0

0 ,

U
′
1 = U0

1 ,

U
′
2 = U1

0 ,

U
′
3 = U0

2 ,

U
′
4 = U1

1 ,

U
′
5 = U2

0 ,

. . .

Then (U
′
n) is also an exhaustion of U , which is a refinement of (Un). Furthermore f

is effectively locally uniformly continuous w.r.t (U
′
n).
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Example 4.22. The function f(x)=tan x is continuous on U but not effectively

locally uniformly continuous w.r.t (Un) where,

U = R\{(k +
1

2
)π | k = 0, ±1, ±2, . . .}

and

Un = ((n− 1

2
)π, (n +

1

2
)π).

Now we can give the refined exhaustion Un,k of U , where:

Un,k = ((n− 1

2
)π +

1

k
, (n +

1

2
)π − 1

k
).

Define (U
′
n) from (Un,k) as in Remark 4.21. Then, tan x is effectively locally uniformly

continuous w.r.t (U
′
n).

Lemma 4.23. Given a partial function f : R⇀R, U=dom(f) and an exhaustion

(Un) of U . Suppose f is effectively locally uniformly continuous w.r.t (Un). Then the

following are equivalent:

(i) f is effectively locally multipolynomially approximable w.r.t (Un),

(ii) f is GL-computable w.r.t (Un),

(iii) f is effectively locally polynomially approximable w.r.t (Un).

Proof:

Firstly we prove (ii) ⇒ (i).

Let Wn be the cumulative exhaustion of U determined by (Un), with the partition:

Wn =
ln⋃

i=0

V n
i , for some ln ≤ n.

Put V n
i =(ai, bi). Then for i= 1, . . ., ln, ai−1 < bi−1 < ai < bi. let
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Jn = Wn =
ln⋃

i=0

[ai, bi].

We modify the proof in [PER89] that for a function f with [a, b]

GL-computability ⇒ polynomial approximability.

For each n, define a multi-polynomials qn on Jn=Wn such that, for all x ∈ Jn:

|f(x)− qn(x)| ≤ 2−n

Note that for i = 1, . . . , ln,

V n
i ⊆ Wn

and construct a polynomial pn
i , for all x ∈ V n

i s.t

|f(x)− pn
i (x)| ≤ 2−n

Define qn = [pn
1 , . . . , p

n
ln

] on Wn. Note that by condition (ii) of Remark 4.21, we can

assume that for some m > n,

Wn ⊆ Wm ⊆ U. (∗)

Then f is effectively locally multi-polynomially approximable on each Wk by (qn),

and so, f is effectively locally multipolynomially approximable w.r.t (Un).

Secondly we prove (i) ⇒ (ii).

Clearly, the multipolynomials are a GL-computable sequence w.r.t (Un) . Applying

Theorem 4 of ([PER89], Chapter 0), which proves closure of GL-computable under

effective uniform convergence, we can show f is GL-computable on U w.r.t (Un).
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Now we prove the equivalence of (iii) and (i).

The implication (iii) ⇒ (i) is trivial.

Next we prove (i) ⇒ (iii), so assume (i),since (i)⇒(ii) (proved above), we know

f is GL-computable w.r.t (Un).

Let Wn be the cumulative exhaustion of U determined by (Un),

Wn =
ln⋃

i=0

V n
i , for some ln ≤ n.

Jn = Wn =
ln⋃

i=0

[ai, bi]

Now, we let:

Kn = CH(Jn) = [a0, bln ]

where CH(Jn) is the convex hull of Jn.

Then we can construct a new function fn on Kn as follows, let

fn(x) =





f(x) if x ∈ Jn

(f(ai+1)−f(bi))(x−bi)
ai+1−bi

+ f(bi) if x ∈ [bi, ai+1], (i = 0 . . . ln − 1).

This means that fn(x) is the liner interpolation of the points of (bi, ai+1) on

[bi, ai+1], (i = 0 . . . ln − 1). Since fn is GL-computable on Kn= [ a0 , bln ], by the

Effective Weierstrass Theorem of ([PER89], Chapter0) we know fn is effectively

locally polynomially approximable on Kn = [ a0,bln ] by a sequence of polynomials

(pn).

Because

Wn ⊆ Jn ⊆ Kn,
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we conclude that f is effectively locally polynomially approximable on each Wk by

(pn). By (*) above, for some m > n, Wn ⊆ Wm ⊆ U . We conclude that f is

effectively locally polynomially approximable by (pn) w.r.t (Un).

This complete the proof. ¤

4.2.2 The Equivalence Theorem for partial functions; Exam-

ples.

Now we give the equivalence Theorem of partial functions for the total abstract

model While∗(RN
t ), the concrete model GL(R), and the polynomial and multipoly-

nomial approximation models.

Theorem 1. Given a partial function f : R⇀R, U=dom(f) and an exhaustion (Un)

of U . Suppose f is effectively locally uniformly continuous w.r.t (Un). Then the

following are equivalent:

(i) f is effectively locally uniformly While(∗)(RN
t ) approximable w.r.t. (Un);

(ii) f is effectively locally multipolynomially approximable w.r.t. (Un);

(iii) f is effectively locally polynomially approximable w.r.t. (Un);

(iv) f is GL-computable w.r.t.(Un).

Proof:

By Lemma 4.17, we have the equivalence of the first two assertions.

By Lemma 4.23, we have the equivalence of (ii),(iii) and (iv).

Examples 4.24. (1) Consider to the function f(x) = 1
x
, U=(-1,0) ∪ (0,1).

U1 = V1 = (−1,−1/n),
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U2 = V2 = (1/n, 1)

Wn = (−1,−1/n)
⋃

(1/n, 1),

In = [−1,−1/n]
⋃

[1/n, 1]

Kn = [−1, 1]

In Figure 1, we show the multipolynomial qn which approximate f for n=5.

In Figure 2, we show the polynomial pn which approximate f for n=5.

Figure 1: Multipolynomial approximation for 1
x

(n=5)
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Figure 2: polynomial approximation for 1
x

(n=5)

(2) f=tan(x ∗ π
2
),

U = R\{2k + 1 | k = 0, ±1, ±2, . . .}

The multipolynomial qn which approximate f for n=3, ( on W3) is shown in Figure

3.
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Figure 3: Multipolynomial approximation for tan(x ∗ π
2
) (n=3)

Remark 4.25.

(1) It can be seen that multipolynomials give a much better approximation than

polynomials.

(2) We used the polynomial approximation sequences (pn) defined in [PER89]:

pn(x) =
1

Cn

∫ M
2

−M
2

Pn(t− x)f(t)dt,
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where

Cn =

∫ M

−M

Pn(x)dx

from which we also define the multipolynomial sequences (qn). (Note that the interval

[−M
2
, M

2
] in the definition of pn must be replaced by the appropriate closed intervals

in these examples.)

It would be interesting to investigate whether other polynomial sequences com-

monly used in approximation theory would give better results.



Chapter 5

While programming with

countable choice

The programming language WhileCC (Σ) is an extension of While(Σ) with an

extra “choose” rule of term formation. It will form the basic of the second of our two

abstract computation model on R (WhileCC ∗(Rp) approximability). Here, we give

the complete definition of its syntax and semantics from [TZ05].

5.1 Syntax of WhileCC (Σ)

There are four syntactic classes: variables,terms, statements, and procedures

(a) Var(Σ) is the class of Σ-program variables, and for each Σ-sort s, Var s is the

class of program variables of sort s: as, bs, . . . , xs, ys, . . .,

(b) PTerm(Σ) is the class of Σ-program terms t, . . ., and for each Σ-sort s, PTerms

is the class of program of sort s. These are generated by the rules

t ::= xs | F (t1, . . . , tn) | if b then t1 else t2 fi | choose znat : b

where s, s1, . . . , sn are Σ-sorts, F : s1 × . . . × sn → s is a Σ-function symbol, ti ∈

49
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PTerms for i = 1, . . . , n(n ≥ 0), and b is a boolean term.

The “choose” term has sort nat. Think of “choose” as a generalization of the

constructive least number operator least z : b which has the value k in case b[z/k] is

true and b[z/i] is defined and false for all i < k, and is undefined in case no such k

exists.

Here “choose z : b ” selects some value k such that b[z/k] is true, if any such k

exists (and is undefined otherwise). In the abstract semantics [TZ05], the meaning is

the set of all possible k’s (hence “countable choice”). Any concrete model will select

a particular k, according to the implementation.

Note that the program terms extend the algebraic terms (i, e. the terms over the

signature Σ) by including in their construction the “choose” operator, which is not

an operation of Σ. An alternative formulation would have “choose” not as part of

the term consruction, but rather as a new atomic program statement:“choose z : b”.

We write t : s to indicate that t ∈ PTerms, and for u = s1 × . . .× sm, we write

t : u to indicate that t is a u-tuple of program terms, i.e., a tuple of program terms

of sorts s1, . . . , sm. We also use the notation b for boolean terms.

Definition 5.1 (Atomic statements) AtSt(Σ) is the class of atomic statements

Sat ,. . . ,defined by:

Sat ::= skip | div | x := t

where x:=t is a concurrent assignment and div stands for “divergence”.

Stmt(Σ) and Proc(Σ) of statements and procedures respective are defined as

before (Def 3.2, 3.3), relative to the new definition of program terms and atomic

statements (Def 5.1).
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5.2 Semantics of WhileCC (Σ)

5.2.1 Notation

(a) Pω(X) is the set of all countable subsets of a set X, including the empty set.

(b) P+
ω (X) is the set of all countable non-empty subsets of X.

(c) We write Y ↑ for Y ∪{↑},where ‘↑’ denotes divergence.

(d) We write f : X ⇒ Y for f : X →Pω(Y )

(e) We write f : X ⇒+ Y for f :X → P+
ω (X)

We adapt and extend the algebraic operational semantics given in Chapter 3.

5.2.2 Details

(a) Semantics of program terms. The meaning of t ∈ PTerms is a function

[[t]]A : State(A) ⇒+ A↑
s.

The definition is by structural induction on t:

[[x]]Aσ = {σ(x)}

[[c]]Aσ = {cA}

[[F(t1, . . . , tm)]]Aσ = {y|∃x1 ∈ A ∩ [[t1]]σ . . . ∃xm ∈ A ∩ [[tm]]σ : FA(x1, . . . , xm) ↓ y}

∪{y|∃x1 ∈ A ∩ [[t1]]σ . . . ∃xm ∈ A ∩ [[tm]]σ : FA(x1, . . . , xm) ↑}

∪{↑∈ [[ti]]
Aσ for some i, 1 ≤ i ≤ m}

[[if b then t1 else t2 fi]]Aσ = {y|(tt ∈ [[b]]Aσ ∧ y ∈ [[t1]]
Aσ) ∨ (ff ∈ [[b]]Aσ ∧ y ∈ [[t2]]

Aσ)

∪{↑ | ↑∈ [[b]]Aσ}

[[choose z : b]]A = { n ∈ N | tt ∈ [[b]]Aσ{z/n}}

∪{↑ |∀n ∈ N(ff ∈ [[b]]Aσ{z/n}∨ ↑∈ [[b]]Aσ{z/n})}
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Notice that [[choose z : b]]A could include both natural numbers and “↑” , since for

any n, [[b]]Aσ{z/n} could include both tt and ff.

(b) Semantics of atomic statements The meaning of Sat ∈ AtSt is a function

〈|Sat|〉 : State(A) ⇒+ State(A)↑

defined by:

〈|skip|〉Aσ = {σ}

〈|div|〉Aσ = {↑}

〈|x := t|〉Aσ = {σ{x/a}|a ∈ A ∩ [[t]]Aσ} ∪ {↑ | ↑∈ [[t]]Aσ}

(c) The First and Rest operations. The operation

First : Stmt → AtSt

is defined as in Chapter 3 (§ 3.2.2), namely:

First(S) =





S if S is atomic

First(S1) if S ≡ S1; S2

skip otherwise.

The operation:

Rest A : Stmt × State(A) ⇒+ Stmt

is defined as follows:

Case 1. S is atomic.

Rest A(S, σ) = {skip}.
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Case 2. S ≡ S1; S2.

Case 2a. S1 is atomic. Then Rest A(S, σ) = {S2}
Case 2b. S1 is not atomic. Then Rest A(S, σ) =

{S ′
; S2|S ′ ∈ Rest A(S1, σ)} ∪ {div|div ∈ Rest A(S1, σ)}

Case 3. S ≡ if b then S1 else S2 fi. Then Rest A(S, σ) contains all of





S1 if tt ∈ [[b]]Aσ

S2 if ff ∈ [[b]]Aσ

div if ↑ ∈ [[b]]Aσ.

Case 4. S ≡ while b do S0 od. Then Rest A(S, σ) contains all of





S0; S if tt ∈ [[b]]Aσ

skip if ff ∈ [[b]]Aσ

div if ↑ ∈ [[b]]Aσ.

Note in Case 3 and 4, more than one condition may hold.

(d) Computation step.

From First we can define the computation step function

CompStepA : Stmt × State(A) ⇒+ State(A)↑

which is like the one-step computation function CompA
1 of § 3.2.2 except for being

multi-valued:

CompStepA(S, σ) = 〈|First(S)|〉Aσ.

(e) The computation tree.
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The computation sequence, which is basic to the semantics of While computa-

tions Chapter 3 (§ 3.2.2), is replaced here by a computation tree

CompTreeA(S, σ)

of a statement S at a state σ. This is an ω-branching tree, branching according to

all possible outcomes (i,e, “output states”) of the one-step computation function

CompStepA. Each node of this tree is labelled by either a state or ‘↑’
Any actual (“concrete”) computation of statement S at state σ corresponds to one

of the paths through this tree. The possibilities for any such path are:

(i) it is finite, ending in a leaf containing a state: the final state of the computation;

(ii) it is finite, ending in a leaf containing ‘↑’ (local divergence);

(iii) it is infinite (global divergence).

Correspondingly, the function CompA (§ 3.2.2) is replaced by a computation tree

stage function :

CompTreeStageA : Stmt × State(A)× N ⇒+ (State(A)↑)<ω

defined by a simple recursion on n:

CompTreeStageA(S, σ, 0) = {σ}

CompTreeStageA(S, σ, n + 1) =





{σ′} if n > 0 and S is atomic

CompTreeStageA(S
′
, σ

′
, n)↑

where S
′ ∈ Rest A(S,σ) and σ

′ ∈ CompStepA(S, σ)

Then CompTreeA(S, σ) is defined as the “limit” over n of

CompTreeStageA(S, σ, n).
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(f) Semantics of statements

From the semantic computation tree we can easily define the i/o semantics of state-

ments

[[S]]A : State(A) ⇒+ State(A)↑.

Namely,

[[S]]Aσ is the set of states and/or ‘↑’ at all leaves in CompTreeA(S, σ), together

with ‘↑’ if CompTreeA(S, σ) has an infinite path.

Note that, by its definition, [[S]]Aσ cannot be empty. It will contain (at least) ‘↑’
if there is at least one computation sequence leading to divergence, i.e, a path of the

computation tree which is either infinite or ends in a ‘↑’ leaf.

(g) Semantics of procedures

Finally if

P ≡ in a out b aux c begin S end

is a procedure of type u → v, then its meaning in A is a function

PA : Au → Av↑

defined as follows. For x ∈ Au,

PA(x) = {σ′(b)|σ′ ∈ [[S]]Aσ} ∪ {↑ | ↑∈ [[S]]Aσ}

where σ is any state on A such that σ[a]=x.

Definition 5.4. (a) A many-valued function f : Au ⇒+ A↑
s is WhileCC computable

on A if there is a WhileCC procedure P such that f = PA.

(b) A partial function f : Au −→ As is WhileCC computable on A if there is a

deterministic WhileCC procedure P : u → s such that for all x ∈ Au,
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(i) f(x) ↓ y =⇒ PA(x)={y} , and

(ii)f(x) ↑ =⇒ PA(x) ={↑}

Remark 5.5 The semantics for WhileCC procedures is given by countably many-

valued functions. If we were to start with algebras with many-valued basic operations,

as in [Bra96, Bra99], the algebraic operational semantics could handle this just as

easily, by adapting the clause for the the basic Σ-function f in part (a) of the semantic

definition ( § 5.2.2).

5.3 The language WhileCC ∗(Σ)

The language While∗(Σ) is formed by augmenting While with auxiliary array vari-

ables. The importance of While∗ computability lies in the fact that it forms the basis

for a generalised Church-Turing Thesis for computability on abstract many-sorted al-

gebras [TZ00, §8].

Here, similarly, the language WhileCC ∗(Σ), which can be viewed as

WhileCC (Σ) augmented by auxiliary array variables (or as While∗(Σ) augmented

by the ′choose′ construct).

More precisely, a WhileCC ∗(Σ) procedure is a WhileCC (Σ∗) procedure in

which the input and output variables have sorts in Σ only. (However the auxiliary

variables may have starred sorts.)

Thus it defines a countably-many-valued function on any N-standard Σ-algebra.

Theorem 5.6 For any total Σ-algebra A and f : Au → As,

f is WhileCC ∗ computable over A ⇐⇒ f is partial recursive over A.
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This Theorem have been proved in ([TZ04],§4.4).

Corollary 5.7 For any f : Nm → N

f is WhileCC ∗ computable over N ⇐⇒ f is partial recursive over N.

5.4 Approximable WhileCC ∗ computability

The basic notion of computability that we will be using in working with metric alge-

bras is not so much computability, as rather approximable computability on metric

algebras, as discussed in ([TZ99],§ 9). Here, we give the definition to the nondeter-

ministic case with countable choice.

Let A be a metric Σ-algebra, u a Σ-product type and s a Σ-type. Let

P : nat× u → s

be a WhileCC ∗(Σ). Put

PA
n =df PA(n, .) : Au ⇒+ A↑

s

Note that for all x ∈ Au, PA
n (x) 6= φ

Definition 5.8 (WhileCC ∗ approximability to a single-valued function).

Let f : Au ⇀ As be a single-valued partial function on A.

(a) f is WhileCC ∗ approximable by P on A if for all n ∈ N and all x ∈ Au:

x ∈ dom(f) ⇒ ↑/∈ PA
n (x) ⊆ B(f(x), 2−n) (1)

(b) f is strictly WhileCC ∗ approximable by P on A if in addtion to (1)

x /∈ dom(f) ⇒ PA
n (x) = {↑}.
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Definition 5.9 (WhileCC ∗ approximability to a many-valued function).

Let f : Au ⇒ As be a countably-many-valued function on A.

(a) f is WhileCC ∗ approximable by P on A if for all n ∈ N and all x ∈ Au

f(x) 6= φ ⇒ ↑/∈ PA
n (x) ⊆

⋃

y∈f(x)

B(y, 2−n)

and

f(x) ⊆
⋃

y∈P A
n (x)

B(y, 2−n)

(b) f is strictly WhileCC ∗ approximable by P on A if in addition,

f(x) = φ ⇒ PA
n (x) = {↑}.

Some examples are given in [TZ04, §5], which interested reader may consult.



Chapter 6

Tracking computability and

equivalence theorem

In this chapter, we present our final (concrete) model based on tracking functions,

and give the theorem which connects all the models.

6.1 Tracking computability for partial functions

Let A be an N -standard metric algebra. Let X be a family 〈Xs|s ∈ Sort(Σ)〉 of

subsets Xs ⊆ As. Each Xs can be viewed as a metric subspace of the metric space

As.

Definition 6.1 (enumeration). An enumeration of X is a family

α = 〈αs : Ωs ³ Xs|s ∈ sort(Σ)〉

of surjective maps αs : Ωs ³ Xs for some family Ω = 〈Ωs|s ∈ Sort(Σ)〉 of sets

Ωs ⊆ N. The family X is said to be enumerated by α. We say that α : Ω ³ X

is an enumeration of X, and call the pair (X, α) an enumerated Sort(Σ)-family of

subspaces of A.
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We also write Ωs = Ωα,s to make explicit the fact that Ωs = dom(αs), and we use

the notation Ωu
α = Ωα,s1×. . .×Ωα,sm and Xu = Xs1×. . .×Xsm where u = s1×. . .×sm.

Assume now that A is an N -standard metric Σ-algebra and (X, α) is an enumer-

ated Sort(Σ)-family of subspaces of A, with enumeration α : Ω ³ X.

Definition 6.2 (Tracking functions). Let f : Au ⇀ As and ϕ : Nm −→ N. Then

ϕ is α-tracking function for f if the following diagram commutes:

Au

αu

f

ϕ

As

αs

Nm N-

-

6 6

in the sense for all k = (k1, . . . , km) ∈ Nm and writing αu(k) = (αs1(k1), . . . , αsm(km)):

ϕ(k) ↓ ⇒ ϕ(k) ∈ Ωα,s ∧ f(αu(k) ↓ αs(ϕ(k))

ϕ(k) ↑ ⇒ f(αu(k)) ↑ .

Definition 6.3 (α-computability).

The function f : Au −→ As is α-computable on U=dom(f), if it has a recursive

α-tracking function on U .

Definition 6.4 (Enumerated Σ-subalgebra). Let X be a Σ-subalgebra of A. An

enumeration α of X, together with a family of tracking functions for its operations,

is called an enumerated Σ-subalgebra of A.

Definition 6.5 (Σ-effective enumeration). The enumeration α is said to be Σ-
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effective if all the basic Σ-functions on A (including the metrics) are α-computable.

Definition 6.6 (Computational closure). Let X be a subspaces of A, enumerated

by α. We define a family

Cα(X) = 〈Cα(X)s | s ∈ Sort(Σ)〉
of sets Cα(X)s of α-computable elements of As, i.e., limits in As of effectively conver-

gent Cauchy sequences [TZ04] of elements of Xs, so that

Xs ⊆ Cα(X)s ⊆ As,

with corresponding enumerations

ᾱsΩᾱ,s :³ Cα(X)s,

(where ³ denotes surjection). Writing ᾱ = 〈ᾱs | s ∈ Sort(Σ)〉, we call the enumer-

ated subspace (Cα(X), ᾱ) the computable closure of (X,α) in A.

6.2 Application to computability on R

Let

α0 : N → Q,

be a (fixed, standard) enumeration of the rationals. From this we construct the set

C0 = Cα0(Q),

of recursive reals, with enumerations

ᾱ0 : Ω0 ³ C0.

Note that α0 is While computable over RN
p . (Cα0(Q), ᾱ0) is the computable closure

of (Q, ᾱ0) in R. Note that ᾱ0 is Σ(RN
p )-effective.
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6.3 Equivalence Theorem including ᾱ0-computable

Lemma 6.7 Given a partial function f : R⇀R, U=dom(f) and an effective exhaus-

tion (Un) of U . Then the following are equivalent:

(i) f is ᾱ0-computable

(ii) f is effectively uniformly WhileCC∗(RN
p ) approximable.

Proof. This follows from the Completeness Theorem of [TZ04]. ¤

Lemma 6.8. Given a partial function f : R⇀R , U=dom(f) and an effective ex-

haustion (Un) of U . Suppose f is effectively locally uniformly continuous w.r.t (Un).

Then the following are equivalent:

(i) f is GL-computable w.r.t (Un),

(ii) f is ᾱ0-computable.

Proof. Firstly we need to prove (ii) ⇒ (i). So suppose f is ᾱ0-computable. We must

show f is GL-computable w.r.t (Un).

According to the definition of GL-computability, we must prove : (1) f is sequen-

tially computable, and (2) f is effectively locally uniformly continuous w.r.t (Un).

We first prove (1) f is sequentially computable. So take any computable sequence

(xn) on U . We must show that the sequence (f(xn)) is also computable.

Since (xn) is a computable sequence on U , there is by a recursive function

ψ: N → N, such that:

xn = ᾱ0 ◦ ψ(n)

Let S1=ᾱ0 ◦ ψ. Then for all n,

xn = S1(n).



6. Tracking computability and equivalence theorem 63

Since f is ᾱ0-computable, we know there is a ᾱ0-tracking function ϕ : N ⇀ N for f .

Put yn=f(xn). Let S2=ᾱ0 ◦ ϕ ◦ ψ. Then for all n,

yn = S2(n).

So (yn) is also a computable sequence.

R

ᾱ0

f

ϕ

S2S1

ψ

R

ᾱ0

NN N-

-

-³³³³³³³³³³³³³³³³³³1

¶
¶

¶
¶

¶¶7 6 6

We have proved (1): f is sequentially computable on U .

In addition by assumption, f is effectively locally uniformly continuous w.r.t (Un).

Hence f is GL-computable w.r.t (Un).

Secondly, we will prove (i) ⇒ (ii). So, suppose f is GL-computable w.r.t an

effective exhaustion (Un) of U . We must show that f is ᾱ0-computable; i.e. we must

construct an ᾱ0-tracking function ϕ for f . Let

e ∈ Ω = dom(ᾱ0).

Then for all n, {e}(n) is the Gödel number of a rational rn, so that (rn) is an effective

Cauchy sequence of rationals. Put sn = f(rn). Since f is GL-computable, (sn) is an

effective sequence of rationals. Hence there is an index e
′
, found effectively from e,

such that for all n,

ᾱ0({e′}(n)) = sn.

Define ϕ(e) = e
′
. Then ϕ is partial recursive.

Since, moreover, f is effective uniformly continuous w.r.t (Un), the sequence (sn)

is an effective Cauchy sequence of rationals.
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Let x be the limit of rn and y be the limit of (sn). Then x, y ∈ C0 and f(x) = y.

So ϕ is a rational recursive ᾱ0-tracking function for f , Hence f is ᾱ0-computable.

This complete the proof. ¤

Note: The Lemma 6.8 was stated without proof in [TZ05].

Theorem 2 Given a partial function f : R⇀R , U=dom(f) and an effective exhaus-

tion (Un) of U . Suppose f is effectively locally uniformly continuous w.r.t (Un). Then

the following are equivalent:

(i) f is GL-computable w.r.t (Un),

(ii) f is ᾱ0-computable,

(iii) f is effectively locally Q-polynomially approximable w.r.t (Un),

(iv) f is effectively locally Q-multipolynomially approximable w.r.t (Un),

(v) f is effectively locally uniformly While(∗)(RN
t ) approximable w.r.t (Un),

(vi) f is effectively uniformly WhileCC(∗)(RN
p ) approximable .

Proof.

By Theorem 1, we have the equivalence of (i), (iii) , (iv) and (v).

By Lemma 6.7, we have the equivalence of (ii) and (vi).

By Lemma 6.8, we have the equvialence of (i) and (ii). ¤



Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, we studied six models of computability of partial functions on the

real numbers; two abstract, two concrete and two based on polynomial approximation:

(i) While (∗)(RN
t ) approximable computability ;

(ii) WhileCC (∗)(RN
p ) approximable computability ;

(iii) GL-computability ;

(iv) ᾱ0-computability ;

(v) Effective local uniform polynomial approximability ;

(vi) Effective local uniform multipolynomial approximability.

We proved their equivalence under two assumption on the function f : (1) dom(f)

is the union of an effective sequence (Un) of rational open intervals; and (2) f is

effectively locally uniformly continuous w.r.t (Un).
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7.2 Future work

We list some future work in this area:

(1) To try to generalize our results to functions with domain of the form:

∞⋂
m=1

∞⋃
n=1

Umn

for an effective double sequence of rational intervals (Umn). This is the most general

form of the domain of a TTE concretely computable function [Wei00].

(2) To generalize our result to function with domain Rn for n > 1, and more

generally, to metric algebras, such as Banach space.

The problem in generalizing the domain from R to Rn is connected with the

problem of generalizing the liner interpolation construction of Lemma 4.23 to more

than one dimension.
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