
McMaster University, Department of Computing and Software, Report CAS-14-07-ES, April 2014

A Comparison of Scalable Multi-Threaded Stack Mechanisms

J. Moore-Oliva E. Sekerinski S. Yao
McMaster University, Canada

chatgris@gmail.com, {emil, yaos4}@mcmaster.ca

Abstract
In the commonly used multi-threaded memory layout where each
thread has its ”worst case” stack memory exclusively reserved,
a process may prematurely run out of memory, even if there is
unused address space elsewhere. This problem is exacerbated as
the number of threads in a process increases since there is less stack
space available per thread.

In this paper, stack mechanisms that attempt to alleviate this
problem are reviewed, and a new stack mechanism is put forward
that utilizes the MMU to detect stack overflow. An experimental
compiler is used to implement promising stack mechanisms and
a suite of benchmarks is used to compare their performance and
scalability under varying usage profiles.

Categories and Subject Descriptors D.4.2 [MEMORY STRUC-
TURES]: Design Styles; D.3.4 [Processors]: Compilers

Keywords multi-threaded programs, runtime memory organiza-
tion, stack sharing

1. Introduction
The traditional call stack mechanism – where the stack and heap
grow from opposite sides – is often taken for granted. This is
because, until recently, it has been an effective solution to the
problem of bookkeeping during program execution – it provides a
simple and efficient way to keep track of variable values and control
flow. A single-threaded process, executing in a system with an
MMU (Memory Management Unit), therefore has little reason to
use anything but the traditional call stack mechanism. In fact, with
virtual address space being so abundant, operating systems take the
strategy of allocating a stack area “large enough for anything”, and
on overflow do not attempt to extend it.

The recent trend for software development has been towards
“more concurrency”. There are two reasons for this: firstly, it al-
lows for more natural modelling of systems, and secondly, it takes
advantage of the hardware trend to increase performance via par-
allelism with multi-core processors [10, 11, 15]. This has led to
the more complex scenario: when concurrency is increased with
the use of threads, the default “large enough” call stack mecha-
nism with predetermined maximal stack size causes virtual address
space to become exhausted when otherwise more threads could be

[Copyright notice will appear here once ’preprint’ option is removed.]

handled by the operating system, especially on modern multi-core
systems. This is the case even though the vast majority of the ad-
dress space is unused.

The topic of this paper is the comparison of call stack mech-
anisms for highly concurrent multi-threaded programs, with the
goal of discovering or identifying an efficient multi-threaded call
stack mechanism that works as well and as transparently as the
call stack mechanism for single-threaded processes. The need for
an improved call stack mechanism was highlighted during the de-
velopment of a concurrent object-oriented language [omitted]. Ev-
ery object being concurrent in principle can easily lead to pro-
grams with thousands of threads. In an experimental implemen-
tation of this language, stack sizes were intentionally set low and
stack-gobbling features, most notably recursion, were disabled as a
workaround. The experimental compiler which we use for the eval-
uation of promising stack mechanism is described in more detail
in [21]. The compiler emits code for x86 [6]. While desktop pro-
cessors have moved to 64 bit architectures, embedded processors
are increasingly moving from 8 to 16 to 32 bit architectures. With
the embedded market an order of magnitude larger than the desktop
market, 32 bit architectures remain relevant.

2. Related Work
This section categorizes and discusses existing and proposed multi-
threaded call stack mechanisms. To start with, we briefly discuss
the existing single-threaded call stack mechanism.

2.1 Single-Threaded Call Stack
The fact that a procedure will not return until all other procedures
it called have returned lends itself to a stack, where each new ac-
tivation frame is placed on top of all existing frames. In a single-
threaded program, there is only one call stack, typically growing
from high to low memory addresses. There is a dedicated region
for code starting at a low memory address. The heap memory for
a process grows from low to high memory addresses. This mem-
ory organization allows for heap and stack memory to utilize all
available memory (heap fragmentation issues aside). When the two
memory regions meet, the program is out of memory. In practice,
memory mappings (such as those used for shared libraries) situated
between the heap and the stack will cause program faults before
intersection of the two regions. Due to this, operating systems such
as Solaris, Linux and Windows limit stack space to a fixed size
that is “large enough”, and if the program attempts to use more
than the pre-allocated stack space, it is considered a program er-
ror [8, 18, 19].

2.2 Single-Threaded Stack Mechanism Extensions
The traditional call stack mechanism works well for single-threaded
processes for two reasons. Firstly, for any single-threaded program,
only one call stack is required. Secondly, the MMU allows each
process to use the entire address space as if it were the only process

Scalable Multi-Threaded Stack Mechanisms 1 2014/10/14

code	

thread 3���
stack���
���
���
���
heap���
	

thread 1���
stack	

thread 2���
stack	

code	

(b)	

(a)	

thread 1 heap	

thread 1 stack���
���
thread 2 heap	

thread 2 stack���
���
thread 3 heap	

thread 3 stack���
���
shared heap	

dead���
zone	

Figure 1. Single-threaded memory organization extended to multi-
ple threads: (a) with single shared heap and (b) with multiple heaps
for reducing heap contention.

running on the system; physical memory is not reserved for the
process until it actually uses the space.

By contrast, a multi-threaded program requires one call stack
per thread, all of which must exist within the same address space.
This means that the MMU cannot help with multiple threads as it
does with multiple processes. Most modern operating systems just
create one “large” call stack for each thread at the top of virtual
address space. However, when there are a large number of threads,
this will cause the process to run out of virtual address space be-
fore it is actually out of memory. Shrinking each process’s stack
space until each thread’s stack can fit may lead to one thread run-
ning out of stack space when there is otherwise lots of unused stack
space remaining, as can be seen in Figure 1 (a). This is especially
likely to happen if thread stack usage patterns differ (e.g. one thread
makes heavy use of recursion). It is possible to manually set stack
space on a thread-by-thread basis (e.g. giving a heavy stack space
using thread more stack space). However, this both increases the
burden on the programmer and decreases the flexibility of the pro-
gram (threads are locked into roles, not all threads have the ability
to temporarily use a large amount of stack space). This reminds of
the practice without an MMU when programmers have to manually
assign each process a certain region of memory space. Such work
is tedious and error-prone, and goes against the productive trend of
operating systems and languages automatically managing and shar-
ing system resources. With the number of cores on chips increasing
and parallelism being projected as the way to increase performance
in the future [10, 11, 15, 23], the traditional call stack is insuffi-
cient. We discuss several simple modifications that maintain each
thread’s call stack as a contiguous region of memory.

Solaris [19] uses a multi-threaded call stack mechanism that is
practically the standard for modern operating systems. Each thread
has its own stack space reserved near the top of virtual address
space. The size of the call stack can be set to a custom value during
thread creation. If no stack space size is specified, a large value
(typically 2 MB) is used instead. Stack overflow is detected via
the use of a red zone, which refers to the process of appending
a page of memory without read or write permissions to the end
of a thread’s stack space. This page will cause a memory fault if
accessed. Windows allocates by default 1 MB to each thread. Mac
OS X allocates by default 8 MB to the main thread and 512 KB
to secondary threads; iOS allocates by default 1MB to the main
thread and also 512 to the secondary thread.

Oberon with active objects [12] can be viewed as a special case
of the above call stack mechanism specifically tailored to support

a large number of small call stacks. It does this by reserving the
upper 2GB of virtual address space for small call stacks that are
each a maximum of 128 KB, thereby supporting up to 16,384 call
stacks simultaneously.

Concurrent Oberon [17] uses a call stack that is of a fixed size
determined at thread creation, but allocated on the heap. Overflow
is detected before it occurs via a check at the start of every proce-
dure, and results in termination of the offending thread. While this
method increases runtime overhead, it has the advantage of work-
ing on systems that do not have an MMU. The call stack is garbage
collected once the thread terminates.

US patent 7,477,829 [26] attempts to address both heap con-
tention and stack space in its proposed memory layout, depicted in
Figure 1 (b). Each stack/heap block is created from an initial base
address, from which the thread and heap stack grow in opposite di-
rections. The patent does not specify how the initial base addresses
are computed. Stack and heap overflow are detected via the use of
dead zones that are “... impossible to read from or to write to ... In
so doing there is no chance of memory corruption between any of
these thread heap/thread stack combinations”.

All of the above methods suffer from the limitation that stack
space for one thread cannot be shared with another, and each
thread’s stack space must always be large enough to handle the
worst case stack usage.

2.3 Stack Sharing
Hybrid stack sharing [27] creates a fixed number p of stacks in
memory, and attempts to evenly distribute n threads among them
using a round-robin approach, where p ≤ n. On a context switch,
if all stacks are used, the used portion of the exiting thread’s stack
is copied to heap memory, and the new thread’s stack data will
be copied in. Hybrid stack sharing makes no mention of handling
stack overflow, and the authors mentioned that they always kept
the stack size large enough that overflow would never occur. Hy-
brid stack sharing improves upon the standard multi-threaded stack
handling approach by introducing a constant amount of memory
fragmentation, as there is a limited number of “large” stacks that
take up address space (heap fragmentation aside). It addresses the
issue that some threads may require a small and some may require
a large stack.

Multitask stack sharing [20] is a multi-threaded call stack mech-
anism designed for embedded systems where address space is lim-
ited. Each thread begins with its own call stack space, similar to the
standard mechanism as employed by the Solaris stack. Overflow is
detected via a runtime check at the beginning of each procedure. On
overflow, a “page” is reserved at the end of another thread’s stack
and used for the overflowing thread’s stack. The system attempts
to share overflow equally among all thread stacks until there is no
space left. As such, this call stack mechanism is able to share un-
used stack resources, and each thread’s call stack can be created
smaller, reducing the amount of memory that needs to be dedicated
to call stacks. While this is an improvement over the standard multi-
threaded stack handling approach, total stack space is still of a fixed
size. Hence, the program can run out of either stack or heap mem-
ory when there is still unused space remaining. Additionally, the
non-contiguous nature of the stack means that there is some frag-
mentation when an activation frame cannot fit into the free space
left at the end of a stack page, and a new page must be used in
another thread’s stack area.

A meshed stack [14] is a call stack mechanism where all threads
place their activation frames at the top of one common stack. When
an activation frame is no longer valid, the frame is marked as
garbage. A special call stack garbage collection routine is run pe-
riodically to compact the stack. This call stack mechanism inherits
all the advantages of the single-threaded call stack mechanism (no

Scalable Multi-Threaded Stack Mechanisms 2 2014/10/14

fragmentation, the ability to extend stack and heap until they meet,
and so on), at the expense of arbitrary program pausing during stack
compaction. Further analysis of this stack mechanism is impossi-
ble, as [14] gives only an overview referencing a thesis that is in
preparation for further details.

2.4 Cactus Stacks
This section discusses those call stack mechanisms that attempt to
use the cactus stack data structure to link multiple non-contiguous
regions of memory together into a single call stack. A cactus stack
is a tree data structure where child nodes point to their parents.

Stackless Python [24] is an unfortunately misleading name, but
the call stack mechanism it uses is interesting nonetheless. Standard
“stackful” Python uses a mechanism where the C call stack is inter-
twined with the interpreter. Stackless Python moves all the data that
was stored in the C call stack into linked interpreter frames that also
contain code. Moving stack data into the interpreter has allowed for
features such as continuations, which allows for saving and resum-
ing program state. The stack itself is little more than a linked list of
activation frames. This allows the stack to live within heap mem-
ory (pushing any fragmentation issues to the heap allocator), and
removes arbitrary limits on stack size. Invoking a heap allocation
for every procedure call has performance implications, but since
Python already does this to keep a frame object associated with ev-
ery running piece of code, moving the stack into a similar structure
does not negatively affect performance.

Thread segment stacks [22] is a multi-threaded stack implemen-
tation for gcc [1]. To begin with, each thread gets its own contigu-
ous stack space, just like the standard multi-threaded stack mecha-
nism. Stack overflow is detected via the use of inlined code around
the call instructions for the prologue and epilogue of procedures.
When stack overflow is detected, a linear extension is performed
if possible, which attempts to map a new page of memory contigu-
ously to the previous virtual address. If a linear extension cannot be
performed, a new stack segment is allocated elsewhere, and a linked
list is formed. This call stack mechanism removes the false “out of
stack space” errors that standard multi-threaded stack management
faces, allowing for initial call stack sizes to be smaller. However, it
does so at the expense of runtime overhead for every procedure call
(in the average case of no stack extension, that overhead is reported
as 5 + 3 additional instructions per procedure call). There is also
some memory fragmentation that will occur on a non-linear exten-
sion when an activation frame cannot fit into the remaining space
in a stack segment. Google’s Go Language [9] implements this by
initially allocating 4 KB for each thread (“goroutine”) and having
the linker insert a preamble at each procedure (function) call. When
overflow is detected, a new stack page is allocated and linked to the
previous stack page.

Capriccio [25] is a user-level thread package that uses a call
stack mechanism that can be viewed as a refinement of Thread Seg-
ment Stacks. The major change that Capriccio makes is that it ana-
lyzes the call graph of a program at compile time to combine many
subroutines with small stack sizes into one larger block, thereby
reducing the number of prologue and epilogue checks that need
to be made during procedure calls. For example, two consecutive
procedure calls, X and Y, requiring 10 and 20 bytes of call stack
space respectively, would have only one prologue check before X
for 30 bytes and one epilogue check at the end of Y. Calls to exter-
nal functions not call-graph analyzed are handled by programmer
annotations specifying minimum stack requirements for the func-
tion, or just by a default “large enough” call stack chunk. When
function pointers are concerned, the compiler considers all pos-
sible functions that could match the function pointer in question.
Polymorphism, while not explicitly mentioned, could conceivably
be handled in a similar manner.

Approach Runtime Over-
head

Memory
Overhead

Premature Out-
Of-Memory

Solaris Constant Constant Single Thread
Oberon
with active
objects

Constant Constant Single Thread

Concurrent
Oberon

Constant Constant Single Thread

US Patent
7,477,829

Constant Constant Single Thread

Hybrid stack
sharing

Context Switch Constant Single Thread

Multitask
stack sharing

Procedure Call On Exten-
sion

Thread/Heap

Meshed
stack

Global Constant No

Stackless
Python

Procedure Call Procedure
Call

No

Thread seg-
ment stacks

Procedure Call On Exten-
sion

Negligible

Capriccio Linear Proce-
dure Call

On Exten-
sion

Negligible

Table 1. Stack Implementation Summary

Capriccio, like Thread Segment Stacks, still suffers from a
degree of call stack memory fragmentation. However, Behren et
al. [25] have analyzed the problem as follows: Internal wasted
space is defined as the space wasted at the end of a call stack re-
gion when a new call stack region is linked. External wasted space
is defined as the unused (but possibly usable) space at the end of an
active call stack region. The introduction of function stack check
combining introduces a trade-off between internal wasted space
and speed. The larger each call stack region, the less procedure
checks need to be made, but the probability of a stack chunk not
fitting at the end of a call stack region is increased. There is also a
tradeoff between external wasted space (an issue if there are many
threads running) and internal wasted space. Large stack chunks
result in more external wasted space, but less frequent stack link-
ing (resulting in less internal wasted space). Capriccio’s call stack
mechanism removes false “out of stack space” errors, minimizes
overhead from inlined stack check code due to call graph analysis,
and provides tunable parameters to balance memory fragmentation
tradeoffs to application requirements.

2.5 Summary
Table 1 reviews various features of the presented multi-threaded
stack mechanisms.

Runtime Overhead The overhead above what the standard single-
threaded call stack mechanism would incur.

Constant No additional runtime overhead beyond initial setup.

Procedure call Additional runtime overhead with every proce-
dure call.

Linear Procedure Call Grouping prevents additional runtime
overhead with every procedure call, but additional runtime
overhead is still asymptotically linear with respect to proce-
dure calls.

Context switch Additional runtime with every context switch.

Global Global routines need to be run periodically to maintain
the call stack, which result in program pausing.

Scalable Multi-Threaded Stack Mechanisms 3 2014/10/14

Memory Overhead Additional call stack memory overhead above
what the traditional single-threaded call stack mechanism
would incur.

Constant No additional memory overhead beyond initial setup.

Procedure call Additional memory overhead with every proce-
dure call.

On Extension Constant memory overhead on stack extension.

Premature Out-Of-Memory
No Memory organization theoretically allows for a process to

use its entire Virtual Address space before running out of
memory.

Negligible Memory organization may result in fragmentation
similar to heap allocation, but conceptually the entire Vir-
tual Address space can be used.

Thread/Heap Memory organization allows sharing of call stack
space among threads, but stack space is a fixed size and
once that is used up, the system will be “out of memory”
even if there is remaining unused memory. Similarly, if the
heap runs out of space before the call stack does, any space
reserved for the call stack cannot be used by the heap.

Single Thread Memory Organization is such that each thread
has a fixed amount of call stack space, and if one thread
exhausts its call stack space it cannot use any other available
memory in the system. Heap can prematurely run out of
memory as in Thread/Heap.

3. Experimental Setup
3.1 Criteria for Selection of Stack Mechanisms
Our goal is to discover or identify an efficient multi-threaded call
stack mechanism that works as well and as transparently as the
call stack mechanism for single-threaded processes. Therefore, any
multi-threaded call stack mechanism selected for analysis must
be scalable. As such, each mechanism must have the following
characteristics:

• Compatible with concurrent multithreading (as opposed to user
space threads where only one thread may run at a time)

• The use of a central locking mechanism must be used sparingly,
if at all. Otherwise, scalability will suffer, especially if the
locking is performed on a per procedure call basis.

• Dynamic sharing of memory between thread call stacks. No
allocating a fixed amount memory to each thread at the start
and saying “this will be enough”.

• Stack data must be referencable. It cannot move around. This
decision was made to maintain compatibility with existing sys-
tem calls, as well as to avoid the overhead and locking associ-
ated with moving stack data around.

The following methods do not meet the above criteria and were
not selected for experimentation.

• All methods from Section 2.2 lack dynamic sharing of mem-
ory between thread call stacks. Each method had the common
mechanism of assigning each thread an exclusive, fixed size call
stack.

• Hybrid stack sharing uses a fixed number of fixed size call
stacks for running threads. The context switching penalty of
copying stack data would be too expensive for a system running
a large number of threads, which requires fast and efficient
context switching.

• Multitask stack sharing was created for embedded systems with
a single processor. Extending the mechanism to allow for true
multi-threading would require synchronization for every proce-
dure call to eliminate race conditions between a thread using its
call stack, and another thread allocating space in that call stack.

• Meshed stack would require moving of call stack variable ad-
dresses. This disallows using stack variables as arguments to
procedure calls, especially system calls. Additionally, the over-
head required (stopping all threads to compact the call stack, or
synchronization mechanisms) would harm scalability.

3.2 C--
The considered stack mechanisms require instruction sequences
for procedure calls that cannot always rely on a contiguous stack
frame. Two existing open source compiler frameworks, gcc [1] and
LLVM [2] were evaluated for modification, and discarded, for the
following two reasons: First, existing public interfaces to modify
the instruction sequences for procedure calls were limited to mod-
ifications that still relied on a contiguous stack frame. It would
have required understanding beyond public interfaces to modify
the instruction calling sequence. In particular, it was unknown if
some optimizations relied on a contiguous stack frame. Secondly,
we wanted to be under complete control of the optimizations that
could distort timing measurements of procedure calls, like inlining
and elimination of tail recursion, in order to isolate the effects of
different calling mechanisms.

Given the above analysis, it was decided to build a C-like com-
piler from scratch to save time and avoid unforeseen complications
resulting from modifying an existing complicated codebase. This
C-like language is a subset of the C language and was given the
unoriginal name of C--.

We give a brief overview of C--. More details can be found
in [21]. The C-- compiler has no preprocessor, and accepts only
one source file as input. The C-- compiler emits 32-bit x86 [6] in-
structions compatible with the open source assembler NASM [3].
The basic architecture consists of eight 32-bit general purpose reg-
isters: EAX, EBX, ECX, EDX, ESI, EDI, ESP and EBP. While all
of these registers have some special uses, by far the most special-
ized register is ESP, the stack pointer, whose value is changed by
the CALL and RET instructions. All other registers are used as gen-
eral purpose registers except where noted otherwise. All interfacing
with existing C standard library routines relies on NASM’s global
and extern commands. Unlike the standard cdecl calling conven-
tion which requires procedures to preserve the values of EBX, ESI,
EDI and EBP, C-- assumes that any procedure call can trash any
register (except where a register is specially reserved by a stack
mechanism).

C-- supports the int, char, double, struct, void, and pointer data
types. Several features of the of the C language were omitted sim-
ply because they were not needed for the experimentation: dynamic
allocation of memory on the stack (stalloc), variable array dec-
laration on the stack, variable declarations cannot have initializ-
ers, whole structs cannot be assigned (only individual struc mem-
bers), function pointers, increment operators, decrement operators,
and some other operators. C-- does not implement the auto, const,
enum, goto, long, register, signed, static, switch, typedef, union,
unsigned, and volatile keywords.

The compiler performs dataflow analysis, register allocation,
peephole optimization, and includes a bottom-up rewriting systems
(BURS) [13]. C-- has introduced a macro, stacksizeof(procedure),
which like the C macro sizeof(type) returns the stack size for a
given procedure.

Scalable Multi-Threaded Stack Mechanisms 4 2014/10/14

4. Implemented Stack Mechanisms
4.1 Traditional Fixed-Size Stack with “Caller-cleanup”
This call stack mechanism does not meet the criteria outlined in
Section 3. While we compare all implemented stack mechanisms
against the traditional stack mechanism implemented in gcc with
various levels of optimizations, the traditional stack mechanism
is reimplemented in the C-- compiler to provide a comparison
independent of variations in optimizations and code quality not
directly related to the stack mechanism being evaluated.

Caller Instructions The caller routines for this stack mechanism
implement gcc’s standard calling convention [5]. The caller is re-
sponsible for pushing arguments to the stack, as well as cleaning
the stack on procedure exit.

PUSH arg1
...

PUSH argn
CALL callee name
ADD ESP, args size

Callee Instructions The callee is responsible for ensuring that the
stack pointer has the same value on return from the procedure as it
did on entry.

callee name : SUB ESP, callee stack size
... #Body of procedure

ADD ESP, callee stack size
RET

4.2 Traditional Fixed-Size Stack with “Callee-cleanup”
This mechanism also does not meet the criteria outlined earlier, but
is closer to the “MMU” mechanism discussed later on and allows
for a better comparison of the measurements.

Caller Instructions The caller is responsible for pushing argu-
ments to the stack, but does not clean up the stack on exit.

PUSH return address
PUSH arg1
...

PUSH argn
JMP callee name

Callee Instructions The callee is responsible for ensuring that
the stack pointer has the same value on return as before the caller
pushed the arguments on the stack.

callee name : SUB ESP, callee stack size
... #Body of procedure

ADD ESP, callee stack size + arg size
JMP [ESP]

4.3 Per Procedure “Heap” Allocation
The call stack for a program is structured as a linked list allocated
on the heap. Each procedure invocation has its own stack frame,
just large enough to hold the callee’s activation frame as well as a
pointer to the caller’s stack frame. The caller first allocates a new
stack frame, then pushes the arguments on the new stack frame
(while referring to its on stack frame), calls the callee, and finally
deallocates the stack frame. Allocation is done by calling mal-
loc [7], which requires its own stack space. Neither the current nor
the new stack frame can be used for that, hence a per-thread stack
region is reserved for this purpose. As the caller refers to three non-
contiguous stack frames, the details of the caller’s instruction are
more involved and are explained in [21] The callee’s instructions
are identical to those of “Callee-cleanup”.

Procedure A
Procedure B
Procedure C

Procedure D
Procedure E

THREAD STACK

PREVIOUS ESP

STACK FRAMES

PREVIOUS EBP

EBP

(a) (b)

Figure 2. (a) Linked Stack Chunks for A→ B→ C→ D→ E and
(b) Stack Chunk for Look-Ahead Overflow Detection

4.4 Linked Stack Chunks with “Look-Ahead” Overflow
Detection

The call stack for a program is structured as a linked list of stack
chunks. Unlike “Heap”, where each procedure has a region of
memory dynamically allocated containing just one stack frame, this
mechanism employs the use of stack chunks which may contain
many stack frames, as depicted in Figure 2 (a). When a procedure
call would cause a stack chunk to overflow, a new stack chunk as in
Figure 2 (b) is created and linked. The EBP register is reserved for
maintaining a pointer to the book keeping information at the top of
the current stack chunk. The stack overflow detection mechanism
is an implementation of Capriccio’s [25] call stack mechanism
outlined in Section 2.4.

Caller Instructions The instructions detailed here are those gen-
erated when the procedure call is a checkpoint. When the procedure
call is not a checkpoint, the caller instructions are identical to those
of “Caller-cleanup”.

MOV EAX, ESP
MOV EDX, ESP
ADD EDX, (STACK CHUNK SIZE

−LONGEST PATH(callee name)−16)
CMP EDX, EBP
JGE .L1
CALL STAMEX OVERFLOW HANDLER

.L1: PUSH arg1
...

PUSH argn
CALL callee name
ADD ESP, args size
CMP EBP, ESP
JNE L2
CALL STAMEX UNDERFLOW HANDLER

.L2: ...

The overflow handler allocates a new stack chunk by calling mal-
loc, saves the previous values of EBP and ESP, and reserves a new
thread stack, as depicted in Figure 2 (b). Since a subsequent call
to malloc (and free) requires its own stack space, a thread stack
needs to be reserved for this purpose. The stack pointer ESP is set
such that on return from the handler, the caller can push all the pa-
rameters on the stack in the possibly newly allocated chunk. The
underflow handler is responsible for restoring the previous stack
chunk and freeing the current stack chunk.

Callee Instructions The callee is responsible for ensuring that the
stack pointer has the same value on return from the procedure as
it did on entry. The instructions for this are identical to those for
“Caller-cleanup”.

Scalable Multi-Threaded Stack Mechanisms 5 2014/10/14

PREVIOUS STACK CHUNK

PROC A RETURN ADDR

ARGUMENTS

LOCAL VARS

UNDERFLOW ADDRESSP
R

O
C

 A

ARGUMENTS

LOCAL VARS

RETURN ADDRESSP
R

O
C

 B

GUARD PAGE

P
R

O
C

 C

ARGUMENTS

LOCAL VARS

RETURN ADDRESS

Figure 3. Stack Chunk for MMU Overflow Detection

4.5 Linked Stack Chunks with “MMU” Overflow Detection
The call stack for a program is structured as a linked list of stack
chunks, as depicted in Figure 2 (a). On overflow, a new stack chunk
as depicted in Figure 3 is created. The caller sequence is modified to
ensure that the deepest region of memory that the callee will use is
accessed first. If the accessed memory is beyond the available stack
space, it will touch the guard page (a region of memory with no read
or write access) and trigger the SIGSEGV signal. All SIGSEGV’s
are trapped and the signal handler performs stack extension for the
thread from which the signal was raised.

Underflow is not explicitly detected. On creation of a new stack
chunk the return address for the first procedure in the stack chunk
is replaced with the address of the stack underflow procedure, and
the return address is stored at the top of the stack chunk (’PROC A’
and ’PROC A RETURN ADDR’ in Figure 3). All other procedures
in the stack chunk store their actual return address in the stack
frame (’PROC B’ in Figure 2) (a). When the first procedure in
the stack chunk returns, execution will continue with the underflow
procedure, which will clean up the current stack chunk, reactivate
the previous stack chunk, and continue with program execution.

Caller Instructions The layout for a procedure differs from the C
standard layout in that the return address is at the end of the stack
instead of right after the arguments. As such, the caller instructions
detailed in this section are only for calling other C-- procedures
that adhere to this layout. In order to call external C functions that
adhere to the C standard layout, a trampoline routine is required.

To test if the existing stack chunk is able to hold the next
procedure call, the return address is stored in the EDX register
and an attempt is made to write that return address to the stack.
If the write fails, a SIGSEGV is generated and the signal handler
will create the new stack chunk, store the return address at the top
of the stack chunk and place the address of the stack underflow
procedure in the EDX register. On return of the signal handler,
control continues with the instruction that caused the signal (the
instruction that attempts to write the return address) and the address
of the stack underflow procedure will be written in place of the
return address.

MOV EAX, ESP
MOV EDX, return label
MOV [ESP−callee stack size], EDX
PUSH arg1
...

PUSH argn

JMP callee name
return label : ...

The C-- compiler assumes that the stack frame for a procedure
is always smaller than the guard page, otherwise the attempt to
write the return address to the stack may overwrite a location
below the guard page rather than generate a SIGSEGV. In that
case, extra instructions need to be inserted before attempting that:
MOV [ESP−(callee stack size−guard page size)], EDX would
hit the guard page if guard page size < callee stack size ≤ 2×
guard page size. If callee stack size is even larger, further instruc-
tions need to be inserted.

Callee Instructions The callee is responsible for ensuring that the
entire stack frame, including arguments, is clean before returning.
This deviation from the standard C calling convention is required
to handle the case when the return address is the stack underflow
address, as the stack underflow procedure requires the stack pointer
to be at the top of the stack upon entry.

callee name : SUB ESP, callee stack size
... #Body of procedure

ADD ESP, callee stack size + arg size
JMP [ESP−(callee stack size+ arg size)]

Stack Overflow and Underflow When SIGSEGV is generated,
the signal handler will allocate a memory aligned chunk by call-
ing memalign, will protect the guard page by calling mprotect, en-
suring that any accesses will cause a SIGSEGV, link the previous
stack chunk, store the return address at the top of the stack chunk
and place the address of the stack underflow procedure in the EDX
register. As the C calling conventions differ from the “MMU” call-
ing conventions and as calls to memalign and mprotect need their
own stack space, significant bookkeeping is needed; the details are
in [21].

5. Experiments
In order to isolate the overhead of procedure call mechanisms
from other computations, three programs with little computation
but extensive calls were selected as usage profiles, each with dif-
ferent characteristics: Summation, Unbalanced Binary Tree, and
Quicksort. Some experiments have a single-threaded and multi-
threaded version. Each multi-threaded version has two variations:
The “cores” variation tests one to eight threads to test scalability
over four individual cores, as well as Intel’s hyper-threading tech-
nology (“Hyper-Threading Technology delivers two logical proces-
sors that can execute different tasks simultaneously using shared
hardware resources” [4]). A “quantity” variation tests scalability
across a number of threads which greatly exceeds available cores in
the system. In multi-threaded experiments, the stack address space
of 1 GB is divided equally among each thread, so to keep the total
used memory constant for avoiding impacts of the virtual memory
management. For stack chunks, the size is 8 pages or 32 kilobytes,
excluding the space for the guard page if applicable.

Deep Summation. This program sums the numbers from 1 to n
recursively.

int summation(int n) {
int ret ;
if (n == 0) { return 0; }
ret = n + summation(n − 1);
return ret ;

}

This experiment aims to magnify the procedure calling overhead of
the various stack implementations by calling a heavily recursive

Scalable Multi-Threaded Stack Mechanisms 6 2014/10/14

 0

 5

 10

 15

 20

 25

 30

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

 5

 10

 15

 20

 25

 30

 35

 40

 45

D
ec

le
ar

ed
 C

 fu
nc

tio
ns

 (
%

)

C
 fu

nc
tio

n
ca

lls
 (

%
)

Stack frame size (byte)

Decleared C functions (96% of 1649 functions)
Function calls (98% of 162860 function calls)

Figure 4. Distribution of stack frame sizes of Gnuplot

procedure with small stack frame and that contains a minimum
of computation. In the multi-threaded version of this experiment,
each thread sums the numbers from 1 to n / number of threads.
The “cores” variation was run with 1, 2, 3, 4, 5, 6, 7 and 8 threads,
and the “quantity” variation was run with 8, 32, 64, 128, 256, 512
and 1024 threads.

Big Summation. This experiment aims to test the effect the stack
frame size has on the various stack implementations. Programs
allocate stack frame of various sizes. To understand what the typical
distribution of stack frame sizes is, we analyzed Gnuplot 4.6.0 (we
analyzed three other well-known open-source programs as well to
be sure that Gnuplot is representative). Figure 4 shows the relative
frequency of declared C functions for stack frame sizes from 4 to
256 bytes and the relative number of calls in a typical run. It turns
out that 98% of function calls are to functions with a stack frame of
256 bytes or less and about 30% are to functions with a stack frame
size of 32 bytes. The average is about 50 bytes.

The function summation above has a stack frame of 8 bytes (4
for the return address and 4 for the parameter). We have modified it
by allocating local variables to increase the stack frame size to 16,
32, 48, 64, 80, 96, 112 and 128 bytes.

Unbalanced Binary Tree. This experiment is an implementation
of an ordered binary tree. The tree itself is a balanced binary tree
of integers that is 20 levels deep, and an unbalanced branch of 1
million integers. The program will search 70% of the time for a
random integer contained within the 20 level deep balanced portion
of the binary tree and 30% of the time the for the maximum value
in the binary tree, triggering a spike in stack usage.

This experiment aims to test performance of the various stack
mechanisms in an environment that traditional stack mechanisms
have difficulty performing under: a large number of highly variable
sized stacks. The multi-threaded version of this experiment keeps
the work per thread constant (100 searches) as the number of
threads increase. The “cores” variation was run with 1, 2, 3, 4, 5, 6,
7 and 8 threads, and the “quantity” variation was run with 8, 16, 32
and 64 threads.

Quicksort The implementation is taken from [16]. This experi-
ment is meant to be representative for programs that don’t have a
deep calling structure but instead contain some computation (here
the comparisons and swaps). We compare various stack mecha-
nisms for sorting 106, 107, and 108 random integers with a single-
threaded version only. As the calling structure is so shallow that
all stack frames are in the first chunk of MMU and Look-Ahead,
there would be no contention between threads in a multi-threaded
version.

6. Results
The experiments were run on the following processors:

Pentium 4 launched in November 2000, 3.2GHz, containing 42
million transistors, is based on the NetBurst architecture fea-
turing a very deep instruction pipeline to achieve a high clock
speed.

Core 2 Duo launched in May 2007, 1.8GHz, containing 291 mil-
lion transistors, has 2 (physical) processor cores.

Sandy Bridge I7 launched in January 2011, 3.4GHz, containing
1.16 million transistors, has a 14-17 stages pipeline and has
4 physical cores and 8 logical cores through hyper-threading
technology.

Haswell I7 launched in August 2013, 3.4GHz, containing 1.4 bil-
lion transistors, has a 14-19 stages instruction pipeline and has
4 physical cores and 8 logical cores through hyper-threading
technology. It improves the back end of the pipeline: the in-
struction decode queue is not statically partitioned between the
two threads at each core can service.

All measurements were with Gentoo 3.10.7 in single-user mode. As
a locally-compiled system, Gentoo builds optimized code for the
underlying architecture. The results reported here are the average
over sixty individual runs of the experiments. The difference be-
tween the maximum and minimal value, as reported in Table 2 for
one set of experiments, were small enough, particularly for larger
running times, that only the average value is reported.

6.1 Impact of Processor Architecture
In the first experiment we analyze the impact of the processor ar-
chitecture on the relative efficiency of the procedure calling mech-
anism. We use single-threaded Deep Summation with different
depths of recursion, as Deep Summation makes most use of the
stack; the results are reported in Figure 5. As expected, the run-
ning time is linear to the sum being calculated. However, while on
older processors MMU, Look-Ahead, Caller-cleanup, and Callee-
cleanup perform nearly identical, the newer the processor the bet-
ter MMU and Callee-cleanup perform: Look-Ahead and Caller-
cleanup perform half the cleanup in the callee and half the cleanup
in the caller, resulting in one more instruction. A possible explana-
tion is that the deep pipeline of Pentium 4 can cope with that better
than newer processors.

Caller-cleanup and Callee-cleanup use a fixed stack size of
1GB and are not scalable, whereas MMU and Look-Ahead allo-
cate chunks of 8 pages (plus 1 guard page for MMU). MMU and
Callee-cleanup have similar caller and callee sequences, however,
the extra overhead for allocating chunks makes MMU slower than
Callee-cleanup: for summing up to 100 millions, MMU and Look-
Ahead allocate approximately 24420 chunks (due to internal frag-
mentation, Look-Ahead needs 5 more chunks than MMU). Surpris-
ingly, MMU is more efficient than Caller-cleanup, the standard gcc
convention, which itself is marginally faster than Look-Ahead.

6.2 Impact of Usage Profile in Single-Threaded Runs
All the remaining experiments were carried out on Haswell I7, the
newest processor available to us.

Deep Summation. As can be seen in Figure 6, the overhead from
a dynamic memory allocation call (malloc) for every procedure
with the Heap mechanism is significant. The figure also gives the
times of gcc without optimization (“gcc”) and gcc with optimiza-
tion (“gcc -O2”). Our C-- compiler with Caller-cleanup performs
somewhere in between. The figure also magnifies the observations
from the first experiment.

Scalable Multi-Threaded Stack Mechanisms 7 2014/10/14

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 20 40 60 80 100

T
im

e
(m

s)

Sum (millions)

Haswell I7

MMU
Look-Ahead

Caller-cleanup
Callee-cleanup

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

T
im

e
(m

s)

Sum (millions)

Sandy Bridge I7

MMU
Look-Ahead

Caller-cleanup
Callee-cleanup

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

T
im

e
(m

s)

Sum (millions)

Core 2 Duo

MMU
Look-Ahead

Caller-cleanup
Callee-cleanup

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 10 20 30 40 50 60 70 80

T
im

e
(m

s)

Sum (millions)

Pentium 4

MMU
Look-Ahead

Caller-cleanup
Callee-cleanup

Figure 5. Single-threaded Deep Summation on Haswell I7, Sandy
bridge I7, Core 2 Duo and Pentium 4

Threads 1 2 3 4 5 6 7 8
Maximum451 551 630 720 824 927 1060 1193
Average 430 529 615 701 806 911 1042 1156
Minimum 417 502 586 659 778 898 1014 1125

Table 2. The original times in ms of the Unbalanced Binary Tree
multi-threaded Look-Ahead experiment over 60 runs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100

T
im

e
(m

s)

Sum (millions)

MMU
Look-Ahead

Caller-cleanup
Callee-cleanup

Heap
gcc

gcc -O2

Figure 6. Deep Summation Single Threaded

Unbalanced Binary Tree. As can be seen in Figure 7, the over-
head from a malloc call for every procedure with the Heap mecha-
nism continues to be very significant. The trends observed in Sum-
mation continue to hold, the only difference is that the Caller-
cleanup mechanism runs faster than the MMU: the overhead from
dynamic memory allocation for every stack chunk is more signif-
icant significant than the overhead of Caller-cleanup compared to
Callee-cleanup.

Quicksort. As can be seen in Figure 8, the maximal call depth
(including auxiliary functions) is so shallow that all computation
remains within the first chunk. With MMU, a guard page is not hit

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000

T
im

e
(m

s)

Searches

MMU
Look-Ahead

Caller-cleanup
Callee-cleanup

Heap
gcc

gcc -O2

Figure 7. Unbalanced Binary Tree Single Threaded

Elements 106 107 108

Callee-cleanup 152 ms 1,686 ms 19,086 ms
MMU 156 ms 1,737 ms 19,618 ms
Caller-cleanup 157 ms 1,755 ms 20,007 ms
Look-Ahead 159 ms 1,775 ms 20,257 ms
Number of calls 14,703,523 160,540,046 1,855,875,685
Maximal depth 19 21 25

Figure 8. Quicksort Single Threaded

and MMU performs consistently better than Look-Ahead. How-
ever, the difference is at most 3%.

6.3 Impact of Usage Profile in Multi-Threaded Runs
Each multi-threaded experiment has two variations: The ”cores”
variation tests one to eight threads to test scalability over the avail-
able cores. A ”quantity” variation tests scalability across a number
of threads which greatly exceeds available cores in the system.

Deep Summation. The times reported in Figure 9 are the to-
tal running time for all threads for summing from 1 to n / num-
ber of threads. The MMU mechanism, while starting out with
better performance than Caller-cleanup and Look-Ahead, demon-
strates the worst scalability, and eventually the worst performance,
as the number of threads exceed the number of available cores. To
isolate the cause, we introduced a stack chunk reuse mechanism:
rather than deallocating stack chunks, they are placed in queue for
future use. On allocation, first chunks from that queue are used
before a new chunks is allocated through memalign and mprotect.
Calls to mprotect take more than 100 times than calls to mema-
lign for allocating page-aligned memory, which itself takes about
twice as long as malloc. MMU need mprotect and memalin. Calls
to mprotect cause the processor’s TLB to be flushed, thus incur a
heavy penalty. The new mechanism is called “MMU-with-reuse”,
the old mechanism is renamed to “MMU-without-reuse”. As can
be seen in Figure 10, the MMU-with-reuse mechanism has a better
performance than Look-Ahead when the number of threads ex-
ceeds 200. The reason is that the concurrency is so high that some
threads manage to start their cleanup phase while the others are still
in their growth phase, in this case, the stack chunks are able to be
reused, meaning there are fewer calls to malloc and mprotect. To
magnify this effect, when summation is repeated 10 times, MMU
outperforms Caller-cleanup and Look-Ahead, see Figure 11.

Scalable Multi-Threaded Stack Mechanisms 8 2014/10/14

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8

T
im

e
(m

s)

Threads

Summation multi-threaded(1-8)

MMU-without-reuse
Look-Ahead

Caller-cleanup
Callee-cleanup

 0

 100

 200

 300

 400

 500

 600

 700

 200 400 600 800 1000

T
im

e
(m

s)

Threads

Summation multi-threaded(8-1024)

MMU-without-reuse
Look-Ahead

Caller-cleanup
Callee-cleanup

Figure 9. Summation multi-threaded (MMU without reuse)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1 2 3 4 5 6 7 8

T
im

e
(m

s)

Threads

Summation multi-threaded(1-8)

MMU-with-reuse
Look-Ahead

Caller-cleanup
Callee-cleanup

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 200 400 600 800 1000

T
im

e
(m

s)

Threads

Summation multi-threaded(8-1024)

MMU-with-reuse
Look-Ahead

Caller-cleanup
Callee-cleanup

Figure 10. Summation multi-threaded (MMU with reuse)

Big Summation. As evident from Figure 12, there is almost a lin-
ear increase in the time with the increase for the stack frame size
due to the need for allocating memory, despite the same compu-
tation taking place. For a single run, MMU performs worse than
Look-Ahead because of the overhead of calling mprotect. How-
ever, if the runs are repeated 10 times and chunks are reused, MMU
outperforms Look-Ahead significantly.

Unbalanced Binary Tree. The time reported in Figure 13 is the
total time for all threads to finish. MMU-with-reuse scales identi-
cally to Caller-cleanup and Look-Ahead. MMU-with-reuse contin-
ues to show better scaling than Look-Ahead.

Neither the Caller-cleanup nor Callee-cleanup were tested when
the number of thread exceeds 8, as the high concurrency combined
with the tendency of threads to spike in their stack usage meant that
a fixed size stack mechanism would not be able to share memory
efficiently enough to run this experiment.

The spike in Look-Ahead in Figure 13 results from mutex con-
tention. When threads simultaneously allocate and free memory,
there could be contention for mutexes used in malloc. To scalably
handle memory allocation in multi-threaded applications, glibc cre-
ates memory arenas if mutex contention is detected. Each arena is
a large region of memory from which memory is allocated. The
number of arenas usually equals to the number of cores. When the

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8

T
im

e
(m

s)

Threads

Summation multi-threaded(1-8)

MMU-with-reuse
Look-Ahead

Caller-cleanup
Callee-cleanup

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 200 400 600 800 1000

T
im

e
(m

s)

Threads

Summation multi-threaded(8-1024)

MMU-with-reuse
Look-Ahead

Caller-cleanup
Callee-cleanup

Figure 11. Summation multi-threaded (MMU with reuse), 10 re-
peats

 0

 10

 20

 30

 40

 50

 60

 16 32 48 64 80 96 112 128

T
im

e
(m

s)

Stack frame size (byte)

MMU
Look-Ahead

Look-Ahead-10-repeats
MMU-10-repeats

Figure 12. Big Summation multi-threaded (MMU with reuse)

number of thread exceeds the number of cores, mutex contention
increases.

7. Conclusions
Two stack calling mechanisms were identified that satisfy the given
criterions, MMU and Look-Ahead. To summarize, MMU tends to
perform worse that Look-Ahead, if (1) there is a deep recursion
without repeats (so the overhead of mprotect-ing does not amor-
tize), (2) the stack frame size is large (so the guard page is more fre-
quently hit), and (3) a larger number of short-lived threads all start
at the same time (so the overhead of mprotect-ing does not amor-
tize). However, none of these three situations are typical. Thus, one
may conclude that MMU performs better in practice, particularly
for languages that allow arrays to be allocated only on the heap and
thus have small stack frames. However, (extrapolating Quicksort)
the differences are not big and there can be situations where MMU
degrades. Still, (extrapolating Quicksort again), the differences be-
tween fixed stack size (Callee-cleanup and Caller-cleanup) and au-
tomatic stack size management (MMU and Look-Ahead) are so
small that there no reason to keep programmers guessing the stack
size at thread creation.

Scalable Multi-Threaded Stack Mechanisms 9 2014/10/14

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1 2 3 4 5 6 7 8

T
im

e
(m

s)

Threads

UBT multi-threaded(1-8)

MMU-with-reuse
Look-Ahead

Caller-cleanup
Callee-cleanup

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 10 20 30 40 50 60

T
im

e
(m

s)

Threads

UBT multi-threaded(8-64)

MMU-with-reuse
Look-Ahead

Figure 13. Unbalanced Binary Tree multi-threaded

While we tried to make the comparison as fair as possible,
there are limits: for Look-Ahead, a call-graph analysis is used;
no analysis of similar complexity is done for MMU. Also, Look-
Ahead suffers more from internal fragmentation as stack frames for
a number of procedures are allocated at once; we did not measure
that effect. On the other hand, MMU uses Callee-cleanup, whereas
Look-Ahead uses Caller-cleanup; one could modify Look-Ahead
to use the faster Callee-cleanup sequence as well.

A surprise to use was that Callee-cleanup offers a measurable
advantage over Caller-cleanup, the standard C calling convention.

It should also be noted that the C-- compiler has no optimiza-
tions that could reduce or eliminate procedure calls. Implementing
the most promising stack mechanisms into an existing professional
compiler framework would allow for better comparisons of more
complex real world programs. Finally, our experiments involved
only processors of the Intel x86 family. It remains to be seen if our
conclusions apply to other processor families as well.

Acknowledgments
Measurements were run through the Datamill Project of the Real-
Time Embedded Software Group at the University of Waterloo. We
thank the Datamill project members for their support. We are also
grateful for the financial support from China Scholarship Council.

References
[1] GNU Compiler Collection, . URL http://gcc.gnu.org.
[2] The LLVM Compiler Infrastructure, . URL http://llvm.org.
[3] The Netwide Assembler, . URL http://www.nasm.us.
[4] Intel Technology Journal, Special Issue on Hyper Threading Technol-

ogy, volume 6, 1, February 2002.
[5] GCC’s Stdcall Calling Convention, October 2010. URL

http://gcc.gnu.org/onlinedocs/gnat_ugn_unw/
Stdcall-Calling-Convention.html.

[6] Intel 64 and IA-32 Architectures Software Developer’s Manual, May
2011. URL http://download.intel.com/design/processor/
manuals/253665.pdf.

[7] malloc man page, The Linux man-pages project, May 2012. URL
http://man7.org/linux/man-pages/man3/malloc.3.html.

[8] pthread create man page, The Linux man-pages project, Au-
gust 2012. URL http://man7.org/linux/man-pages/man3/
pthread_create.3.html.

[9] The go programming language, November 2013. URL http://
golang.org.

[10] AMD. Multi-Core Processing with AMD, November 2013.
URL http://www.amd.com/us/products/technologies/
multi-core-processing/Pages/multi-core-processing.
aspx.

[11] ARM. ARM11MPCore Processor, November 2013. URL
http://www.arm.com/products/processors/classic/
arm11/arm11-mpcore.php.

[12] A. R. Disteli and P. Reali. Combining Oberon with active objects. In
Proceedings of the Joint Modular Languages Conference on Modular
Programming Languages, pages 221–235. Springer-Verlag New York,
1997.

[13] D. Grune, H. E. Bal, C. J. H. Jacobs, and K. G. Langendoen. Modern
Compiler Design. John Wiley & Sons, NY, 2001.

[14] G. Hogen and R. Loogen. A new stack technique for the
management of runtime structures in distributed implemen-
tations. Informatik-Berichte 93-3, RWTH Aachen, 1993.
URL http://sunsite.informatik.rwth-aachen.de/
Publications/AIB/1993/1993-03.ps.gz.

[15] Intel. Multi-Core Processor Architecture Explained, August
2013. URL http://software.intel.com/en-us/articles/
multi-core-processor-architecture-explained.

[16] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall Inc., 1988.

[17] S. Lalis and B. A. Sanders. Adding concurrency to the Oberon sys-
tem. In Proceedings of the International Conference on Programming
Languages and System Architectures, pages 328–344. Springer-Verlag
New York, 1994. ISBN 0-387-57840-4.

[18] Microsoft. Windows Development, October 2013. URL
http://msdn.microsoft.com/en-us/library/windows/
desktop/ms686774(v=vs.85).aspx.

[19] S. Microsystems. Multithreaded Programming Guide, Septem-
ber 2008. URL http://docs.oracle.com/cd/E19253-01/
816-5137/816-5137.pdf.

[20] B. Middha, M. Simpson, and R. Barua. MTSS: Multitask stack sharing
for embedded systems. ACM Transactions on Embedded Computing
Systems, 7(4, Article 46), July 2008. .

[21] J. I. Moore-Oliva. A comparison of scalable multi-threaded stack
mechanisms. Master’s thesis, McMaster University, Hamilton, On-
tario, Canada, December 2010. URL http://digitalcommons.
mcmaster.ca/opendissertations/4172/.

[22] M. Pizka. Thread segment stacks. In H. R. Arabnia, editor,
Proc. of the Int. Conf. on Parallel and Distributed Processing Tech-
niques and Applications - PDPTA, Las Vegas, NV, June 1999.
CSREA Press. URL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.44.3522.

[23] H. Sutter and J. Larus. Software and the concurrency revolution. ACM
Queue, 3(7):54–62, September 2005. ISSN 1542-7730.

[24] C. Tismer. Continuations and stackless python or “how
to change a paradigm of an existing program”. In Pro-
ceedings of the 8th International Python Conference, January
2000. URL http://www.python.org/workshops/2000-01/
proceedings/papers/tismers/spcpaper.pdf.

[25] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer.
Capriccio: scalable threads for internet services. In SOSP ’03: Pro-
ceedings of the nineteenth ACM symposium on Operating systems
principles, pages 268–281, New York, NY, USA, 2003. ACM.

[26] M. F. Wilding and D. A. Wood. Heap and stack layout for multi-
threaded processes in a processing system. US Patent 744782, Novem-
ber 2008.

[27] K.-F. Wong and B. Dagevill. Supporting thousands of threads using
a hybrid stack sharing scheme. In Proceedings of the 1994 ACM
Symposium on Applied Computing, pages 493–498. ACM New York,
1994. ISBN 0-89791-647-6.

Scalable Multi-Threaded Stack Mechanisms 10 2014/10/14

http://gcc.gnu.org
http://llvm.org
http://www.nasm.us
http://gcc.gnu.org /onlinedocs/gnat_ugn_unw/Stdcall-Calling-Convention.html
http://gcc.gnu.org /onlinedocs/gnat_ugn_unw/Stdcall-Calling-Convention.html
http://download.intel.com/design/processor/manuals/253665.pdf
http://download.intel.com/design/processor/manuals/253665.pdf
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/pthread_create.3.html
http://man7.org/linux/man-pages/man3/pthread_create.3.html
http://golang.org
http://golang.org
http://www.amd.com/us/products/technologies/multi-core-processing/Pages/multi-core-processing.aspx
http://www.amd.com/us/products/technologies/multi-core-processing/Pages/multi-core-processing.aspx
http://www.amd.com/us/products/technologies/multi-core-processing/Pages/multi-core-processing.aspx
http://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php
http://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/1993/1993-03.ps.gz
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/1993/1993-03.ps.gz
http://software.intel.com/en-us/articles/multi-core-processor-architecture-explained
http://software.intel.com/en-us/articles/multi-core-processor-architecture-explained
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686774(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686774(v=vs.85).aspx
http://docs.oracle.com/cd/E19253-01/816-5137/816-5137.pdf
http://docs.oracle.com/cd/E19253-01/816-5137/816-5137.pdf
http://digitalcommons.mcmaster.ca/opendissertations/4172/
http://digitalcommons.mcmaster.ca/opendissertations/4172/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.3522
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.3522
http://www.python.org/workshops/2000-01/proceedings/papers/tismers/spcpaper.pdf
http://www.python.org/workshops/2000-01/proceedings/papers/tismers/spcpaper.pdf

	1 Introduction
	2 Related Work
	2.1 Single-Threaded Call Stack
	2.2 Single-Threaded Stack Mechanism Extensions
	2.3 Stack Sharing
	2.4 Cactus Stacks
	2.5 Summary

	3 Experimental Setup
	3.1 Criteria for Selection of Stack Mechanisms
	3.2 C–

	4 Implemented Stack Mechanisms
	4.1 Traditional Fixed-Size Stack with ``Caller-cleanup''
	4.2 Traditional Fixed-Size Stack with ``Callee-cleanup''
	4.3 Per Procedure ``Heap'' Allocation
	4.4 Linked Stack Chunks with ``Look-Ahead'' Overflow Detection
	4.5 Linked Stack Chunks with ``MMU'' Overflow Detection

	5 Experiments
	6 Results
	6.1 Impact of Processor Architecture
	6.2 Impact of Usage Profile in Single-Threaded Runs
	6.3 Impact of Usage Profile in Multi-Threaded Runs

	7 Conclusions

