
Hoare Logics
for Programming Languages
with Partial Functions and
Non-deterministic Choice

By

Likang Zhu, B.Eng.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Science
Department of Computing and Software

McMaster University

c© Copyright by Likang Zhu, September, 2003

ii

MASTER OF SCIENCE (2003) McMaster University
(Computing and Software) Hamilton, Ontario

TITLE:
Hoare Logics
for Programming Languages with Partial Functions and Non-deterministic Choice

AUTHOR: Likang Zhu, B.Eng.(Central-South University, China)

SUPERVISOR: Dr. Jeffery Zucker

NUMBER OF PAGES: vii, 182

Abstract

We develop Hoare logics for total correctness for a programming language, extending

the while language, over abstract many-sorted algebras, with the following features:

(1) The algebras are partial, i.e., terms are not always defined.

(2) The language includes a non-deterministic choice construct choose z : b, where

z has type nat, and b is a Boolean term, and execution diverges if there is no

such z.

This language is important in the study of computation on topological partial alge-

bras.

We develop two different logics for the assertion language, to deal with undefined

truth values:

(1) the assertions extend the Booleans, and are 3-valued (including the undefined

value);

(2) the assertions are disjoint from the Booleans, and are 2-valued (without unde-

finedness).

These lead to two distinct (but similar) Hoare logics.

i

ii

Our Hoare proof rule for the choose construct seems to be original:

{∃z : b} choose z : b {b}

We prove soundness for the Hoare system in both logics, and apply it to a case study:

solving a linear system of equations by Gaussian elimination.

Acknowledgements

I would like to thank Dr. J.I. Zucker, my supervisor, for his many suggestions and

constant support during this research, and for his invaluable guidance at all stages of

my studies.

I want to thank Dr. J. Carette and Dr. A. Wassyng for their careful review and

valuable comments on my thesis. Thanks to Dr. W. M. Farmer, Dr. S. Qiao, Dr. E.

Sekerinski and all my other professors for their help in my studies.

I am grateful to my parents for their patience and love. Without them this work

would never have come into existence. Special thanks to Yanling Ma and Qinglan Li

for their help, understanding and support.

Hamilton, Ontario Likang Zhu

September, 2003

iii

Contents

Abstract ii

Acknowledgement iii

1 Introduction 1

1.1 Hoare logic . 1

1.2 Topological partial algebras; Continuity 2

1.3 Motivation and Objective . 3

1.4 Discussion: Two types of partiality 6

1.5 Three-tiered logic . 7

1.6 Historical remarks . 7

1.7 New features in the thesis . 8

1.8 Overview of the chapters . 9

2 Preliminaries 11

2.1 Functions . 11

2.2 Many-sorted signatures . 12

2.3 Algebras A of signature Σ . 13

iv

CONTENTS v

2.4 Adding booleans: Standard signatures and algebras 18

2.5 Adding counters: N-standard signatures and algebras 22

2.6 Adding arrays: Algebras A∗ of signature Σ∗ 24

3 Straight-Line Programs SL(Σ) 27

3.1 Syntax of SL(Σ) . 27

3.2 Semantics of programming terms of SL(Σ) 30

3.3 Semantics of program statements . 35

4 The Proof system PPL/SL(A) 41

4.1 3-valued assertion language . 42

4.2 Substitution for assertions . 43

4.3 Functionality and substitution lemmas for assertions 44

4.4 Hoare formulae . 49

4.5 The proof system PPL/SL(A) . 50

4.6 Soundness of proof system PPL/SL(A) 53

4.7 The weakest precondition . 59

5 The Proof System TPL/SL(A) 64

5.1 Total predicate logic . 64

5.2 2-valued assertion language . 65

5.3 Functionality and substitution lemmas for assertions 67

5.4 Hoare formulae . 70

5.5 The proof system TPL/SL(A) . 70

5.6 Soundness of the proof system TPL/SL(A) 72

CONTENTS vi

5.7 The weakest precondition . 73

6 SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 76

6.1 Syntax of SLCC (Σ) . 77

6.2 Semantics of SLCC (Σ) . 78

6.3 Assertions . 81

6.4 Hoare formulae . 81

6.5 The proof system TPL/SLCC (A) and its soundness 82

6.6 Example . 89

7 WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 94

7.1 Syntax of WhileCC (Σ) . 94

7.2 Semantics of WhileCC (Σ) . 95

7.3 Assertions . 109

7.4 Hoare formulae . 110

7.5 The proof system TPL/WhileCC (A) and its soundness 110

8 Arrays 119

8.1 One-dimensional arrays as functions 119

8.2 Arrays of arrays . 123

8.3 Programming languages and proof systems with arrays: Notation . . 125

9 Case Study 126

9.1 Outline . 128

9.2 Pivot index array Initialization . 135

9.3 Decomposition with Pivoting . 139

CONTENTS vii

9.4 Forward Elimination . 165

9.5 Backward Elimination . 168

9.6 Correctness of Gaussian Elimination 171

10 Conclusion and Future work 175

10.1 Work done . 175

10.2 Work needed to be done . 176

Bibliography 179

Chapter 1

Introduction

This chapter presents a brief introduction to the background, motivation and outline

of our research.

1.1 Hoare logic

The mathematical theory of program verification is a central concern in mathematics

and computer science. Its origins can be traced back to Turing [Tur49]. Floyd [Flo67]

assigned meanings to programs and proved correctness of flowchart programs by

means of assertions. Inspired by Floyd, Hoare presented the necessary axioms and

inference rules for reasoning about simple deterministic programs. Hoare’s landmark

paper [Hoa69] served as a pedagogical example of approaching verification of programs

by axiomatic reasoning.

With Hoare’s approach, we must first formally define the underlying program

language. Next, we need a formalism that makes it possible to express the relevant

1

1. Introduction 2

program properties. In the context of program verification, the program properties

are expressed by expressions in first-order logic called assertions. In contrast to

program booleans, assertions include quantifiers, and hence are not computable in

general. Finally, we need a proof system consisting of axioms and inference rules

which allow us to construct formal proofs of certain relevant formulas.

In Hoare logic, these formulas are Hoare triples, denoted by {p}S{q}, where S

is a program statement and p, q are assertions. Hoare triples are used to specify

the input/output relation of the statements. They form the basic unit in program

verification.

The triple {p}S{q} is interpreted in the sense of partial correctness as: if p is

true before the initiation of S and the execution of S terminates, then q will be true

after execution of S. It is interpreted in the sense of total correctness as: if p is

true before the initiation of S, then the execution of S terminates and q will be true

after execution of S.

In this thesis, we work with total correctness rather than partial correctness, even

though this is more difficult mathematically, since it seems to be a more valuable

concept for the purpose of program design, specification and verification.

1.2 Topological partial algebras; Continuity

The algebra of data serves as an initial step in the formalization of a program language.

A signature Σ (for a many-sorted partial algebra) is a pair consisting of (1) a finite

set Sort(Σ) of sorts s, and (2) a finite set Func (Σ) of typed function symbols F. A

partial many-sorted algebra A of signature Σ consists of : (1) for each sort s of Σ, a

1. Introduction 3

non-empty carriers set As of sort s, and (2) for each function symbol F of Σ of type

s1 × · · · × sm → s, a finite family of partial functions of the form

FA : As1 × · · · × Asm

·→ As.

We will study computations on topological algebras , i.e., many-sorted algebras in

which each carrier is a topological space, such that the primitive functions are all

continuous. Important examples of such algebras are algebras over reals, which will

be used in our case study. A basic principle for topological algebras is the Continuity

Principle [TZ04]:

Computability ⇒ Continuity.

1.3 Motivation and Objective

The original Hoare Logic [Hoa69] was designed for a simple sequential deterministic

program language with assignment, conditionals, and ‘while’ statement. Classical 2-

valued logic was used in program booleans, assertions and Hoare formulas because of

a totality assumption,i.e., all the functions of the algebra A were assumed to be total

functions.

However, in working with topological algebras, we have to consider:

(1) Partial functions. To illustrate the problem, consider the assertion:

(x 6= 0) ∧ (y = 1/x) ∨ (x = 0) ∧ (y = z). (1.1)

1. Introduction 4

The usual rules for evaluating (1.1) requires evaluation of 1/x and y = z first.

However, the function

divR : R2 → R

defined by

divR(x, y) = x/y

is essentially partial, since there are no total continuous extension of divR, and

hence (by the Continuous Principle), there is no total computable functions on

R2 which extends divR. (See [TZ04] for a detailed discussion of these issues.)

Note, by contrast, the function

divN : R× N→ R

defined by

divN(x, n) = x/n

can easily be extended to a total continuous (and computable) function by

defining (say)

divN(x, 0) = 0.

1. Introduction 5

Secondly, the function

eqR : R2 → B

and

lessR : R2 → B

cannot be total and computable, since all total continuous boolean-valued func-

tions on the reals must be constant. Hence we must define it as a partial

function.

(2) Multivalued functions. We must consider computable functions that are both

continuous and multivalued. In particular, multivalued functions are needed

even to compute single valued functions. We consider an example taken

from [TZ04] . Define the partial function

piv : Rn ·−→ { 1, . . . , n }

by

piv(x1, . . . , xn) '

some i : xi 6= 0 if such an i exists

↑ otherwise.

It can be shown that there is no single-valued function which satisfies the def-

inition of piv and is continuous on Rn. For such a function, being continuous

1. Introduction 6

and integer-valued, would have to be constant on its domain Rn\{0}, with con-

stant value (say) j ∈ { 1, . . . , n }. But its value on the xj-axis would have to be

different from j, leading to a contradiction (This example forms the basis for

our case study in Chapter 9).

Hence, in sum, the purpose of our study is to provide a logical basis for the proofs

of the properties of nondeterministic programs with undefinedness on many sorted

algebra A.

1.4 Discussion: Two types of partiality

We must distinguish between two notions of partial function:

(1) Those that can be extended to total functions.

In this case, the domain of definition is decidable, and these functions can be

extended to total functions by giving a default value, e.g., factorial function on

Z, the function divN considered above, and the array application Ap(a, i) (§2.6)

etc. We consider these functions as total functions with error cases.

(2) Those that cannot be extended to total functions

This case is related to topological considerations. In this case, the domain

of definition is not computable, and these functions can not be extended to

total , continuous functions, e.g., the function divR, eqR and lessR considered

above. The issue here is divergence rather than halting in an error state. As

a running example, we use the topological algebra RN
p of the reals with partial

operations: equality, order and diversion.

1. Introduction 7

1.5 Three-tiered logic

Our Hoare style proof system contains three tiers or levels of logic:

(1) program booleans (or tests),

(2) assertions,

(3) correctness (Hoare) formulae.

The logic in boolean (tier 1) is partial and 3-valued. The logic in formulae is total

and 2-valued. The middle tier (the logic in assertions) is either 3-valued, extending the

boolean logic (in PPL), or 2-valued conforming to the logic of formulae (in TPL).

The distinction between the assertion logic and Hoare formulae logic in PPL and

combine them into a whole system seems to be original.

1.6 Historical remarks

(1) Hoare style logic

Cook [Coo78] gave the first mathematical analysis of a logical system for pro-

gram verification. De Bakker [dB80] gives a detailed and rigorous treatment of

verification for the basic programming language constructs. J.V. Tucker and J.I.

Zucker [TZ88] developed Hoare Logic for many-sorted algebras with error cases.

A concise introduction and survey of the theory of the correctness for determin-

istic programs is [Apt81]. This work is extended to cover nondeterministic and

concurrent constructs in [Apt84, AO91].

1. Introduction 8

(2) Logic for partial functions

Many logics for partial functions (usually in the sense of “error case”, cf. §1.4)

have been proposed, and the issue of such logics is not settled, with many

problems of philosophy and style remaining. In general, there are two different

approaches. One approach retains 2-valued logic. This approach has been

explored in [Far90, Owe93, Par93, Gri97] etc. Another approach extends the

conventional 2-valued logic to 3-valued logic. This approach has been explored

in [BCJ84, Hoo87, Jon86, Jon87, KK94], continuing the work of [Luk70, Kle52,

McC63].

(3) Nondeterministic programs

Many nondeterministic programming model have been developed. For exam-

ple, Dijkstra [Dij76] proposed a Guarded Command Language. Another nonde-

terministic programming language is the While language with random assign-

ments [AO91]. A While programming language with “countable choices” over

many-sorted algebras was studied in [TZ04]. This is the language we will use

for our investigation of Hoare logic.

1.7 New features in the thesis

We investigated two approaches to the logic of assertions and booleans with partial

functions (cf. §1.5), and correspondingly proposed two Hoare style logics, which si-

multaneously deal with partiality of functions and non-determinism. These are total

(2-valued) and partial (3-valued) predicate logics. In total predicate logic (TPL),

the booleans are disjoint from the assertions, and in partial predicate logic (PPL),

1. Introduction 9

the booleans form a subset of the assertions. We work through the case of TPL in

detail and (for the most part) indicate the requisite modifications for PPL. The two

resulting 3-tiered logics (§1.5) seem to be original.

Our version of non-determinism uses the ‘choose’ construct

choose z : b

which will lead to divergence in the case that there is no k such that b(k) is true. Our

proof rules for ‘choose’

{ ∃z b } choose z : b { b }

(in PPL) or

{ ∃z (b = true) } choose z : b { (b = true) }

(in TPL) also seems to be original.

1.8 Overview of the chapters

This thesis has ten chapters.

Chapter 1 forms the introduction.

Chapter 2 presents the basic function and algebraic notions required for this the-

sis. We first defined standard signatures and (partial) algebras, then show how to

expanded these in turn to N-standard signatures and algebras, and then to array

1. Introduction 10

signatures and algebras. We concentrate on topological partial algebras of the real

numbers, which is used in most of our examples.

Chapter 3 introduces the syntax and semantics of a simple deterministic program-

ming language SL(Σ) (“straight line”) over a partial algebra A. We introduce partial

term and statement semantics by using of Kleene equality.

Chapter 4 defines the partial predicate logic PPL(Σ). We give a Hoare style logic

PPL/SL(A) over this and proved its soundness in the sense of total correctness.

Chapter 5 defines the total predicate logic TPL(Σ). We give another Hoare style

logic TPL/SL(A) over this and prove its soundness.

Chapter 6 introduces the syntax and semantics of a nondeterministic programming

language SLCC (Σ) (“straight line with countable choice”). We give the proof system

TPL(Σ)/SLCC and prove its soundness.

Chapter 7 expands SLCC (Σ) by adding the ‘while’ construct to form

WhileCC (Σ). We give an algebraic operational semantics for nondeter-

ministic programs with undefinedness [TZ04], and extend TPL(Σ)/SLCC to

TPL(Σ)/WhileCC by adding a proof rule for the ‘while’ construct.

Chapter 8 introduced arrays. There are not really new proof rules here, since

the Hoare rules for array assignments can be derived as special cases of the simple

variable assignment in the array algebra A∗.

Chapter 9 presents, as a case study, a correctness proof of a WhileCC (Σ) pro-

gram for the classical “Gaussian Elimination” problem.

Chapter 10 summarizes the result of our study and suggests some open questions

for future work.

Chapter 2

Preliminaries

We give definitions and notations for partial functions and many-sorted partial alge-

bras. This chapter is closely related to the relevant sections in [TZ00, TZ04].

2.1 Functions

Given two sets A and B, a partial function f : A
·→ B is a subset of A × B such

that for all a ∈ A, there is at most one b ∈ B (denoted f(a)) such that (a, b) ∈ f .

We define

dom(f) = {a ∈ A | ∃b ∈ B : (a, b) ∈ f}
ran(f) = {b ∈ B | ∃a ∈ A : (a, b) ∈ f}

A function f : A → B is total if dom(f) = A.

In this paper, functions generally refer to partial functions. Totality of func-

tions should not be assumed unless explicitly stated. We write partial functions

as f, g, h,

11

2. Preliminaries 12

Notation 2.1.1. If f : A
·→ B and x ∈ A, then

f(x)↑ (“f(x) diverges ”) means that x /∈ dom(f);

f(x)↓ (“f(x) converges ”) means that x ∈ dom(f);

f(x) ↓ y (“f(x) converges to y”) means that x ∈ dom(f) and f(x) = y, i.e.,

(x, y) ∈ f.

Convention 2.1.2. For f : A → B1 × . . .× Bn and fi : A → Bi, we write:

f(x) ' (f1(x), . . . , fn(x))

to mean that f(x) ↓ if and only if fi(x) ↓ for all i = 1, . . . , n, in which case f(x) =

(f1(x), . . . , fn(x)).

2.2 Many-sorted signatures

Definition 2.2.1 (Many-sorted signatures). A many-sorted signature Σ is a pair

consisting of

(1) a finite set Sort(Σ) of sorts , and

(2) a finite set Func (Σ) of (primitive or basic) function symbols, each symbol F

having a type s1 × · · · × sm → s, where m ≥ 0 is the arity of F , and s1, . . . , sm ∈
Sort(Σ) are the domain sorts and s ∈ Sort(Σ) is the range sort; in such a case we

write

F : s1 × · · · × sm → s.

2. Preliminaries 13

The case m = 0 corresponds to constant symbols; we then write

F : → s or just F : s.

Note that our signatures do not explicitly include relation symbols; relations will

be interpreted as boolean-valued functions.

Definition 2.2.2 (Product types over Σ). A product type over Σ, or Σ-product

type, is a symbol of the form u = s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are

sorts of Σ. We denote product types by u, v,

Definition 2.2.3 (Function types over Σ). A function type over Σ, or Σ-function

type, is a symbol of the form u → s where u is a Σ-product type and s a Σ-sort.

We use Func (Σ)u → s for the set of all Σ-function symbols of type u → s.

2.3 Algebras A of signature Σ

Definition 2.3.1 (Σ-algebras). A Σ-algebra A has, for each sort s of Σ, a

non-empty set As, called the carrier of sort s, and for each Σ-function symbol F :

s1 × · · · × sm → s, a partial function FA : As1 × · · · × Asm

·→ As.

For a Σ-product type u = s1 × · · · × sm, we define

Au =df As1 × · · · × Asm

So each Σ-function symbol F : u → s has an interpretation FA : Au ·→As. If u is

empty, i.e., F is a constant symbol, then FA is an element of As.

2. Preliminaries 14

The algebra A is total if FA is total for each Σ-function symbol F. Without

such a totality assumption, A is called partial.

In this paper, we deal mainly with partial algebras. The default assumption is that

“algebra” refer to partial algebra. However, for the sake of emphasis, we will often

speak explicitly of partial algebras.

We will sometimes write Σ(A) for the signature of an algebra A.

We will use the following notation for signatures Σ:

signature Σ

sorts

...

s, (s ∈ Sort(Σ))

...

functions

...

F : s1 × · · · × sm → s, (F ∈ Func (Σ))

...

end

2. Preliminaries 15

and for Σ-structures A :

algebra A

carriers

...

As, (s ∈ Sort(Σ))

...

functions

...

FA : As1 × · · · × Asm→As, (F ∈ Func (Σ))

...

end

We give some examples of algebras.

Example 2.3.2. (a) The algebra of booleans has the carrier B = {tt, ff} of sort

bool. The signature Σ(B) and algebra B respectively can be displayed as follows:

signature Σ(B)

sorts bool

functions true, false : → bool,

and, or : bool2 → bool

not : bool → bool

end

and

algebra B
carriers B

functions tt, ff : → B,

andB, orB : B2 → B

notB : B→ B

end

Note that the signature can essentially be inferred from the algebra; indeed from

2. Preliminaries 16

now on we will not define the signature where no confusion will arise. Further, for

notational simplicity, we will not always distinguish between function names in the

signature (true, etc.) and their intended interpretations (trueB = tt, etc.).

(b) The algebra N 0 of naturals has a carrier N of sort nat, together with the

zero constant and successor function:

algebra N 0

carriers N

functions 0 : → N,

S : N→ N

end

(c) The ring R0 of reals has a carrier R of sort real:

algebra R0

carriers R

functions 0, 1 : → R,

+,× : R2 → R,

− : R→ R

end

(d) The field R1 of reals is formed by adding the multiplicative inverse to the

2. Preliminaries 17

ring R0:

algebra R1

import R0

functions invR : R ·→ R

end

where

invR(x) =

1/x if x 6= 0

↑ otherwise

Note that all the examples except (d) are total algebras.

Definition 2.3.3 (Reducts and expansions). Let Σ and Σ ′ be signatures.

(a) Σ ⊆ Σ ′ means Sort(Σ) ⊆ Sort(Σ ′) and Func (Σ) ⊆ Func(Σ ′).

(b) Suppose Σ ⊆ Σ ′. Let A and A′ be algebras with signatures Σ and Σ ′ respec-

tively.

(i) The Σ-reduct A′ | Σ of A′ is the algebra of signature Σ, consisting of the

carriers of A′ named by the sorts of Σ and equipped with the functions of

A′ named by the function symbols of Σ.

(ii) A′ is a Σ ′-expansion of A if, and only if, A is the Σ-reduct of A′.

Definition 2.3.4 (Closed terms over Σ). We define the class T (Σ) of closed

terms over Σ, denoted t, t′, t1, . . . , and for each Σ-sort s, the class T (Σ)s of closed

2. Preliminaries 18

terms of sort s. These are generated inductively by the rule:

If F ∈ Func (Σ)u → s and ti ∈ T (Σ)si
for i = 1, . . . , m

where u = s1 × · · · × sm, then F (t1, . . . , tm) ∈ T (Σ)s.

Note that the implicit base case of this inductive definition is the case that m = 0,

which yields: for all constants c : → s, c() ∈ T (Σ)s. In this case we write c instead

of c(). Hence if Σ contains no constants, T (Σ) is empty.

Assumption 2.3.5 (Instantiation Assumption). Throughout this thesis we make

the following assumption about the signatures Σ:

For every sort s of Σ, there is a closed term of that sort, called the default term δs

of sort s.

This guarantees the presence of default values δs
A in a Σ-algebra A at all sorts

s, and default tuples δu
A at all product types u.

2.4 Adding booleans: Standard signatures and

algebras

The algebra B of booleans plays an essential role in computation. This motivates the

following definition.

Definition 2.4.1 (Standard signature). A signature Σ is standard if

(i) it is an expansion of Σ(B), i.e. Σ(B) ⊆ Σ.

2. Preliminaries 19

(ii) the function symbol of Σ include an equality operator

eqs : s2 → bool.

for certain sorts s, called equality sorts.

Definition 2.4.2 (Standard algebra). Given a standard signature Σ, a Σ-algebra

A is standard if

(i) it is an expansion of B, and

(ii) the operator eqs is interpreted as a partial identity on each equality sort s,

i.e., for any two elements of As, if they are identical, then the operator at these

arguments returns tt or ↑, and if they are not identical, it returns ff or ↑ .

Remark 2.4.3. In computing with an abstract model on A, we assume A has some

boolean-valued functions to test data, for example, eqs and lesss at certain sort s.

Three typical examples of partial identity as an interpretation of eqs are:

(1) Total equality , where equality is assumed to be decidable at sort s; for example,

when s = nat :

eqA
s (x, y) =

tt if x = y

ff otherwise

(2) Semi-equality , where equality is semi-decidable at sort s; for example, the

2. Preliminaries 20

initial term algebra of an equational theory:

eqA
s (x, y) =

tt if x = y

↑ otherwise

(3) Co-semi-equality , where equality is co-semidecidable at sort s; for example,

when s = real :

eqA
s (x, y) =

↑ if x = y

ff otherwise

The important cases for our works are (1) and (3), which will be used throughout the

thesis, with the cases s = nat and s = real respectively, i.e., in the algebras Rp,

RN
p , and RN∗

p (Examples 2.4.5 (c), 2.5.3(b) and 2.6.2 below).

Remark 2.4.4. (a) In our terminology, an “equality sort” s need not have com-

putable equality; it may have a partial equality which may be (only) semicomputable

or co-semicomputable, e.g. s = real, (cf. Discussion 2.4.6.)

(b) Any many-sorted signature Σ can be standardised to a signature ΣB by

adjoining the sort bool together with the standard boolean operations; and, corre-

spondingly, any algebra A can be standardised to an algebra AB by adjoining the

algebra B as well as equality operators.

Example 2.4.5 (Standard algebras). (a) The simplest standard algebra is the

algebra B of the booleans (Example 2.3.2(a)).

(b) A standard total algebra of naturals N is formed by standardising the algebra

2. Preliminaries 21

N 0 (Example 2.3.2(b)), with (total) equality and order operations on N:

algebra N
import N 0, B
functions

eqNnat, less
N
nat : N2 → B

end

(c) A standard partial algebra Rp on the reals is formed by standardising the field

R1 (Example 2.3.2(d)), with (partial) equality and order operations on R:

algebra Rp

import R1, B
functions

eqRreal, less
R
real : R

2 → B

end

where

eqRreal(x, y) =

↑ if x = y

ff otherwise
and lessRreal(x, y) =

tt if x < y

ff if x > y

↑ if x = y

This is motivated by the following discussion.

Discussion 2.4.6 (Partial equality and order on reals). Given two reals x,y

2. Preliminaries 22

represented by infinite decimal expansions, if x 6= y, we can evaluate eqRreal(x, y) and

lessRreal(x, y) in finitely many steps. However, if x = y, we will not be able to com-

pute this in finite many steps. (The point is that computations on infinite precision

real numbers involve infinite data.) Hence, to study the full range of real number

computations, we must define eqRreal(x, y) and lessRreal(x, y) as partial boolean-valued

functions.

By the continuity principle:

Computable ⇒ Continuous

we find that total equality on R (case 1 above) is not continuous. This is because

the only continuous total functions from a connected space (R2) to a discrete space

are the constant functions, so the total continuous boolean-valued functions on the

reals must be constant. Therefore, total equality on R is not computable. But the

partial equality and order operations (Example (c) above) are continuous and co-

semicomputable. ([TZ04] has a thorough discussion of these issues.)

2.5 Adding counters: N-standard signatures and

algebras

Definition 2.5.1. (a) A standard signature Σ is called N-standard if it includes

(as well as bool) the numerical sort nat, and also function symbols for the standard

operations of zero, successor and order on the naturals:

0 : → nat

2. Preliminaries 23

S : nat → nat

lessnat : nat2 → bool

as well as the equality operator eqnat on nat.

(b) The corresponding Σ-algebra A is N-standard if the carrier Anat is the set of

natural numbers N= {0,1,2,. . . }, and the standard operations (listed above) have

their standard interpretations on N.

Definition 2.5.2. (a) The N-standardisation ΣN of a standard signature Σ is formed

by adjoining the sort nat and the operations 0, S, eqnat and lessnat.

(b) The N-standardisation AN of a standard Σ-algebra A is the ΣN -algebra formed

by adjoining the carrier N together with its standard operations to A, thus:

algebra AN

import A

carriers N

functions 0 : → N

S : N→ N

eqnat, lessnat : N2 → B

end

Example 2.5.3. (a) The simplest N-standard algebra is the algebra N of Example

2.3.2(b).

(b) We can N-standardiseRp (Example 2.4.5(c)) by adjoining the carrier N together

2. Preliminaries 24

with standard operations on Rp:

algebra RN
p

import Rp

carriers N

functions 0 : → N

S : N→ N

eqnat, lessnat : N2 → B

end

Assumption 2.5.4 (N-standardness Assumption). Throughout this thesis, we

will assume:

The signatures Σ, and the Σ-algebra A, are N-standard.

2.6 Adding arrays: Algebras A∗ of signature Σ∗

Given an N-standard signature Σ, and N-standard Σ-algebra A, we extend Σ, and

expand A, as follows:

Define, for each sort s of Σ, the carrier A∗
s to be the set of finite sequences or

arrays a∗ over As, of “starred sort” s∗.

The resulting algebras A∗ have signature Σ∗, which extends ΣN by including,

for each sort s of Σ, the new starred sorts s∗, and also the following new function

symbols:

(i) the operator Lgths : s∗ → nat, where Lgth(a∗) is the length of the array a∗;

2. Preliminaries 25

(ii) the application operator Aps : s∗ × nat → s, where

ApA
s (a∗, k) =

a∗[k] if k < Lgth(a∗)

δs otherwise

where δs is the default value at sort s (§2.1);

(iii) the null array Nulls : s∗ of zero length;

(iv) the operator Updates : s∗ × nat × s → s∗, where UpdateA
s (a∗, n, x) is the

array b∗ ∈ A∗
s of length Lgth(a∗) such that for all k < Lgth(a∗),

b∗[k] =

a∗[k] if k 6= n

x if k = n

(v) the operator Newlengths : s∗ × nat → s∗, where NewlengthA
s (a∗,m) is the

array b∗ of length m such that for all k < m,

b∗[k] =

a∗[k] if k < Lgth(a∗)

δs otherwise.

(vi) the equality operator on A∗
s for each equality sort s.

Remark 2.6.1. (a) Note that A∗ is an N-standard Σ∗-expansion of A.

(b) The justification for (vi) is that if a sort s has computable or semicomputable

equality, then clearly so has the sort s∗, since it amounts to testing equality of finitely

many pairs of objects of sort s, up to a computable length.

2. Preliminaries 26

(c) The reason for introducing starred sorts is the lack of effective coding of finite

sequences within abstract algebras in general.

(d) The significance of arrays for computation is that they provide finite but un-

bounded memory.

(e) We prefer to make Ap a total rather than a partial function using the default

values (see the discussion in §1.4).

Example 2.6.2 (N-standard partial algebra of reals with array). Recall the

algebra RN
p (Example 2.5.3(b)). We construct RN

p

∗
as follows:

algebra RN
p

∗

import RN
p

carriers R∗

functions Nullreal : → R∗

Apreal : R∗ × N→ R

Updatereal : R∗ × N× R→ R∗

Lgthreal : R∗ → N

Newlengthreal : R∗ × N→ R∗

eqreal : (R∗)2 → B

end

The N-standard partial algebraRN
p

∗
is an important example for the theory developed

in this thesis and will be used in our examples, e.g. in the case study in Chapter 9.

Chapter 3

Straight-Line Programs SL(Σ)

In this chapter, we will study the syntax and semantics of the imperative Straight-

Line programming language (written as SL(Σ)) on N -standard partial Σ-algebras.

This model takes into account undefinedness in the programming language. Unlike

the SLCC (Σ) language (Chapter 6), SL(Σ) is deterministic, i.e. from a given initial

state only one execution sequence is generated. We then introduce Kleene equality

and use it to generalize the functionality and substitution lemma for program terms

[SA91, TZ00] to partial algebras.

Assume Σ is an N -standard signature, and A is an N -standard partial Σ-algebra.

3.1 Syntax of SL(Σ)

We define four syntactic classes: variables , terms , statements and procedures .

(a) Var = Var(Σ) is the class of Σ-program variables , and for each Σ-sort s,

Var s is the class of program variables of sort s: xs, ys

27

3. Straight-Line Programs SL(Σ) 28

(b) Term = Term(Σ) is the class of Σ-program terms t, . . . , and for each

Σ-sort s, Terms is the class of program terms of sort s. We sometimes write

t : s or ts to indicate that t has sort s. Program terms are defined by:

ts ::= xs | F(t1, . . . , tm) | if b then ts1 else ts2 fi

where s, s1, . . . , sm (m ≥ 0) are Σ-sorts, F is a Σ-function symbol of type

s1 × · · · × sm → s. ti ∈ Termsi
for i = 1, . . . , m, and b is a boolean term, i.e.

a term of sort bool. For the sake of clarity, we repeat the definition of Terms

for s = bool (writing b for tbool).

b ::= true | false | not b | b1 and b2 | b1 or b2

| F(t1, . . . , tm) | if b then b1 else b2 fi

where F : s1 × · · · × sm → bool is a Σ-function symbol (other than not, and, or).

Note that F maybe the equality function eqs : s2 → bool at equality sorts s.

We write t : u to indicate that t is a u-tuple of program terms, i.e., a tuple of

program terms of sorts s1, . . . , sm, where u = s1 × · · · × sm.

(c) AtSt = AtSt(Σ) is the class of atomic statements Sat, . . . defined by

Sat ::= skip | x := t

Here x := t is a concurrent assignment, i.e. for some Σ-product type u, t : u

and x is a u-tuple of distinct variables.

3. Straight-Line Programs SL(Σ) 29

(d) Stmt = Stmt(Σ) is the class of statements S, . . . , defined by:

S ::= Sat | S1; S2 | if b then S1 else S2 fi

(e) Proc = Proc(Σ) is the class of function procedures P, Q, These have

the form

P ≡ proc in a out b aux c begin S end

where a, b and c are lists of input variables, output variables and auxiliary (or

local) variables respectively, and S is the body of P. Further, we stipulate:

• a, b and c each consist of distinct variables, and they are pairwise disjoint,

• all variables occurring in S must be among a, b or c,

• input variables a must not occur on the lhs of assignments in S.

Each variable occurs in the declaration of a procedure binds all free occurrences

of that variable in the body.

If a : u and b : v, then P is said to have type u → v, written P : u → v. Its

input type is u, and its output type is v.

We write Procu → v = Proc(Σ)u → v for the class of Σ-procedures of type

u → v.

Notation 3.1.1. In this thesis, Var denotes the set of variables. Var(t) denotes the

set of variables that occur in term t. Var(S) denotes the set of variables that occur

in statement S.

3. Straight-Line Programs SL(Σ) 30

3.2 Semantics of programming terms of SL(Σ)

We are going to extend the semantics of SL(Σ) [TZ88, TZ00] to partial algebras.

Definition 3.2.1 (State). For our N -standard Σ-algebra A, a state on A is a family

< σs | s ∈ Sort(Σ) >

of functions

σs : Var s → As.

Let State(A) be the set of states on A, with typical elements σ, . . .

Definition 3.2.2 (Variant of state). Let σ be a state over As, x : s and a ∈ As.

We define σ{x/a} to be the state over As formed from σ by replacing its value at x

by a. That is , for all variables y:

σ{x/a}(y) =

σ(y) if y 6≡ x

a otherwise

The following lemma on variants of states [SA91] will be used later.

Lemma 3.2.3 (Variant of state).

(1) σ{x/σ(x)} = σ

(2) σ{x/a1}{x/a2} = σ{x/a2}
(3) σ{x/a1}{y/a2} = σ{y/a2}{x/a1}

Proof. The proofs are routine.

3. Straight-Line Programs SL(Σ) 31

We now give the semantics of the syntactic class Term . For t ∈ Terms, we

define term evaluation as a partial function

[[t]]A : State(A)
·→ As,

where [[t]]Aσ is the value of t in A at state σ. Our approach extends the approach

for total algebras [TZ88, TZ00] to partial algebras. To represent divergence of the

evaluation of a program term under a state, we use the symbol ‘↑’.
Before giving the semantic definitions, we introduce and define the meaning of

Kleene equality.

Definition 3.2.4 (Kleene equality). [[ts1]]
Aσ ' [[ts2]]

Aσ′ if and only if either both

[[ts1]]
Aσ ↑ and [[ts2]]

Aσ′ ↑ , or both [[ts1]]
Aσ ↓ and [[ts2]]

Aσ′ ↓ and [[ts1]]
Aσ = [[ts2]]

Aσ′.

Note that the relation ' is an equivalence relation.

Definition 3.2.5 (Semantics of program terms). The definition is by structural

induction on t , simultaneously for all Σ-sorts s.

[[x]]Aσ = σ(x)

[[F(t1, . . . , tm)]]Aσ '

FA([[t1]]
Aσ, . . . , [[tm]]Aσ)

if [[ti]]σ ↓ for i = 1, . . . , m

and ([[t1]]
Aσ, . . . , [[tm]]Aσ) ∈ dom(F)

↑ otherwise

3. Straight-Line Programs SL(Σ) 32

[[if b then t1 else t2 fi]]Aσ '

[[t1]]
Aσ if [[b]]Aσ ↓ tt

[[t2]]
Aσ if [[b]]Aσ ↓ ff

↑ otherwise

Remark 3.2.6 (Non-strictness of conditional operator). An operator is said

to be strict if the result is always undefined when any of its arguments is undefined,

and is non-strict otherwise.

All the primitive functions in the signature define strict operators. However the

conditional operator is not strict. The concept of strictness and non-strictness of

operators corresponds to two evaluation techniques: eager and lazy. In eager evalu-

ation all the arguments of a function are evaluated before the function is applied. In

lazy evaluation the components of the expression are expanded in a “demand driven”

way and are not evaluated more than is necessary to provide a value at the top level.

Terms built up using Σ-functions (only) are evaluated eagerly, but terms containing

the conditional ‘if - then - else - fi’ construct may not. For example, ‘cand’ and ‘cor’

(see below) are evaluated lazily.

The conditional and (‘cand’) and the conditional or (‘cor’) can be defined explicitly

using ‘if - then - else - fi’ as follows:

b1 cand b2 ≡df if b1 then b2 else false fi

b1 cor b2 ≡df if b1 then true else b2 fi

Note again that the current approach leads to the construction of partial single-valued

term semantics , since our primitive functions are all single-valued, but not necessarily

total.

For the sake of clarity again, we give the semantics of program booleans sepa-

3. Straight-Line Programs SL(Σ) 33

rately:

[[true]]Aσ = tt

[[false]]Aσ = ff

[[not(b)]]Aσ '

tt if [[b]]Aσ ↓ ff

ff if [[b]]Aσ ↓ tt

↑ otherwise

[[b1 and b2]]
Aσ '

tt if [[b1]]
Aσ ↓ tt and [[b2]]

Aσ ↓ tt

ff if [[b1]]
Aσ ↓ and [[b2]]

Aσ ↓ and ([[b1]]
Aσ ↓ ff or [[b2]]

Aσ ↓ ff)

↑ otherwise

[[b1 or b2]]
Aσ '

tt if [[b1]]
Aσ ↓ and [[b2]]

Aσ ↓ and ([[b1]]
Aσ ↓ tt or [[b1]]

Aσ ↓ tt)

ff if [[b1]]
Aσ ↓ ff and [[b2]]

Aσ ↓ ff

↑ otherwise

[[F(t1, . . . , tm)]]Aσ '

FA([[t1]]
Aσ, . . . , [[tm]]Aσ)

if [[ti]]σ ↓ for i = 1, . . . , m

and ([[t1]]
Aσ, . . . , [[tm]]Aσ) ∈ dom(F)

↑ otherwise

[[if b then b1 else b2 fi]]Aσ '

[[b1]]
Aσ if [[b]]Aσ ↓ tt

[[b2]]
Aσ if [[b]]Aσ ↓ ff

↑ otherwise

3. Straight-Line Programs SL(Σ) 34

Defining cand and cor from the conditional operator as above:

[[b1 cand b2]]
Aσ '

[[b2]]σ if [[b1]]
Aσ ↓ tt

ff if [[b1]]
Aσ ↓ ff

↑ otherwise

[[b1 cor b2]]
Aσ '

tt if [[b1]]
Aσ ↓ tt

[[b2]]σ if [[b1]]
Aσ ↓ ff

↑ otherwise

Remark 3.2.7 (Non-strict predicate logic). We give truth tables to show the

difference between the strict operators (‘and’, ‘or’) and the non-strict operators

(‘cand’ , ‘cor’). First ‘and’ and ‘cand’:

b1 and b2 tt ff ↑
tt tt tt ↑
ff ff ff ↑
↑ ↑ ↑ ↑

b1 cand b2 tt ff ↑
tt tt ff ↑
ff ff ff ff

↑ ↑ ↑ ↑

Next, ‘or’ and ‘cor’ :

b1 or b2 tt ff ↑
tt tt tt ↑
ff tt ff ↑
↑ ↑ ↑ ↑

b1 cor b2 tt ff ↑
tt tt tt tt

ff tt ff ↑
↑ ↑ ↑ ↑

Note the semantic definition of the boolean operators can be rewritten as:

3. Straight-Line Programs SL(Σ) 35

[[not b]]Aσ = not ([[b]]Aσ)

[[b1 and b2]]
Aσ = [[b1]]

Aσ and [[b2]]
Aσ

[[b1 or b2]]
Aσ = [[b1]]

Aσ or [[b2]]
Aσ

[[b1 cand b2]]
Aσ = [[b1]]

Aσ cand [[b2]]
Aσ

[[b1 cor b2]]
Aσ = [[b1]]

Aσ cor [[b2]]
Aσ

In the above definition, we use ‘cand’, ‘cor’, ‘and’, ‘or’, ‘not’ to stand for meta-level

logical operators.

3.3 Semantics of program statements

The semantics of statements are essentially partial state transformations, i.e.

[[S]]A : State(A)
·→ State(A).

Note that this is a partial function, defined by structural induction on S:

Definition 3.3.1 (Semantics of statements).

[[skip]]Aσ = σ

[[x := t]]Aσ '

σ{x/[[t]]Aσ} if [[t]]Aσ ↓
↑ otherwise

[[S1; S2]]
Aσ '

[[S2]]
A([[S1]]

Aσ) if [[S1]]
Aσ ↓

↑ otherwise

3. Straight-Line Programs SL(Σ) 36

[[if b then S1 else S2 fi]]Aσ '

[[S1]]
Aσ if [[b]]Aσ ↓ tt

[[S2]]
Aσ if [[b]]Aσ ↓ ff

↑ otherwise

Definition 3.3.2 (Substitution for terms). We define t′[x/t] by structural induc-

tion on t′ [SA91].

x[y/t] ≡

t if x ≡ y

x otherwise

F(t1, . . . , tm)[x/t] ≡ F(t1[x/t], . . . , tm[x/t])

(if b then t1 else t2 fi)[x/t] ≡ if b[x/t] then t1[x/t] else t2[x/t] fi

Definition 3.3.3 (Substitution for statements).

(x := t)[y/z] ≡ x[y/z] := t[y/z]

(S1; S2)[y/z] ≡ S1[y/z]; S2[y/z]

(if b then S1 else S2 fi)[y/z] ≡ if b[y/z] then S1[y/z] else S2[y/z] fi

Definition 3.3.4 (Equivalence of states relative to a set of variables). For

M ⊆ Var, σ ≈ σ′(rel M) iff σ ¹ M = σ′ ¹ M, i.e.,

for all x ∈ M, σ(x) = σ′(x)

3. Straight-Line Programs SL(Σ) 37

Lemma 3.3.5 (Functionality lemma for terms).

If σ ≈ σ′(rel Var(t)) then [[t]]Aσ ' [[t]]Aσ′

Proof. Suppose σ ≈ σ′(rel Var(t)). We want to show

[[t]]Aσ ' [[t]]Aσ′.

The proof is by structural induction on t.

• t ≡ x

Since σ ¹ Var(x) = σ′ ¹ Var(x),

so [[x]]Aσ = σ(x) = σ′(x) = [[x]]Aσ′(x).

• t ≡ F(t1 . . . tm)

By i.h. (induction hypothesis),

Since σ ≈ σ′(rel Var(ti)),

therefore [[ti]]
Aσ ' [[ti]]

Aσ′, for i = 1, . . . , m.

Suppose for all i ∈ {1, . . . , m},
[[ti]]

Aσ ↓ and ([[t1]]
Aσ, . . . , [[tm]]Aσ) ∈ dom(F),

then [[ti]]
Aσ′ ↓ and ([[t1]]

Aσ′, . . . , [[tm]]Aσ′) ∈ dom(F),

so that [[t]]Aσ and [[t]]Aσ′ converge to the same value.

Suppose for all i ∈ {1, . . . , m},
[[ti]]

Aσ ↓ and ([[t1]]
Aσ, . . . , [[tm]]Aσ) 6∈ dom(F),

or suppose there exists i ∈ {1, . . . , m} , [[ti]]
Aσ ↑,

then both [[t]]Aσ ↑ and [[t]]Aσ′ ↑ .

3. Straight-Line Programs SL(Σ) 38

• t ≡ if b then t1 else t2 fi

By i.h., since σ ≈ σ′(rel Var(ti)),

so [[ti]]
Aσ ' [[ti]]

Aσ′, i = 1, 2 and [[b]]Aσ ' [[b]]Aσ′,

and the result follows directly from the definition.

Corollary 3.3.6. If x 6∈ Var(t) then [[t]]Aσ{x/a} ' [[t]]Aσ.

Lemma 3.3.7 (Substitution lemma for terms).

[[t]]Aσ ↓ ⇒ ([[t′[x/t]]]Aσ ' [[t′]]Aσ{x/[[t]]Aσ})

Proof. Suppose [[t]]Aσ ↓, we want to show:

[[t′[x/t]]]Aσ ' [[t′]]Aσ{x/[[t]]Aσ}.

The proof is by structural induction on t′.

• t′ ≡ x

LHS = [[t′[x/t]]]Aσ ' [[t]]Aσ

RHS = [[t′]]Aσ{x/[[t]]Aσ} ' [[t]]Aσ (by Definition 3.2.2)

• t′ ≡ y 6≡ x

LHS = [[t′[x/t]]]Aσ ' [[y]]Aσ ' σ(y)

RHS = [[y]]Aσ{x/[[t]]Aσ}

' σ(y) (since x 6∈ Var(t′), by Corollary 3.3.6)

3. Straight-Line Programs SL(Σ) 39

• t′ ≡ F(t1, . . . , tm)

LHS = [[F(t1, . . . , tm)[x/t]]]Aσ

' F([[t1[x/t]]]
Aσ, . . . , [[t1[x/t]]]

Aσ) (by Definitions 3.2.5, 3.3.2)

RHS = [[F(t1, . . . , tm)]]Aσ{x/[[t]]Aσ}

' F([[t1]]
Aσ{x/[[t]]Aσ}, . . . , [[tm]]Aσ{x/[[t]]Aσ}) (by Definition 3.2.4)

LHS ' RHS (by i.h.)

• t′ ≡ if b then t1 else t2 fi

LHS = [[(if b then t1 else t2 fi)[x/t]]]Aσ

' [[if b[x/t] then t1[x/t] else t2[x/t] fi]]Aσ (by Definition 3.3.2)

'

[[t1[x/t]]]Aσ if [[b[x/t]]]Aσ ↓ tt

[[t2[x/t]]]Aσ if [[b[x/t]]]Aσ ↓ ff

↑ otherwise

RHS = [[(if b then t1 else t2 fi)]]Aσ{x/[[t]]Aσ}

'

[[t1]]
Aσ{x/[[t]]Aσ} if [[b]]Aσ{x/[[t]]Aσ} ↓ tt

[[t2]]
Aσ{x/[[t]]Aσ} if [[b]]Aσ{x/[[t]]Aσ} ↓ ff

↑ otherwise

LHS ' RHS (by i.h.)

Remark 3.3.8. (a) The functionality lemma (3.3.5) and substitution lemma(3.3.7)

generalize the corresponding lemmas for total algebras [SA91, TZ00].

3. Straight-Line Programs SL(Σ) 40

(b) The assumption [[t]]Aσ ↓ in the substitution lemma is necessary to ensure that

the variant state σ{x/[[t]]Aσ} is defined.

Chapter 4

The Proof system PPL/SL(A)

We want to develop a predicate logic to support Hoare Logic for the programming

language SL(Σ) over many-sorted partial algebras A. As our first approach, we use

partial predicate logic PPL(Σ) to construct partial or 3-valued assertions. We then

establish a mechanism for proving facts expressed in terms of partial assertions. In this

approach, we have Bool ⊂ Assn , where Bool is the class of program terms of sort

bool, and Assn is the class of assertions (§4.1). We will present the corresponding

proof system PPL/SL(A) and prove its soundness. In the next chapter, we will

present another approach (total or 2-valued assertions) for Hoare Logic over partial

algebras.

41

4. The Proof system PPL/SL(A) 42

4.1 3-valued assertion language

The class Assn of assertions p, . . . is defined by:

p ::= true | false | not p | p1 and p2 | p1 or p2

| F(t1, . . . , tn) | if p then p1 else p2 fi | ∃x[p] | ∀x[p]

where F : s1 × · · · × sm → bool and ti : si (i = 1, . . . , n).

(Note that F could be the equality function eqs at any equality sort s.)

We define a partial evaluation function, for p ∈ Assn :

[[p]]A : State(A)
·→ B,

by structural induction on p. For the cases without quantifiers, the definition agrees

with Definition 3.2.5 for program booleans. As with booleans, we have a (non-strict)

conditional operator, and can hence define the operators cand and cor. As with

program terms of sort bool, we can rewrite the logical operators as follows (cf. Remark

3.2.7):

[[not p1]]
Aσ ' not([[p1]]

Aσ)

[[p1 and p2]]
Aσ ' ([[p1]]

Aσ and [[p2]]
Aσ)

[[p1 or p2]]
Aσ ' ([[p1]]

Aσ or [[p2]]
Aσ)

[[p1 cand p2]]
Aσ ' ([[p1]]

Aσ cand [[p2]]
Aσ)

[[p1 cor p2]]
Aσ ' ([[p1]]

Aσ cor [[p2]]
Aσ)

For cases with quantifiers, we will use the definitions proposed by Kleene [Kle52] to

define quantifiers for partial predicates:

4. The Proof system PPL/SL(A) 43

[[∃x[p]]]Aσ =

tt if for some a ∈ As [[P]]Aσ{x/ a } ↓ tt

ff if for all a ∈ As [[P]]Aσ{x/a} ↓ ff

↑ otherwise, i.e. if there is no a ∈ As [[P]]Aσ{x/a} ↓ tt,

but for some a ∈ As [[P]]Aσ{x/a} ↑

[[∀x[p]]]Aσ =

tt if for all a ∈ As [[P]]Aσ{x/a} ↓ tt

ff if for some a ∈ As [[P]]Aσ{x/a} ↓ ff

↑ otherwise, i.e. if for no a ∈ As [[P]]Aσ{x/a} ↓ ff,

but for some a ∈ As [[P]]Aσ{x/a} ↑.

4.2 Substitution for assertions

Definition 4.2.1 (Substitution for assertions). We define p[x/t] by structural

induction on p (cf. [SA91]).

true[x/t] ≡ true

false[x/t] ≡ false

(not p)[x/t] ≡ not(p[x/t])

(p1 and p2)[x/t] ≡ p1[x/t] and p2[x/t]

(p1 or p2)[x/t] ≡ p1[x/t] or p2[x/t]

F(t1, . . . , tm)[x/t] ≡ F(t1[x/t], . . . , tm[x/t])

4. The Proof system PPL/SL(A) 44

(if p then p1 else p2 fi)[x/t] ≡ if p[x/t] then p1[x/t] else p2[x/t] fi

∃y[p][x/t] ≡

∃y[p] if y ≡ x

∃y[p[x/t]] if y 6≡ x and y 6∈ Var(t)

∃y1[p[y/y1][x/t]] if y 6≡ x and y ∈ Var(t)

where y1 is the first variable with sort same as t

such that y1 6≡ x and y1 6∈ Var(p, t)

∀y[p][x/t] ≡

∀y[p] if y ≡ x

∀y[p[x/t]] if y 6≡ x and y 6∈ Var(t)

∀y1[p[y/y1][x/t]] if y 6≡ x and y ∈ Var(t)

where y1 is the first variable with sort same as t

such that y1 6≡ x and y1 6∈ Var(p, t)

4.3 Functionality and substitution lemmas for as-

sertions

(Compare §3.3)

Lemma 4.3.1 (Functionality lemma for assertions).

If σ ≈ σ′(rel Var(p)) then [[p]]Aσ ' [[p]]Aσ′.

Proof. Suppose σ ≈ σ′(rel Var(p)). We will prove [[p]]Aσ ' [[p]]Aσ′ by structural

induction on p.

4. The Proof system PPL/SL(A) 45

• p ≡ true

[[true]]Aσ = tt = [[true]]Aσ′

• p ≡ false

[[false]]Aσ = ff = [[false]]Aσ′

• p ≡ not p1

LHS ≡ [[not p1]]
Aσ ' not ([[p1]]

Aσ) (by definition)

RHS ≡ [[not p1]]
Aσ′ ' not ([[p1]]

Aσ′) (by definition)

By i.h., [[p1]]
Aσ ' [[p1]]

Aσ′

• p ≡ p1 and p2

LHS = [[p1 and p2]]
Aσ

' [[p1]]
Aσ and [[p2]]

Aσ (by definition)

' [[p1]]
Aσ′ and [[p2]]

Aσ′ (by i.h.)

' [[p1 and p2]]
Aσ′

= RHS (by definition)

• p ≡ p1 or p2

LHS = [[p1 or p2]]
Aσ

' [[p1]]
Aσ or [[p2]]

Aσ (by definition)

' [[p1]]
Aσ′ or [[p2]]

Aσ′ (by i.h.)

' [[p1 or p2]]
Aσ′

= RHS (by definition)

• p ≡ F(t1, . . . , tm)

Immediately from the functionality lemma for terms (3.3.5).

• p ≡ if p0 then p1 else p2 fi

By assumption, σ ≈ σ′(rel Var(pi)), for i = 0, 1, 2

4. The Proof system PPL/SL(A) 46

So by i.h., [[pi]]
Aσ ' [[pi]]

Aσ′, for i = 0, 1, 2

and the result follows directly from the definition.

• p ≡ ∃x[p1]

By assumption, σ ≈ σ′(rel Var(p)),

and also σ ≈ σ′(rel Var(p1)\{x}).
Hence for all a, σ{x/a} ¹ Var(p1) ≈ σ′{x/a} ¹ Var(p1).

By i.h., [[p1]]
Aσ{x/a} ' [[p1]]

Aσ′{x/a}
and there exist a [[p1]]

Aσ{x/a} iff there exists a [[p1]]
Aσ′{x/a}.

i.e. [[p]]Aσ ' [[p]]Aσ′.

• p ≡ ∀x[p1]

Similarly.

Remark 4.3.2. This generalizes the functionality (or “coincidence”) lemma for total

algebras [SA91, TZ00].

Corollary 4.3.3. If x 6∈ Var(p) then [[p]]Aσ{x/a} ' [[p]]Aσ.

Lemma 4.3.4 (Substitution lemma for assertions).

[[t]]Aσ ↓ ⇒ ([[p[x/t]]]Aσ ' [[p]]Aσ{x/[[t]]Aσ})

Proof. Take an arbitrary σ and assume [[t]]Aσ ↓ . We want to prove that

([[p[x/t]]]Aσ ' [[p]]Aσ{x/[[t]]Aσ}) ↓ tt

by structural induction on p.

4. The Proof system PPL/SL(A) 47

• p ≡ true

[[true]]Aσ = tt = [[true]]Aσ{x/[[t]]Aσ}.
• p ≡ false

[[false]]Aσ = ff = [[false]]Aσ{x/[[t]]Aσ}.
• p ≡ not p1

LHS = [[(not p1)[x/t]]]
Aσ

' [[not (p1[x/t])]]
Aσ (by definition)

' not [[p1[x/t]]]
Aσ (by definition)

' not [[p1]]
Aσ{x/[[t]]Aσ} (by i.h.)

' [[not p1]]
Aσ{x/[[t]]Aσ}

= RHS (by definition).

• p ≡ p1 and p2

LHS = [[(p1 and p2)[x/t]]]
Aσ

' [[(p1[x/t] and p2[x/t])]]
Aσ (by definition)

' [[p1[x/t]]]
Aσ and [[p2[x/t]]]

Aσ (by definition)

' [[p1]]
Aσ{x/[[t]]Aσ} and [[p2]]

Aσ{x/[[t]]Aσ} (by i.h.)

' [[p1 and p2]]
Aσ{x/[[t]]Aσ} (by definition)

= RHS.

• p ≡ p1 or p2

LHS = [[(p1 or p2)[x/t]]]
Aσ

' [[(p1[x/t] or p2[x/t])]]
Aσ (by definition)

' [[p1[x/t]]]
Aσ or [[p2[x/t]]]

Aσ (by definition)

' [[p1]]
Aσ{x/[[t]]Aσ} or [[p2]]

Aσ{x/[[t]]Aσ} (by i.h.)

' [[p1 or p2]]
Aσ{x/[[t]]Aσ} (by definition)

4. The Proof system PPL/SL(A) 48

= RHS.

• p ≡ F(t1, . . . , tm)

Immediately from the substitution lemma for terms (Lemma 3.3.7).

• p ≡ if p0 then p1 else p2 fi

As with the substitution lemma for terms (Lemma 3.3.7).

• p ≡ ∃y[p1]

Subcase 1 : x ≡ y

[[∃x[p1][x/t]]]
Aσ

' [[∃x[p1]]]
Aσ (by definition)

' [[∃x[p1]]]
Aσ{x/[[t]]Aσ} (by Corollary 4.3.3)

Subcase 2 : x 6≡ y and y 6∈ Var(t)

We only prove the case [[∃y[p1][x/t]]]
Aσ ↓ tt.

(The case ff is similar, and the case ↑ is easy.)

[[∃y[p1][x/t]]]
Aσ

' [[∃y[p1[x/t]]]]
Aσ (by definition)

' [[p1[x/t]]]
Aσ{y/ a} (by definition with a suitably chosen)

' [[p1]]
Aσ{y/a}{x/[[t]]Aσ{y/ a}} (by i.h.)

' [[p1]]
Aσ{y/ a}{x/[[t]]Aσ} (since y 6∈ Var(t))

' [[p1]]
Aσ{x/[[t]]Aσ}{y/ a} (Lemma 3.2.3 for variant of state)

' [[∃y[p1]]]
Aσ{x/[[t]]Aσ} (by definition)

Subcase 3 : x 6≡ y and y ∈ Var(t)

We only prove the case [[∃y[p1][x/t]]]
Aσ ↓ tt.

(The case ff is similiar, and the case ↑ is easy.)

[[∃y[p1][x/t]]]
Aσ

4. The Proof system PPL/SL(A) 49

' [[∃y′[p1[y/y
′][x/t]]]]Aσ (by definition)

' [[p1[y/y
′][x/t]]]Aσ{y′/ a} (by definition with a suitably chosen)

' [[p1[y/y
′]]]A(σ{y′/ a}{x/[[t]]Aσ}) (by i.h.)

' [[p1]]
Aσ{y′/ a}{x/[[t]]Aσ}{y/σ{y′/ a}{x/[[t]]Aσ}(y′)} (by i.h.)

' [[p1]]
Aσ{x/[[t]]Aσ}{y/ a}{y′/ a} (Lemma 3.2.3 for variant of state)

' [[p1]]
Aσ{x/[[t]]Aσ}{y/ a} (since y′ 6∈ Var(p1))

' [[∃y[p1]]]
Aσ{x/[[t]]Aσ} (by definition)

Remark 4.3.5. This generalizes the substitution lemma for total algebras [SA91,

TZ88].

4.4 Hoare formulae

Definition 4.4.1 (Syntax of Hoare formulae). The class of Hoare formulae f, . . .

is defined by:

f ::= p 7→ q | {p} S {q}

Definition 4.4.2 (A-validity of Hoare formulae). Validity of a formula f w.r.t.

A, or A-validity of f, written as

|=A f

is defined as:

4. The Proof system PPL/SL(A) 50

Case1 : f ≡ p 7→ q

|=A f iff for all σ, if [[p]]Aσ ↓ tt then [[q]]Aσ ↓ tt

Case2 : f ≡ { p }S {q}
|=A f iff for all σ, if [[p]]Aσ ↓ tt then [[S]]Aσ ↓ and [[q]]A([[S]]Aσ) ↓ tt

Remark 4.4.3. This notion of validity is also called total correctness of Hoare for-

mulae as opposed to partial correctness (cf. §1.1).

4.5 The proof system PPL/SL(A)

Assumption 4.5.1 (Definedness assumption). In working with PPL(Σ), we

must assume the algebra A satisfies :

For all Σ-sorts s, we can define an assertion defs(t) such that for all Σ-terms t and

σ ∈ State(A),

[[defs(t)]]
Aσ ↓ ⇔ [[t]]Aσ ↓ .

For example, for every total equality or semi-equality Σ-sort s e.g. s = nat, we

can take

defs(t) ≡df eqs(t, t).

For booleans b, take

[[defbool(b)]]
A ≡df (b or not(b))

4. The Proof system PPL/SL(A) 51

and for the sort real, we can take

defreal(t) ≡df lessreal(t, t + 1).

Lemma 4.5.2 (Definedness for PPL(Σ)).

|=A defbool(b) ⇔ for all σ, [[b]]Aσ ↓ (tt or ff).

Proof. Immediate from the definition.

Definition 4.5.3 (Inferences and their validity). An inference is a construct of

the form:

f1, . . . , fn

f
(1)

with fi, (i = 1, . . . , n) and f ∈ Form .

The inference (1) above is called A-valid whenever

|=A fi (i = 1, . . . , n) ⇒ |=A f

i.e. A-validity of the premisses implies A-validity of the conclusion.

Note that an axiom is an inference without premisses (i.e. n = 0).

Definition 4.5.4 (Proof system PPL/SL(A)). The proof system PPL/SL(A)

consists of the following axioms and inference rules:

(a) Axioms:

4. The Proof system PPL/SL(A) 52

1. (Assertions)

All A-valid formulae p 7→ q

2. (Assignment)

{defs(t) cand p[x/t]} x := t {p}

(b) Inference rules:

1. (Consequence)

p 7→ p1, {p1}S{q1}, q1 7→ q

{p}S{q}

2. (Composition)

{p}S1{q}, {q}S2{r}
{p}S1; S2{r}

3. (Conditional)

p 7→ defbool(b), {p cand b}S1{q}, {p cand (not b)}S2{q}
{p}if b then S1 else S2 fi {q}

Remark 4.5.5.

PPL/SL(A) is not a “proof system” in the normal sense, since for any N -standard

algebra A, A-validity of assertions is not decidable, or even semi-decidable (by Tarski’s

Theorem [Tar55] that arithmetical truth is not arithmetically definable), and so (from

4. The Proof system PPL/SL(A) 53

Axiom 1) the axioms of PPL/SL(A) are not decidable. This remark also applies to

the other proof systems considered in this thesis, and to proof systems for Hoare

Logic in general [Coo78].

4.6 Soundness of proof system PPL/SL(A)

Lemma 4.6.1 (A-validity of assignment rule).

|=A {defs(t) cand p[x/t]} x := t {p}

Proof. Assume for all σ,

[[defs(t) cand p[x/t]]]Aσ ↓ tt. (4.1)

We want to show that

[[x := t]]Aσ ↓ (4.2)

and

[[p]]A([[x := t]]Aσ) ↓ tt (4.3)

By (4.1):

[[def(t)]]Aσ ↓ tt (4.4)

4. The Proof system PPL/SL(A) 54

and

[[p[x/t]]]Aσ ↓ tt (4.5)

By (4.4) and the definedness lemma (4.5.2),

[[t]]Aσ ↓ (4.6)

Hence by Definition 3.3.1,

[[x := t]]Aσ ↓ σ{x/[[t]]Aσ}. (4.7)

By (4.6) and the substitution lemma for assertions (4.3.4),

[[p[x/t]]]Aσ ' [[p]]Aσ{x/[[t]]Aσ} (4.8)

So

[[p]]A([[x := t]]Aσ) ' [[p]]Aσ{x/[[t]]Aσ} by (4.7)

' [[p[x/t]]]Aσ by (4.8)

↓ tt by (4.5)

i.e. (4.2) and (4.3) holds.

4. The Proof system PPL/SL(A) 55

Lemma 4.6.2 (A-validity of consequence rule). The inference

(p 7→ p1), {p1}S{q1}, (q1 7→ q)

{p}S{q}

is A-valid.

Proof. Assume that for all σ,

|=A p 7→ p1 (4.9)

and

|=A {p1}S{q1} (4.10)

and

|=A q1 7→ q (4.11)

We must show

|=A {p}S{q} (4.12)

Take any σ and assume [[p]]Aσ ↓ tt. By (4.9)

[[p1]]
Aσ ↓ tt,

4. The Proof system PPL/SL(A) 56

by (4.10)

[[S]]Aσ ↓ and [[q1]]
A([[S]]Aσ) ↓ tt,

and by (4.11),

[[q]]A([[S]]Aσ) ↓ tt.

i.e. (4.12) holds.

Lemma 4.6.3 (A-validity of sequential composition rule).

The inference

{p}S1{q}, {q}S2{r}
{p}S1; S2{r}

is A-valid.

Proof. Assume that for all σ,

|=A {p}S1{q} (4.13)

and

|=A {q}S2{r} (4.14)

4. The Proof system PPL/SL(A) 57

We must show

|=A {p}S1; S2{r}. (4.15)

Take any σ and assume [[p]]Aσ ↓ tt. By (4.13)

[[S1]]
Aσ ↓ and [[q]]A([[S1]]

Aσ) ↓ tt. (4.16)

By (4.14), for σ′ = [[S1]]
Aσ, we infer that

[[S2]]
Aσ′ ↓ and [[r]]A([[S2]]

Aσ′) ↓ tt, (4.17)

and so by (4.16) and (4.17), and the semantics of composition,

[[S1; S2]]
Aσ ↓ and [[r]]A([[S1; S2]]

Aσ) ↓ tt.

Lemma 4.6.4 (A-validity of conditional rule).

The inference

p 7→ defbool(b) , {p cand b}S1{q}, {p cand (not b)}S2{q}
{p} if b then S1 else S2 fi {q}

is A-valid.

4. The Proof system PPL/SL(A) 58

Proof. Assume that for all σ,

|=A p 7→ defbool(b) (4.18)

and

|=A {p cand b}S1{q} (4.19)

and

|=A {p cand (not b)}S2{q}. (4.20)

We must show

|=A {p} if b then S1 else S2 fi {q} (4.21)

Take any σ and assume

[[p]]Aσ ↓ tt. (4.22)

By (4.18) and the definedness lemma (Lemma 4.5.2),

[[b]]Aσ ↓ (tt or ff). (4.23)

Case 1 : [[b]]Aσ ↓ tt. By (4.19) and (4.22)

4. The Proof system PPL/SL(A) 59

[[S1]]
Aσ ↓ and [[q]]A([[S1]]

Aσ) ↓ tt. (4.24)

Case 2 : [[b]]Aσ ↓ ff. By (4.20) and (4.22)

[[S2]]
Aσ ↓ and [[q]]A([[S2]]

Aσ) ↓ tt. (4.25)

Then (4.21) follows from (4.22), (4.23), (4.24) and (4.25) .

Theorem 4.6.5 (Soundness of PPL/SL(A)). For all f ∈ Form ,

PPL/SL(A) ` f ⇒ |=A f

Proof. Since the axioms are A-valid and the proof rules preserve A-validity (Lemmas

4.6.1−−4.6.4), the result follows by induction on the proof length.

4.7 The weakest precondition

We are often interested, not just in any precondition p such that, for given S and q,

|=A { p } S { q },

but in a “best possible” precondition p. This idea is made precise in the concept of

weakest precondition. The reasons for studying the weakest precondition are:

(1) it can be helpful in proving the completeness of proof systems (which we will not

actually do in this thesis); and

4. The Proof system PPL/SL(A) 60

(2) we will use the weakest precondition in our case study (Chapter 8) to find

intermediate assertions for the correctness proof.

Definition 4.7.1 (Weakest precondition). Given a statement S and predicate

q on A, a weakest precondition with respect to S and q is an assertion, written

wpA(S, q), which holds at any σ ∈ State(A) (i.e. its value at σ is tt) iff

[[S]]Aσ ↓ and [[q]]A([[S]]A)σ ↓ tt

Definition 4.7.2 (weak A-implication and weak A-equivalence).

(a) p |⇒
A

q iff for all σ ([[p]]Aσ ↓ tt ⇒ [[q]]Aσ ↓ tt)

(b) p |=|
A

q iff p |⇒
A

q and q |⇒
A

p

i.e. for all σ ([[p]]Aσ ↓ tt ⇔ [[q]]Aσ ↓ tt).

Remark 4.7.3.

p |⇒
A

q iff |=A (p 7→ q)

Definition 4.7.4 (Strong A-equivalence).

(a) p and q are strongly A-equivalent iff for all σ ∈ State(A), all three of the

following hold:

(1) [[p]]Aσ ↓ tt ⇔ [[q]]Aσ ↓ tt,

(2) [[p]]Aσ ↓ ff ⇔ [[q]]Aσ ↓ ff,

(3) [[p]]Aσ ↑ ⇔ [[q]]Aσ ↑ .

4. The Proof system PPL/SL(A) 61

(b) p and q are weakly A-equivalent iff (1) alone holds.

The weakest precondition wpA(S, q) is characterized by the following two proper-

ties :

Lemma 4.7.5. For all q ∈ Assn ,

(a) |=A { wpA(S, q) } S { q }

(b) For each r, if |=A { r } S { q }, then r |⇒
A

wpA(S, q)

Proof. (a) We have to show that for all σ,

[[wpA(S, q)]]Aσ ↓ tt ⇒ [[S]]Aσ ↓ and [[q]]Aσ ↓ tt,

which follows immediately from Definition 4.7.1.

(b) Choose some r and assume that for all σ,

[[r]]Aσ ↓ tt ⇒ [[S]]Aσ ↓ and [[q]]Aσ ↓ tt

⇒ [[wpA(S, q)]]Aσ ↓ tt (by Definition 4.7.1).

Hence

r |⇒
A

wpA(S, q).

Corollary 4.7.6 (Uniqueness of weakest precondition). Any two weakest pre-

conditions of S and q on A are weakly A-equivalent.

4. The Proof system PPL/SL(A) 62

Proof. Clear from the definition.

We can therefore speak of “the” weakest precondition of S and q on A, since it is

unique up to weak A-equivalence.

Now we show that the preconditions in our proof rules are the best possible, i.e.,

the weakest.

Lemma 4.7.7. For each q ∈ Assn ,

wpA(x := t, q) |=|
A

defs(t) cand q[x/t]

Proof. This follows directly from Definition 4.7.1 and Lemma 4.3.4.

Remark 4.7.8 (Strict and non-strict logical operator). It is easy to check that

p cand q |=|
A

p and q

However they are not strongly equivalent. But since they are weakly equivalent, we

could have defined

wpA(x := t, q) =df defs(t) and p[x/t].

The question then is: why did we choose to define the weakest precondition using the

non-strict logical operator ‘cand’ instead of the strict logical operator ‘and’ ? The

answer is that this seem to reflect the meaning of the assertions more clearly. Note

4. The Proof system PPL/SL(A) 63

incidently that ‘cor’ is not (even) weakly equivalent to ‘or’, in fact,

(p or q) |⇒
A

(p cor q)

but (in general)

(p cor q) |6⇒
A

(p or q)

Lemma 4.7.9. For each q ∈ Assn ,

(a) wpA(S1; S2, q) |=|
A

wpA(S1, (wpA(S2, q))

(b) wpA(if b then S1 else S2 fi, q) |=|
A

if b then wpA(S1, q) else wpA(S2, q) fi

Proof. (a) For each σ,

[[wpA(S1; S2, q)]]
Aσ ↓ tt

⇔ [[S1; S2]]
Aσ ↓ and [[q]]A([[S1; S2]]

Aσ) ↓ tt

⇔ [[S2]]
A([[S1]]

Aσ) ↓ and [[q]]A([[S2]]
A([[S1]]

Aσ)) ↓ tt

⇔ [[S1]]
Aσ ↓ and [[wpA(S2, q)]]

A([[S1]]
Aσ) ↓ tt

⇔ [[wpA(S1, wpA(S2, q))]]
Aσ ↓ tt

(b) For each σ,

[[wpA(if b then S1 else S2 fi, q)]]Aσ ↓ tt

⇔ [[if b then S1 else S2 fi]]Aσ ↓ and [[q]]A([[if b then S1 else S2 fi]]Aσ) ↓ tt

⇔ [[b]]Aσ ↓ tt and [[q]]A([[S1]]
Aσ) ↓ tt or [[b]]Aσ ↓ ff and [[q]]A([[S2]]

Aσ) ↓ tt

⇔ [[if b then wpA(S1, q) else wpA(S2, q) fi]]Aσ ↓ tt.

Chapter 5

The Proof System TPL/SL(A)

As our second approach to a predicate logic underlying Hoare Logic over partial alge-

bras, we will define total or 2-valued predicate logic TPL(Σ) and use it to construct

total assertions. In this approach, we have Bool
⋂

Assn = ∅ (compare with Bool

⊂ Assn in PPL(Σ) in Chapter 4). We will then present the second proof system

TPL/SL(A) and prove its soundness.

5.1 Total predicate logic

The main objective of TPL(Σ) is to remain within classical predicate logic, hence it is

built on classical 2-valued total predicate logic with equality. TPL(Σ) is constructed

in two steps. The first step gives the interpretation of the atomic assertions. In

the second step, assertions are built from atomic assertions by the classical 2-valued

logical connectives. More specifically, TPL(Σ) is defined in such a way that :

(i) If we evaluate an atomic assertion (t1 = t2) at a state where either t1 or t2 is

64

5. The Proof System TPL/SL(A) 65

undefined, then this atomic assertion will evaluate to ff.

(ii) Compound assertions are then evaluated as in classical (total) predicate logic.

This approach to predicate logic for partially defined terms has been defined in

[Far90, Par93].

5.2 2-valued assertion language

(Compare §4.1.) Atomic assertions have the form (only)

ts1 = ts2

i.e. total equality between two Σ-terms of sort s, for all Σ-sorts S (not just equality

sorts). Note that ‘=’ is not the same as the boolean equality operator eqs, which

exists only at equality sorts s, and may be partial.

The class Assn(Σ) of assertions p, q, . . . is defined by :

p :: = (ts1 = ts2) | p1 ∧ p2 | p1 ∨ p2 | ¬p | ∃x[p] | ∀x[p]

where s is any Σ-sort. For p ∈ Assn(Σ), we define the semantic function

[[p]]A : State(A) → B

where [[p]]Aσ is the value of p in A at state σ. Note this function is a total 2-valued

function. The definition is by structural induction on p :

5. The Proof System TPL/SL(A) 66

[[t1 = t2]]
Aσ =

tt if [[t1]]
Aσ ↓ a and [[t2]]

Aσ ↓ a

ff otherwise

[[¬p]]Aσ =

tt if [[p]]Aσ = ff

ff otherwise

[[p1 ∧ p2]]
Aσ =

tt if [[p1]]
Aσ = tt and [[p2]]

Aσ = tt

ff otherwise

[[p1 ∨ p2]]
Aσ =

tt if [[p1]]
Aσ = tt or [[p2]]

Aσ = tt

ff otherwise

[[∃x[p]]]Aσ =

tt if for some a ∈ As, [[p]]Aσ{x/ a } = tt

ff otherwise

[[∀x[p]]]Aσ =

tt if for all a ∈ As, [[p]]Aσ{x/a} = tt

ff otherwise

Note that the definition above can be formulated as,

[[¬p1]]
Aσ = not ([[p1]]

Aσ)

[[p1 ∧ p2]]
Aσ = ([[p1]]

Aσ and [[p2]]
Aσ)

[[p1 ∨ p2]]
Aσ = ([[p1]]

Aσ or [[p2]]
Aσ)

[[t1 = t2]]
Aσ = ([[t1]]

Aσ =
2vs

[[t2]]
Aσ)

In the above definition, ‘and’, ‘or’, ‘not’ and ‘=
2vs

’ are meta-level logical operators. The

5. The Proof System TPL/SL(A) 67

meaning of ‘=
2vs

’ is given by

[[t1 =
2vs

t2]]
Aσ =

tt if [[t1]]
Aσ ↓ a and [[t2]]

Aσ ↓ a

ff otherwise

Lemma 5.2.1 (Definedness for TPL(Σ)).

[[(t = t)]]Aσ =

tt if [[t]]Aσ ↓

ff if [[t]]Aσ↑

(Compare the definedness lemma(4.4.2) for PPL(Σ).)

5.3 Functionality and substitution lemmas for as-

sertions

The substitution for assertions are the same as for PPL(Σ) (§4.2).

(Compare §3.3 and §4.3).

Lemma 5.3.1 (Functionality lemma for assertions).

If σ ≈ σ′(rel Var(p)) then [[p]]Aσ = [[p]]Aσ′.

Proof. Suppose that σ ≈ σ′(rel Var(p)). We want to show that [[p]]Aσ = [[p]]Aσ′ by

structural induction on p. The interesting case is:

p ≡ (t1 = t2)

5. The Proof System TPL/SL(A) 68

LHS ≡ [[t1 = t2]]
Aσ

= ([[t1]]
Aσ =

2vs
[[t2]]

Aσ) (by definition)

RHS ≡ [[t1 = t2]]
Aσ′

= ([[t1]]
Aσ′ =

2vs
[[t2]]

Aσ′) (by definition).

By the functionality lemma for terms,

[[t1]]
Aσ ' [[t1]]

Aσ′ and [[t2]]
Aσ ' [[t2]]

Aσ′.

Case 1 : Suppose [[t1]]
Aσ ↓ a and [[t2]]

Aσ ↓ a.

Then [[t1]]
Aσ′ ↓ a1 and [[t2]]

Aσ′ ↓ a2,

and so LHS = tt = RHS.

Case 2 : Suppose [[t1]]
Aσ ↓ a1 and [[t2]]

Aσ ↓ a2 and a1 6= a2,

Then [[t1]]
Aσ′ ↓ a1 and [[t2]]

Aσ′ ↓ a2,

and so LHS = ff = RHS.

Case 3 : Suppose [[t1]]
Aσ ↑ or [[t2]]

Aσ ↑ .

Then, correspondingly [[t1]]
Aσ′ ↑ or [[t2]]

Aσ′ ↑,
and so LHS = ff = RHS.

The other cases (¬p1, p1 ∧ p2, p1 ∨ p2,∃x[p1], ∀x[p1]) resemble those in the proof

for PPL(Σ) in Lemma 4.3.1 (although the underlying logic is, of course, completely

different) and we therefore omits the proofs.

Remark 5.3.2. This also generalize the functionality (or “coincidence”) lemma for

total algebras (cf. Remark 4.3.2).

Corollary 5.3.3. If x 6∈ Var(p) then [[p]]Aσ{x/a} ' [[p]]Aσ.

5. The Proof System TPL/SL(A) 69

Lemma 5.3.4 (Substitution lemma for assertions).

[[t]]Aσ ↓ ⇒ ([[p[x/t]]]Aσ = [[p]]Aσ{x/[[t]]Aσ})

Proof. Assume [[t]]Aσ ↓ . We want to prove

([[p[x/t]]]Aσ = [[p]]Aσ{x/[[t]]Aσ}) = tt.

We prove this by structural induction on p. The interesting case is:

p ≡ (t1 = t2)

LHS ≡ [[(t1 = t2)[x/t]]]Aσ

= [[t1[x/t] = t2[x/t]]]Aσ (by definition of substitution)

= [[t1[x/t]]]Aσ = [[t2[x/t]]]Aσ (by definition)

RHS ≡ [[t1 = t2]]
Aσ{x/[[t]]Aσ}

= [[t1]]
Aσ{x/[[t]]Aσ} = [[t2]]

Aσ{x/[[t]]Aσ} (by definition)

Case 1: Suppose [[t1[x/t]]]Aσ ↓ a and [[t2[x/t]]]Aσ ↓ a

By the substitution lemma for terms (3.2.7).

[[t1[x/t]]]Aσ ' [[t1]]
Aσ{x/[[t]]Aσ} and [[t2[x/t]]]Aσ ' [[t2]]

Aσ{x/[[t]]Aσ},
So it follows that [[t1]]

Aσ{x/[[t]]σ} ↓ a and [[t2]]
Aσ{x/[[t]]Aσ} ↓ a,

and so LHS = tt = RHS.

Case 2: [[t1[x/t]]]Aσ ↓ a1 and [[t2[x/t]]]Aσ ↓ a2 and a1 6= a2,

and so LHS = ff = RHS.

Case 3: [[t1[x/t]]]Aσ′ ↑ or [[t2[x/t]]]Aσ′ ↑,
Then LHS = ff.

5. The Proof System TPL/SL(A) 70

By the substitution lemma for terms, it follows that the corresponding

[[t1]]
Aσ{x/[[t]]Aσ} ↑ or [[t2]]

Aσ{x/[[t]]Aσ} ↑
So also RHS = ff.

The other cases (¬p1, p1 ∧ p2, p1 ∨ p2,∃x[p1],∀x[p1]) resemble those in the proof

of Lemma 4.3.4 (although again the underlying logic is completely different) and we

therefore omits the proofs.

Remark 5.3.5. This generalizes the substitution lemma for total algebras (cf. Re-

mark 4.3.5).

5.4 Hoare formulae

The definition of Hoare formulae, and their A-validity, is exactly the same as for

PPL/SL(A) (§4.4), even though the underlying logic is different.

5.5 The proof system TPL/SL(A)

A-validity of inferences are defined exactly as for PPL/SL(A) (cf. Definition 4.5.3).

Definition 5.5.1 (Proof system TPL/SL(A)). The proof system TPL/SL(A)

consists of axioms and inference rules (cf. Definition 4.5.4):

(a) Axioms:

1. (Assertions)

All A-valid formulae p 7→ q

5. The Proof System TPL/SL(A) 71

2. (Assignment)

{(t = t) ∧ p[x/t]} x := t {p}

(b) Inference rules:

1. (Consequence)

p 7→ p1, {p1}S{q1}, q1 7→ q

{p}S{q}

2. (Composition)

{p}S1{q}, {q}S2{r}
{p}S1; S2{r}

3. (Conditional)

(p 7→ (b = b)), {p ∧ (b = true)}S1{q}, {p ∧ (b = false)}S2{q}
{p}if b then S1 else S2 fi{q}

Remark 5.5.2. (Comparasion with PPL(Σ)).

These axioms and inference rules are almost the same as for PPL(Σ) (§4.5) except

that

(1) the atomic formulae (ts = ts) take the place of defs(t) in PPL/SL(A).

(2) in the conditional inference rule, the condition (b = b) replaces defbool(b).

5. The Proof System TPL/SL(A) 72

5.6 Soundness of the proof system TPL/SL(A)

Lemma 5.6.1 (A-validity of assignment rule).

|=A {(t = t) ∧ p[x/t]} x := t {p}

Proof. Similar to Lemma 4.6.1.

Lemma 5.6.2 (A-validity of consequence rule). The inference

(p 7→ p1), {p1}S{q1}, (q1 7→ q)

{p}S{q}

is A-valid.

Proof. Similar to Lemma 4.6.2.

Lemma 5.6.3 (A-validity of sequential composition rule). The inference

{p}S1{q}, {q}S2{r}
{p}S1; S2{r}

is A-valid.

Proof. Similar to Lemma 4.6.3.

Lemma 5.6.4 (A-validity of conditional rule). The inference

p 7→ ((b = b)), {p ∧ (b = true)}S1{q}, {p ∧ (b = false)}S2{q}
{p}if b then S1 else S2 fi{q}

is A-valid.

5. The Proof System TPL/SL(A) 73

Proof. Similar to Lemma 4.6.4.

Theorem 5.6.5 (Soundness of TPL/SL(A)). For all f ∈ Form(Σ),

(TPL/SL(A)) ` f ⇒ |= f

Proof. Since the axioms are valid and the proof rules preserve the validity (Lemma

5.6.1–5.6.4), the result follows by induction on the proof length.

5.7 The weakest precondition

(Compare §4.7).

Definition 5.7.1 (Weakest preconditions). Given a statement S and predicate

q on A, a weakest precondition with respect to S and q is an assertion, written

wpA(S, q), which holds at any σ ∈ State(A) (i.e. its value at σ is tt) iff

[[S]]Aσ ↓ and [[q]]A([[S]]Aσ) = tt

Note that this definition is identical to the definition (4.7.1) for PPL(Σ), although

the underlying logic is quite different.

Definition 5.7.2 (A-implication and A-equivalence).

(i) p |⇒
A

q iff for all σ ([[p]]Aσ = tt ⇒ [[q]]Aσ = tt)

(ii) p |=|
A

q iff p |⇒
A

p and q |⇒
A

p

i.e. for all σ [[p]]Aσ = tt ⇔ [[q]]Aσ = tt

5. The Proof System TPL/SL(A) 74

Definition 5.7.3 (A-equivalence). (a) p and q are A-equivalent iff for all σ ∈
State(A) :

[[p]]Aσ = tt |=|
A

[[q]]Aσ = tt

Note that in TPL(Σ), there are not two concepts of A-implication and A-

equivalence (“weak” and “strong”) as in PPL(Σ) (compare §4.7).

Again, we have

Lemma 5.7.4. For all q ∈ Assn ,

(a) |=A { wpA(S, q) } S { q }

(b) For each r, if |=A { r } S { q }, then |=A r 7→ wpA(S, q)

The proof resembles that of Lemma 4.7.5.

Corollary 5.7.5 (Uniqueness of weakest precondition). Any two weakest pre-

condition of S and q on A are A-equivalent (cf. Corollary 4.7.6).

We can therefore talk about “the” weakest precondition of S and q on A. We can

now show that the preconditions in our proof rules are “best possible”.

Lemma 5.7.6. For each q ∈ Assn ,

wpA(x := t, q) |=|
A

(t = t) ∧ q[x/t]

Proof. This follows directly from Definition 5.7.1 and Lemma 5.3.4.

5. The Proof System TPL/SL(A) 75

Lemma 5.7.7. For each q ∈ Assn ,

(i) wpA(S1; S2, q) |=|
A

wpA(S1, (wpA(S2, q))

(ii) wpA(if b then S1 else S2 fi, q) |=|
A

if b then wpA(S1, q) else wpA(S2, q) fi

Proof. This resembles the proof of Lemma 4.7.9.

Chapter 6

SLCC (Σ) Programs and the Proof

System TPL/SLCC (A)

In this chapter, we will study the non-deterministic programming language SLCC

= SLCC (Σ) on standard many-sorted partial algebras.

The language SLCC extend SL (Chapter 3) with a new atomic program state-

ment

choose z : b

where z:nat and b is a boolean term. Intuitively, this construct selects an arbitrary

value for z which makes b true, if there is such a value, and diverges otherwise. This

makes SLCC (unlike SL) a nondeterministic programming language, i.e., from a

given initial state more than one execution sequence may be generated.

We give the complete definition of the syntax and semantics of SLCC . For the

76

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 77

assertions and logic, we choose to work with TPL(Σ). (The theory for PPL(Σ) is

similar, see Remark 6.5.8). Finally, we present the proof system TPL/SLCC (A)

and prove its soundness.

Assume Σ is an N -standard signature, and A is an N -standard partial Σ-algebra.

6.1 Syntax of SLCC (Σ)

Like SL, SLCC has four syntactic classes: variables , terms , statements and proce-

dures . The classes Var(Σ) and Term(Σ) are exactly as in SL (§3.1). Next:

(c) AtSt = AtSt(Σ) is the class of atomic statements Sat, . . . , defined by

Sat ::= skip | x := t | choose znat : b

where x := t is a concurrent assignment as before. Note we have a new atomic

program statement: ‘choose z : b’ which selects some value k such that b[z/k] is

true, if any such k exists (and is undefined otherwise).

In our abstract semantics (§6.2), we will give its meaning as the set of all possible

k’s which make b[z/k] true (hence “countable choice”). Any concrete computation

will select a particular k, according to the implementation.

(d) Stmt = Stmt(Σ) is the class of statements S, . . . , defined by:

S ::= Sat | S1; S2 | if b then S1 else S2 fi.

Finally the class Proc(Σ) of SLCC procedures is defined as in SL.

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 78

6.2 Semantics of SLCC (Σ)

We interpret SLCC programs as countably-many-valued state transformations, and

SLCC procedures as defining countably-many-valued functions on A. A many-

valued function from A to B can be taken to be a subset of A×B, or (equivalently)

a total function from A to Pω(B). We take the latter approach here. We first give

some definitions and notations for many-valued functions.

Notation 6.2.1. (a) Pω(X) is the set of all countable subsets of a set X, including

the empty set.

(b) P+
ω (X) is the set of all countable non-empty subsets of X.

(c) We write Y ↑ for Y ∪ { ↑ }, where ‘↑’ denotes divergence.

(d) We write f : X ⇒ Y for f : X →Pω(Y).

(e) We write f : X ⇒+ Y for f : X →P+
ω (Y).

We will interpret a SLCC procedure P : u → v as a countably-many-valued

function PA from Au to Av↑, i.e., as a function

PA : Au → P+
ω (Av↑)

or, in the above notation ([TZ04]):

PA : Au ⇒+ Av↑.

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 79

Definition 6.2.2 (Semantics of statements). We give the detailed semantic def-

inition of SLCC programs.

(a) The meaning of Sat ∈ AtSt is a function

〈|Sat|〉 : State(A) ⇒+ State(A)↑

defined by:

〈|skip|〉Aσ = {σ }

〈|x := t|〉Aσ '

{σ{x/a} } if [[t]]Aσ ↓ a

{ ↑ } if [[t]]Aσ↑

〈|choose z : b|〉Aσ '

{σ{z/k} | [[b]]Aσ{z/k} ↓ tt } if for some k [[b]]Aσ{z/k} ↓ tt

{ ↑ } otherwise, i.e., for all k ([[b]]Aσ{z/k} ↓ ff or ↑)

(b) The meaning of S ∈ Stmt is a function

[[S]] : State(A) ⇒+ State(A)↑

defined by structural induction on S:

[[Sat]]
Aσ ' 〈|Sat|〉σ

[[S1; S2]]
Aσ '

⋃
{ [[S2]]

Aσ′ | σ′ ∈ [[S1]]
Aσ } ∪ { ↑ | ↑ ∈ [[S1]]

Aσ }

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 80

[[if b then S1 else S2 fi]]Aσ '

[[S1]]
Aσ if [[b]]Aσ ↓ tt

[[S2]]
Aσ if [[b]]Aσ ↓ ff

{ ↑ } otherwise

Lemma 6.2.3. For S ∈ AtSt and σ ∈ State(A),

〈|S|〉σ is either a singleton set {↑} or a non-empty set of proper states σ′ (6= ↑).

Proof. This depends on the fact that the semantics of boolean terms are single-

valued.

Definition 6.2.4 (Semantics of procedures). If

P ≡ func in a out b aux c begin S end

is a procedure of type u → v, then its meaning in A is a function

PA : Au ⇒+ Av↑

defined as follow: for x ∈ Au,

PA(x) = {σ′(b) | σ′ ∈ [[S]]Aσ } ∪ { ↑ | ↑ ∈ [[S]]Aσ }

where σ is any state on A such that σ[a] = x.

Remark 6.2.5. A SLCC procedure P : u → v is deterministic on A if for all

x ∈ Au, PA(x) is a singleton.

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 81

6.3 Assertions

We are going to use TPL(Σ) to construct our assertion language. This is exactly the

same as in Chapter 5, with the same 2-valued semantics.

6.4 Hoare formulae

The definition of Hoare formulae is the same as in TPL/SL(A) (§5.4). However,

since the notion of A-validity of Hoare triples depends on the semantics of statements

which is multivalued in SLCC, the A-validity of Hoare formulae in TPL/SLCC (A)

is different from that in TPL/SL(A) or PPL/SL(A).

Definition 6.4.1 (Validity of Hoare formulae). Validity of a formula f w.r.t. A,

or A-validity of f, written as

|=A f,

is defined as:

Case 1: f ≡ p 7→ q

|=A f iff for all σ, if [[p]]Aσ = tt then [[q]]Aσ = tt

Case 2: f ≡ { p } S { q }

|=A f iff for all σ, if [[p]]Aσ = tt then (↑ 6∈ [[S]]Aσ and for all σ′ ∈ [[S]]Aσ, [[q]]Aσ′ = tt).

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 82

Note again that this leads to total correctness (cf.Remark 4.4.3).

6.5 The proof system TPL/SLCC (A) and its

soundness

A-validity of inferences is defined exactly as for TPL/SL(A) (§5.5) or PPL/SL(A)

(§4.5).

Definition 6.5.1 (The proof system TPL/SLCC (A)). The proof system

TPL/SLCC (A) extends TPL/SL(A) (§5.5) by adding an extra axiom for the

‘choose’ statement:

(a) 3. (Choose) { ∃z (b = true) } choose z : b { b = true }

To prove the soundness of TPL/SLCC (A), we must re-prove the A-validity of all

axioms and inferences, since now the semantics of Hoare formulae has now changed

(§6.4).

Lemma 6.5.2 (Validity of ‘choose’ rule).

|=A { ∃z (b = true) } choose z : b { b = true }

Proof. Assume

|=A ∃z (b = true). (6.1)

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 83

i.e. assume for all σ,

for some k, [[b]]Aσ{z/k} ↓ tt, (6.2)

We want to show that

↑ 6∈ [[choose z : b]]Aσ, (6.3)

and

for all σ′ ∈ [[choose z : b]]Aσ, [[b]]Aσ′ ↓ tt. (6.4)

To prove (6.3), suppose (6.3) is false, i.e.

↑ ∈ [[choose z : b]]Aσ, (6.5)

By the semantics of the ‘choose’ statement (§6.2), we have

for all k ∈ N, ([[b]]Aσ{z/k} ↓ ff or [[b]]Aσ{z/k}↑)

which contradicts (6.2).

To prove (6.4), take an arbitrary σ′ ∈ [[choose z : b]]Aσ, Again by the semantics

of the ‘choose’ statement, σ′ must have the form σ{z/k} i.e. σ′ ≡ σ{z/k} for some

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 84

k such that:

[[b]]Aσ{z/k} ↓ tt

thus proving (6.4).

Lemma 6.5.3 (Validity of assignment rule).

|=A { (t = t) ∧ p[x/t] } x := t { p }

Proof. Since if [[t]]Aσ ↓, [[x := t]]Aσ is the singleton {σ{x/[[t]]Aσ}}, the proof is very

similar to that for the assignment axiom in TPL/SLCC (A) (Lemma 5.7.1).

Lemma 6.5.4 (Validity of consequence rule). The inference

(p 7→ p1), {p1}S{q1}, (q1 7→ q)

{p}S{q}

is A-valid.

Proof. Assume

|=A p 7→ p1 (6.6)

and

|=A {p1}S{q1} (6.7)

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 85

and

|=A q1 7→ q. (6.8)

We want to show that

|=A {p}S{q}. (6.9)

Take any σ and assume [[p]]Aσ = tt. By (6.6)

[[p1]]
Aσ = tt,

by (6.7)

↑ 6∈ [[S]]Aσ and for all σ1 ∈ [[S]]Aσ, [[q1]]
A(σ1) = tt,

and by (6.8), for all σ1 ∈ [[S]]Aσ,

[[q]]A(σ1) = tt,

so that (6.9) holds.

Lemma 6.5.5 (Validity of composition rule). The inference

{p}S1{q}, {q}S2{r}
{p}S1; S2{r}

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 86

is A-valid.

Proof. Assume

|=A {p}S1{q} (6.10)

and

|=A {q}S2{r}. (6.11)

We want to show that

|=A {p}S1; S2{r} (6.12)

Take any σ such that

[[p]]Aσ = tt.

By (6.10),

↑6∈ [[S1]]
Aσ and for all σ′ ∈ [[S1]]

Aσ′, [[q]]Aσ′ = tt.

By (6.11), for all σ′ ∈ [[S1]]
Aσ , we have that ↑ 6∈ [[S2]]

Aσ′ and

for all σ′′ ∈ [[S2]]
Aσ′, [[r]]Aσ′′ = tt,

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 87

hence, by the semantics of composition (§6.2)

↑6∈ [[S1; S2]]
Aσ and for all σ′′ ∈ [[S1; S2]]

Aσ, [[r]]Aσ′′ = tt

i.e. (6.12) holds.

Lemma 6.5.6 (Validity of conditional rule). The inference

p 7→ (b = b), {p ∧ (b = true)}S1{q}, {p ∧ (b = false)}S2{q}
{p} if b then S1 else S2 fi {q}

is valid.

Proof. Assume

|=A p 7→ (b = b) (6.13)

and

|=A {p ∧ (b = true)}S1{q} (6.14)

and

|=A {p ∧ (b = false)}S2{q}. (6.15)

We want to show that

|=A {p} if b then S1 else S2 fi {q}. (6.16)

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 88

Take any σ and assume that [[p]]Aσ = tt .

By (6.13) [[b]]Aσ ↓ (tt or ff).

Case 1: [[b]]Aσ ↓ tt. By (6.14),

↑6∈ [[S1]]
Aσ and for all σ′ ∈ [[S1]]

Aσ, [[q]]Aσ′ = tt.

Case 2: [[b]]Aσ ↓ ff. By (6.15),

↑6∈ [[S2]]
Aσ and for all σ′ ∈ [[S2]]

Aσ, [[q]]Aσ′ = tt.

From the semantics of if-then-else-fi (Definition 6.2.2), (6.16) follows.

Theorem 6.5.7 (Soundness of TPL/SLCC (A)). For all f ∈ Form ,

(TPL/SLCC (A)) ` f ⇒ |=A f

Proof. Since the axioms are valid and the proof rules preserve the validity (Lemmas

6.5.2 – 6.5.6), the result follows by induction on the proof length.

Remark 6.5.8 (Comparison with PPL/SLCC (A)). The proof system

PPL/SLCC (A) for partial logic is very similar to TPL/SLCC (A). The only

differences are:

(1) The axiom for ‘choose’ will be

{ ∃z b} choose z : b { b }

(2) The conditional rule is slightly different (as in Definition 4.5.4).

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 89

Of course, the underlying logic and the semantics are completely different.

6.6 Example

To illustrate the use of the ‘choose’ rule, we close this section with a simple example

of a correctness proof of an SLCC program. This example solves the problem of

approximating reals by rationals [TZ04, Example 1.2.3]. Another, more complex,

example to illustrate the use of the ‘choose’ rule is given in Chapter 9.

Example 6.6.1. Let A be the algebraRN
p (Example 2.5.3) augmented by the distance

function

d : R2 → R

given by

d(x, y) = | x − y | (x, y ∈ R).

Then A is a metric algebra, i.e., an algebra in which each carrier is a metric space

such that all the primitive operations are continuous [TZ04]. Let

enumQ : N→ Q

be a standard enumeration of the rationals Q ⊂ R. Let

negexp : N→ R

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 90

be the function

negexp(n) = 2−n

These are both easily definable in While(A) [ZP93]. Alternatively (for the purpose

of this example) we may assume they are included in the signature.

We want to compute a function

f : A× N→ R

such that

f(a, n) = “some” r ∈ Q such that d(a, r) < 2−n.

Note that f is many-valued.

Here is an SLCC procedure for computing f . To make the code more readable,

we write 2−n for negexp(n) and t1 < t2 for lessreal(t1, t2).

We also define the predicate “x is rational”:

rat(x) ≡df ∃ k (enumQ(k) = x)

proc CHOOSE

in a: real,

in n: nat,

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 91

out r: real,

aux k: nat

begin

{ p }
choose k: d(a, enumQ (k)) < 2−n;

{ q2 }
z:= enumQ (k) ;

{ q1 }
{ q }
end.

Our postcondition is

q ≡df rat(r) ∧ d(a, r) < 2−n,

and our precondition is

p ≡df ∃k d(a, enumQ(k)) < 2−n.

which is true in A, by the density of Q in R.

We give the correctness proof of this procedure in the form of assertions inter-

spersed among the statements, instead of a formal proof tree. However it is very easy

to transform this to the proof tree formalism. We define

q1 ≡df ∃k ((enumQ(k) = r) ∧ (d(a, r) < 2−n)),

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 92

Note that

q1
|⇒
A

q.

Define

q2 ≡df d(a, enumQ(k)) < 2−n.

Note that

wpA(r := enumQ(k), q1)

|=|
A

((enumQ(k) = enumQ(k)) ∧ d(a, enumQ(k)) < 2−n)

|=|
A

q2

since enumQ(k) is a total function, and also

(enumQ(k) = enumQ(k)) |=|
A

true.

By the ‘choose’ axiom,

p |=|
A

∃k d(a, enumQ(k)) < 2−n

as required.

6. SLCC (Σ) Programs and the Proof System TPL/SLCC (A) 93

Discussion 6.6.2. Why do we need ‘choose’ for such a simple program? Why can

we not simply use the ‘least’ operation to select the least such k, i.e.,

µk : d(a, enum(k)) < 2−n?

The answer is that this condition is not testable, since lessreal is a partial function.

Why can we not make lessreal a total operation to avoid this problem? The answer is

that the total function ‘less’ would not be continuous, and therefore not computable

(see the discussion in §1.4).

Chapter 7

WhileCC (Σ) Programs and the

Proof System TPL/WhileCC (A)

This chapter will extend the programming language SLCC (Σ) (Chapter 6) to

WhileCC (Σ) by adding the ‘while’ statement. We will study its algebraic opera-

tional semantics, and then present the proof system TPL/WhileCC (A) and prove

its soundness.

Assume (as usual) Σ is an N-standard signature, and A is an N-standard partial

Σ-algebra.

7.1 Syntax of WhileCC (Σ)

The class Var(Σ) and Term(Σ) are exactly as in SL (§3.1). We extended the class

Stmt(Σ) by:

94

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 95

(c) AtSt = AtSt(Σ) is the class of atomic statements Sat, . . . , defined by :

Sat ::= skip | div | x := t | choose znat : b

(d) Stmt = Stmt(Σ) is the class of statements S, . . . , defined by :

S ::= Sat | S1; S2 | if b then S1 else S2 fi | while b do S od

Note the introduction of the ‘div’ (for “local divergence”) statement. This is just

for technical convenience, in defining the ‘Rest ’ function (§7.2).

7.2 Semantics of WhileCC (Σ)

As with SLCC , we will interpret a WhileCC statement as a many-valued state

transformation, and a WhileCC procedure as a countably-many-valued function on

A. This approach follows the semantics of [TZ04] with some minor changes.

Definition 7.2.1 (Semantics of atomic statements). We define the meaning of

an atomic statement Sat ∈ AtSt to be a many-valued function

〈|Sat|〉 : State(A) ⇒+ State(A)↑.

The semantics of atomic statements are the same as for SLCC (Definition 6.2.2).

Definition 7.2.2 (The ‘First ’ and ‘Rest ’ operations). To give the semantics of

non-atomic statements, we need to define two auxiliary functions: First and Rest A.

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 96

For a statement S and a state σ, First(S, σ) is an atomic statement which gives the

first step in the execution of S starting at a state σ, and Rest A(S, σ) is a statement

which gives the rest of the execution of S starting from σ. These operations

First : Stmt × State(A)→ AtSt

and

Rest A : Stmt × State(A) → Stmt ,

are defined as follows:

Case 1 : S is atomic.

First(S, σ) =

S if 〈|S|〉Aσ 6= {↑}

div otherwise

Rest A(S, σ) =

skip if 〈|S|〉Aσ 6= {↑}

div otherwise, i.e., if 〈|S|〉σ = {↑}

Case 2 : S ≡ S1; S2

First(S, σ) = First(S1, σ)

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 97

Rest A(S, σ) =

S2

if S1 is atomic and Rest A(S1, σ) = skip

div

if S1 is atomic and Rest A(S1, σ) = div

Rest A(S1, σ); S2

otherwise, i.e., if S1 is not atomic

Case 3 : S ≡ if b then S1 else S2 fi.

First(S, σ) =

skip if [[b]]Aσ ↓,

div otherwise, i.e., if [[b]]Aσ↑.

Rest A(S, σ) =

S1 if [[b]]Aσ ↓ tt,

S2 if [[b]]Aσ ↓ ff,

div otherwise, i.e. if [[b]]Aσ↑.

Case 4 : S ≡ while b do S0 od.

First(S) =

skip if [[b]]Aσ ↓,

div otherwise, i.e. if [[b]]Aσ↑.

Rest A(S, σ) =

S0; S if [[b]]Aσ ↓ tt,

skip if [[b]]Aσ ↓ ff,

div otherwise, i.e. if [[b]]Aσ↑.

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 98

Definition 7.2.3 (Computation step function). From First we can define the

computation step function

CompStepA : Stmt × State(A) ⇒+ State(A)↑

as

CompStepA(S, σ) ' 〈|First(S, σ)|〉Aσ.

Note that CompStepA(S,σ) gives one step in the execution of S from σ.

Definition 7.2.4 (Computation tree). We use a computation tree to reflect the

execution of a WhileCC statement S from a state σ. It branches according to all

possible outcomes of the one-step computation function CompStepA(S, σ). All the

intermediate nodes of this tree are labelled by proper states σ (6= ↑). It has two kinds

of leaves: a normal leaf of this tree is labelled by a proper state σ (6= ↑), and a

divergent leaf is labelled by ↑. The difference between a normal leaf and divergent

leaf is that a normal leaf indicates a terminating computation, whereas a divergent

leaf indicates local divergence from executing :

• an assignment x := t in which t is undefined, or

• a boolean test in which the boolean term is undefined, or

• a ‘choose’ operation (choose z : b) in which no value of z makes b true, or

• the atomic statement ‘div’.

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 99

Any actual concrete computation of statement S at state σ corresponds to one

of the paths through this tree. The possibilities for any such path are:

(a) it is finite, ending in a normal leaf containing the final proper state of the

computation;

(b) it is finite, ending in a divergent leaf indicating local divergence;

(c) it is infinite indicating global divergence.

We write CompTreeA(S, σ) for the computation tree of S from the state σ.

Lemma 7.2.5.

CompTree(S, σ) = {↑} iff Rest A(S, σ) = div

Proof. By structural induction on S.

Definition 7.2.6 (Computation tree stage function). We define a computation

tree stage function

CompTreeStageA : Stmt × State(A)× N ⇒+ State(A)↑

where CompTreeStageA(S, σ, n) represents the first n stages of CompTreeA(S, σ).

It is defined by recursion on n:

Basis: CompTreeStageA(S, σ, 0) = {σ}, i.e., just the root labelled by σ.

Recursion step: CompTreeStageA(S, σ, n + 1) is formed by:

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 100

(i) for S atomic:

for each σ′ ∈ 〈|S|〉Aσ, (where σ′ may be a state or ↑), we attach to the root {σ}
the leaf {σ′}

(ii) for S not atomic, we attach to the root {σ}:
(1) if CompStepA(S, σ) = {↑}, the leaf {↑};
(2) if CompStepA(S, σ) 6= {↑},
the subtree CompTreeStageA(Rest A(S, σ), σ′, n),

for each σ′(6= ↑) of CompStepA(S, σ).

CompTreeStageA(S, σ, n) represents the first n stages of CompTreeA(S, σ),

which is then defined as the “limit” over n of CompTreeStageA(S, σ, n). Note that

the leaves (only) of CompTreeA(S, σ) may contain “↑”, indicating “local diver-

gence”.

Lemma 7.2.7. If CompTreeStageA(S, σ, m) has a divergent leaf {↑}, then

(a) for all n > m, CompTreeStageA(S, σ, n) has a divergent leaf {↑} at the same

position.

(b) CompTreeA(S, σ) also has a divergent leaf {↑} at the same position.

Proof. (a) By induction on n ≥ m, with the inductive definition of

CompTreeStageA(S, σ, n).

(b) This follows immediately by the definition of CompTreeA(S, σ).

Lemma 7.2.8. (a) If S ∈ AtSt , then CompTreeStageA(S, σ, n + 1) is formed

by attaching to the root {σ }, the leaf set 〈|S|〉Aσ.

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 101

(b) If S ≡ S1; S2, then CompTreeStageA(S, σ, n + 1) is formed by

attaching to each leaf σ′(6= ↑) of CompTreeStageA(S1, σ, n + 1),

the subtree CompTreeStageA(S2, σ
′, n + 1 − m), where m is the

depth of σ′ in CompTreeStageA(S1, σ, n + 1). The leaf {↑} of

CompTreeStageA(S1, σ, n + 1), remains unchanged.

(c) If S ≡ if b then S1 else S2 fi, then CompTreeStageA(S, σ, n + 1) is formed by

attaching to the root {σ },
Case (1): if [[b]]Aσ ↓ tt,

the subtree CompTreeStageA(S1, σ, n);

Case (2): if [[b]]Aσ ↓ ff,

the subtree CompTreeStageA(S2, σ, n);

Case (3): if [[b]]Aσ↑
the leaf { ↑ }.

(d) If S ≡ while b do S0 od, then CompTreeStageA(S, σ, n + 1) is formed by

attaching to the root {σ },
Case (1): if [[b]]Aσ ↓ tt,

the subtree CompTreeStageA(S0; S, σ, n);

Case (2): if [[b]]Aσ ↓ ff,

the leaf {σ };
Case (3): if [[b]]Aσ↑,

the leaf {↑}.

Proof. (a) Directly from Definition 7.2.4. Note that the execution of S from σ can

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 102

diverge, in which case, we add {↑} to the root {σ}.
(b) For the paths does not produce the leaf {↑}, the proof as in [Wan01, Appendix

2]. For the paths produces the divergent leaf {↑}, we apply Lemma 7.2.6.

(c) Case 1: If [[b]]Aσ ↓ (tt or ff),

CompStepA(S, σ) ' 〈|First(S, σ)|〉Aσ ' 〈|skip|〉σ ' {σ};

Case 2: If [[b]]Aσ↑,

CompStepA(S, σ) ' 〈|First(S, σ)|〉Aσ ' {↑};

The result follows from Definition 7.2.4.

(d) The proof is very similar to (c) above.

Notation 7.2.9. In this thesis, change(S) denotes the set of variables that appear

in S on the left-hand side of the assignment and choose statement. i.e., change(S)

is the set of variables that can be modified by S.

The following lemma is needed in the soundness proof of the Invariance lemma

below (Lemma 7.2.13).

Lemma 7.2.10. For x ∈ Var(S), σ ∈ State(A), if x 6∈ change(S),

then for all σ′ ∈ CompTreeStageA(S, σ, n + 1) (σ′ 6= ↑),

σ′(x) = σ(x).

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 103

Proof. Assume

x 6∈ change(S) (1)

We must show that for all σ′ ∈ CompTreeStageA(S, σ, n + 1) (σ′ 6= ↑),

σ′(x) = σ(x). (2)

We prove this by structural induction on S.

(a) S is atomic

(i) S ≡ skip

By Lemma 7.2.7, CompTreeStageA(skip, σ, n + 1) is formed by attaching to the

root {σ}, the leaf set {〈|skip|〉Aσ}.
Since we only consider σ′ 6= ↑, By Lemma 6.2.3 and the semantics of atomic state-

ments,

〈|skip|〉Aσ = {σ},

so holds in this case.

(ii) S ≡ y := t

By Lemma 7.2.7, CompTreeStageA(y := t, σ, n + 1) is formed by attaching to the

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 104

root {σ} the leaf set {〈|y := t|〉Aσ}. Since we only consider σ′ 6= ↑, by Lemma 6.2.3

and the semantics of atomic statements,

〈|y := t|〉Aσ = {σ{y/[[t]]Aσ}}.

By (1), y 6≡ x, and so by Definition 3.2.2 (Variant of state),

σ{y/[[t]]Aσ}(x) = σ(x),

so (2) holds in this case.

(iii) S ≡ choose z : b

By Lemma 7.2.7, CompTreeStageA(choose z : b, σ, n+1) is formed by attaching to

the root {σ} the leaf {〈|choose z : b|〉Aσ}. Since we only consider σ′ 6= ↑, by Lemma

7.2.2 and the semantics of atomic statements,

〈|choose z : b|〉Aσ = {σ{z/k} | [[b]]Aσ{z/k} ↓ tt },

and by (1), z 6≡ x, hence for all σ{z/k},

σ{z/k}(x) = σ(x),

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 105

so (2) holds in this case.

(b) S ≡ S1; S2

By Lemma 7.2.7, CompTreeStageA(S, σ, n + 1) is formed by attaching to each leaf

{σ′}(σ′ 6= ↑) of CompTreeStageA(S1, σ, n + 1), the subtree

CompTreeStage(S2, σ
′, n + 1−m) where m is the depth of σ′ in

CompTreeStageA(S1, σ, n + 1).

By induction hypothesis, for all σ1 (6= ↑) in CompTreeStageA(S1, σ, n + 1),

σ1(x) = σ(x).

Hence for each leaf σ′ of CompTreeStageA(S1, σ, n + 1),

σ′(x) = σ(x).

Take an arbitrary leaf σ′. By induction hypothesis again, for all σ2 in

CompTreeStage(S2, σ
′, n + 1−m),

σ2(x) = σ2(x),

so again (2) holds.

(c) S ≡ if b then S1 else S2 fi

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 106

By Lemma 7.2.7, CompTreeStageA(y := t, σ, n + 1) is formed by attaching to the

root {σ},
Case 1: if [[b]]Aσ ↓ tt, the subtree CompTreeStageA(S1, σ, n);

Case 2: if [[b]]Aσ ↓ ff, the subtree CompTreeStageA(S1, σ, n);

Case 3: if [[b]]Aσ↑, the leaf {↑}.
By the induction hypothesis, for all σ′ ∈ CompTreeStageA(Si, σ, n)(i = 1, 2), we

have σ′(x) = σ(x), and adding the root {σ } will not change this, hence (2) holds.

(d) S ≡ while b do S od

This case resembles case (c) above.

Definition 7.2.11 (Semantics of statements). From the semantic computation

tree, we can easily define the i/o semantics of statements as

[[S]]A : State(A) ⇒+ State(A)↑.

Namely,

[[S]]Aσ is the set of states and/or ‘↑’ at all leaves in CompTreeA(S, σ), together

with ‘↑’ if CompTreeA(S, σ) has an infinite path.

Note that, by its definition, [[S]]Aσ cannot be empty. It will contain (at least) ‘↑’
if there is at least one computation sequence leading to divergence, i.e., a path of the

computation tree which is either infinite or ends in a ‘↑’ leaf.

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 107

Theorem 7.2.12 (Semantics of statements).

(a) For S atomic, [[S]]Aσ ' 〈|S|〉Aσ, i.e.

[[skip]]Aσ = {σ }

[[x := t]]Aσ =

{σ{x/a} } if [[t]]Aσ ↓ a

{ ↑ } if [[t]]Aσ↑

[[choose z : b]]Aσ '

{σ{z/k} | [[b]]Aσ{z/k} ↓ tt } if for some k, [[b]]Aσ{z/k} ↓ tt

{ ↑ } if for all k, ([[b]]Aσ{z/k} ↓ ff or ↑)

(b) [[S1; S2]]
Aσ '

⋃
{ [[S2]]

Aσ′ | σ′ ∈ [[S1]]
Aσ } ∪ { ↑ | ↑ ∈ [[S1]]

Aσ }

(c) [[if b then S1 else S2 fi]]Aσ '

[[S1]]
Aσ if [[b]]Aσ ↓ tt

[[S2]]
Aσ if [[b]]Aσ ↓ ff

{ ↑ } otherwise

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 108

(d) [[while b do S od]]Aσ '

[[S; while b do S od]]Aσ if [[b]]Aσ ↓ tt

{σ } if [[b]]Aσ ↓ ff

{ ↑ } otherwise

Proof. (a) This is obvious from Lemma 7.2.7 (a).

(b) By Lemma 7.2.7(b), CompTreeA(S, σ) is formed by:

(1) attaching to each leaf {σ′} (6= ↑) of CompTreeA(S1, σ), the subtree

CompTreeA(S2, σ
′), and (2) any leaf {↑} of CompTreeA(S1, σ).

Hence the leaves of CompTreeA(S, σ) are formed by:

(1) the leaves of CompTreeA(S2, σ
′) for each σ′ in CompTreeA(S1, σ),

and (2) any leaf {↑} of CompTreeA(S1, σ).

If there is an infinite path in CompTreeA(S1, σ) or in CompTreeA(S2, σ
′)

for any σ′ ∈ CompTreeA(S1, σ), then this gives an infinite path in

CompTreeA(S, σ), which indicates global divergence. Similar comments ap-

ply to case (c) and (d) below.

(c) By Lemma 7.2.7(c), CompTreeA(S, σ) is formed by attaching to the root {σ}:
Case 1: if [[b]]Aσ ↓ tt, the subtree CompTreeA(S1, σ);

Case 2: if [[b]]Aσ ↓ ff, the subtree CompTreeA(S2, σ);

Case 3: if [[b]]Aσ↑, the leaf { ↑ }.

Hence the leaves of CompTreeStage(S, σ) are formed by:

(1) the leaves of the CompTreeStage(Si, σ) (i = 1, 2),

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 109

(2) the leaf {↑}, if [[b]]Aσ↑.

(d) This case resembles case (c).

Lemma 7.2.13 (Invariance lemma).

if x 6∈ change(S) then for all σ′ ∈ [[S]]Aσ, σ(x) = σ′(x)

Proof. Immediately from Lemma 7.2.10 and Theorem 7.2.12.

Definition 7.2.14 (Semantics of procedures). If

P ≡ func in a out b aux c begin S end

is a procedure of type u → v, then its meaning in A is a function

PA : Au ⇒+ Av↑

defined as follows [TZ00]. For x ∈ Au,

PA(x) = {σ′(b) | σ′ ∈ [[S]]Aσ } ∪ { ↑ | ↑ ∈ [[S]]Aσ }

where σ is any state on A such that σ[a] = x.

7.3 Assertions

We will continue to use TPL(Σ) for our assertion language as in Chapter 6.

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 110

7.4 Hoare formulae

The definition of Hoare formulae, and their A-validity, is exactly the same as in

Chapter 6.

7.5 The proof system TPL/WhileCC (A) and its

soundness

Definition 7.5.1 (Proof system). The proof system TPL/WhileCC (A) extends

TPL/SLCC (A) (§§5.5, 6.5) by adding

(b)4. (While) [Har79, TZ88]

{ p(z + 1) } S { p(z) }, p(z + 1) 7→ (b = true), p(0) 7→ (b = false)

{ ∃z p(z) } while b do S od { p(0) }

We write ‘z+1’ instead of ‘succ z’ for ease of reading.

(b)5. (Invariance)

{ p } S { q }
{ p ∧ r } S {q ∧ r }

where Var(r)
⋂

change(S) = ∅.

To show the soundness of TPL/WhileCC (A), we must prove the A-validity of

While and Invarance rules.

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 111

Notation 7.5.2.

(a) σ |= p ⇔df [[p]]Aσ = tt

(b) |=A p ⇔df for all σ, [[p]]Aσ = tt

Lemma 7.5.3.

(1) σ |= (b = true) ⇔ [[b]]Aσ ↓ tt

(2) σ |= (b = false) ⇔ [[b]]Aσ ↓ ff

Proof. These are obvious.

Lemma 7.5.4 (Validity of While rule).

The inference

{ p(z + 1) } S { p(z) }, p(z + 1) 7→ (b = true), p(0) 7→ (b = false)

{ ∃z p(z) } while b do S od { p(0) }

is A-valid.

Proof. Assume

|=A { p(z + 1) } S { p(z) } (7.1)

and

|=A p(z + 1) 7→ (b = true) (7.2)

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 112

and

|=A p(0) 7→ (b = false) (7.3)

We must show that

|=A { ∃z p(z) } while b do S od { p(0) } (7.4)

So for any state σ, assume

σ |= ∃z p(z) (7.5)

We must show that

↑ 6∈ [[while b do S od]]Aσ (7.6)

and

for all σ′ ∈ [[while b do S od]]Aσ, σ′ |= p(0) (7.7)

From (7.5) follows : for some n,

σ{z/n} |= p(z), (7.8)

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 113

i.e., by the Substitution Lemma,

σ |= p(n) (7.9)

So to prove (7.4), we will show

(7.9) ⇒ (7.6) and (7.7)

by induction on n.

Base case : n = 0.

We have

σ |= p(0) (7.10)

By (7.3) and Lemma 7.5.3, [[b]]Aσ ↓ ff.

By the semantics of ‘while’ statements (Theorem 7.2.12 (d)),

[[while b do S od]]Aσ = {σ }.

and the results follows from (7.10).

Inductive step:

Assume (i.h.) that for n

σ |= p(n + 1). (7.11)

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 114

From (7.1),

↑ 6∈ [[S]]Aσ and for all σ′ ∈ [[S]]Aσ, σ′ |= p(n) (7.12)

i.e.,

σ |= {p(n + 1)} S {p(n)} (7.13)

By (i.h.)

↑ 6∈ [[while b do S od]]Aσ′ (7.14)

and

for all σ′′ ∈ [[while b do S od]]Aσ′, σ′′ |= p(n) (7.15)

i.e.,

σ′ |= {p(n)} while b do S od {p(0)} (7.16)

By 7.13 and 7.16 and the validity of composition lemma,

σ |= {p(n + 1)} S; while b do S od {p(0)} (7.17)

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 115

By (7.11), (7.2) and Lemma 7.5.3,

[[b]]Aσ ↓ tt, (7.18)

By the semantics of ‘while’ statements again (Theorem 7.2.12),

[[while b do S od]]Aσ = [[S; while b do S od]]Aσ. (7.19)

By (7.17) and (7.19),

σ |= { p(n + 1) } while b do S od { p(0) }

This finished the proof of the inductive step and hence the theorem.

Lemma 7.5.5 (A-validity of invariance rule). The inference

{ p } S { q }
{ p ∧ r } S {q ∧ r }

where Var(r)
⋂

change(S) = ∅, is A-valid.

Proof. Assume

|=A { p } S { q } (7.20)

and

Var(r)
⋂

change(S) = ∅ (7.21)

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 116

We want to show that

|=A {p ∧ r} S {q ∧ r} (7.22)

Take any σ, and assume

[[p ∧ r]]Aσ = tt (7.23)

By the semantics of assertions (§5.2),

[[p]]Aσ = tt (7.24)

and

[[r]]Aσ = tt. (7.25)

By (7.24) and (7.20), we have

↑ 6∈ [[S]]Aσ and for all σ′ ∈ [[S]]Aσ, [[q]]Aσ′ = tt (7.26)

By (7.21) and the invariance lemma (Lemma 7.2.13), we get

for all σ′ ∈ [[S]]Aσ, σ ' σ′ (rel free(r)) (7.27)

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 117

By (7.27) and the functionality lemma for assertions (Lemma 5.4.1),

for all σ′ ∈ [[S]]Aσ, [[r]]Aσ = [[r]]Aσ′. (7.28)

From (7.25) and (7.28),

for all σ′ ∈ [[S]]Aσ, [[r]]Aσ′ = tt. (7.29)

From (7.2.4) and (7.29),

[[q ∧ r]]Aσ = tt,

Hence (7.22) holds.

Note that we proved the preservation rule for nondeterministic programs using

TPL(Σ). We can similarly formulate and prove a preservation rule using PPL(Σ).

Theorem 7.5.6 (Soundness of TPL/WhileCC (A)). For all p,q ∈ Assn , s ∈
Stmt

(TPL/WhileCC (A)) ` {p}S{q} ⇒ |=A {p}S{q}

Proof. Note that TPL/WhileCC (A) is the extension of TPL/SLCC (A) formed

by adding the While and Invariance inference rules. By Theorem 6.5.7, together with

Lemmas 7.5.4 and 7.5.5, all the axioms and inference rule of TPL/WhileCC (A) are

A-valid. The result follows by induction on the proof length.

7. WhileCC (Σ) Programs and the Proof System TPL/WhileCC (A) 118

Remark 7.5.7 (The invariance rule). The invariance rule was used by Apt and

Olderog [AO91] in their (deterministic) system. According to them, this rule can be

derived from other rules of their proof system. We do not know if the same argument

applies for our (non-deterministic) system.

Remark 7.5.8 (Comparison with PPL/SLCC (A)). Again, the system

PPL/SLCC (A) is very similar, in spite of the different underlying logic.

In PPL/SLCC (A), the While rule has the form

{ p(z + 1) } S { p(z) }, p(z + 1) 7→ b, p(0) 7→ ¬b

{ ∃z p(z) } while b do S od { p(0) }

and the Invariance rule has the form

{ p } S { q }
{ p cand r } S {q cand r }

where Var(r)
⋂

change(S) = ∅.

Chapter 8

Arrays

We must include the array data structure in our programming language because of

its importance (cf. our case study in Chapter 9). If we have the right notation for

dealing with arrays, then reasoning about programs using arrays can be done simply

and effectively.

In this chapter, we will use the logic TPL(Σ); the treatment for PPL(Σ) is

similar with small changes.

8.1 One-dimensional arrays as functions

Traditionally, an array has been considered to be a collection of indexed variables

which share a common name and have the same sort s. To refer to a particular

element in an array, we specify its name and the corresponding index. In this thesis,

we are going to use a different viewpoint: the functional view of arrays [Gri83, TZ00]

whereby an array a is a variable whose value is a function from index values (i.e.,

119

8. Arrays 120

naturals) to sort s (as in §2.6). Recall from §2.6 that for each simple Σ-sort s, we can

have an array sort s∗ with suitable operations.

We write a for array variable (of sort s∗), i, j, k for index variables , i.e., variables

of sort nat, and (more generally) e, . . . for index terms , i.e., terms of sort nat. We

also write, eg, Var(e1, e2) for Var(e1) ∪Var(e2).

Next we give notations to clarify the relationship between both viewpoints. Recall

that a[e] stands for Ap(a, e) (§2.6).

Notation 8.1.1. The “index variable assignment”

a[e] : = t, (8.1)

is just an alternative notation for

a := Update(a, e, t). (8.2)

Note that

[[a[e]]]Aσ = Ap([[a]]Aσ, [[e]]Aσ)),

which is in As.

One advantage of using the functional view is that it is conceptually simple, since,

instead of considering a collection of index variables, we now only have one kind of

variable: the simple variable. Another advantage follows directly from the first one.

Since our notion of states remains unchanged, many results and arguments in the

8. Arrays 121

previous chapters carry over. In particular, by using the functional view of arrays,

the proof rule for the index variable assignment (8.1) can be derived from the proof

rule for the simple variable assignment (8.2) as follows:

Lemma 8.1.2 (A-validity of array assignment rule).

|=A {(t = t) ∧ p[a/Update(a, e, t)} a[e] := t {p}

where a : s∗, t : s.

Proof. Immediate from the A-validity of the assignment rule (Lemma 5.7.1.) and

Notation 8.1.1.

Now we prove lemmas for two important special cases of the array assignment

rule, which will be used in our case study.

Lemma 8.1.3. If a 6∈ Var(e, t), then

|=A {t = t} a[e] := t {a[e] = t}

Proof. By Lemma 8.1.2, we have

|=A {t = t ∧ (a[e] = t)[a/Update(a, e, t)]} a[e] := t {a[e] = t}, (8.3)

8. Arrays 122

Note the second conjunct of the precondition can be simplified as:

(a[e] = t)[a/Update(a, e, t)]

|=|
A

(Update(a, e, t)[e] = t) since a 6∈ Var(e, t)

|=|
A

(t = t)

Since

((t = t) ∧ (t = t)) |=|
A

(t = t),

the result follows from (8.3).

Remark 8.1.4. In PPL(Σ), we can formulate a similar lemma:

If a 6∈ Var(e, t), then

|=A {def(t)} a[e] := t {a[e] = t}

Lemma 8.1.5. If a 6∈ Var(e1, e2), then

|=A {(e2 = e2)} a[e1] := a[e2] {a[e1] = a[e2]}. (8.4)

Proof. By Lemma 8.1.2, we have

|=A {a[e2] = a[e2] ∧ (a[e1] = a[e2])[a/Update(a, e1, e2)]} a[e1] := a[e2] {a[e1] = a[e2]},

(8.5)

8. Arrays 123

Note the second conjunct of the precondition can be simplified to:

(a[e1] = a[e2])[a/Update(a, e1, e2)]

|=|
A

(Update(a, e1, e2)[e1] = (Update(a, e1, e2)[e2]) since a 6∈ Var(e, t)

|=|
A

a[e2] = a[e2]

|=|
A

e2 = e2

(see Remark 8.1.6 (b) below) Since

((e2 = e2) ∧ (e2 = e2)) |=|
A

(e2 = e2),

the result follows from (8.5).

Remark 8.1.6. (a) In PPL(Σ), the corresponding lemma is:

If a 6∈ Var(e1, e2), then

|=A {def(e)}a[e1] := a[e2] {a[e1] = a[e2]}.

(b) Note that since array application is always a total function (see discussion in

§1.4), we need only check the index e is defined in the antecedent of (8.4).

8.2 Arrays of arrays

We now extend our notation to cover two-dimensional arrays by interpreting them as

(one-dimensional) arrays of arrays.

8. Arrays 124

Notation 8.2.1. Let a be a two dimensional array. We write a[e1, e2] for a[e1][e2]

and

a[e1, e2] : = ts

for

a : = Update(a, e1, Update(a[e1], e2, t))

Note that

[[a[e1, e2]]]
Aσ = Ap(Ap([[a]]Aσ, [[e1]]

Aσ), [[e2]]
Aσ).

Now we can similarly prove two lemmas for important special cases of the assign-

ment rule for two dimensional arrays.

Lemma 8.2.2. If a 6∈ Var(e1, e2), then

|=A {t = t} a[e1, e2] := t {a[e1, e2] = t}

Proof. The proof resembles that of Lemma 8.1.3.

Lemma 8.2.3. If a 6∈ Var(e1, e2, e3, e4), then

|=A {e3 = e3 ∧ e4 = e4} a[e1, e2] := a[e3, e4] {a[e1, e2] = a[e3, e4]}

Proof. The proof resembles that of Lemma 8.1.5.

8. Arrays 125

Remark 8.2.4. (a) We can similarly prove two lemmas for two-dimensional arrays

in PPL(Σ).

(b) We do not have to introduce “double starred” signatures (Σ∗)∗ and algebras

(A∗)∗ to contain two dimensional arrays. The reason is that such an algebra

can be effectively coded in A∗, since we can effectively code a finite sequence of

starred objects of a given sort as a single starred object of the same sort, by using

the Lgth operation. More precisely, a sequence x∗0, . . . , x
∗
k−1 of elements of A∗

s

(for some sort s) can be coded as a pair (y∗, n∗) ∈ A∗
s×N∗, where Lgth(n∗) = k,

and for 0 ≤ j < k, n∗[j] = Lgth(x∗j), and Lgth(y∗) = n∗[0] + · · · + n∗[k − 1],

and for 1 ≤ j ≤ k and 0 ≤ i < n∗[j], y∗[n∗[0] + · · ·+ n∗[j − 1] + i] = x∗j [i]. (See

[TZ00] for details.)

8.3 Programming languages and proof systems

with arrays: Notation

When we work over signature Σ∗, and Σ∗-algebra A∗ with arrays, then we

write SL∗(Σ), SLCC ∗(Σ) and WhileCC ∗(Σ) for SL(Σ∗), SLCC (Σ∗) and

WhileCC (Σ∗) respectively. We also have the corresponding proof systems

TPL/SL∗(A) for TPL/SL(A∗) etc.

Chapter 9

Case Study

In this chapter, we will first give a WhileCC ∗∗∗ program to implement the “Gaussian

Elimination” algorithm [FM67, Neu01] in the algebra RN∗
p (Example 2.6.2). We will

then prove its correctness using the logic TPL(Σ). The correctness for PPL(Σ)

would be fairly similar.

The “Gaussian Elimination” algorithm is used to solve a linear algebraic equation

A ∗ X = B by LU decomposition, where finding non-zero pivoting element is the key

step in the LU decomposition. In total algebras, we can use partial pivoting strategy ,

which is taking the pivot element to be a non-zero element of largest absolute value

in a column. Can we do the same thing in partial algebras? Firstly, we cannot

find such a “largest” element since less is partial. Secondly, we cannot even find

the first non-zero element as the pivot element since eq is partial. Thirdly, Can

we make eq and less a total function to avoid this problem? The answer is that

the total function eq and less would not be continuous, and therefore by continuity

principle, they are not computable (see the discussion in §1.4). That is why we must

126

9. Case Study 127

use the ‘choose’ statement to select a pivot element and implement the “Gaussian

Elimination” algorithm.

For ease of reading and displaying, we indulge in some abuse of notations:

(1) For terms t1 and t2 with sort nat and real, we write

(t1 = t2) for eq(t1, t2) = true

(t1 6= t2) for eq(t1, t2) = false

(t1 < t2) for less(t1, t2) = true

(2) In accordance with common practice, we assume that the domain of index of

an array A is {1, . . . , `} rather than {0, . . . , `− 1}, where ` = Lgth(A).

(3) We sometimes write A
j
i for two dimensional array application A[i, j].

(4) We write ‘|=|’ for ‘ |=|
A

’ and ‘|⇒’ for ‘ |⇒
A

’, etc.

(5) We define

A : n ≡df Lgth(A) = n

A : m ∗ n ≡df Lgth(A) = m ∧ (∀i 1 ≤ i ≤ m⇒ Lgth(A[m]) = n).

(6) We write A(m) for the leading m-square submatrices of A, where 1 ≤ m ≤ n.

(7) We write det(A) for the determinant of matrix A. The matrix is nonsingular is

defined as the determinant of the matrix is nonzero (i.e.,det(A) 6= 0).

We give the corresponding proof in the form of a procedure with assertions inter-

spersed rather than a proof tree (cf. Example 6.6).

9. Case Study 128

9.1 Outline

Our algorithm [FM67, Neu01] to solve A ∗ X = B with pivoting is as follows:

With input: n, A and B,

output: X,

precondition: pre ≡df n > 0 ∧ A : n ∗ n ∧ B : n ∧ (det(A) 6= 0),

postcondition: post ≡df A ∗ X = B.

Step 1: Calculate a permuted normalized triangular factorization P ∗ A = L ∗ U,
Step 2: Solve L ∗ Y = P ∗ B,
Step 3: Solve U ∗ X = Y.

The resulting vector X is the solution of A ∗ X = B.

Note that the condition det(A) 6= 0 is not the weakest precondition for the correct

working of this algorithm. However it is a reasonable condition and convenient for

our purpose.

According to the algorithm above, our program for “Gaussian Elimination with

pivoting ” is:

proc Gaussian Elimination

in n: nat

in A: real∗∗

in B: real∗

aux LU: real∗∗

aux Y: real∗

aux piv: nat∗

aux i,j,k,l,m,u,z: nat

9. Case Study 129

out X: real∗

begin

{ Initialize global pivot index array }
i:=1;

while (i≤n) do

piv[i]:=i;

i:=i+1;

od;

{ Decomposition with pivoting; }
i:=1;

while (i≤n) do

choose z : (i ≤ z ≤ n ∧ Aipiv[z] −
i−1∑
r=1

LUr
piv[z] ∗ LUipiv[r] 6= 0);

if(z> i) then

piv[i],piv[z]:=piv[z],piv[i];

fi

LUipiv[i] := Aipiv[i] −
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r];

k:=i+1;

while (k≤ n) do

LUipiv[k] := (Aipiv[k] −
i−1∑
r=1

LUr
piv[k] ∗ LUipiv[r])/LUipiv[i] ;

LUkpiv[i] := Akpiv[i] −
i−1∑
r=1

LUr
piv[i] ∗ LUkpiv[r];

k:=k+1;

od;

i:=i+1;

9. Case Study 130

od;

{ Forward Elimination }
i:=1;

while (i≤ n) do

Y[i] := B[piv[i]]−
i∑

j=1

LU
j

piv[i] ∗ Y[j];
i:=i+1;

od;

{ Backward Elimination }
i:=n;

while (i> 1 ∧ LUipiv[i] 6= 0) do

X[i] := (Y[i]−
n∑

j:=i+1

LU
j

piv[i] ∗ X[j])/LUipiv[i];
i:=i-1;

od;

end.

According to the program above, we have divided the whole program into four

parts, namely S0, S1, S2 and S3.

proc Gaussian Elimination

begin

S1; { Initialize global index array piv; }
S2; { Decomposition with pivoting; }
S3; { Forward Elimination; }
S4; { Backward Elimination; }
end.

9. Case Study 131

Notes S2 above uses elimination to find n*n lower triangular matrix L and lower

triangular matrix U so that L*U=P*A, where P*A is the matrix A with its rows in-

terchanged. The interchange information is stored in the global array piv, and the

matrices L − I and U are stored in LU. The global index array piv is initialized as

piv[i]=i. During the elimination, we choose the non-zero element in the column

as the pivot element, but the rows (equations) are not actually interchanged. The

corresponding elements of piv are interchanged instead. We then refer to A[piv[i],j]

instead of A[i,j] and LU[piv[i],j] instead of L[i,j] and U[i,j]. During the process of

computation, A is keep unchanged, and LU is updated. Instead of creating two explicit

arrays for L and U, they are stored in the array LU.

Remark 9.1.1. Note that not every non-singular matrix A has an L*U-factorization.

However, It follows from standard linear algebra [Neu01, Theorem 2.3.4] that for

any non-singular matrix A there exists a unit lower triangular matrix L, an upper

triangular matrix U and a permutation matrix P such that A*P = L*U. For any such

P, by [Neu01, Theorem 2.1.8], we can conclude all leading square submatrices (P∗A)(m)

are non-singular, and the triangular factorization can be calculated recursively by:

U[i, k] := (P ∗ A)[i, k]−∑i−1
j=1 L[i, j] ∗ U[j, k] k ≥ i

L[k, i] := ((P ∗ A)[k, i]−∑i−1
j=1 L[k, j] ∗ U[j, i])/U[i, i] k > i

Note that this computation is possible implies that

for i = (1, . . . , n), there exists P such that U[i, i] 6= 0.

In other words,

for i = (1, . . . , n), there exists P such that (P ∗ A)[i, i]−∑i−1
j=1 L[i, j] ∗ U[j, i] 6= 0.

9. Case Study 132

It is equivalent to ∃z (Alpiv[z] −
∑l−1

r=1 LU
r
piv[z] ∗ LUlpiv[r])

when we use piv in the computation.

Discussion 9.1.2. Consider the ‘while’ loop containing the ‘choose’ statement above

(in S2). Define

Pivot(n, A, piv, LU, i)

≡df n > 0 ∧ 1 ≤ i ≤ n + 1

⇒ (∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n ⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])))

This means:

piv[r] is the pivot index of A for row r = 1, . . . , i− 1; and

LU gives the first i step in the construction of the upper/lower factorization of A with

respect to piv where 1 ≤ i ≤ n.

The ‘choose’ statement has pre- and post-condition

{ p ∧ ∃z (b = true) } choose z : b {p ∧ (b = true) }

given by the axiom for ‘choose’ and the invariance rule, where

p ≡df q7

9. Case Study 133

(defined on page 162) and

b ≡df i ≤ z ≤ n ∧ Aipiv[z] −
i−1∑
r=1

LUr
piv[z] ∗ LUipiv[r] 6= 0).

Let invout be the loop invariant of the ‘while’ loop (defined on page 147).

Note the following:

(1) invout
|⇒
A

Pivot(n, A, piv, LU, i),

(2) det(A) 6= 0 ∧ Pivot(n, A, piv, LU, 0) |⇒
A
∃z (b = true).

Statement (2) says that, assuming det(A) 6= 0, there exists a pivot index piv[z] avail-

able for step i + 1 of the loop which can then be selected by the ‘choose’ statement.

This follows form [Neu01, Theorem 2.3.4].

To prove the above WhileCC ∗∗∗ program is correct, we first define the intermediate

assertion

P0 ≡df n > 0 ∧ ∃z(1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

Next we define the intermediate assertion

P4

≡df n > 0 ∧ ∀m, l(piv ∗ L ∗ piv ∗ U = piv ∗ A

∧ piv ∗ L ∗ Y = B

∧ piv ∗ U ∗ X = Y),

Note that |=A P4 7→ post.

9. Case Study 134

In the subsections that follow, we are going to prove

{ P0 } S1 { P1 }

{ P1 } S2 { P2 }

{ P2 } S3 { P3 }

{ P3 } S4 { P4 }

The correctness of the program follows from applying the consequence and invari-

ance rule. Note also that A : n ∗ n, B : n always holds in the process of computation

by invariance rule.

To help explain the algorithm and the correctness proof, we give an example which

uses our algorithm to decompose and solve a 3 ∗ 3 matrix. We want to solve that

A ∗ X = B, where

A =

0 2 4

2 4 2

3 3 1

and B =

0

2

3

.

Each subsection begins with the program statement Si, (i = 0, 1, 2, 3), followed

by the example, and ends with the correctness proof.

9. Case Study 135

9.2 Pivot index array Initialization

Program for pivot index array initialization

S1 ≡
i:=1;

while (i≤n) do

piv[i]:=i;

i:=i+1;

od;

After the execution of S1, we expect

piv = [1, 2, 3].

Correctness proof of pivot index array initialization

Let

post0 ≡df n > 0

post1 ≡df ∀k (1 ≤ k ≤ n⇒ piv[k] = k),

let the postcondition be:

Q1 ≡df post0 ∧ post1,

9. Case Study 136

let the loop invariant be:

inv1 ≡df n > 0 ∧ 1 ≤ i ≤ n + 1 ∧ ∀k (0 ≤ k < i⇒ piv[k] = k),

and let the loop convergent be:

p(m) ≡df n > 0 ∧ m + i = n + 1 ∧ ∀k (0 ≤ k < i⇒ piv[k] = k).

We want to show the loop is correct. i.e.

|= { ∃m p(m) } S11 { p(0) }

where S11 ≡
while (i≤n) do

piv[i]:=i;

i:=i+1;

od;

We prove this in three steps.

Step 1:

|= p(0) 7→ ¬b (9.1)

since

P (0) |⇒ i = n + 1

9. Case Study 137

so (9.1) holds.

Step 2:

|= p(m + 1) 7→ b (9.2)

since for all m,

m + 1 + i = n + 1 ⇒ i ≤ n.

so (9.2) holds.

Step 3: We want to prove

|= { p(m + 1) } S12 { p(m) } (9.3)

where S12 ≡
piv[i]:=i;

i:=i+1;

p′(m)

|=| wp(i := i + 1, p(m))

|=| n > 0 ∧ m + i + 1 = n + 1 ∧ ∀k (0 ≤ k < i + 1 ⇒ piv[k] = k)

|=| n > 0 ∧ m + i + 1 = n + 1 ∧ ∀k (0 ≤ k < i⇒ piv[k] = k) ∧ (k = i) ⇒ piv[k] = k)

|=| n > 0 ∧ m + i + 1 = n + 1 ∧ ∀k (0 ≤ k < i⇒ piv[k] = k) ∧ piv[i] = i).

9. Case Study 138

According to our function view of arrays in §8, the statement piv[i] := i is the

abbreviation of piv := Update(piv, i, i), hence

p′′(m)

|=| wp(piv[i] := i, p′(m))

|=| n > 0 ∧ m + i + 1 = n + 1 ∧ ∀k (0 ≤ k < i⇒ piv[k] = k) ∧ Update(piv, i, i)[i] = i)

|=| n > 0 ∧ m + i + 1 = n + 1 ∧ ∀k (0 ≤ k < i⇒ piv[k] = k)

Recall

p(m + 1) |=| n > 0 ∧ m + 1 + i = n + 1 ∧ ∀k (0 ≤ k < i⇒ piv[k] = k)

It is clear that

p(m + 1) |⇒ p′′(m).

So (9.3) holds. By lemma 8.5.4, the loop is correct. i.e.,

|= {∃m p(m)} S11 {p0}.

Note that in the following sections, we will omit the obvious similar proof of (9.1)

and (9.2), and we will concentrate on proving (9.3).

Next, we want to show

p(0) |⇒ (¬b ∧ q) (9.4)

9. Case Study 139

since p(0) is actually equivalent to ¬b ∧ q, so (9.4) holds.

Finally, since

inv1 |⇒ ∃m p(m)

and

pre1

|=| wp(i := 1, inv1)

|=| n > 0 ∧ 1 ≤ 1 ≤ n + 1 ∧ ∀k (0 ≤ k < 1 ⇒ piv[k] = k)

|=| n > 0 = post0

So the precondition for statement S0 is just n > 0.

In summary, we have proved

|= {post0} S1 {post0 ∧ post1}.

9.3 Decomposition with Pivoting

Program for Decompose with Pivoting

i:=1;

while (i≤n) do

choose z:(i≤ z ≤ n ∧ Aipiv[z] −
i−1∑
r=1

LUr
piv[z] ∗ LUipiv[r] 6= 0);

if(z> i) then

9. Case Study 140

piv[i],piv[z]:=piv[z],piv[i];

fi

LUipiv[i] := Aipiv[i] −
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r];

k:=i+1;

while (k≤ n) do

LUipiv[k] := (Aipiv[k] −
i−1∑
r=1

LUr
piv[k] ∗ LUipiv[r])/LUipiv[i] ;

LUkpiv[i] = Akpiv[i] −
i−1∑
r=1

LUr
piv[i] ∗ LUkpiv[r];

k:=k+1;

od;

i:=i+1;

od;

Example of Gaussian elimination with pivoting

We begin with

A =

0 2 4

2 4 2

3 3 1

and piv = [1 2 3] and LU =

X X X

X X X

X X X

Step 1 : i = 1

A[piv[z], 1]−
1−1∑
r=1

LUr
piv[z] ∗ LU[piv[r], 1]

A[piv[1], 1] = A[1, 1] = 0

9. Case Study 141

A[piv[2], 1] = A[2, 1] = 2

A[piv[3], 1] = A[3, 1] = 3

Considering the second condition of the ‘choose’ statement, we can choose z = 2or 3.

Suppose we choose z = 3, then after index exchange

piv = [3 2 1.]

Computing the pivot element:

LU[piv[1], 1] := A[piv[1], 1]−
1−1∑
r=1

LU[piv[1], r] ∗ LU[piv[r], 1];

LU[3, 1] := A[3, 1] = 3

Now we reach the inner ‘while’ loop statement.

LUipiv[k] := (Aipiv[k] −
i−1∑
r=1

LUr
piv[k] ∗ LUipiv[r])/LUipiv[i];

LUkpiv[i] = Akpiv[i] −
i−1∑
r=1

LUr
piv[i] ∗ LUkpiv[r];

Substep 1 : k = 2

LU[piv[2], 1] := (A[piv[2], 1]−
1−1∑
r=1

LU[piv[2], r] ∗ LU[piv[r], 1])/LU[piv[1], 1];

LU[piv[2], 1] := A[piv[2], 1]/LU[piv[1], 1]

9. Case Study 142

LU[2, 1] := A[2, 1]/LU[3, 1] = 2/3

LU[piv[1], 2] = A[piv[1], 2]−
1−1∑
r=1

LU[piv[1], r] ∗ LU[piv[r], 2];

LU[3, 2] = A[3, 2] = 3

Substep 2 : k = 3

LU[piv[3], 1] := (A[piv[3], 1]−
1−1∑
r=1

LU[piv[3], r] ∗ LU[piv[r], 1])/LU[piv[1], 1];

LU[piv[3], 1] := A[piv[3], 1]/LU[piv[1], 1]

LU[1, 1] := A[1, 1]/LU[3, 1] = 0

LU[piv[1], 3] = A[piv[1], 3]−
1−1∑
r=1

LU[piv[1], r] ∗ LU[piv[r], 3];

LU[3, 3] = A[3, 3] = 1

So after the first iteration,

A =

0 2 4

2 4 2

3 3 1

and piv = [3 2 1] and LU =

0 X X

2/3 X X

3 3 1

Step 2 : i = 2

A[piv[z], 2]− LU[piv[z], 1] ∗ LU[piv[1], 1]

= A[piv[2], 2]− LU[piv[2], 1] ∗ LU[piv[1], 1]

9. Case Study 143

= A[2, 2]− LU[2, 1] ∗ LU[3, 1]

= A[2, 2]− LU[2, 1] ∗ LU[3, 1] = 4− 2/3 ∗ 3 = 2

= A[1, 2]− LU[1, 1] ∗ LU[3, 1] = 2

Considering the second condition of the ‘choose’ statement, we can choose z = 2 or 3.

Suppose that we choose z = 3 then after index exchange,

piv = [3 1 2].

Computing the pivot element:

LU[piv[2], 2] := A[piv[2], 2]−
2−1∑
r=1

LU[piv[2], r] ∗ LU[piv[r], 2];

LU[piv[2], 2] := A[piv[2], 2]− LU[piv[2], 1] ∗ LU[piv[1], 1];

LU[1, 2] := A[1, 2]− LU[1, 1] ∗ LU[3, 1] = 2− 0 = 2

Entering the inner ‘while’ loop statement.

Substep: k = 3

LU[piv[3], 2] := (A[piv[3], 2]−
2−1∑
r=1

LU[piv[3], r] ∗ LU[piv[r], 2])/LU[piv[2], 2]

LU[2, 2] := (A[2, 2]− LU[[2, 1] ∗ LU[3, 2])/LU[1, 2]

LU[2, 2] := (4− 2/3 ∗ 3)/2 = 1

9. Case Study 144

LU[piv[2], 3] = A[piv[2], 3]−
2−1∑
r=1

LU[piv[2], r] ∗ LU[piv[r], 3]

LU[1, 3] = A[1, 3]− LU[1, 1] ∗ LU[3, 3] = 4.

So after the second iteration, we have

A =

0 2 4

2 4 2

3 3 1

and piv = [3 1 2] and LU =

0 2 4

2/3 1 X

3 3 1

.

Step 3 : i = 3

A[piv[3], 3]−
3−1∑
r=1

LU[piv[3], r] ∗ LU[piv[r], 3]

= A[2, 3]− LU[2, 1] ∗ LU[3, 3]− LU[2, 2] ∗ LU[1, 3]

= 2− 2/3 ∗ 1− 1 ∗ 4 = −8/3.

Considering the second condition of the ‘choose’ statement, we can (only) choose

z = 3, and the index array remains unchanged.

LUipiv[i] := Aipiv[i] −
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r]

LU[2, 3] = −8/3.

9. Case Study 145

We cannot enter the while loop. So we have

A =

0 2 4

2 4 2

3 3 1

and piv = [3 1 2] and LU =

0 2 4

2/3 1 −8/3

3 3 1

.

This result is correct. Because the values stored in the array LU can be separated into

two parts, which we can represent as:

L =

m 1 0

m m 1

1 0 0

and

U =

0 u u

0 0 u

u 0 0

.

Then we have

L ∗ piv ∗ U = A

where

piv =

0 0 1

1 0 0

0 1 0

.

9. Case Study 146

Note that if we use LT and UT to represent the triangle matrices comes from L

and U by rearrange the rows, we will get

LT = piv ∗ L
UT = piv ∗ U
and we can also have:

LT ∗ UT = piv ∗ A.
We go back to our example, we can get our

L =

0 1 0

2
3

1 1

1 0 0

.

and

U =

0 2 4

0 0 −8
3

3 3 1

.

It is easy to check that

piv ∗ L ∗ piv ∗ U = piv ∗ A.

9. Case Study 147

Correctness proof of Gaussian elimination with pivoting

Let

post2 ≡df

∀m, l(1 ≤ m ≤ n ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l ≤ n ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l ≤ n⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])).

Let the postcondition be:

Q2 ≡df post0 ∧ post2,

and the outer loop invariant invout be :

invout

≡df n > 0 ∧ 1 ≤ i ≤ n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n ⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ ∃z(i ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0)

9. Case Study 148

and the outer loop convergent p1(u) be:

p1(u)

≡df n > 0 ∧ u + i = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n ⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ ∃z(i ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

We want to prove that

|= {p(u + 1)} Sout {p(u)}.

9. Case Study 149

q1

|=| wp(i := i + 1; p1(u))

|=| n > 0 ∧ u + i + 1 = n + 1

∧ ∀m l(1 ≤ m < i + 1 ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i + 1 ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i + 1 ⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

9. Case Study 150

Since the three cases below (without quantifiers) can be expanded into 6 cases:

q1

|=| n > 0 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ m = i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ l = i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])

∧ 1 ≤ m = l = i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

9. Case Study 151

After substituting i into q1

q1

|=| n > 0 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ m = i ∧ m < l ≤ n⇒ Alpiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUlpiv[r] + LUlpiv[i]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ l = i ∧ l < m ≤ n⇒ Aipiv[m] =
i−1∑
r=1

LUr
piv[m] ∗ LUipiv[r] + LUipiv[m] ∗ LUipiv[i]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])

∧ 1 ≤ m = l = i⇒ (LUlpiv[m] 6= 0 ∧ Aipiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r] + LUipiv[i]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

To prove the outer loop is correct, we need to set up our inner loop invariant.

Note that only the piv[i]th line and ith column are changed.

9. Case Study 152

Let the inner loop invariant invin be:

invin

≡df n > 0 ∧ i < k ≤ n + 1 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ m = i ∧ m < l < k⇒ Alpiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUlpiv[r] + LUlpiv[i]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ l = i ∧ l < m < k⇒ Aipiv[m] =
i−1∑
r=1

LUr
piv[m] ∗ LUipiv[r] + LUipiv[m] ∗ LUipiv[i]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])

∧ 1 ≤ m = l = i⇒ (LUlpiv[m] 6= 0 ∧ Aipiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r] + LUipiv[i]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0),

9. Case Study 153

Let the inner loop convergent p2(u) be:

p2(u)

≡df n > 0 ∧ v + k = n + 1 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ m = i ∧ m < l < k⇒ Alpiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUlpiv[r] + LUlpiv[i]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ l = i ∧ l < m < k⇒ Aipiv[m] =
i−1∑
r=1

LUr
piv[m] ∗ LUipiv[r] + LUipiv[m] ∗ LUipiv[i]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])

∧ 1 ≤ m = l = i⇒ (LUlpiv[m] 6= 0 ∧ Aipiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r] + LUipiv[i]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

We want to show that

|= {p2(u + 1)} Sin {p2(u)}.

9. Case Study 154

q2

|=| wp(k := k + 1, p2)

|=| n > 0 ∧ v + k + 1 = n + 1 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ m = i ∧ m < l < k + 1 ⇒ Alpiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUlpiv[r] + LUlpiv[i]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ l = i ∧ l < m < k + 1 ⇒ Aipiv[m] =
i−1∑
r=1

LUr
piv[m] ∗ LUipiv[r] + LUipiv[m] ∗ LUipiv[i]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])

∧ 1 ≤ m = l = i⇒ (LUlpiv[m] 6= 0 ∧ Aipiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r] + LUipiv[i]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

9. Case Study 155

which can be expanded into 10 cases:

q2

|=| n > 0 ∧ v + k + 1 = n + 1 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ m = i ∧ m < l < k⇒ Alpiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUlpiv[r] + LUlpiv[i]

∧ 1 ≤ m = i ∧ m < l = k⇒ Alpiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUlpiv[r] + LUlpiv[i]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ l = i ∧ l < m < k⇒ Aipiv[m] =
i−1∑
r=1

LUr
piv[m] ∗ LUipiv[r] + LUipiv[m] ∗ LUipiv[i]

∧ 1 ≤ l = i ∧ l < m = k⇒ Aipiv[m] =
i−1∑
r=1

LUr
piv[m] ∗ LUipiv[r] + LUipiv[m] ∗ LUipiv[i]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])

∧ 1 ≤ m = l = i⇒ (LUlpiv[m] 6= 0 ∧ Aipiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r] + LUipiv[i]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

9. Case Study 156

After substituting for k in q2,

q2

|=| n > 0 ∧ v + k + 1 = n + 1 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ m = i ∧ m < l < k⇒ Alpiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUlpiv[r] + LUlpiv[i]

∧ 1 ≤ m = i ∧ m < l = k⇒ Akpiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUkpiv[r] + LUkpiv[i]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ l = i ∧ l < m < k⇒ Aipiv[m] =
i−1∑
r=1

LUr
piv[m] ∗ LUipiv[r] + LUipiv[m] ∗ LUipiv[i]

∧ 1 ≤ l = i ∧ l < m = k⇒ Aipiv[k] =
i−1∑
r=1

LUr
piv[k] ∗ LUipiv[r] + LUipiv[k] ∗ LUipiv[i]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])

∧ 1 ≤ m = l = i⇒ (LUlpiv[m] 6= 0 ∧ Aipiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r] + LUipiv[i]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

Now we reach the two inner loop assignment statements and the proof proceeds

9. Case Study 157

by using Lemma 8.2.3.

q3|=| wp(LUipiv[k] := (Aipiv[k] −
i−1∑
r=1

LUr
piv[k] ∗ LUipiv[r])/LUipiv[i];

LUkpiv[i] := Akpiv[i] −
i−1∑
r=1

LUr
piv[i] ∗ LUkpiv[r], q2)

|=| n > 0 ∧ v + k + 1 = n + 1 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ m = i ∧ m < l < k⇒ Alpiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUlpiv[r] + LUlpiv[i]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ l = i ∧ l < m < k⇒ Aipiv[m] =
i−1∑
r=1

LUr
piv[m] ∗ LUipiv[r] + LUipiv[m] ∗ LUipiv[i]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])

∧ 1 ≤ m = l = i⇒ (LUlpiv[m] 6= 0 ∧ Aipiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r] + LUipiv[i]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

It is obvious that

p2(u + 1) |⇒ q3.

So we have proved the inner loop is correct.

9. Case Study 158

We also simplify q3 to 8 cases (like q1).

q4
|=|
A

wp(k := i + 1, invin)

|=|
A

n > 0 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ m = i ∧ m < l < k⇒ Alpiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUlpiv[r] + LUlpiv[i]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ l = i ∧ l < m < k⇒ Aipiv[m] =
i−1∑
r=1

LUr
piv[m] ∗ LUipiv[r] + LUipiv[m] ∗ LUipiv[i]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])

∧ 1 ≤ m = l = i⇒ (LUlpiv[m] 6= 0 ∧ Aipiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r] + LUipiv[i]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

9. Case Study 159

We can also simplify q4 to 6 cases.

q4

|=| n > 0 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m])

∧ 1 ≤ m = l = i⇒ (LUlpiv[m] 6= 0 ∧ Aipiv[i] =
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r] + LUipiv[i]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

9. Case Study 160

The proof below proceeds by using Lemma 8.2.3.

q5

|=| wp(LUipiv[i] := (Aipiv[i] −
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r], q4)

|=| n > 0 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ Aipiv[i] −
i−1∑
r=1

LUr
piv[i] ∗ LUipiv[r] 6= 0

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

9. Case Study 161

Now we reach the ‘if’ statement. Let

q6

≡df n > 0 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ Aipiv[z] −
i−1∑
r=1

LUr
piv[z] ∗ LUipiv[r] 6= 0

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

The following clearly holds.

|= { q6 ∧ z > i }piv[z], piv[i] := piv[i], piv[z] {q5}

and

|= { q6 ∧ (z = i) } skip {q5}.

Now we reach the ‘choose’ statement. By the axiom of choose statement (Lemma

6.5.2) and the invariance rule (Lemma 7.5.5), we have

|= { p ∧ ∃z (b = true)} choose z : b { p ∧ (b = true) }

9. Case Study 162

So let

q7

≡df n > 0 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

Then

q8 ≡df q7 ∧ ∃ z (b = true)

|=| n > 0 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ ∃z(i + 1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0)

∧ ∃z(i ≤ z ≤ n ∧ Aipiv[z] −
i−1∑
r=1

LUr
piv[z] ∗ LUipiv[r] 6= 0).

9. Case Study 163

This can be simplify as:

q8

|=| n > 0 ∧ u + i + 1 = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ ∃z(i ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

Recall that:

p1(u + 1)

|=| n > 0 ∧ u + 1 + i = n + 1

∧ ∀m, l(1 ≤ m < i ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < i ∧ l < m ≤ n ⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < i⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ ∃z(i ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

9. Case Study 164

So we clearly have

p1(u + 1) |⇒ p1(u).

Finally,

P0

|=| wp(i := 1; invout)

|=| n > 0 ∧ 1 ≤ 1 ≤ n + 1

∧ ∀m, l(1 ≤ m < 1 ∧ m < l ≤ n⇒ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l < 1 ∧ l < m ≤ n ⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l < 1 ⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ ∃z(1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

It can be simplified as:

P0 |=| n > 0 ∧ ∃z(1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

In summary,we have proved:

|= {post0 ∧ post′2} S2 {post0 ∧ post2}.

9. Case Study 165

9.4 Forward Elimination

Program for Forward Elimination

The statement section S3 ≡
i:=1;

while (i≤ n) do

Y[i] := B[piv[i]]−
i∑

j=1

LU
j

piv[i] ∗ Y[j];
i:=i+1;

od.

Correctness proof of Forward Elimination

Let

post3 ≡df ∀l(1 ≤ l ≤ n∧ ⇒ Y[l] = B[piv[l]]−
l∑

j=1

LU
j

piv[l] ∗ Y[j])

and

Q3 ≡df post0 ∧ post3

inv3≡df n > 0 ∧ 1 ≤ i ≤ n + 1 ∧ ∀l(1 ≤ l < n⇒ Y[l] = B[piv[l]]−
l∑

j=1

LU
j

piv[l] ∗ Y[j])

p3(m)≡df n > 0 ∧ m + i = n + 1 ∧ ∀l(1 < l ≤ i⇒ Y[l] = B[piv[l]]−
l∑

j=1

LU
j

piv[l] ∗ Y[j]).

9. Case Study 166

We need to prove the loop is correct, i.e.

|= { ∃m p3(m) } S3 { p3(0) }

where S3 ≡
while (i≤ n) do

Y[i] := B[piv[i]]−
i∑

j=1

LU
j

piv[i] ∗ Y[j];
i:=i+1;

od.

We have to prove three cases. We only give the proof of

|= { p3(m + 1) } S31 { p3(m) }

where S31 ≡
Y[i] := B[piv[i]]−

i∑
j=1

LU
j

piv[i] ∗ Y[j];
i:=i+1.

p′

|=| wp(i := i + 1, p3(m))

|=| n > 0 ∧ m + i = n ∧ ∀l(1 ≤ l < i + 1 ⇒ Y[l] = B[piv[l]]−
l∑

j=1

LU
j

piv[l] ∗ Y[j])

|=| n > 0 ∧ m + i = n ∧ ∀l(1 ≤ l < i⇒ Y[l] = B[piv[l]]−
l∑

j=1

LU
j

piv[l] ∗ Y[j])

∧ Y[i] = B[piv[i]]−
i∑

j=1

LU
j

piv[i] ∗ Y[j]

9. Case Study 167

p′′|=| wp(Y[i] := B[piv[i]]−
i∑

j=1

LU
j

piv[i] ∗ Y[j], p′)

|=| n > 0 ∧ m + i = n ∧ ∀l(1 ≤ l < i⇒ Y[l] = B[piv[l]]−
l∑

j=1

LU
j

piv[l] ∗ Y[j]).

It is clear that

p3(m + 1) |⇒ p′′

and

inv3 |⇒ ∃m p3(m).

Finally,

pre3

|=| wp(i := 1, inv3)

|=| n > 0 ∧ 0 ≤ i ≤ n ∧ ∀l(1 ≤ l < 1 ⇒ Y[l] = B[piv[l]]−
l∑

j=1

LU
j

piv[l] ∗ Y[j])

|=| n > 0 |=| post0

In summary, we have proved that

|= {post0} S3 {post0 ∧ post3}.

9. Case Study 168

9.5 Backward Elimination

Program for Backward Elimination

S4 ≡
i:=n;

while (i> 0) do

X[i] := (Y[i]−
n∑

j=i+1

LU
j

piv[i] ∗ X[j])/LUipiv[i];
i:=i-1;

od.

Correctness proof of Backward Elimination

For the statement S4, let

post4 ≡df ∀l(1 ≤ l ≤ n∧ ⇒ X[l] = (Y[l]−
n∑

j=l+1

LU
j

piv[l] ∗ X[j])/LUlpiv[l])

and

Q4 ≡df post0 ∧ post4

inv4

≡df n > 0 ∧ 0 ≤ i ≤ n ∧ ∀l(i < l ≤ n⇒ X[l] = (Y[l]−
n∑

j=l+1

LU
j

piv[l] ∗ X[j])/LUlpiv[l])

p4(m)≡df n > 0 ∧ m = i ∧ ∀l(i < l ≤ n⇒ X[l] = (Y[l]−
n∑

j=l+1

LU
j

piv[l] ∗ X[j])/LUlpiv[l]).

9. Case Study 169

We need to prove the loop is correct, i.e.

|= { ∃m p4(m) } S41 { p4(0) }

where S41 ≡
while (i> 0) do

X[i] := (Y[i]−
n∑

j=i+1

LU
j

piv[i] ∗ X[j])/LUipiv[i];
i:=i-1;

od.

There are three cases. We only give the proof of

|= { p4(m + 1) } S42 { p4(m) }

where S42 ≡
X[i] := (Y[i]−

n∑
j=i+1

LU
j

piv[i] ∗ X[j])/LUipiv[i];
i:=i-1.

p′|=| wp(i := i− 1, p4(m))

|=| n > 0 ∧ m = i− 1 ∧ ∀l(i− 1 < l ≤ n⇒ X[l] = (Y[l]−
n∑

j=l+1

LU
j

piv[l] ∗ X[j])/LUlpiv[l])

|=| n > 0 ∧ m = i− 1 ∧ ∀l(i < l ≤ n⇒ X[l] = (Y[l]−
n∑

j=l+1

LU
j

piv[l] ∗ X[j])/LUlpiv[l])

∧ X[i] = (Y[i]−
n∑

j=i+1

LU
j

piv[i] ∗ X[j])/LUipiv[i])

9. Case Study 170

p′′|=| wp(X[i] := (Y[i]−
n∑

j=i+1

LU
j

piv[i] ∗ X[j])/LUipiv[i], p′

|=| n > 0 ∧ m = i− 1 ∧ ∀l(i < l ≤ n⇒ X[l] = (Y[l]−
n∑

j=l+1

LU
j

piv[l] ∗ X[j])/LUlpiv[l]).

It is clear that

p4(m + 1) |⇒ p′′

and

inv4 |⇒ ∃m p4(m).

So,

pre4

|=| wp(i := n, inv4)

|=| n > 0 ∧ 0 ≤ n ≤ n ∧ ∀l(n < l ≤ n⇒ X[l] = (Y[l]−
n∑

j=l+1

LU
j

piv[l] ∗ X[j])/LUlpiv[l])

|=| n > 0 |=| q0.

In summary, we have proved

|= {post0} S4 {post0 ∧ post4}.

9. Case Study 171

9.6 Correctness of Gaussian Elimination

P4 |=| post0 ∧ post1 ∧ post2 ∧ post3 ∧ post4.

From (9.5),

|= {post0} S4 {post0 ∧ post4}.

By Lemma 7.2.13,

|= {post0 ∧ post1 ∧ post2 ∧ post3} S4 {post0∧ post1 ∧ post2 ∧ post3∧post4}.

Let

P3 ≡df post0 ∧ post1 ∧ post2 ∧ post3.

From (9.4),

|= {post0} S3 {post0 ∧ post3}.

By Lemma 7.2.13,

|= {post0 ∧ post1 ∧ post2} S4 {post0 ∧ post1 ∧ post2 ∧ post3}.

9. Case Study 172

Let

P2 ≡df post0 ∧ post1 ∧ post2.

From (9.3)

|= {post0 ∧ post′2} S3 {post0 ∧ post2}.

By Lemma 7.2.13,

|= {post0 ∧ post1 ∧ post′2} S2 {post0 ∧ post1 ∧ post2}.

Let

P1 ≡df post0 ∧ post1 ∧ post′2.

From (9.2)

|= {post0} S3 {post0 ∧ post1}.

By Lemma 7.2.13,

|= {post0 ∧ post′2} S1 {post0 ∧ post1 ∧ post2}.

9. Case Study 173

So the precondition is as desired:

P0 |=| post0 ∧ post′2.

To sum up,

P4

|=| n > 0 ∧ ∀m, l(1 ≤ m ≤ n ∧ m < l ≤ n⇒ Alpiv[m] =
∑m−1

r=1 LU
r
piv[m] ∗ LUlpiv[r] + LUlpiv[m]

∧ 1 ≤ l ≤ n ∧ l < m ≤ n⇒ Alpiv[m] =
l−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m] ∗ LUlpiv[l]

∧ 1 ≤ m = l ≤ n⇒ (LUlpiv[m] 6= 0 ∧ Alpiv[m] =
m−1∑
r=1

LUr
piv[m] ∗ LUlpiv[r] + LUlpiv[m]))

∧ ∀l(1 ≤ l ≤ n∧ ⇒ Y[l] = B[piv[l]]−
l∑

j=1

LU
j

piv[l] ∗ Y[j])

∧ ∀l(1 ≤ l ≤ n∧ ⇒ X[l] = (Y[l]−
n∑

j=l+1

LU
j

piv[l] ∗ X[j])/LUlpiv[l]),

and

P0 |=| n > 0 ∧ ∃z(1 ≤ l ≤ n ∧ l ≤ z ≤ n ∧ Alpiv[z] −
l−1∑
r=1

LUr
piv[z] ∗ LUlpiv[r] 6= 0).

Again, since

|=A pre 7→ P0,

9. Case Study 174

and

|=A P4 7→ post,

we have proved the program is correct.

Chapter 10

Conclusion and Future work

10.1 Work done

This thesis presented Hoare logic for total correctness of non-deterministic programs

involving computation over partial many-sorted algebras over signature Σ.

The programming language WhileCC ∗∗∗(Σ) extends the While(Σ) language with

“countable choice”, i.e., the nondeterministic ‘choose’ statement and arrays. Our

treatment of the semantics of WhileCC ∗∗∗(Σ) formally deals with partial functions

in programming languages.

Two three-tiered logical systems, namely TPL(Σ) and PPL(Σ), were proposed,

including an (apparently) original proof rule for the non-deterministic ‘choose’ con-

struct. Both use the partial (3-valued) logic at the program boolean level, and total

(2-valued) logic at the level of correctness formulae (Hoare triples). They differ at

the middle level of assertions: TPL(Σ) uses total (2-valued) logic, whereas PPL(Σ)

uses partial (3-valued) logic.

175

10. Conclusion and Future work 176

Corresponding to these two logics, two proof systems, namely

TPL/WhileCC ∗(A) and PPL/WhileCC ∗(A), were investigated and their

soundness for total correctness was proved. It is interesting to note how similar these

two proof systems are, notwithstanding their quite different logical foundations.

Finally this formal machinery was applied to a correctness proof for a program

with pivot selection in the classical Gaussian elimination algorithm, which makes

essential use of the non-deterministic ‘choose’ construct.

10.2 Work needed to be done

A number of issues and problems, which were not solved in this thesis could form a

basis for future research.

(1) Completeness

A completeness proof for the Hoare systems was not given, or even attempted,

for the following reasons:

(a) Such a proof is likely to be quite difficult and should rather form a separate

topic for research.

(b) Further, we do not even know if completeness holds for our systems. We

do know these system are strong enough to deal with practical, non-trivial

problems, such as Gaussian elimination.

(c) Finally, we are not convinced of the value of such a completeness proof.

The Hoare systems considered here (and elsewhere) are not really “proof

systems” in the usual sense, since the axioms (in particular the assertion

10. Conclusion and Future work 177

axiom scheme) are undecidable (cf. Remark 4.5.4); hence the role of a

completeness proof is not so clear.

(2) Weakest Precondition

A more modest, and perhaps more easily attainable, goal would be to find

an expression for the weakest precondition (or strongest postcondition) for the

‘choose’ construct. This would be interesting in its own right, and might also

help with a possible completeness proof. Again however, we do not know if

the weakest precondition (or strongest postcondition) is even expressible in our

assertion language.

(3) Proof rule for procedure call

Owing to a lack of time, we did not give a proof rule for non-deterministic

procedure calls. Such a rule has been given in [AO91] for total algebras. We

would have to be check the rule is sound for our non-deterministic language

WhileCC ∗∗∗, which should not be too difficult. Further, it would be very

interesting to modify or create such a rule to deal with partial algebras. The

program in the case study of Chapter 9 (which guided our choice of rules) did not

use such procedure calls for the soundness; however, it would have been clearer

if it had used such rules; and so it is a pity that because of time constraints,

such a proof rule was not incorporated in our Hoare systems.

On the other hand, we feel that we did achieve significant results.

(4) Independence of invariance rule

On a more technical level, it would be interesting to settle the problem of the

10. Conclusion and Future work 178

independence of the invariance rule from the other proof rules of our Hoare

systems.

It would be worthwhile to settle at least some of the above questions.

Bibliography

[AO91] K.R. Apt and E.R. Olderog. Verification of Sequential and Concurrent Pro-

grams. Springer-Verlag, 1991.

[Apt81] K.R. Apt. Ten years of Hoare’s logic, a survey - part I. ACM Transactions

on Programming Language and Systems, 3:431–483, 1981.

[Apt84] K.R. Apt. Ten years of Hoare’s logic, a survey - part II: Nondeterminisim.

Theoretical Computer Science, 28:83–109, 1984.

[BCJ84] H. Barringer, J.H. Cheng, and C.B. Jones. Logic covering undefinedness in

program proofs. Acta Informatica, 21:251–269, 1984.

[Coo78] S.A. Cook. Soundness and completeness of an axiom system for program

verification. SIAM Journal on Computing, 7(1):70–90, 1978.

[dB80] Jaco de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall

International, 1980.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood

Cliffs, New Jersey, 1976.

[Far90] W.F. Farmer. A partial functions version of church’s simple theory of types.

J. Symbolic Logic, 55:1269–1291, Sep. 1990.

179

BIBLIOGRAPHY 180

[Flo67] R. Floyd. Assigning meanings to programs. In Mathematical Aspects of

Computer Science, pages 19–32. American Mathematical Sociaty, 1967.

From Proceedings of Symposium on Applied Mathematics 19.

[FM67] G. Forsythe and C.B. MOLER. Computer Solution of Linear Algebraic

Systems. Prentice-Hall, 1967.

[Gri83] D. Gries. The Science of Programming. Springer-Verlag, 1983.

[Gri97] D. Gries. Eliminating the chaff again. In M.Broy and B.Schieder, editors,

Mathematical Methods in Program Development, volume 158 of NATO ASI

Series F: Computer and System Sciences, pages 1–7. Springer, Berlin, 1997.

[Har79] D. Harel. First-Order Dynamic Logic, volume 68 of Lecture Notes in Com-

puter Science. Springer-Verlag, New York, 1979.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communi-

cation of the ACM, 12:576–580, 583, 1969.

[Hoo87] A. Hoogewijs. Partial-predicate logic in computer science. Acta Informatica,

24:381–393, 1987.

[Jon86] C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall

International, Englewood Cliffs, New Jersey, 1986.

[Jon87] C.B. Jones. VDM Proof Obligation and their Justification, volume 252,

pages 260–286. Lecture Notes in Computer Science, 1987.

[KK94] M. Kerber and M. Kohlhase. A mechanization of strong kleene logic for

partial functions. In A. Bundy, editor, Lecture Notes in Computer Science,

volume 184, pages 371–385. Springer-Verlag, 1994.

BIBLIOGRAPHY 181

[Kle52] S.C. Kleene. Introduction to Metamathematics. North-Holland, Amsterdam,

1952.

[Luk70] J. Lukasiewicz. Selected Works. North-Holland, Amsterdam, 1970. Translate

from J. Lukasiewicz 1920’s work.

[McC63] J. McCarthy. A base for a methematical theory of computation. In Computer

Programming and Formal Systems. North-Holland, 1963. An earlier version

was published in 1961 in the Proceedings of the Western Joint Computer

Conference.

[Neu01] A. Neumaier. Introduction to Numerical Analysis. Cambridge University

Press, 2001.

[Owe93] O. Owe. Partial logics reconsidered: A conservative approach. Formal

Aspects of Computing, 5:208–223, 1993.

[Par93] D.L. Parnas. Predicate logic for software engineering. IEEE Transactions

on Software Engineering, 19:856–862, 1993.

[SA91] V. Sperschneider and G. Antoniou. Logic: A Foundation for Computer

Science. Addison-Wesley, 1991.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific

journal of Mathematics, 5:285–309, 1955.

[Tur49] A.M. Turing. Checking a large routine. In High Speed Automatic Calculating

Machines, pages 67–69, Cambridge, 1949. Cambridge University Mathemat-

ical Laboratory.

[TZ88] J.V. Tucker and J.I. Zucker. Program Correctness over Abstract Data Types,

with Error-State Semantics. North-Holland, 1988.

BIBLIOGRAPHY 182

[TZ00] J.V. Tucker and J.I. Zucker. Computable functions and semicomputable

sets on many-sorted algebras. In S. Abramsky, D. M. Gabbay, and T. S. E.

Maibaum, editors, Handbook of Logic in Computer Science, volume 5, pages

317–523. Oxford University Press, 2000.

[TZ04] J.V. Tucker and J.I. Zucker. Abstract versus concrete computation on metric

partial algebras. ACM Transactions on Computational Logic, 2004.

[Wan01] Y. Wang. Semantics of non-deterministic programs and the universal func-

tion theorem over abstract algebras. Master’s thesis, Dept. of Computing

and Software, McMaster University, 2001.

[ZP93] J.I. Zucker and L. Pretorius. Introduction to computability theory. South

African Computer Journal, 9:3–30, 1993.

