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Abstract

Over the past few years, energy provisioning in server farms and data-centres has become an active
area of research. As such, many models have been proposed where an individual server has setup
times and can switch between two different energy states (on and off). To make such models tractable,
assumptions are usually made on the type of policies the system can implement. However, it is often not
known if such assumptions allow for the model to capture the optimal policy, or if such a model will be
strictly suboptimal. In this work we model such systems using Markov Decision Processes (MDPs) and
derive several structural properties which (partially) describe the optimal policy. These properties reduce
the set of feasible policies significantly, allowing one to describe the optimal policy by a set of thresholds
which have considerable structure. In addition to the analysis, we discuss the current literature in the
context of our results.

1 Introduction

The energy costs of server farms and data-centres are currently increasing across North America and account
for a significant amount of our energy consumption [6]. While one may think that this is a necessity of
progress, the truth is a lot of these systems are designed to handle peak loads, which results in a significant
number of machines often idling. Furthermore, an idling server still consumes a notable amount of energy
(approximately 70% of a working server) [2]. Therefore, one could switch a server to some state which
consumes a lesser amount of energy, turn it off, hibernate etc. to save costs. However, there is a trade-off
present since once a server is switched to such a state it is unable to work on present or arriving jobs, and
the system performance suffers. This trade-off has motivated many authors to develop and analyse models
of these systems [4,5,14,17-19, 22,25, 26]. However, when dealing with multiple server systems with setup
times, arriving at the optimal policy remains a challenge.

Queueing theory offers a large set of tools and results to model such systems. Specifically of interest are
what are known as vacation models - such models have been studied for decades [1,7,13,24]. In this context,
a vacation can be seen as the setup or down time of the server. However, when seeking the optimal policy,
energy-aware systems cannot always be embedded within already studied vacation models. Specifically, the
vacation time or time before a server begins to start its setup is often assumed to be an independent random
variable rather than state dependent. As such, in the past few years these models have been adapted for the
specific context of server farms and data-centres.

Multiple server systems modelled as continuous time Markov chains have been studied in [8-10, 20, 23,
27]. Exact solutions for system metrics such as the expected response time and expected rate of energy
consumption have been derived. However, all of these works considered specific policies, such as requiring
a server to be turned off as soon as it becomes idle, and beginning to turn a server on as soon as there
is a job waiting. Furthermore, where exact expressions were found, the assumption of server setups being
interruptible was imposed. These models were extended in [11,15,16] to specifically look at single server
systems. Due to the decreased complexity of the model, the optimal policy was found under general cost
functions as well as general underlying distributions for the setup and service times.

We model a multiple server system with setup times as a Markov decision process (MDP). We further
analyse this model to determine structural properties of the optimal policy which lead to a decreased set of
candidate optimal policies, as well as several rules which can be used to easily determine if a given policy is
suboptimal. The contributions of this paper include but are not limited to:



A formal definition of an MDP modelling an energy-aware multiple server system for both interruptible
and non interruptible setups.

A proof that the optimal policy follows a partially ordered set of threshold values.

For general cost functions, a proof that it is suboptimal to turn a server off if there is a job waiting in
queue.

A proof that if setups are interruptible and the cost function is linear in the expected response time
and expected energy consumption then the optimal policy is a bulk setup policy.

This paper is organized as follows. Section 2 presents the model with a corresponding MDP. Section 3
presents and discusses our main results. Section 4 gives an example of the application of the presented
theorem on a three server system. Section 5 offers the proofs of all results seen in Section 3.

2 Model and Notation

The system of interest has multiple servers, where the system manager has the ability to turn a server off that
is currently on, or to start turning on a server which is currently off. For simplicity we often refer to powering
a server down as turning it off, but in general the server is moving to some state where it consumes energy
at a lower rate. The key difference between these two server states is that when a server is off (hibernating,
sleeping, etc.) it cannot process jobs, but when a server is on, it can.

2.1 Formal Model

Our model contains N homogeneous servers and a central queue. Each of the N servers can be in one of
four energy states, OFF, SETUP, IDLE, BUSY. For ease of exposition we often refer to a server being
BUSY, IDLE, OFF, or in SETUP as shorthand for a server being in energy state BUSY, IDLE, OFF, or
SETUP respectively. A server is BUSY if it is on and processing a job. A server is IDLE if it is on but not
processing a job. A server cannot begin processing a job unless it is IDLE. For each server, there are two
control options. Firstly, an IDLE or BUSY server can be moved to energy state OFF (turning a server off).
Secondly, an OFF server can be moved to energy state SETUP (begin turning a server on). Once a server is
in setup, it will remain there for a time exponentially distributed with rate -, at which time the server will
become IDLE. In other words, each server has setup/turn-on times expected to last 1/ time units, while
turn-offs happen instantaneously. A graphical representation of this behaviour for a single server can be seen
in Figure 1.
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Figure 1: Server state behaviour

Jobs arrive to the central queue following a Poisson process with rate A and are processed on a first come
first serve basis. If a job is at the front of the queue and at least one of the IV servers is IDLFE, then one
of the IDLFE servers is arbitrarily chosen to begin processing that job. Consequently, that server becomes
BUSY. Job processing times are exponentially distributed with rate u. Once a server finishes processing a
job, it becomes IDLE, at this point the server can stay IDLE, immediately be switched to OFF, or start
processing a new job, in turn making the server BUSY once again. It is assumed that Nu > A. Although
the control of the system can always construct a policy in which the system is unstable, i.e. keep all servers
turned off, as long as the condition Ny > X holds, there exists a policy where the system is stable, i.e. all
servers are always left on, and therefore we consider such a system stable.
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From here we consider two options with respect to control of a server in the process of being in SETUP.
One could add the control option that server setups can be interrupted, i.e. when a server is in SETUP it
can be moved to energy state OFF. This is in contrast to having no control once a server begins turning
on, i.e. once a server is in SETUP it will remain in SETUP until the server turns on. In this work both
of these variations are analysed and it will be seen that the structure of the optimal policy is very sensitive
to this choice. If the system does allow for a server to move from SETUP to OFF, we refer to such as a
system as an interruptible energy-aware system. If this transition is not allowed, we simply refer to it as an
energy-aware system.

With the previous description and notation in mind, we refer to an energy-aware system and interruptible
energy-aware system as a four-tuple S = (N, A, 1, ). Furthermore, due to the assumption on the underlying
distributions, a full description of the state of an energy-aware system S can be denoted as a three-tuple
s = (n1,n2,n3), where ny denotes the number of jobs in the system, ny denotes the number of servers either
IDLE or BUSY (the number of servers on), and ng denotes the number of servers in SETUP.

Definition 1. Valid State: Given an energy-aware system S = (N, A\, u,7), a valid state (ni,ng,ns)
satisfies ny, na, ng >0 and no +nz < N.

Each of the energy states has a corresponding energy consumption rate. These rates are denoted
Eorr, Esgrvp, Erpre, and Epysy. The assumption on the ordering of these rates is as follows:
0 < FEorr < EipLe < Esgrup, Epusy. The non-negativity of Eopp allows for the hibernate/sleep
interpretation of the state, but for simplicity Forp is often assumed to equal 0.

2.2 Markov Decision Process

A given energy-aware system S = (N, A, u,y) can be represented as a Markov decision process (MDP).
Without loss of generality we firstly assume S has undergone uniformization. We also use the notation from
[21] where A denotes the allowable set of actions in state s, and p(s’|s,a) denotes the probability of being
in state s’ at the next decision epoch, given that at the current decision epoch the system is in state s
and performs action a. With uniformization and the above notation in mind, an MDP for an energy-aware
system can be defined by (1),

A(nl,ng,ng) :{_n% —ng+1,...,-1,0,1,
...,N—Tl2 —’I’Lg—l,N—’ﬂQ—ng},

and the cost (reward) function C((n1,n2,n3),a), which for now is left unspecified. The above MDP can also



be made interruptible by simply expanding the action space, that is by letting

A(nl,ng,ng) :{—(’I'LQ + n?))a —(TLQ + n&) + 1u ceey _1707 1u
...,N—TLQ — N3 — 1,N—n2—n3}.

3 Main Results and Discussion

As will be seen, the optimal policy for energy-aware systems can in general be quite complex and difficult
to determine explicitly. However, there exist several structural properties which the optimal policy satisfies.
These properties allow us to make decisions on when to turn servers on and off in a much more intelligent
manner. Specifically, some decisions which may appear to be intuitively viable are shown to be suboptimal.
This section is primarily reserved for discussion and implications of the results, all proofs are found in
Section 5.

To understand the more advanced structural properties of the optimal policy, it is first important to
understand the rudiments of how the optimal policy behaves. In a Markovian setting like the one we have
defined, if an optimal action is performed, then it is immediately following a non-dummy event. This means
that it is only optimal to turn off or on a server immediately after a job arrives, a job leaves, or a server
finishes its setup. The optimal policy also has two other simple structural properties which allow for its
analysis to be somewhat simplified before we consider more sophisticated properties.

Theorem 1. For all energy-aware systems, the optimal policy is always a pure policy. That is at every
decision epoch, the optimal policy will never turn a non-zero number of servers off and put a number of
non-zero number of servers into setup.

This theorem is particularly convenient as an observant reader may have noticed this result embedded in
the MDP as an assumption (since there is only one action variable). This along with the next result allows
us to begin to formally describe the optimal policy.

Theorem 2. The decision to turn a specific server on or a specific server off follows a threshold policy based
on the number of jobs in the system.

This means that if in state (nj,ng, ng) it is optimal to begin turning on another 4 servers, then in state
(n1 + 1,n9,n3) it is optimal to turn on at least ¢ more servers. Likewise when dealing with turning servers
off, if it is optimal to turn off 7 servers in state (n1,n2,n3), then it is also optimal to turn off at least ¢ servers
in state (n1 — 1, na, ng).

Theorem 2 allows for a convenient description of the optimal policy, by simply providing a set of threshold
values. Let kj ; and k; ; denote the threshold decision variables for an energy-aware system, where 0 < i < N
and 0 < 7 < 7. The variable kff ; is the threshold value to turn on the it" server, while there are j servers

turning on. The variable k;; is the threshold value to turn off the i*" server, while there are j servers turning
on. An initial partial ordering of the threshold values is given from the following definition.

Definition 2. For all i,j > 0 such thati+j < N — 1, k:j] < kit-l,j and kjj < kT Furthermore, for all

,0+1°
i>0andj >0 suchthati+j <N, k;; <k ,;andk;,; <k ; ;.

For an energy-aware system, one knows the optimal policy if and only if the values of all of the threshold
values are known. Therefore, for an energy-aware system S = (N, A, u,7), to find the optimal policy one
must determine N (N + 1) decision variables. Delving deeper into these threshold values leads to a result
which offers a significant reduction to the state space which should be considered.

Theorem 3. For all 0 < i < N and 0 < j < 1, k:j
(n1,m2,n3 — 1) it is optimal to begin turning on the (nz + ng )" server, then in state (ny,ng + 1,n3 — 1) it
is suboptimal to turn off the (ny + 1)1 server.

< kltl)j. Or in other words, if in a valid state

This theorem is obvious if one were to consider a system with instantaneous setups, i.e. 1/v = 0, since
it would make no sense to turn a server on and then immediately turn it off. However, consider a system
with long setup times (1/7 is large) in some state (n1,n2,n3) where in state (n1,ns + 1, n3) it is known that



turning a server off is optimal. It may be reasonable to think that although the system were in a state where
it is optimal to turn a server off given it was currently turned on, it might still be optimal to begin turning it
on in anticipation of the expected state of the system once the server finishes its setup. However, this is not
the case. Furthermore, this gives us a link between the orderings of the off thresholds, and on thresholds.
From here a comprehensive partial order for all threshold values can be derived.

Theorem 4. A partial order can be defined on the threshold values, of which the lattice is shown in Figure 2,
where x — y denotes x < y.
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Figure 2: Threshold lattice: some arrows from Theorem 3 are left off for readability

One should note that in the optimal policy it is possible to have some number of servers which always
remain on. If this is the case, then in state (0, N,0) the system would immediately turn off N — n* servers,
where n* is the number of servers which always remain on. Figure 2 still captures this behaviour, as k;r ;<0
for all i +j < n”, alongside k; ; <0 for all : 4+ j < n*. From Theorem 3 and the fact that there cannot be
less than zero jobs in the system, it is known these servers will always remain on.

Theorem 3 offers information on turning servers on with respect to the off thresholds. We would also
like to have information about choosing the off threshold directly. A popular simplification when creating
tractable models for these systems is to have servers turn off as soon as they idle. In general, when describing
the optimal policy, there is no compelling reason why this should be the case. In fact, feasible values for off
thresholds seem to be as free as the on thresholds. Clearly, there exists a configuration of parameters and
cost function where it is optimal to have a server idle until some lower threshold is reached. But conversely,
is there a configuration of parameters and cost function where it is optimal to turn a server off while there
are jobs to be processed? At first glance there seems to be two arguments which suggest that there should
be. Firstly, turning a server off will decrease the energy consumed by the system in the short run (although
it will increase holding costs). Secondly, and the more subtle of the two arguments, keeping a server on
will cause the system to remove jobs at faster rate. Therefore, other servers could start to turn off sooner.
Once those other servers are OFF, more jobs could arrive and cause those servers to now start to SETUP,



incurring a larger energy cost than if the turned off servers just remained on until the new jobs arrived.
But if the initial server instead turned off and the system was therefore processing jobs at a slower rate, the
other servers could incur a lesser cost by not undergoing additional setup periods. These arguments seem
to indicate that the cost tradeoffs in the optimal policy may be inordinately complex. However, while these
arguments may seem intuitive, they are in fact incorrect, which leads us to our next theorem.

Theorem 5. Given an energy-aware system S = (N, %, %, %), where the cost function is only dependent
on, increasing and continuous in the expected number of jobs in the system and expected rate of energy
consumption, if the number of jobs in the system is greater than or equal to the number of servers currently

turned on, it is suboptimal to turn a server off.

With regards to the faulty intuition presented before Theorem 5, it would never make sense to turn a
server off while there is a job to process for the sole reason of saving the energy cost to process the job. The
job will have to be processed eventually, otherwise the system is not stable, or unnecessary holding costs are
incurred. Therefore it is preferable to incur the energy cost now, since processing it earlier will also decrease
the holding cost. It is much harder to show the second argument (keeping a server on in the short run causes
more setups in the long run) to be false, and this is where the real value of Theorem 5 is seen. One of the
popular turn off policies used in literature is to turn a server off the moment it idles, such as the “stagger
setup” model in [8]. Theorem 5 also allows such models to be used with greater confidence as it is now
shown that such a policy is not suboptimal with respect to the turn off criteria. On the other hand, if one
were to construct a policy such that a server will turn off when there are k > 0 jobs waiting in the queue, it
would immediately be known to be suboptimal.

In Section 2 we described an alteration to our energy-aware system where we allow for the setups to
be interruptible. That is, a server is allowed to move directly from SETUP to OFF. This modification
drastically changes the structure of the optimal policy. We define a new class of policies called bulk-setup
policies. A bulk-setup policy uses the following setup criteria: for some valid state (n1,n2,ng) if it is better
to turn on some number of servers rather than do nothing or turn some number off, then it turns on all
available servers, where the number of available servers is given by N — ny — ng.

Theorem 6. For all interruptible energy-aware systems where the cost function is a positive linear combi-
nation of the number of jobs in the system and the rate of energy consumed by the system, the optimal policy
is a bulk-setup policy.

While perhaps surprising at first, this type of result arises in other research [3] and follows from the
assumption of the exponentially distributed setup times. If you were to turn on k servers, although you
would incur the energy costs at k times the rate, due to the nature of the exponential distribution, it would
be for an expected amount of time that is reduced by a factor k. Compare this to having the setup time
follow a degenerate distribution (constant setup times). Under this assumption such a policy would be a
disaster, especially if N is large.

While the sensitivity to the distribution can be worrisome, there is another potential problem with such
a policy. In practice managers are reluctant to turn machines on and off due to potential wear and tear, risk
of failure, etc. As such there is a switching cost associated with such an action and some authors incorporate
this into their cost function [5,15,16]. Clearly, for a such a cost function a bulk setup policy would not
be optimal in general. While the bulk setup issue can be addressed by incorporating switching into the
cost functions, one could instead constrain the model directly to not allow such behaviour. This is seen in
models where the turn on policy follows some predefined structure, such as the staggered setup described
n [10]. But if one chooses to exclude switching from the cost function and allows their model freedom with
regard to turn on decisions, they should be aware of this problem when searching for an optimal policy.
With these notions in mind it seems that when setups are interruptible, the assumption of exponentially
distributed setup times alongside a cost function independent of switching costs gives rise to a model with
optimal behaviour that may be problematic to actually implement. Therefore, one should be cautious when
using results derived from such a model.



4 Three Server Example

Here we present a toy example with a three server energy-aware system. Define an energy-aware system
S = (3,\, i,7y) where A < 3u. We do not offer an exact solution to the optimal policy but instead show
how theorems from Section 3 can be applied to constrain the search for the optimal thresholds. Firstly,
from Theorems 1 and 2 it is known that there are twelve decision variables. These decision variables are the
threshold values k+4 where 4,7 > 0 and i 4+ j < 3, and k; ; where ¢ >0, j > 0 and ¢ +j < 3.

We begin by examlnlng the off thresholds for the system. In complete ignorance of previously presented
results the set of feasible values for these thresholds is {—1,0,1,2,...., K — 1, K} for some constant K.
However, applying Theorem 5, arguably the most valuable of our theorems, the feasible state space shrinks
significantly. Explicitly the feasible set of values for the off thresholds ki ;, ky ;, and k3, are {-1,0},
{-1,0,1} and {—1,0,1,2} respectively. This result alone makes the problem much easier to tackle as one
has a greater confidence in approximations for picking such values, as well as the ability to iterate numerically
through a much smaller set of values.

Moving our attention to the on thresholds, some simplifications can also be made. Similar to the off
thresholds, with no structural results the set of potential thresholds has K elements, i.e. {0,1,2,...., K —1, K}
for some constant, K. While here we have not presented a theorem which can be applied directly without
any other knowledge, we can make simplifications assuming we know other threshold values. Specifically,
if the off thresholds are known (which as seen earlier can be chosen from a relatively small set of values)
then the lower end of the set of feasible values can be truncated by applying Theorem 3. T hat is for each
threshold k+j the feasible set of values now becomes {k; ; ; + 1,k ; + 2,k +3,. —1,K}. While
the truncation only eliminates a relatively small number of values from the set, they are arguably the most
important values to eliminate. The greater the value of the threshold, the 1esser the impact increasing (or
decreasing) that threshold by one would have on the performance of the system. For example, if the optimal
value of say koo were 3 and a value of 2 was chosen, the difference in performance would be greater than
say if the optimal value was 20 and 19 was chosen. Therefore, even a small truncation could have a large
impact when choosing these thresholds.

5 Proofs of Results

All proofs of the theorems presented in Section 3 are presented here. However, before we can proceed with
the proof, we must first define several different analytical methods which are employed throughout this
section. Firstly, we define the traditional optimality equations as follows

u(ny, ng,ng) = mgl {C(n1,n2,n3,a) + Au(ny + 1,n2 + min(0, a), n3 + max(0, a))
acAs

+ (n3 + max(0, a))yu(n1, ng + min(0,a) + 1,ng + max(0,a) — 1)
+ (ng + min(0, a))u(n; — 1,n9 + min(0, a), n3 + max(0, a))
+ (1 =X = (n2 + max(0,a))y) — (n3 + min(0, a)))u(ni, n2 + max(0, a), n3 + min(0, a))}

In addition to the traditional optimality equations, we find that it is useful to also define a set of constrained
optimality equations defined as

u(ny, ng, ng,a) = C(ny, ne,n3,a) + Au(ny + 1,19 + min(0, a), ng + max(0,a))
+ (n3 + max(0, a))yu(n1, ng + min(0,a) + 1,n3 + max(0,a) — 1)
+ (n2 + min(0, a))u(ny — 1,12 + min(0, a), n3 + max(0, a))
+ (1 =X — (n3 + max(0,a))y) — (n2 + min(0, a)))u(ni, n2 + min(0, a), n3 + max(0, a)).

These equations follow the optimal actions (determined by the traditional optimality equations), except at
the first decision epoch, where the action is explicitly specified. It will be seen that a proof of one of the
main results is aided through the use of these equations.

While the above formulations are powerful in their own right, they deal with infinite recursions and
can be cumbersome for certain properties. This is a consequence of the time horizon approaching infinity,
which causes an infinite amount of accumulated cost. We can however employ another tool which allows for



reasoning about policies over finite time horizons (and finite cost), while still retaining the optimal policy
of the infinite time horizon case. These corresponding finite costs are built around the renewal reward
argument. Let ¢(s) be the minimum ratio over all possible policies of the expected cost incurred during a
cycle of leaving and returning to state s and the expected time it takes to complete that cycle. Formally
this is defined as follows. Let R, s be a random variable denoting the reward (or cost) earned over a single
cycle of state s under policy p. A cycle of state s refers to the interval of time where the system begins
in state s, leaves that state, and then returns to it at some point in the future, which completes the cycle.
Furthermore, let T}, ; be a random variable denoting the amount of time it takes to complete a cycle of s
under policy p. Given the set of all stable policies P, along with these two random variables, ¢(s) can be
defined as

. [E[Rp| }
c(s) = min : .
(s) PEP { E[T}s]
Here R, s is interpreted as a cost, since the minimum is used. This is a convenient definition since the
renewal reward theorem can be applied. That is, if R,(t) denotes the total reward/cost earned by time ¢
under policy p, then for all states s
Ry(t) | E[Rps

]
S t .
. — E[T, ] as t — oo

This gives the interpretation that ¢(s) is the rate at which the system gains reward/cost under the optimal
policy. This is true no matter which state s is chosen as the cycle reference, or as it is referred to in
the literature, as the renewal process [12]. Therefore ¢(s) is independent from s, in other words, c(s) is a
constant, which we will denote by ¢*. Likewise, the ratio E[R), ;]/E[T} ] is also independent from s and an
arbitrary state, say s = (0,0,0) can be chosen as the cycle reference. It should be noted that this does not
say E[R,, 5] and E[T, ;] do not depend on s, since they clearly do, but rather that their ratio is independent
of s. Therefore for all s and some specific policy p, E[R,, s]/E[T}, s] equals a constant, which we denote by c,,.

Similar to the constrained optimality equations, an extension c(s, a) is made to ¢(s) = ¢*. The quantity
¢(s, a) is no longer the minimum ratio of the expected cost incurred and expected cycle time over all policies,
but rather the minimum ratio over all policies which choose action a in state s. Formally, given the set of
all stable policies which choose action a in state s, denoted by Ps q,

c(s,a) = prergga{cp}.
The values c¢(s,a) are referred to as the constrained cycle costs. Such a construction is useful for several
reasons. Firstly, in any stable energy-aware system for all states s and actions a, unlike the classical MDP
optimality equations, c¢(s,a) is finite. This provides an option that can lead to simpler reasoning when the
optimality equations become convoluted. Furthermore, it is also possible (albeit difficult) to arrive at closed
form solutions for ¢* and c¢(s,a). Secondly, due to the construction one can say that in state s, a is an
optimal action if and only if ¢(s,a) = ¢*.

Lemma 1. For all valid states s and for all valid actions, a, a is an optimal action in state s if and only if
c(s,a) = c*.

Proof. This result is proven via contradiction. Assume c(s,a) = ¢*, but a is a suboptimal action. That is,
for all optimal policies p*, p* is not present in the constrained set of policies P; ,. Therefore,

c(s,a) = prengn {ep} > cp- =¢"
s,a

which implies ¢(s,a) > ¢* and contradicts the initial assumption. O

With the overhead of the methods of analysis defined, we now proceed to the proofs of the Theorems
presented in Section 3.



5.1 Proof of Theorem 1

Proof. This theorem is shown with a sample path argument, and exploiting the fact that a server consumes
energy at a lesser rate while IDLE, than while in SETUP. Consider a system in state (n1,ng,ns). It puts i
servers into setup, and turns j servers off, where 0 < ¢ < (N —ng —n3) and 0 < j < ng. This would now
put the system in state (n1,m2 — j,ns + 4) until the next decision epoch. However, the system could have
chosen one of two possibilities which would have been better.

In Case 1, suppose that ¢ > j. The system could have used a pure setup strategy by turning on i—j servers,
putting the system in state (n1,ng, ng+(i—j)). It is easy to see that u(ny, ne, ng+(i—75)) < u(ny,no—j, n3+1).
This is due to the fact that the mixed system has j more servers in setup than the system that only has
setups being performed. Although the pure setup strategy has j more servers on than the mixed strategy,
even in the worst case, (n; < ng — j), these servers will still incur a lesser cost since the energy cost of idling
is less than the energy cost of setting up. It is also noted that in the best case (ny > ns + j), the extra
7 servers do not incur a cost at all since the energy required to process jobs will be used eventually. Once
the next event occurs, the pure setup strategy can be changed back to a mixed strategy to couple the two
systems.

In Case 2, suppose that ¢ < j. As for Case 1, the system could have used a pure strategy but instead
of putting servers into setup, it could just turn (j — i) servers off. This would put the system in state
(n1,ne — (j —i),n3). Similar to Case 1, it can be seen that u(ni,ne — (j —i),n3) < u(ni,ns — j,ng +1).
The system employing the mixed strategy has ¢ extra servers in setup, while the system employing the pure
strategy has an extra ¢ servers on. Again, even in the worst case of all of the additional ¢ servers being idle,
the pure strategy is still preferred since idle servers incur energy costs at a lower rate than those in setup.
As for the previous case, the two systems can then be coupled at the next decision epoch. O]

5.2 Proof of Theorem 2

Proof. To prove that the optimal policy is a threshold policy two things must be shown. Firstly, if it is
optimal to turn off the n&® server in state (ni,no,n3), then it is also optimal to turn off the ni* server
in state (ny — 1,m9,n3). Secondly, if it is optimal to begin turning on the (ny + n3 + 1) server in state
(n1,m2,n3), then it is optimal to begin turning on the (ng + n3 + 1)t* server in state (ny + 1,n9,n3).

The proof starts with the simpler of the turn on/off properties, that is the threshold nature of turning
a server off. The proof is shown via contraposition. Consider an energy-aware system S = (N, %, %, %) in
a valid state (n1,n2,n3) where it is better to keep the ni" server on, rather than turn it off. Due to this
assumption it is known that

C((nlanQan3)»0) < C((n17n27n3)771)' (2)

To show that turning servers off follows a threshold policy, it is enough to show that given (2), the following
holds;

c((n1 4+ 1,n2,n3),0) < c((ny + 1,n2,n3),—1).

For the sake of simplicity, let the reference cycle state be the state where the system is empty and there
are no servers currently in setup, i.e. (0,n3,0), where n} denotes the optimal number of servers that always
remain on. It should be noted that since the cycle is starting in state (0,n5,0) all cost accumulated over the
time it takes to reach state (n1,mns,n3) for the first time is the same under each policy (keeping the server in
state (n1,ne,ng) versus turning it off). Therefore all extra costs which contribute to ¢((n; + 1, n2,n3), —1)
are accumulated on the “return” path to state (0,0, n%).

Now consider the system in state (nj +1,ng,n3). Specifically consider the benefit of having the nk? server
on rather than off. It is noted that any advantage the ni" server provides in state (ny,n2,n3) will also be
provided in state (nq + 1,n2,n3). In fact, keeping the ni" server on can be even more beneficial in state
(n1 +1,m9,n3). Firstly, if the n* server could process a job in state (n1,n2,n3), then it can clearly process
a job in state (ny + 1,n2,n3) as there are more jobs in the system. Secondly, if the server were to idle in
anticipation of a job arriving in state (n1,n2,n3), then it could also idle in state (n; + 1, na, n3), with an even
higher probability that it will be utilized in the future since there are more jobs present. Lastly, there exists



the case of n; = ng — 1, in which in state (n1,n2,n3) the server would idle, while in state (ny + 1,n9,n3) it
would be able to process jobs. Therefore, given (2), we conclude

c((n1 + 1,n9,n3),0) < c((ny + 1,n9,n3), —1).

To show that the turn on criteria also follows a threshold policy is slightly more complex as unlike turn
offs, setups do not happen instantaneously. However, the core concept is still the same. Consider two energy-
aware systems S; = So = (N, %, %, %) Consider S; in state (ni,n2,n3) and Sy in state (ng + 1,n2,n3) (S2
is in the same state, but an extra job is present). Furthermore, with the exception of the extra job in Sa,
assume all future and current job sizes, setup times, and job arrival times to be the same in both systems.
S7 employs the optimal policy and in state (n1,n2,n3) it begins to turn on the (ns + n3 + 1)th server. So
uses a policy which behaves as follows:

e S5 dynamically “marks” any job that begins to or is currently being processed in Sy
e S5 also marks the extra job

e All servers in Sy will only process a job if it is marked, and will immediately begin to process any
marked job which is waiting

e Each server, sy ; in So dynamically inspects the corresponding server, s ;, in 7 and behaves according
to the following conditions:

— If s5; is off and s; ; has just entered setup, then s, ; immediately enters setup

— If there are no marked jobs waiting to be processed in Sz, 52 ; is idle and s ; is off, then sy ; turns
off.

— If there are no marked jobs waiting to be processed in S, s2; is idle and s; ; is in setup, then sy ;
remains idle.

Firstly, from this policy it is clear that there will never be more jobs in S; than in Ss, as Sy is constrained
to only process jobs which have been or are being processed by S7. Secondly, because S; is employing an
optimal policy, when a server turns off in Sy and no new jobs have arrived since the corresponding server
turned off in Sy, Ss is performing an optimal action. On the other hand, if more jobs have arrived since the
corresponding server in S turned off, knowing this future information, it may have been optimal to keep the
corresponding server in S; on. Therefore, it would now also be optimal to keep the server on in Sy. However,
since S7 is employing an optimal policy the long term cost incurred is less than the long term cost saved by
turning the servers off. Furthermore, it is known that it is never optimal to turn off a server in S5 but keep
the server on in S7 due to the threshold nature of turn offs. Thirdly, while S; and S5 are unsynchronized,
the cost saved by turning on the (ny + nz + 1) server in Sy is greater than or equal to the cost saved by
turning on the (ny +ns + 1) server in S;. This is due to the fact that in Sy the (ng + nz + 1)t server will
process at least the amount of jobs it does in S; (along with the potential to process the extra marked job
as well), and not incur any extra energy cost. The energy costs are less than or equal to that of S; since as
any server in Sy idles in 57 it also idles or is in setup (setup incurs energy costs at a higher rate than idling).
Lastly, S; and S; will synchronize once there are no longer any marked jobs in Ss and all costs for the two
systems moving forward will be equal. Therefore the overall cost to turn on the (ng + nz + 1) server in
state (n1 + 1,n9,ng) is less than keeping it off, or in other words in state (n; 4+ 1,n2,n3) it is optimal to turn
on the (ny + nz + 1) server. O

5.3 Proof of Theorem 3

Proof. This is done by contradiction. Consider an energy-aware system in state (ni,ns,n3) and assume
the optimal action is to turn a servers on, where 0 < a < N — ny — ng. This implies that in state
(n1,n2 + a — 1,n3) it is optimal to begin turning exactly one server on. Now consider the same system in
state (n1,n2 +a —1,n3 + 1) and assume that it is optimal to turn a server off. This would immediately put
it in state (n1,n2 + a — 1,n3) which would then take the immediate action of turning a server on putting it
into state (n1,na + a, ng) since that is the optimal choice. However, during that decision epoch the optimal
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policy was not a pure strategy policy, which violates Theorem 1. Therefore, the optimal action in state
(n1,n2 + @ — 1,n3) must be to do nothing, which implies in state (n1,n2,n3) turning a servers on is not
optimal, which violates the assumption. O

5.4 Proof of Theorem 4

The partial order in Figure 2 can be shown by using the definition of the threshold values, Theorem 3, and
by showing the two inequalities ka < k;:—l,j—lv kij 4 <k;;and ki, 1 <k, forall valid i and j. To
show these inequalities we first prove a lemma which restricts when optimal decisions can be made regarding

turn ons and turn offs. This lemma then allows us to prove the result by contradiction.
Lemma 2. [t is optimal to begin turning on a server only at job arrival times.

Proof. Due to the Markovian nature of the system it is known that decisions are only made the moment
an event occurs. Events which can occur in the system are arrivals, departures, a server turning on or a
server turning off. Choosing to turn a server on when another is turned off violates Theorem 1. Choosing
to turn a server on at a departure violates Theorem 2. Therefore to show the lemma, all that is required
is to show that it is suboptimal to turn a server on the moment another completes its setup. Consider a
system in some valid state (n1,n2,n3) where ng > 0 and ny + n3 < N. Now assume that it just moved
to state (n1,n2 + 1,m3 — 1) and the system immediately starts a setup moving it to state (n1,ns + 1,n3).
Also assume that this is a better choice than doing nothing. If this were not a better choice, then this case
would not need to be considered. Now consider the system a moment before the server turned on (in state
(n1,n2,n3)). If the server were employing a policy which turned on the next server once the next setup
completes, the energy cost the system incurs for those the next two setups is expected to be

(3 Esetup)/(n37) + (M3 Esetup)/(137) = 2Esetup/7-

However, now consider the case (during the same moment before the setup completes) where the system
now decides to begin turning the next server on immediately. The cost until the next two setups completes
is now:

(713 + ]-)ESetup nSESetup _ 2ESetup
(n3 + 1)y ngy gl

Therefore, the setup cost of the next two servers to turn on (which is assumed to be beneficial to the system)
is equal if the choice is made the moment before or after the first setup completes. However, the expected
time for the servers to complete their setup is now less since the expected time for the first server to complete
its setup is reduced by:

1 1
nzy  (n3+1)y

Therefore the total cost is less when choosing to turn a server on before the setup completes. Due to the
Markovian nature of the system, this implies that it would have been better to make this decision at the
most recent event. But due to the previous observations regarding the suboptimal nature of making setup
decisions during departures and server turn offs, it is known it would have been better to begin turning the
server on at the last arrival. O
Lemma 3. For alli, j, wherei> 0,5 >0, andi+j < N, kj’j < k;’;l,jfl.

Proof. Assume k;rj > ki j—1- This would create a case where in state (ki j—1:%,J) aserver could complete

its setup. However, when this event occurs it would cause the (i+7)*" server to begin its setup, which violates
Lemma 2. Therefore the assumption must be false. O

Lemma 4. For alli, j, where 1> 0,5 >0, and i +j <N, k; ; <k; 1y, .
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Proof. Consider two systems S7 and S in valid state (n1,4, ) and (n1,i+1,j — 1) respectively. Now assume
that in S; it is optimal turn a server off. That is the cost of having that 7** server on (energy, future state
of other servers etc.), is greater than the cost of turning it off (holding cost, future state of other servers
etc.). Notice that Sy can mimic S1’s behaviour by doing the following. Ss turns off the it server and lets
the (i + 1) IDLE until the (i + j)*" server turns on. Once (i + j)*" server does turn on S; and Sy are now
synchronized. However, the (i 4+ 1)*" server has incurred a lesser cost in Sy than it did in S; and therefore
the total cost incurred in S is less than that of S;. Furthermore, it was assumed that in S; is is optimal to
turn a server off. Therefore, if it is optimal to turn a server off in Sy then it is also optimal to turn a server
off in S5. Or in other words, k:z_j < ki_+1,j71 O
Lemma 5. For alli, j, wherei > 0,5 >0, andi+j < N, k:i_’jfl < kZ_J

Proof. The proof of this lemma is very similar to that of Lemma 4. That is if it is optimal to turn a server
off in valid state (ny,4,j — 1), a system in valid state (n1,%,7) could mimic the behaviour while incurring a
lesser cost. Furthermore, since turning a server off in (n1,4,7 — 1) is optimal, it is also optimal in (n4,1, 7).
Therefore k;j_l < kZ_J O

Taking Lemma 3, Lemma 4, and Lemma 5 together, Theorem 4 follows immediately.

5.5 Proof of Theorem 5

Theorem 5 is one of the more involved proofs offered in this work. The proof uses two lemmas. The first
shows that increasing the expected turn on times of an energy-aware system will discourage it from turning
a server off, i.e. the optimal threshold to turn a server off is less than or equal to that of a system with
shorter setup times. The second determines the optimal policy for an energy-aware system with instant turn
on times and shows that the server will never turn off if there is work to be done. The rest of the theorem
follows by using these lemmas in conjunction.

Lemma 6. For all x > 0, given two energy-aware systems, S1 = (N, %, %, %) and Sy = (N, %, ﬁ, % +a), if
for S1, while in state (ny,na,n3), it is suboptimal to turn a server off, then for So while in state (ny,na, ng),
it is also suboptimal to turn a server off.

Proof. For the remainder of this proof, the constrained cycle costs for S; and Sy are denoted by ¢ (s, a)
and ca(s,a), respectively. To prove the lemma, it is enough to show that given c¢;(s,at) < c¢i(s,a-),
ca(s,a4) < ca(s,a_), where ay > 0 and a_ < 0. An interpretation of this statement is if it is better to
either do nothing, or turn a number of servers on rather than turn a number of servers off while in state s
for S1, then this is also true while in state s for Ss.

Tt is known that for all states and actions, ¢1(s,a) < ¢2(s,a). This follows from an argument that there
exists a policy for the first system which will always incur a lower cost. Consider two systems where all
job sizes and job arrival times are equal, they have an equal number of servers, and they share the same
reward/cost function. However, the expected setup times in the second system are longer than that of the
first. The first system can mimic what the second system does in every way, with the exception of the setup
times. If the second system chooses to turn on a server while the corresponding server in the first system is
turned off, the server in the first system will also begin to turn on. The associated servers for the first and
second system are denoted by v; and vs respectively. From here, two cases can happen:

e Case 1: vy turns on before vs.
e Case 2: vy turns on before v.

For Case 1, v; can begin processing jobs (or idle if there are no jobs to process) until vy turns on. Once
ve turns on, v; will mimic its behaviour while possible, that is vy will process jobs while vs is processing
jobs. If it becomes the case that v; has no jobs to process while vy does, it will remain idle. Once vy is
turned off, v is immediately turned off as well and the servers are once again synchronized. A graphical
representation of the timeline for Case 1 can be seen in Figure 3, with labels on the times at which key events
occur. Using the denotation in Figure 3, one can perform an analysis on the expected holding costs, as well
as the expected rate of energy consumption. For ease of argument, if the event at ¢5 ; does not occur, it is
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t,1:v; has no jobs left to serve, and

. i idles, serving new jobs if possible ) .
t;,1: vy tums on and begins & } P t,1:V, turns off and v, immediately

follows suit (synchronized)

|
Case 1: i I < ! >_I

ty: v, and v, both in setup
(synchronized)

processing jobs

v
t34: Vv, turns on and begins
processing jobs, if possible

Figure 3: Case 1 Timeline

assumed that to 1 = t3 1. Firstly, it is clear that the first system incurs a lesser holding cost. This is due to
v1 being on while vy is still in setup. While the exact decrease in holding cost is unclear, it is known that
as long as there are jobs to be processed, the total saved holding costs will increase in time. That is there
is some function h(t) which is increasing in ¢ up until ¢ = to 1 — ¢1,1. Therefore, the amount of holding cost
saved in the first system is h(t2,1 —t1,1) + 1, where z1 denotes the holding cost of any new job which arrives
once v; has already idled. Secondly, the rate of energy of consumption is also less in the first system. While
v1 is processing jobs, it is incurring zero energy costs, and when it is idle, it is incurring energy costs at rate
less than vy by the amount rgetup — rraze- Therefore the total amount of energy saved in the first system is
Tsetup(t2,1 — t1,1 + 2) + (PSetup — Trate)(t3,1 — t2,1 — x2). Here, 2o denotes the time it takes to process any
other jobs once v, becomes idle for the first time, but vo has not yet turned on.

For Case 2, vy will begin processing jobs (or idling) until v; is turned on. Once v; does turn on, it
will begin processing all available jobs which vy had previously processed. Once it completes those jobs, vy
checks the status of vs. If vy is off, vy turns off and the servers are synced. If vy is in setup, vy will either
idle or process jobs if some are available. In the case where v finds v off once the jobs are complete, it will
also turn off. A graphical representation for Case 2’s timeline can be seen in Figure 4, with labels on the
times at which key events occur. Following the upper path of Figure 4 where vy inspects vy as off once it has

t3,: no job in the system is present,
t,,1v; turns on and begins  which has completed (or is
processing jobs completing)
Attime t3, v, is off, in which case v; also turns off
I I | V (synchronized) otherwise, see the timeline path
Case 2:

I below
1 Lb If v, is in setup, the remainder of the
ty: v, and v, both in setup t,,' v, turns on and begins timeline is equivalent to time t, ;
(synchronized) processing all jobs which v, from Case 1

has already served

Figure 4: Case 2 Timeline

completed its work, one can show that the second system has incurred a lesser cost than that of the first.
However, it will be shown that the expected cost which the second system saves, is less than the expected
cost which the first system saves in Case 1. Furthermore, following the lower path of Figure 4, where v,
inspects vy in setup, it is clear that in this path the second system saves less than it did in the upper path.
Therefore if it can be shown that the expected cost saved by the second system in the upper path of Case
2 is less than the cost expected to be saved by the first system in Case 1, weighted by the corresponding
probabilities of the cases occurring, then we can conclude that ¢1(s,a) < ca2(s, a).

Clearly, the probability of Case 1 occurring once the servers are synchronized is greater than the proba-
bility of Case 2 occurring. That is,

1 > V2
M+ Mt

Furthermore, using the denotation of Figure 4 one can analyse the saved costs in the second system. Following
the upper path, the second system will save holding costs. However, the expected saved cost will be less
than E[h(tz1 — t11) + x1] (the expected holding cost saved by vy in Case 1). This is due to the fact that
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once on, v, and vy are homogeneous and process jobs at the same rate. However, the expected amount of
time which v; would have to process jobs before vy turns on, i.e. E[t; 1 — t31] = 1/72, is greater than the
amount of time which v would have to process jobs before v turns on, i.e. E[t1 2 — t22] = 1/7;. Similarly,
it can be shown that the expected energy savings of the second system on this path are also less than the
expected energy savings of the first system in Case 1. Because the expected amount of time vs has to work
before vy turns on is less than v; has before vy turns on and both servers process jobs at the same rate,
the expected energy saved in Case 1, must be greater than that saved in Case 2. Since Case 1 has a higher
probability of occurring, and in Case 1 the first system has lower cost than the second system in Case 2, it
can be concluded that ¢;(s,a) < ca(s, a).

It should be noted that it may seem as though c(s, a) is putting a constraint on the policy which could
hinder the above argument, however this is not the case. Limiting the two systems to implement only policies
which choose action a in state s, one can instead look at a regeneration process, or complete cycle on state s.
Both systems would start in state s and apply action a. Now all the servers in each system are synchronized.
From here the previous argument can be applied until the systems return to state s, and the average cost
incurred by Sy will still be less than Ss.

With these notions in mind, consider the following relationship

ca(s,a) = c1(s,a) + K(s,x),

where K(n1,ng,n3, ) denotes some extra cost. It is known that K(nj,ng,ns,x) > 0, given the previous
observation that c¢j(ny,ns,ns,a) < ca(ny,ne,nz,a). It is also known that the extra incurred cost is solely
caused by the decreased setup rate between Sy and S7. This is a direct result of the possible extra energy
costs, as well as the added holding cost (number in the system, response time, etc.) and/or the increased
cycle times that the greater setup times incur. It is important to note that these incurred costs are finite, as
the constrained cycle equation must also be finite. Furthermore, is it clear that K(ny,no, ng, ) is increasing
in x, as longer setup times imply a higher cost under the same policy.

Now consider the constrained cycle costs where the action to turn a number of servers off is forced. Using
the given inequality ¢1(s,a4) < c1(s,a_), it is known that

ca(s,a) > ec1(s,a-) = ca(s,a) > (s, aq)

Due to the initial assumption, it is known that ¢;(s,a_) — ¢1(s,a4) = k(s), for some bounded positive value
k(s). Since it is also known that KC(s, z) decreases as = decreases, a sufficiently small value for z, say 2’ can
be chosen such that k(s) > K(s,z"). Therefore,

ca(s,a_) > ci(s,a_)
= ca(s,a-) > ci(s,aq) +k(s)
= cas,a) > ci(s,aq) + K(s,2')
= ca(s,a-) > ca(s,ay)

which of course implies that a_ is a suboptimal action, or in other words, it is suboptimal to turn any
number of servers off while in state s. This only proves Lemma 6 for x < z’, while we wish to show it for
all z > 0. However, we can can repeatedly apply the result. It is important to note that =’ is non-zero, as
k(s) is bounded positive. Due to the non-zero and positive nature of z’, the result can be extended to all
positive values of x. O

Lemma 7. Given an energy-aware system, S = (N, %, I%,O), where the cost function is only dependent on

and increasing in the expected number of jobs in the system and expected rate of energy consumption, it is
optimal to have the number of servers on be equal to the number of jobs in the system, whenever possible.
Formally, in state (n1,mn2,n3), a = min(N —nz,ny; — ns).

Proof. To show this result, it is shown that this policy minimizes both the expected energy used, as well as
the expected holding costs. It is known that all jobs must be served eventually otherwise the holding cost
of a job can be thought of as infinite, in contrast to the finite energy cost to remove it from the system.
Therefore, the lowest energy cost which can be incurred is the energy required to process all the jobs. This
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is the amount of energy incurred in the policy where a = min(N — n3,n; — ng), since here a server is never
idle, or in setup. Therefore, under the proposed policy, the expected energy costs are minimized.

It is a similar story with the expected holding costs. It is known that the holding costs are minimized
when jobs are either served immediately if the number of jobs in the system is less than N, and a job is
waiting in the queue if and only if all N servers are busy processing other jobs. This is true in the policy
a = min(N — nz,n; — ng), since due to the instant turn on times, jobs never wait in the queue, unless all
servers are currently busy. O

With the above two lemmas proven, we begin the proof of Theorem 5.

Proof. Consider two energy-aware systems S; = (N, %, ﬁ, €) and Sy = (N, %, %, 0). It is assumed that both
systems are stable, that is Ny > A. Let p* be the policy described in Lemma 7. From Lemma 7 it is known
that p* is an optimal policy for S5. It will first be shown that as ¢ — 0, p* is also an optimal policy for 5.
From here, Lemma 6 can be applied to show the desired result.

Firstly, it must be shown that the metrics which make up the cost function, holding costs and energy
costs, are continuous in ¢, specifically around 0. This is done be looking directly at the expected reward/cost
and cycle time for the cycle equations of S; under p* and how they compare to the corresponding values in
Ss. Since at the moment, individual metrics are what is of concern, the reward/cost function will be defined
as one of these metrics. Firstly the rate of energy consumption is considered. Letting the cost function
simply be the energy metric, by definition:

; _ ElE2yr]
2 E[TQ,pﬂs} ’

where the subscript 2 denotes the values corresponding to Sa, E is a random variable denoting the rate of
energy consumption across the cycle of s, s = (0,n%,0) and n} denotes the number of servers which always
remain on. Now if it can be shown that as € — 0, E[E4 p- 5] = E[E2 p+ 5] and E[T} ,+ 5] — E[T% ,+ 5] then
the expected rate of energy consumption is continuous in the expected setup time around 0. Looking at the
energy consumed over a single cycle one can bound the expected energy consumed by S; below and above.

E[EQ,p*,s] S E[El,p*,s] S
E[E2 p 5] + €E[Ns]rsetup + (1 — E[P(N,)])E[CE(N)| X = 1] + E[P(N,)|E[CE(N,)|X = 0], (3)

where N, is a random variable denoting the number of server setups before completing a cycle of state s in
Sa2, and Tsetup = Esprup/Epusy. The third and fourth terms require a little more explanation. Because
there are turn on times in S7, the expected extra amount of time it takes to turn the servers on not only
adds directly, but could cause another job to arrive to the system before it returns to state (0,n3,0). These
terms represent the cost incurred by this case. While there could be servers setting up concurrently, in the
worst case the cycle time is increased by Ny consecutive setups. However, if the N, setups were all able to
complete before a new job arrives to the system, this case of causing a potential new cycle to start would
be avoided. The random variable X is an indicator variable which equals one if at least one new cycle is
caused, and zero otherwise. P(n) is a function which equals the probability of n consecutive server setups
finishing before a new job arrives. Explicitly,

1/6 n
Pn) = (1/6+ A) '
One minus P(n) represents the probability that a job would arrive before these setups finish. Or in other
words, S; does not complete the cycle where So would have. Cg(N) denotes all the added energy costs
that starting a new cycle would add given there were Ny setups, including any consequent cycles which the
new cycle may cause to occur. However, since the change in setup times has no impact on stability, Cg(N;)
must be finite.

There are a few things to note about (3). Firstly, given that at least one extra cycle does not occur, clearly
the expected extra energy costs which those cycles add is equal to zero, i.e. E[P(N,)]E[Cg(N,)|X = 0] = 0.
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Secondly, from inspection, P(n) is convex in n. Therefore, when applied to a random variable such as Ng,
from Jensen’s inequality it is known that,

P(E[Ns]) < E[P(N;)] = (1 - E[P(N,)]) < (1 - P(E[N]))

Due to this inequality, (3) becomes,

E[N]
E[E2,p*,s] S E[E17px75] S E[E2,p*,s] + GE[Ns]rsetup + <1 — 1/1/—'6_ )\) E[CE(NS)] (4)
From inspection of (4) it can be seen that as € — 0, E[E} p+ 5] = E[Es p+ ).
To show that the expected rate of energy consumption is continuous in the expected setup times around
0, it remains to show that as € — 0, E[T} ,+ s] — E[T3, s]. The argument for this is very similar to that used
when dealing with the expected energy consumption rate. Again bounds are developed, with the previous
observations on (3) already applied.

E[N,]

E[Ts o] < E[T1p-.s] < E[Tope o] + €E[N,] + (1 -2 /t/j A) E[Cr(N,)], (5)
where Cr(Ny) denotes the extra time added if S; were to fail completing a cycle due to the added setup
times, where Sy would not, given Ny setups occurred. Again this term is finite due to the stability of the
system. From inspection of (5), as € = 0, E[T} ,« 5] = E[T5 p+ s]. Therefore, if the cost function is the rate
of energy consumption, then as € — 0, ¢f — ¢}, and p* is the optimal policy for S;.

Since all cost functions are composed of the expected holding costs, as well as expected energy consump-
tion rate, to show that all cost functions are continuous in € around 0, it is enough to now show that the
holding costs are also continuous in € around 0. Similar to when the energy metric was considered, here it
is assumed that the cost function is simply the holding cost. Then by definition:

E[Hlp*,s}
E[T2,p*,s} 7

¢y =

where H is a random variable denoting the holding cost incurred over a cycle of s. Using the previous
observation on (3), again bounds for the expected holding costs can be developed.

]E[HZP*,S] < E[Hl,p*,S]

1/6 ]E[Ns]
< Bl + BN+ (1- o) ECR(NL ©)
where N4 is a random variable denoting the number of jobs which arrive during a cycle, and C'y (N;) denotes
the amount of holding cost incurred if a cycle is not completed in S7 where it otherwise would have been in
Sa, given N setups occurred. Similar to previous arguments, C'y is finite. From inspection of (6), as ¢ — 0,
E[H1p+ 5] = E[Hz2p+ s]. Therefore, if the cost function is the rate at which holding costs are incurred, then
as e — 0, ¢f — ¢35, and p* is the optimal policy for S;. Putting this together with the previous result that p*
is the optimal policy for the expected rate of energy consumption, it can be concluded that for S7, as € — 0,
p* is the optimal policy for any cost function that is increasing and continuous in the expected number of
jobs in the system and expected rate of energy consumption.

From here it is easy to see that as e — 0, for all states (n1,nq,ng), it is suboptimal to turn a server off if
there is a job it could be processing. Defining a new energy-aware system S3 = (IV, %, i, e+x) as e — 0, one
can apply Lemma 6 to say that for all z > 0, it is suboptimal to turn a server off if there is a job it could
be processing. Or in other words, it is suboptimal to turn a server off, if the number of jobs in the system
is greater than or equal to the number of servers currently on. O

5.6 Proof of Theorem 6

Lemma 8. If setups are assumed to be interruptible, then for all valid states, (ni,na,n3) and (n1,na,nh),
u(ny, n2,ng) = u(ni,ne,nj).
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Proof. Since the decision epoch occurs instantly in both states, (n1, ng, ng) and (ny, ng, n4) will move to the
same state. That is if the best configuration for the system in state (ny,n2,n3) is to have n servers turning
on, then the first action will be to turn ni — n% servers on (off if the value is negative). On the other hand,
in state (n1,n2,n3) the system will turn on n% — n3 servers. Note, neither of these decisions incurs any
instantaneous costs. Furthermore, in both cases the corresponding action has moved the system to the same
state, (n1,n2,n3). Therefore, in which of these two states (n1,n2,n3) and (n1,ng, nj) the system starts, has
no impact on the total cost under the optimal policy, or in other words u(ni,n2,ng) = u(ni,nb, ng). O

With the lemma shown, we proceed with the proof of the theorem.

Proof. If it is assumed that in state (ni,n2,n3) it is better to begin turning on a servers, where a > 0,
rather then choose to do nothing, then the following inequality is known from the optimality equations, and
is further simplified by applying Lemma 1.
C(ny,ng,n3,a) + Au(ng + 1,n2 + a,n3) + (n2 + a)yu(ni,ne +a—1,n3 + 1)
+ min(ny, n3)pu(ng — 1,72 + a,n3) + (1 — A — (n2 + a)y — min(ny, n3)p)u(ny, ne + a,n3)
<
C(n1,na,n3,0) + Au(ny + 1,n9,n3) + noyu(ni,ng — 1,ns + 1)
+ min(ny, n3)pu(ng, na,n3) + (1 — X — ngy — min(ng, n3)w)u(ng, ne, n3)
54
aBrsetup + ayu(ni, ne +a —1,n3 + 1) — ayu(ni, ne + a,n3) <0
=

r
ﬁ setup SU(

5 ni,n2 +a,n3) —u(ny,ny+a—1,n3+1)

=

r
5 setup S U(
Y
Now consider the action of turning on all available servers. If it can be shown that this option is at least as
good as turning on an arbitrary choice of a, then the proof is complete. This is expressed mathematically
as follows.

n1,0,n3) —u(ng,0,n3 + 1)

C(ni,n2,n3, N —ng —n3) + Au(ny + 1, N — ng,n3) + (N —n3)yu(ni, N —nz — 1,n3 + 1)

+ min(ny, ng)pu(ng — 1, N —ng,n3g) + (1 = A — (N — n3)y — min(ny, n3)u)u(ny, N — ns, n3)
<

C(ni,n2,n3,a) + Au(ny + 1,n2 + a,n3) + (n2 + a)yu(ni,n2 +a —1,n3 + 1)

+ min(ny, ns)pu(ng — 1,12 + a,n3) + (1 = A — (n2 + a)y — min(ny, n3)u)u(ny, ne + a,ng)
54

(N —ng —ng —a)Brsetup + (N —ne —nz — a)yu(ni, N —ng,n3 + 1)
<

(N —ng —ng — a)yu(ni, N — ns, n3)
=

r
Brsctup <u(ni, N —ng,n3) —u(ni, N —nz,ng + 1)
v
=
Brsetup
T < u(nla 07 n3) - u(nla Oa nz + 1)
From the assumption of it being better to turn a servers on rather than choose to do nothing, the above

inequality is known to be true. Therefore, when turning servers on it is always suboptimal to leave some off.
O
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6 Conclusion

We presented formalizations for an energy-aware system with N homogeneous servers, where setups may or
may not be interruptible. It was shown that these systems can be modelled and analysed as MDPs. Using
these MDPs, the optimal policy was shown to be a pure threshold policy with N(N + 1) decision variables
(threshold values). From here we derived a partial ordering on these threshold values, showed that turning
a server off while there is at least one job in the queue is always suboptimal under general cost functions,
and showed if setups are interruptible and the cost function is linear in the expected number of jobs in the
system as well as the expected energy consumed by the system, then the optimal policy is a bulk setup policy.
These structural properties give confidence to previously researched models, give us rules about the optimal
policy which help in constructing new models, and provide simplifications to the feasible search space when
attempting to arrive at the optimal policy numerically.
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