
EXPLOITING FINE BLOCK TRIANGULARIZATION AND
QUASILINEARITY IN DIFFERENTIAL-ALGEBRAIC EQUATION

SYSTEMS

NEDIALKO S. NEDIALKOV†§ , GUANGNING TAN†¶, AND JOHN D. PRYCE‡‖

Abstract. The Σ-method for structural analysis of a differential-algebraic equation (DAE)
system produces offset vectors from which the sparsity pattern of DAE’s system Jacobian is derived;
this pattern implies a fine block-triangular form (BTF). This article derives a simple method for
quasilinearity analysis of a DAE and combines it with its fine BTF to construct a method for finding
the minimal set of initial values needed for consistent initialization and a method for a block-wise
computation of derivatives for the solution to the DAE.

Key words. differential-algebraic equations, structural analysis, quasilinearity

AMS subject classifications. 34A09, 65L80, 41A58, 65F50

1. Introduction. The authors have developed the Matlab package daesa,
Differential-Algebraic Equations Structural Analyzer [6], aimed at analyzing the struc-
ture of a system of differential-algebraic equations (DAEs) of the general form

fi(t, the xj and derivatives of them) = 0, i = 1, . . . , n,(1.1)

where the xj(t), j = 1, . . . , n, are state variables, and t is the time variable. The fi
can be arbitrary expressions built from the xj and t using +,−,×,÷, other analytic
standard functions, and the dp/dtp operator.

daesa implements the Σ-method for structural analysis [7]. Using operator over-
loading, this package extracts the signature matrix of (1.1), and then by solving a
linear assignment problem, finds two offset vectors, from which it constructs coarse
and fine block-triangular forms (BTFs) of the DAE. Using the fine BTF, daesa per-
forms quasilinearity (QL) analysis and then finds the minimal set of variables and
derivatives of them that require initial values, and also constructs a block-wise solu-
tion scheme.

Some of the theory of these BTFs is presented in [9], where several results were left
to be proved as future work. The companion article [8] proves them and presents new
results on BTFs, and in particular related to the fine BTF. Describing the method for
QL analysis was also left for future work in [9]: we derive this method here. We also
present daesa’s algorithm for finding the minimal set of variables and derivatives that
need to be initialized and the algorithm for producing a block-wise solution scheme.

Section 2 illustrates how the computation of derivatives for the solution to (1.1)
was prescribed originally by the Σ-method. Section 3 derives a method for computing
them based on a fine BTF of the DAE. A simple method for QL analysis is derived in
Section 4. The overall solution scheme for computing derivatives for the solution to
(1.1), building on its fine BTF and QL information, is given in Section 5. Conclusions
are in Section 6.

†Department of Computing and Software, McMaster University, Hamilton, Canada
‡Cardiff School of Mathematics, Cardiff University, UK
§Supported in part by the Natural Sciences and Engineering Research Council of Canada

(NSERC)
¶Supported in part by the Ontario Research Fund (ORF), Canada
‖Supported in part by The Leverhulme Trust

1

2 N. S. NEDIALKOV, G. TAN, AND J.D. PRYCE

For brevity, we refer to the companion article [8] for definitions and concepts. A
term that is explained in [8] is typeset here in slanted font on first occurrence, and
the subsection where it appears in [8] is referenced as [§X].

We assume that (1.1) is structurally well posed; that is, its signature matrix
Σ = (σij) contains a highest-value transversal (HVT) with entries > −∞ [§2.1].

2. Basic solution scheme. Let c and d be valid offset vectors [§2.1] for (1.1),
and let kd = −maxj dj . We can find derivatives for the solution to (1.1) in stages
k = kd, kd + 1, . . ., where at stage k we

solve
{
f
(k+ci)
i = 0 | k + ci ≥ 0

}
(2.1)

for
{
x
(k+dj)
j | k + dj ≥ 0

}
(2.2)

using values for
{
x
(r)
j | 0 ≤ r < k + dj

}
, which are found at stages < k [7]. By a

“derivative” x
(r)
j we shall mean xj and (appropriate) derivatives of it.

We say the DAE (1.1) is quasilinear (QL), if it is linear in the highest-order
derivatives occurring in it, and non-quasilinear (NQL) otherwise (see also §4). To
start this stage-wise process, we need to initialize{

x
(r)
j | 0 ≤ r ≤ dj − γ

}
, where γ = 1 if the DAE is QL and 0 otherwise.(2.3)

We refer to (2.1, 2.2) as basic (solution) scheme. It succeeds (locally), if the System
Jacobian J, defined as Jij = ∂fi/∂x

(σij), if σij = dj − ci and 0 otherwise, is non-
singular at a consistent point [§2.1], see also [7]. The systems at stages k < 0 are
generally underdetermined. For stages k ≥ 0 they are square, and for k > 0 always
linear, where the matrix of the linear system is J. If the DAE is QL, the system at
k = 0 is also linear with a matrix J.

In practice, when solving (1.1) numerically by Taylor series, we compute Taylor

coefficients (TCs) x
(k+dj)
j /(k + dj)! directly, where instead of derivatives in (2.1, 2.2)

we have TCs. Such a computation is implemented in the daets solver; see [3, 4, 5]
for details. In the present work, for simplicity of the exposition, we express the theory
in terms of derivatives.

Example 2.1. Throughout this article, we use as an example the following DAE
of differentiation index 7:

0 = A = x′′ + xλ

0 = B = y′′ + yλ+ (x′)3 −G
0 = C = x2 + y2 − L2

0 = D = u′′ + uµ

0 = E = (v′′′)2 + vµ−G
0 = F = u2 + v2 − (L+ cλ)2 + λ′′.

(2.4)

The state variables are x, y, λ, u, v, and µ; L (length), G (gravity), and c > 0 are
constants. These equations are obtained from a two-pendula problem [6] in which

B = y′′ + yλ−G, E = v′′ + vµ−G, and F = u2 + v2 − (L+ cλ)2.

The Σ matrix of (2.4) and its J are shown in Figure 2.1. In Table 2.1, we illustrate
the basic scheme (2.1, 2.2) when applied to (2.4). This problem is NQL (because of
(v′′′)2), so γ = 0, and (2.3) implies we need to give initial values for x(≤6), y(≤6),
λ(≤4), u(≤2), v(≤3), and µ; the notation z(≤r) is short for z, z′, . . . , z(r). We show in
§5.1 how the number of initial values can be drastically reduced by exploiting a fine
BTF of (2.4).

Exploiting Fine Block Triangularization and Quasilinearity in DAE Systems 3

Σ =

x1 x2 x3 x4 x5 x6

x y λ u v µ ci


f1 A 2• 0 4

f2 B 1 2 0• 4

f3 C 0 0• 6

f4 D 2 0• 0

f5 E 3• 0 0

f6 F 2 0• 0 2

dj 6 6 4 2 3 0

, J =

x y λ u v µ



A 1 x

B 1 y

C 2x 2y

D 1 u

E 2v′′′ v

F 1 2u

blank denotes −∞ blank denotes 0

Fig. 2.1. Signature matrix and system Jacobian of (2.4) with labeling of equations, variables
and offsets. A HVT in Σ is marked with •. J2,1 = 0 and J6,5 = 0, since 2 = d1 − c2 > σ2,1 = 1
and 1 = d5 − c6 > σ6,5 = 0, respectively.

Table 2.1
Basic scheme for computing derivatives of the solution to (2.4). Nonlinear equations and the

variables that appear nonlinearly in them are marked by .

stage k

ci, dj −6 −5 −4 −3 −2 −1 0 · · · > 0

solve

4 A A′ A′′ A′′′ A(4) · · · A(k+4)

4 B B′ B′′ B′′′ B(4) · · · B(k+4)

6 C C′ C′′ C′′′ C(4) C(5) C(6) · · · C(k+6)

0 D · · · D(k)

0 E · · · E(k)

2 F F ′ F ′′ · · · F (k+2)

for

6 x x′ x′′ x′′′ x(4) x(5) x(6) · · · x(k+6)

6 y y′ y′′ y′′′ y(4) y(5) y(6) · · · y(k+6)

4 λ λ′ λ′′ λ′′′ λ(4) · · · λ(k+4)

2 u u′ u′′ · · · u(k+2)

3 v v′ v′′ v′′′ · · · v(k+3)

0 µ · · · µ(k)

3. Solution scheme through fine BTF. The coarse BTF of (1.1) is based on
the sparsity pattern of the DAE: S =

{
(i, j) | σij > −∞

}
. For given valid offset

vectors c and d, the corresponding fine BTF [§4.1] is based on the sparsity pattern
of J:

S0 = S0(c, d) =
{

(i, j) | dj − ci = σij
}
.(3.1)

We refer to c and d as global offsets. By ĉ and d̂ we denote the vectors of local offsets.
We assume that both global and local offsets are valid but not necessarily canonical
[§5.1], except in §5.1, where the local offsets must canonical.

Example 3.1. For (2.4) there are two coarse (diagonal) blocks, see Figure 3.1,
consisting of equations E,D,F = 0 in variables v, µ, u, and equations A,B,C = 0 in
variables x, y, λ, respectively. The former can be decomposed into three fine blocks,
while the latter cannot be decomposed into smaller fine blocks, as the block form of
its sparsity pattern, S0, is irreducible.

4 N. S. NEDIALKOV, G. TAN, AND J.D. PRYCE

Σ =

x1 x2 x3 x4 x5 x6

v µ u x y λ ci ĉi



f1 E 3 0 0 0

f2 D 0 2 0 0

f3 F 0 0 2 2 0

f4 A 2 0 4 0

f5 B 1 2 0 4 0

f6 C 0 0 6 2

dj 3 0 2 6 6 4

d̂j 3 0 0 2 2 0

, J =

v µ u x y λ



E 2v′′′ v

D u 1

F 2u 1

A 1 x

B 1 y

C 2x 2y

Fig. 3.1. Permuted Σ and J of (2.4) into fine BTF; ci and dj are global canonical offsets, and

ĉi and d̂j are local canonical offsets.

In the solution scheme below, we exploit the fine BTF (corresponding to the given
global offsets): we assume that the equations and variables of (1.1) are permuted such
that the resulting Σ and J are in fine BTF. For every position (i, j) below a diagonal
block, dj − ci > σij , and hence Ji,j is identically zero.

For simplicity in the notation, we denote the permuted equations and variables as
before, f1, f2, . . . , fn and x1, x2, . . . , xn. (In the companion paper [8] they are denoted

by f̃i and x̃i, i = 1 :n.)

3.1. Solution scheme by blocks. Assume that there are p fine diagonal blocks,
each of size Nl. Denote by Bl the set of indices of rows [resp. columns] in block l.
That is,

Bl =
{
i |
∑l−1
r=1Nr < i ≤

∑l
r=1Nr

}
.

For example in Figure 3.1, 2 ∈ B2 and 5 ∈ B4. Denote also

Bl:q =

q⋃
r=l

Br.

We re-organize the basic scheme (2.1–2.2) as follows. At stage k, we solve blocks
l = p, p− 1, . . . , 1 in order such that for block l we

solve
{
f
(k+ci)
i = 0 | i ∈ Bl and k + ci ≥ 0

}
(3.2)

for
{
x
(k+dj)
j | j ∈ Bl and k + dj ≥ 0

}
(3.3)

using {
x
(r)
j | 0 ≤ r < k + dj

}
(computed at stages < k) and{

x
(k+dj)
j | j ∈ Bl+1:p and k + dj ≥ 0

}
(available from blocks > l at this stage).

(3.4)

We refer to (3.2–3.4) as block (solution) scheme.

Exploiting Fine Block Triangularization and Quasilinearity in DAE Systems 5

Table 3.1
Block scheme for computing derivatives for the solution to (2.4).

stage k

block 4

ci, dj −6 −5 −4 −3 −2 −1 0 · · · > 0

4 A A′ A′′ A′′′ A(4) · · · A(k+4)

solve 4 B B′ B′′ B′′′ B(4) · · · B(k+4)

6 C C′ C′′ C′′′ C(4) C(5) C(6) · · · C(k+6)

6 x x′ x′′ x′′′ x(4) x(5) x(6) · · · x(k+6)

for 6 y y′ y′′ y′′′ y(4) y(5) y(6) · · · y(k+6)

4 λ λ′ λ′′ λ′′′ λ(4) · · · λ(k+4)

block 3

↓ ↓ ↓ · · · ↓
solve 2 F F ′ F ′′ · · · F (k)

for 2 u u′ u′′ · · · u(k)

block 2

↓ · · · ↓
solve 0 D · · · D(k)

for 0 µ · · · µ(k)

block 1

↓ · · · ↓
solve 0 E · · · E(k)

for 3 v v′ v′′ v′′′ · · · v(k+3)

Example 3.2. Using the fine BTF from Figure 3.1, we illustrate in Table 3.1 the
scheme (3.2–3.4) when applied to (2.4). As we discuss in §5.1, for this problem we
need to give initial guesses for x, x′, y, y′, u, v′′′, and initial values for v, v′, v′′.

Using block 4, we can compute derivatives for x, y, λ independently of the other
blocks. At stage −2, as soon as λ′′ is available, we can find u in block 3 by solving
(nonlinear) F = 0. At stage 0, as soon as u′′ is available from block 3, we can find µ in
block 2 by solving (linear) D = 0, and then find v′′′ in block 1 by solving (nonlinear)
E = 0. When considering block 1, at each stage −3, −2, and −1 there is no equation
to solve for v, v′, and v′′, respectively, and initial values are required for them.

3.2. Block scheme more formally. Denote

I lk =
{

(i, r) | i ∈ Bl and r = k + ci ≥ 0
}
,(3.5)

J lk =
{

(j, r) | j ∈ Bl and r = k + dj ≥ 0
}
,(3.6)

J<k =
{

(j, r) | 0 ≤ r < k + dj
}
, and(3.7)

J>lk =
{

(j, r) | j ∈ Bl+1:p and r = k + dj ≥ 0
}

=
⋃
r>l

Jrk .
(3.8)

By xJl
k

we mean a vector with components the elements of the set1

{
x
(r)
j | (j, r) ∈ J

l
k

}
;

1Some ordering must be agreed on but it does not matter.

6 N. S. NEDIALKOV, G. TAN, AND J.D. PRYCE

similarly for xJ<k
and xJ>l

k
. By fIlk we denote a vector with components{

f
(r)
i | (i, r) ∈ I lk

}
.

Then (3.2–3.4) can be written concisely as: at stage k solve in order for blocks
l = p, p− 1, . . . , 1 the system

fIlk(t,xJ<k
,xJl

k
,xJ>l

k
) = 0(3.9)

for xJl
k
, where xJ<k

is found during previous stages, and xJ>l
k

is found at this stage

but from previous blocks.
Example 3.3. To illustrate the above, consider stage k = −2. The sets (3.5, 3.6,

3.8) are (blank denotes ∅)

l I l−2 J l−2 J>l−2

4 {(4, 2), (5, 2), (6, 4)} {(4, 4), (5, 4), (6, 2)}
3 {(3, 0)} {(3, 0)} {(6, 2)}
2

1 {(1, 1)}

and (3.7) is J<−2 =
{

(1, 0), (4, < 4)(4, < 4), (5, < 4), (6, < 2)
}

, where (j,< r) is short
for (j, 0), (j, 1), . . . (j, r − 1). Then (3.9) can be illustrated as

l fIl−2
xJl

−2
xJ>l

−2

4 A′′, B′′, C(4) x(4), y(4), λ′′

3 F u λ′′

2

1 v′

where xJ<−2
=
(
v; x, x′, x′′, x′′′; y, y′, y′′, y′′′; λ, λ′). Note that in block 1, there is

nothing to solve, and we give an (arbitrary) initial value for v′.

For each fine block l, the difference between global and local offsets is a non-
negative constant, the lead time [§5.1] of this block:

di − d̂i = ci − ĉi = Kl ≥ 0 for all i ∈ Bl.

Let kl = k +Kl, which we refer to as local stage. Then

k + ci = kl + ĉi and k + dj = kl + d̂j .(3.10)

Using (3.10), we write (3.2, 3.3) as

solve
{
f
(kl+ĉi)
i = 0 | i ∈ Bl and kl + ĉi ≥ 0

}
(3.11)

for
{
x
(kl+d̂j)
j | j ∈ Bl and kl + d̂j ≥ 0

}
.(3.12)

For k such that kl = k + Kl ≥ 0, from (3.11, 3.12), we have a square system, and
therefore (3.9) is square. For kl > 0 it is always linear in its highest-order derivatives,
as each of the equations is differentiated at least once.

Exploiting Fine Block Triangularization and Quasilinearity in DAE Systems 7

Lemma 3.1. If mini∈Bl
ĉi = 0, then system (3.9) is underdetermined for any k

such that kl = k +Kl < 0.
Proof. Since the sparsity pattern S0 (3.1) of a fine block is irreducible, by the

Strong Hall Property [8, §4.2], any set of r ≤ Nl − 1 columns [resp. rows] contains
elements of at least r + 1 rows [resp. columns]. Therefore, any set of r ≤ Nl − 1
equations contains at least r + 1 variables xj with σij = dj − ci. The highest-order

derivative of such a xj in f
(k+ci)
i = f

(kl+ĉi)
i is

σij + kl + ĉi = d̂j − ĉi + k + ĉi = kl + d̂j ≥ 0.

Since at least one kl + ĉi < 0, where i ∈ Bl, at local stage kl < 0 there are r ≤ Nl − 1
equations with at least r + 1 variables.

Remark 3.1. The condition mini∈Bl
ĉi = 0 ensures that the local offsets for block

l are normalized [§2.1]. Canonical offsets are normalized, but not vice versa; see [8].

For brevity, write (3.9) as

FIlk(xJl
k
) = 0.(3.13)

Let kl = k + Kl < 0. If I lk = ∅, then there are no equations at this stage, and we
simply give initial values for xJl

k
; otherwise we need initial guesses (trial values for a

nonlinear solver) x̃Jl
k

to find xJl
k

by solving

min ‖x̃Jl
k
− xJl

k
‖2 s.t. FIlk(xJl

k
) = 0.

We derive in §5.1 an algorithm for determining which derivatives to initialize and
in §5.2 an algorithm for the overall solution scheme for (3.13).

4. Quasilinearity analysis. Consider the basic scheme. When k > 0, an

f
(k+ci)
i with k + ci > 0 is linear in its highest-order derivatives. If k ≤ 0 and ci

is such that k + ci = 0, the corresponding fi can be nonlinear in the derivatives we

solve for, which are the x
(σij)
j with σij = dj − ci.

For an fi, let

Yi =
{
x
(σij)
j | σij = dj − ci

}
.(4.1)

Definition 4.1. Equation fi = 0 is QL, if it is linear in all y ∈ Yi, and NQL
otherwise.

Definition 4.2. System (2.1) is NQL (at stage k), if it contains an undifferen-
tiated NQL fi, and QL otherwise. The DAE (1.1) is NQL, if it is NQL at stage 0,
and QL otherwise.

Example 4.1. Consider (2.4) and Table 2.1. At stage k = −2, we have k+ ci = 0

only for equation f6 = F = 0. Here, Y6 = {λ′′, u } as x
(d3−c6)
3 = x

(4−2)
3 = λ′′ and

x
(d4−c6)
4 = x

(2−2)
4 = u; x

(d5−c6)
1 = x′5 = v′ does not appear in F (note 1 = d5 − c6 >

σ6,5 = 0). This equation and the system are NQL at stage k = −2 .
Our goal is to determine automatically if a system at stage k ≤ 0 is QL. (For

stages k > 0, they are always QL.) We achieve this by propagating the offset and
QLity (pronounced cuellity) for each variable in a code list of the DAE. In §4.1, we
specify what we mean by code list, and in §4.2 and §4.3, we introduce the offset and
QLity of a variable. The derivations in these two subsections are summarized in the
algorithm in §4.4. In §4.5, we give a simple modification to it, so it works correctly for
the block scheme. Appendix §A suggests a simple approach for an implementation of
QL analysis using operator overloading, and also suitable for source code translation.

8 N. S. NEDIALKOV, G. TAN, AND J.D. PRYCE

4.1. Code list. An fi is described by an expression containing arithmetic op-
erations, standard functions, and the dp/dtp operator. Such an expression can be
represented by code list containing input, intermediate, and an output variables as
follows. The input variables are t and xj for j = 1 :n. We rename them as v−n = t
and vj−n = xj . Then each subsequent variable vr for r > 0 is defined using previous
variables and an operation of arity m > 0:

vr = φr(vi1 , vi2 , . . . , vim), −n ≤ iq < r for each q = 1 :m.(4.2)

φr can be an arithmetic operation, elementary function, the identity function, dp/dtp,
or a user-defined function. We refer to a constant (an operation of arity 0) directly
instead of assigning it to a variable. We refer to the last variable in the code list of
an fi as an output variable.

Assuming that we evaluate all the fi’s and that the last n variables are output
variables, we can illustrate the above as[

v−n︸︷︷︸
t

, vj−n, . . . , v0︸ ︷︷ ︸
xj

, v1, . . . , vq, vq+1, . . . , vq+n︸ ︷︷ ︸
fi

]
;

v1, . . . , vq are intermediate variables.

4.2. Offset of a variable. Let v be a variable2 in a code list of an fi.
Definition 4.3. The signature vector of v is the n vector with jth component

σj(v) =

{
the highest-order of derivative of xj on which v formally depends, or

−∞ if v does not depend on xj.

Note that σj(v) ≤ σij . “Formally” means that we do not consider symbolic sim-
plifications in the expressions that arise; e.g. the highest-order derivative of x in
x′′′ + x′′ + λx − x′′′ is 3 not 2. (See [4] for more details and an algorithm for the
computation and propagation of these vectors to compute the signature matrix of a
DAE.)

For an equation number i, denote by Mi the set of indices for which σij = dj− ci:

Mi =
{
j | σij = dj − ci

}
.

Since we assume the DAE is structurally well posed, each entry in a HVT is ≥ 0, and
therefore σij = dj − ci for at least one j. Hence Mi 6= ∅.

Definition 4.4. The offset of v, with respect to fi, is

(4.3) αi(v) = min
j∈Mi

(
σij − σj(v)

)
.

Example 4.2. For f6 = F , M6 = { 3, 4 }. Then (4.3) becomes

α6(v) = min
j=3,4

(
σ6,j − σj(v)

)
= min

{
σ6,3 − σ3(v), σ6,4 − σ4(v)

}
= min

{
2− σ3(v), −σ4(v)

}
.

Table 4.1 shows, for the code list in the first column, the corresponding σ3(vr), σ4(vr),
and α6(vr).

2This v and later u are not to be confused with the v and u in (2.4).

Exploiting Fine Block Triangularization and Quasilinearity in DAE Systems 9

Table 4.1
Code list and offsets for f6 = F

code list expression σ3(vr) σ4(vr) α6(vr)

v−3 = λ λ 0 −∞ 2
v−2 = u u −∞ 0 0
v−1 = v v −∞ −∞ ∞
v1 = v2−2 + v2−1 u2 + v2 −∞ 0 0

v2 = (L+ cv−3)2 (L+ cλ)2 0 −∞ 2
v3 = v′′−3 λ′′ 2 −∞ 0

f6 = v4 = v1 − v2 + v3 u2 + v2 − (L+ cλ)2 + λ′′ 0 0 0

For convenience in the notation below, by “v is an algebraic function φ of a set U
of variables u” we mean v = vr in (4.2) is obtained through a φ = φr with arguments
u ∈ U = { vi1 , . . . , vim }.

We propagate variable offsets through the code list of a DAE based on the fol-
lowing lemma.

Lemma 4.5.
(i) If v is v−n = t, then αi(v−n) = αi(t) =∞.

(ii) If v is vj−n = xj then

αi(vj−n) = αi(xj) =

{
σij if j ∈Mi

∞ otherwise.

(iii) If v is an algebraic function φ of a set U of variables u, then

αi(v) = min
u∈U

αi(u).

(iv) If v = dpu/dtp, where p ≥ 0, then

αi(v) = αi(u)− p.

(v) If v is an output variable (corresponding to fi), then αi(v) = αi(fi) = 0.

Proof.
(i) v−n = t does not depend on any xj , so σ(v−n) contains only −∞’s, and

αi(v−n) =∞ for all i = 1 :n.
(ii) σk(xj) = 0 if k = j and −∞ otherwise. Hence

αi(vj−n) = αi(xj) = min
k∈Mi

(
σik − σk(v)

)
=

{
σij − σj(xj) = σij if j ∈Mi

∞ otherwise.

(iii) Using3 σj(v) = maxu∈U σj(u),

αi(v) = min
j∈Mi

(
σij − σj(v)

)
= −max

j∈Mi

(
σj(v)− σij

)
= −max

j∈Mi

(
max
u∈U

σj(u)− σij
)

= −max
j∈Mi

max
u∈U

(
σj(u)− σij

)
= −max

u∈U
max
j∈Mi

(
σj(u)− σij

)
= min

u∈U
min
j∈Mi

(
σij − σj(u)

)
= min

u∈U
αi(u).

(iv) αi(v) = minj∈Mi

(
σij − (σj(u) + p)

)
= αi(u)− p.

(v) If v = fi, then αi(v) = minj∈Mi

(
(σij − σj(fi)

)
= σij − σij = 0.

3proved in [4]

10 N. S. NEDIALKOV, G. TAN, AND J.D. PRYCE

4.3. QLity of a variable.

Definition 4.6. The QLity of a variable v in a code list of an fi is

Qi(v) =


I if v does not depend on any y ∈ Yi;
N if v depends nonlinearly on some y ∈ Yi; and

L if v depends only linearly on y ∈ Yi.

Remark 4.1. As in Definition 4.3, we mean “formal” dependence. For example v
depends nonlinearly on x′′ in v = (x′′)2 + x′′+ xλ− (x′′)2, while the true dependence
is linear.

If v is an algebraic function of a set U of variables u, denote

U0 = {u ∈ U | αi(u) = 0 }.(4.4)

We propagate QLity information based on the following lemma.

Lemma 4.7.

(a) αi(v) > 0 iff Qi(v) = I.
(b) If αi(v) = 0, we have the following cases.

(i) If v is an input variable xj, then σij = 0 and

Qi(xj) = L.

(ii) If v is an algebraic function φ of a set U of variables u then, see (4.4),

Qi(v) =

{
L if Qi(u) = L for all u ∈ U0 and φ is linear in all u ∈ U0; and

N otherwise.

(iii) If v = dpu/dtp, where p > 0, then

Qi(v) = L.

(iv) If v is an output variable (corresponding to fi), then Qi(v) = L or N.

Proof.

(a) We have αi(v) > 0 iff σij > σj(v) for all j ∈ Mi iff v does not depend on any
y ∈ Yi iff Qi(v) = I.

(b) If αi(v) = 0, then v depends on at least one y ∈ Yi.
(i) If v = xj then σij = σj(xj) = 0. That is, the highest-order derivative of xj

in fi is σij = 0, and Qi(xj) = L.
(ii) If Qi(u) = L for all u ∈ U0, and φ is linear in those u’s, then v depends only

linearly on y ∈ Yi, and Qi(v) = L. Otherwise, Qi(u) = N for some u ∈ U0 or
φ is nonlinear in some u ∈ U0. In both cases, Qi(v) = N.

(iii) Since αi(v) = 0, v will not be differentiated further in the code list (of fi),
and since p > 0, v depends linearly on its highest-order derivatives. Hence
Qi(v) = L.

(iv) This follows from (a) and definition 4.6.

Exploiting Fine Block Triangularization and Quasilinearity in DAE Systems 11

Since αi(v) = 0 implies v will not be differentiated further, we have
Corollary 4.8. If Qi(v) = N for some intermediate v in a code list for fi, then

Qi(fi) = N.
That is, we can conclude from the first v with Qi(v) = N that fi is NQL.
Example 4.3. Consider f1 = A in (2.4). Here M1 =

{
1, 3

}
, Y1 =

{
x′′, λ

}
; we

wish to determine if A is QL in x′′ and λ. In Table 4.2, Q1(f1) = L, and A is QL.

Table 4.2
Code list and propagation of offsets and QLities for f1 = A

code list expression α1(vr) Q1(vr)

v−5 = x x 2 I

v−3 = λ λ 0 L

v1 = v′′−5 x′′ 0 L

v2 = v−5v−3 xλ 0 L

f1 = v3 = v1 + v2 x′′ + xλ 0 L

Example 4.4. Now consider F . We have M6 =
{

3, 4
}

, Y6 =
{
u, λ′′

}
, and we

need to determine if F is QL in λ′′ and u. In Table 4.3 Q6(v1) = N, and we can
conclude from it that F is NQL.

Table 4.3
Code list and propagation of offsets and QLities for f6 = F

code list expression α6(vr) Q6(vr)

v−3 = λ λ 2 I

v−2 = u u 0 L

v−1 = v v ∞ I

v1 = v2−2 + v2−1 u2 + v2 0 N

v2 = (L+ cv−3)2 (L+ cλ)2 2 I

v3 = λ′′ λ′′ 0 L

f6 = v4 = v1 − v2 + v3 u2 + v2 − (L+ cλ)2 + λ′′ 0 N

4.4. Quasilinearity analysis algorithm. From §4.2 and §4.3, we derive in Fig-
ure 4.1 algorithm ql analysis, which determines if an fi is QL/NQL. Since αi(v) > 0
iff Qi(v) = I, in practice, we need to propagate only L and N.

4.5. Quasilinearity of a fine block. At local stage kl > 0, system (3.13) is
linear in xJl

k
. We are interested in determining if it is linear in xJl

k
at local stage

kl ≤ 0. Similarly to the definition of Yi in (4.1), used to define quasilinearity of an fi
in (3.13), let

Zi =
{
x
(σij)
j | j ∈ Bl and σij = dj − ci

}
.

Definition 4.9. Equation fi = 0 with i ∈ Bl is QL, if it is linear in all y ∈ Zi,
and NQL otherwise.

Definition 4.10. System (3.13) is NQL if it contains an undifferentiated NQL
fi, and QL otherwise.

When considering block l, algorithm ql analysis can be readily adapted by
changing the line

Mi ← { j | σij = dj − ci } to Mi ←
{
j | j ∈ Bl and σij = dj − ci

}

12 N. S. NEDIALKOV, G. TAN, AND J.D. PRYCE

Algorithm. ql analysis

Input
code list for evaluating an fi in (1.1), σij for all j = 1 :n

Output
Qi(fi)

Compute
Mi ← { j | σij = dj − ci }
for each variable v in the code list

if v is an input variable xj then
if j ∈Mi then

αi(v)← σij
if αi(v) = 0 then Qi(v)← L

else αi(v)←∞
elseif v is t then

αi(v)←∞
elseif v is an algebraic function φ of a set U of previous variables u then

αi(v)← minu∈U αi(u)
if αi(v) = 0

U0 ← {u ∈ U | αi(u) = 0 }
if Qi(u) = L for all u ∈ U0 and φ is linear in U0 then

Qi(v)← L

else Qi(fi)← N, return
else % v is dpu/dtp

αi(v)← αi(v)− p
if αi(v) = 0 then Qi(v)← L

Fig. 4.1. Algorithm for determining if an fi in the basic scheme is QL.

and keeping the rest of this algorithm the same.

Example 4.5. Consider block l = 3. For equation f3 = F = 0, 3 ∈ B3. Then

M3 =
{
j | j ∈ B3 and σ3,j = dj − c3

}
= { 3 },

and we need to determine if F is QL in x3 = u. Now the index of x6 = λ is 6 /∈ M3

and therefore λ′′ /∈ Z3; cf. Example 4.4. We show in Table 4.4 the initialization and
propagation of offsets and QLity information for the code list in Table 4.3.

Table 4.4
Code list and propagation of offsets and QLities for f3 = F of block 3 in the BTF of (2.4)

code list expression α3(vr) Q3(vr)

v−5 = v v ∞ I

v−3 = u u 0 L

v0 = λ λ ∞ I

v1 = v2−3 + v2−1 u2 + v2 0 N

v2 = (L+ cv−3)2 (L+ cλ)2 2 I

v3 = λ′′ λ′′ 0 L

f3 = v4 = v1 − v2 + v3 u2 + v2 − (L+ cλ)2 + λ′′ 0 N

Exploiting Fine Block Triangularization and Quasilinearity in DAE Systems 13

5. Overall algorithm. In §5.1 we present first an algorithm for finding the
indices of derivatives that need to be initialized, and then in §5.2 we give an overall
algorithm implementing the block solution scheme.

5.1. Initialization. Consider block l. For k such that kl = k+Kl < 0, we need
to initialize xJl

k
, that is, give values for{

x
(r)
j | j ∈ Bl and r = k + dj ≥ 0

}
.(5.1)

We have k + dj = kl + d̂j ≥ 0 when

k ≥ −max
j∈Bl

dj or equivalently kl ≥ −max
j∈Bl

d̂j .

When kl < −maxi∈Bl
ĉi, there are no equations at this stage and in this block, and

(5.1) are initial values, otherwise (5.1) are initial guesses (trial values).
When kl = 0 and (3.13) is NQL (see §4.5), also initial guesses for{

x
(d̂j)
j | j ∈ Bl

}
are required.

This is expressed by algorithm fine block initialization, Figure 5.1, which

finds the set of indices (j, r) for derivatives x
(r)
j that require initial values and the set

of indices for derivatives that require initial guesses. By [9, Theorem 4.5], these are
minimal sets.

Algorithm. fine block initialization

Input
local canonical offsets c∗i , d

∗
j , i, j = 1 :Nl

γ = 1 if block is QL and 0 otherwise

b =
∑l−1
i=1Ni, block l starts at index b+ 1

Output
Jv set of indices for derivatives that require initial values
Jg set of indices for derivatives that require initial guesses

Compute
Jv ← ∅
Jg ← ∅
for q ← −max d∗j to −γ

M ← { j | q + d∗j ≥ 0 }
J ←

{
(j + b, q + d∗j) | j ∈M

}
if q < −max c∗i then (no equations)

Jv ← Jv ∪ J
else Jg ← Jg ∪ J

Fig. 5.1. Initialization for a fine block. To simplify the notation in this algorithm, for block l
we denote by c∗i and d∗j its local canonical offsets and assume they are indexed from 1 to Nl; that is

c∗i = ĉb+i and d∗j = d̂b+j .

Example 5.1. For the blocks in our example, this algorithm produces sets as
follows.

14 N. S. NEDIALKOV, G. TAN, AND J.D. PRYCE

− Block l = 4 is QL, γ = 1, b = 3, max d∗j = max c∗i = 2. When q = −2, M = { 1, 2 },
Jg = J = { (4, 0), (5, 0) }; when q = −1, M is the same, J = { (4, 1), (5, 1) }, and

Jg = { (4, 0), (5, 0), (4, 1), (5, 1) } and Jv = ∅.

− Block l = 3 is NQL, γ = 0, b = 2, max d∗j = 0, and max c∗i = 0. We have one
iteration with q = 0, M = { 1 }, and

Jg = { (3, 0) } and Jv = ∅.

− Block l = 2 is QL, γ = 1, max d∗j = 0, the loop does not execute, and Jg = ∅ and
Jv = ∅

− Block l = 1 is NQL, γ = 0, b = 0, max d∗j = 3, and max c∗i = 0. After iterations
q = −3,−2,−1, we have

Jv = { (1, 0), (1, 1), (1, 2) },

and after iteration q = 0,

Jg = { (1, 3) };

M = { 1 } through all iterations.
Since the variables are in the order v, u, µ, x, y, λ, the above Jg and Jv sets imply
that

x, y, x′, y′ u, v′′′ require initial guesses and;
v, v′, v′′ require initial values.

cf. Table 3.1.

5.2. Block scheme algorithm. Here we assume that Σ, fine BTF, canonical
local and global offsets are computed, the quasilinearity of each fi is determined,
and appropriate derivatives are given initial values or guesses (according algorithm
ql analysis). Also, we assume that the Kl are available (see the companion paper).
Finally, algorithm solving for derivatives, Figure 5.2, gives the algorithm for
stage k of the block scheme.

6. Conclusion. We showed how to perform QL analysis of a DAE and how to
combine it with its fine block triangularization to obtain a solution scheme. Provided
the problem can be decomposed into many small fine blocks, this scheme results in
solving much smaller problems compared to the basic scheme. For instance, for the
distillation column in [6], we have 52 blocks of size 1 and 11 blocks of size 7. With
the basic scheme, we would solve systems of size 129 at stages ≥ 0, while with the
block scheme, the largest system is of size 7. Furthermore, a DAE that is NQL may
decompose into subproblems that are all QL: this is the case e.g. with the Chemical
Akzo Nobel problem, a NQL DAE of size 6 that decomposes into 6 linear equations
of size 1; see [6, 9].

In the context of computing a numerical solution using Taylor series, the block
scheme has the advantage that we could exploit multiple processing units (CPUs,
cores) to pipeline the computation of Taylor coefficients (TCs). Profiling the daets
solver [5] has shown that typically more than 80%, and in some cases above 90%, of
the total computing time is spent in automatic differentiation (AD) for evaluating TCs
for the fi’s. Our hope is that, by assigning blocks of the DAE to different processing

Exploiting Fine Block Triangularization and Quasilinearity in DAE Systems 15

Algorithm. solving for derivatives

Input
k stage number
Kl for each block l

ĉ, d̂ local canonical offsets
γi = 1 if fi is QL, 0 otherwise, i = 1 :n
Bl for each block l

Output
xJk = (xJ1

k
, . . . ,xJp

k
)

Compute
for l = p, p− 1, . . . , 1

kl ← k +Kl

if kl < −maxi∈Bl
ĉi then continue

I lk ←
{

(i, r) | i ∈ Bl and r = kl + ĉi ≥ 0
}

J lk ←
{

(j, r) | j ∈ Bl and r = kl + d̂j ≥ 0
}

if there is (i, 0) ∈ I lk and γi = 0 then
qlflag ← false

else qlflag ← true
if kl < 0 then

if qlflag = false
solve min ‖x̃Jl

k
− xJl

k
‖2 s.t. nonlinear FIlk(xJl

k
) = 0

else solve min ‖x̃Jl
k
− xJl

k
‖2 s.t. linear FIlk(xJl

k
) = 0

elseif kl = 0 and qlflag = false then
solve nonlinear FIlk(xJl

k
) = 0

else solve linear FIlk(xJl
k
) = 0

Fig. 5.2. Algorithm for computing derivatives at stage k using fine BTF of the DAE. When
kl < 0, FIl

k
(xJl

k
) = 0 is underdetermined and determined otherwise.

units and computing in a block-wise manner, we can reduce the overall time in AD
to compute these coefficients. We outline this pipelining idea here and discuss briefly
some of the challenges involved.

Using AD, to evaluate the (k+ci) TC of an fi requires O(k+ci) operations, where
the constant in the big-O notation depends on the number of nonlinear operations
(×, ÷, sin, exp, etc.) in fi [1, 2]. (The work is O(1) if fi contains only +,−, and
dp/dtp.)

Denote this constant by τi and write O(k + ci) = τi(k + ci). Using the basic
scheme, at stage k ≥ 0 we need to evaluate N such coefficients. Thus, the work is

N∑
i=1

τi(k + ci) = k

N∑
i=1

τi +

N∑
i=0

ci 6=0

τici = τk +

N∑
i=0

ci 6=0

τici = O(τk),

where τ =
∑N
i=1 τi depends on the problem, and if the ci’s are canonical,

∑N
i=0

ci 6=0
τici

depends on the problem as well. To evaluate q+ 1 coefficients for stages k = 0 : q, the
work in AD is

∑q
k=0O(τk) = O(τq2).

For our example problem, we could assign the 3 × 3 fine block to one core, say
P2, and the coarse block consisting of the 3 fine blocks to another core, say P1. Then

16 N. S. NEDIALKOV, G. TAN, AND J.D. PRYCE

when P2 is at stage k, P1 would be at stage k−1. When P2 finishes its last stage q, P1
needs to complete stage q. If we assume that the work per each of these cores/blocks
is O(τq2/2), that is the constant is τ/2, P2 would finish in O(τq2/2) and P1 would
finish in O(τq/2) after P2. Under these simplistic assumptions, and ignoring rest of
the work (e.g. in linear algebra), we would expect the computation time to be reduced
to about half.

It is desirable to assign blocks to processing units and perform a pipelined com-
putation, such that each stage of the pipeline takes about the same amount of time
and there are no “gaps” in the pipeline. However, developing such a method is a
challenging task on its own.

One difficulty is estimating the work per TC of an fi. Another is, if the number
of fine blocks is much larger than the number of processing units, how to agglomerate
blocks such that each unit does nearly the same amount of work. A third challenge
comes from the structure of the problem. For example, assume that fine blocks 3,
2, and 1 are assigned to cores P3, P2, and P1, respectively. In Table 6.1, P3 needs

Table 6.1
Pipelining blocks 3,2, and 1. k,w : z means solving at stage k for w which depends (at least)

on z.

core time slots 1, 2, . . .

P3 0, u′′ : v′′ × × 1, u′′′ : v′′′ × × 2, u(4) : v(4) · · ·
P2 0, µ : u′′ × × 1, µ′ : u′′′ × × · · ·
P1 0, v′′′ : µ × × 1, v(4) : µ′ × · · ·

v(k) to find u(k), and P1 needs µ(k), which in turn depends on u(k) to find v(k). That
is, P3 has to wait for v(k) to be determined by P1, which leads to the above gaps,
marked by ×.

Appendix A. QL analysis: implementation issues. Algorithm ql analysis
(Figure 4.4) can be implemented using operator overloading or source code translation
as follows.

In an initialization phase, we associate with each input variable xj an n-vector
with ith component

αi(xj) =

{
σij if σij = dj − ci and i and j in the same block

∞ otherwise;

see Table A.1. According to Lemma 4.5, for a unary operator, the offset vector
remains the same; for each binary operator, we take a component-wise minimum of
the associated offset vectors; and for the dp/dtp operator, we can subtract p from each
component. Since

Qi(xj) =

{
L if αi(xj) = 0 and

I otherwise,

we can assume that offset 0 encodes L and offset > 0 encodes I. Further, we can use
e.g. “offset” −1 to encode N.

For an intermediate variable v, if Qi(v) = N, then the subsequent intermediate
variables in the code list for the fi will be of QLity N. Hence, for a v with Qi(v) = N,
we can set the ith component of its offset vector to −1. Then, if the ith component
of the offset vector of fi is 0, Qi(fi) = L, and if it is −1, Qi(fi) = N.

Exploiting Fine Block Triangularization and Quasilinearity in DAE Systems 17

In passing, we note that, if a variable v is in the code list of fi but not in the code
list of fj , i 6= j, then αj(v) is ignored. However, we propagate the whole n-vector, as
we do not know in advance (in particular with operator overloading) if v appears in
the code list of more than one fi.

Table A.1
Propagation of variable offsets and QLity information through code list of (2.4). The QLity of

each equation (output variable) is marked by ; − denotes ∞.

code list expression A B C D E F
α1 α2 α3 α4 α5 α6

v−5 = x x 2 − 0 − − −
v−4 = y y − 2 0 − − −
v−3 = λ λ 0 0 − − − −
v−2 = u u − − − − − 0
v−1 = v v − − − − 3 −
v0 = µ µ − − − 0 − −
v1 = v′′−5 x′′ 0 − −2 − − −
v2 = v−5v−3 xλ 0 0 0 − − −

A = v3 = v1 + v2 x′′ + xλ 0 0 −2 − − −
v4 = v′′−4 y′′ − 0 −2 − − −
v5 = v−4v−3 yλ 0 0 0 − − −
v6 = v4 + v5 y′′ + yλ 0 0 −2 − − −
v7 = v′−5 x′ 1 − −1 − − −
v8 = v27 (x′)2 1 − −1 − − −
v9 = v6 + v8 y′′ + yλ+ (x′)2 0 0 −2 − − −

B = v10 = v9 −G y′′ + yλ+ (x′)2 −G 0 0 −2 − − −
v11 = v2−5 x2 2 − −1 − − −
v12 = v2−4 y2 − 2 −1 − − −
v13 = v11 + v12 x2 + y2 2 2 −1 − − −

C = v14 = v13 − L2 x2 + y2 − L2 2 2 −1 − − −
v15 = v′′−2 u′′ − − − − − −2
v16 = v−2v0 uµ − − − 0 − 0

D = v17 = v15 + v16 u′′ + uµ − − − 0 − −2

v18 = v′′′−1 v′′′ − − − − 0 −
v19 = (v′′′)2 (v′′′)2 − − − − −1 −
v20 = v−1v0 vµ − − − 0 3 −
v21 = v19 + v20 (v′′′)2 + vµ − − − 0 −1 −

E = v22 = v21 −G (v′′′)2 + vµ−G − − − 0 −1 −
v23 = v2−2 u2 − − − − − −1

v24 = v2−1 v2 − − − − 3 −
v25 = v23 + v24 u2 + v2 − − − − 3 −1
v26 = cv−3 cλ 0 0 − − − −
v27 = L+ v26 L+ cλ 0 0 − − − −
v28 = v227 (L+ cλ)2 −1 −1 − − − −
v29 = v25 − v28 u2 + v2 − (L+ cλ)2 −1 −1 − − 3 −1
v30 = v−3 λ′′ −2 −2 − − − −

F = v31 = v29 + v30 u2 + v2 − (L+ cλ)2 + λ′′ −2 −2 − − 3 −1

REFERENCES

[1] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation, SIAM, Philadelphia, PA, USA, second ed., 2008.

[2] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1966.

18 N. S. NEDIALKOV, G. TAN, AND J.D. PRYCE

[3] N. S. Nedialkov and J. D. Pryce, Solving differential-algebraic equations by Taylor series (I):
Computing Taylor coefficients, BIT Numerical Mathematics, 45 (2005), pp. 561–591.

[4] , Solving differential-algebraic equations by Taylor series (II): Computing the system Ja-
cobian, BIT Numerical Mathematics, 47 (2007), pp. 121–135.

[5] , Solving differential algebraic equations by Taylor series (III): the DAETS code, JNAIAM
J. Numer. Anal. Indust. Appl. Math, 3 (2008), pp. 61–80.

[6] N. S. Nedialkov, J. D. Pryce, and G. Tan, DAESA — a Matlab tool for structural analysis
of DAEs: Software, ACM Transactions on Mathematical Software, to appear (2014). 15
pages.

[7] J. D. Pryce, A simple structural analysis method for DAEs, BIT, 41 (2001), pp. 364–394.
[8] J. D. Pryce, N. S. Nedialkov, and G. Tan, Graph theory, irreducibility, and structural analysis

of differential-algebraic equation systems. Submitted to SIAM J. Sci. Comput., November
2014, 24 pages.

[9] J. D. Pryce, N. S. Nedialkov, and G. Tan, DAESA — a Matlab tool for structural analysis of
DAEs: Theory, ACM Transactions on Mathematical Software, to appear (2014). 20 pages.

