
Symbolic-Numeric Methods for Improving
Structural Analysis of DAEs

Guangning Tan, Nedialko S. Nedialkov, and John D. Pryce

Abstract Systems of differential-algebraic equations (DAEs) are generated rou-
tinely by simulation and modeling environments, such as MapleSim and those based
on the Modelica language. Before a simulation starts and a numerical method is ap-
plied, some kind of structural analysis is performed to determine which equations
to be differentiated, and how many times. Both Pantelides’s algorithm and Pryce’s
Σ -method are equivalent in the sense that, if one method succeeds in finding the
correct index and producing a nonsingular Jacobian for a numerical solution proce-
dure, then the other does also. Such a success occurs on many problems of interest,
but these structural analysis methods can fail on simple solvable DAEs and give
incorrect structural information including the index. This article investigates the Σ -
method’s failures, and presents two symbolic-numeric conversion methods for fix-
ing these failures. These methods convert a DAE on which the Σ -method fails to a
DAE on which this structural analysis may succeed.

1 Introduction

We consider DAEs of the general form

fi(t, the x j and derivatives of them) = 0, i = 1, . . . ,n, (1)

G. Tan
School of Computational Science and Engineering, McMaster University,
1280 Main St. W., L8S 4L8, Hamilton, ON, Canada, e-mail: tang4@mcmaster.ca

N. S. Nedialkov
Department of Computing and Software, McMaster University,
1280 Main St. W., L8S 4L8, Hamilton, ON, Canada, e-mail: nedialk@mcmaster.ca

J. D. Pryce
School of Mathematics, Cardiff University,
Senghennydd Road, Cardiff CF24 4AG, Wales, UK., e-mail: prycejd1@cardiff.ac.uk

1

2 Guangning Tan, Nedialko S. Nedialkov, and John D. Pryce

where the x j(t), j = 1, . . . ,n are state variables that are functions of an independent
variable t, usually regarded as time.

Pryce’s structural analysis (SA), the Σ -method [9], determines for a DAE (1) its
structural index, the number of degrees of freedom (DOF), variables and derivatives
that need initial values, and constraints of this DAE. These SA results can help de-
cide how to apply an index reduction algorithm [4], perform a regularization process
[12], or design a solution scheme for a Taylor series method [1, 2, 7]. The Σ -method
is equivalent to Pantelides’s algorithm [8]: they both produce the same structural in-
dex [9, Theorem 5.8]. This index is an upper bound for the differentiation index,
and often they are the same [9].

The Σ -method provably succeeds on many problems of practical interest, pro-
ducing a nonsingular System Jacobian. However, this SA method can fail—hence
Pantelides’s algorithm can fail as well—on some simple solvable DAEs, producing
an identically singular System Jacobian.

We investigate this SA’s failures and present two symbolic-numeric conversion
methods for fixing these failures. After each conversion, the value of the signature
matrix is guaranteed to decrease, provided some conditions are satisfied. We con-
jecture that such a decrease should result in a better problem formulation of a DAE,
so that the SA may succeed and hence produce a nonsingular System Jacobian.

Sect. 2 summarizes the Σ -method. Sect. 3 describes this SA’s failure. Sect. 4
presents our two symbolic-numeric conversion methods, each of which is illustrated
with an example therein. Sect. 5 gives conclusions and indicates the future work.

2 Summary of the Σ -method

This SA method [9] constructs for a DAE (1) an n× n signature matrix Σ , whose
(i, j) entry σi j is either an integer ≥ 0, order of the highest derivative to which
variable x j occurs in equation fi, or −∞ if x j does not occur in fi.

A highest-value transversal (HVT) of Σ is a set T of n positions (i, j) with one
entry in each row and each column, such that the sum of these entries is the largest
possible. This sum is the value of Σ , written Val(Σ). Assume henceforth that Val(Σ)
is finite, or equivalently, the DAE is structurally well posed. Then we find 2n equa-
tion and variable offsets c1, . . . ,cn and d1, . . . ,dn, respectively, which are integers
satisfying

ci ≥ 0 for all i; d j− ci ≥ σi j for all i, j with equality on a HVT . (2)

Offsets satisfying (2) are called valid, but they are never unique; there exists an
elementwise smallest solution of (2) termed the canonical offsets.

We associate with some valid offsets an n×n System Jacobian J, defined as

Ji j =

{
∂ fi/∂x

(σi j)
j if d j− ci = σi j, and

0 otherwise .
(3)

Symbolic-Numeric Methods for Improving Structural Analysis of DAEs 3

If one J is nonsingular—and hence all J’s are—at a consistent point as defined in [5],
then we say that the Σ -method succeeds and there exists (locally) a unique solution
through this point [9].

In the success case, the SA uses the canonical offsets to determine the structural
index and the number of DOF:

νS = max
i

ci +

{
1 if some d j = 0, and
0 otherwise ,

DOF = Val(Σ) = ∑
(i, j)∈T

σi j = ∑
j

d j−∑
i

ci .

Example 1. We show1 the above concepts for the simple pendulum (PEND), a DAE
of differentiation index 3.

0 = f1 = x′′+ xλ

0 = f2 = y′′+ yλ −g

0 = f3 = x2 + y2−L2

Σ =

x y λ ci[]f1 2• 0∗ 0

f2 2∗ 0• 0

f3 0∗ 0• 2

d j 2 2 0

J =

x y λ[]f1 1 x
f2 1 y
f3 2x 2y

The state variables are x,y, and λ ; G is gravity and L > 0 is the length of the pen-
dulum. There are two HVTs of Σ , marked with • and ∗, respectively. A blank in Σ

denotes−∞, and a blank in J denotes 0. Since det(J) =−2(x2+y2) =−2L2 6= 0, the
System Jacobian is nonsingular, and the SA succeeds. The structural index is hence
νS =mini ci+1= 2+1= 3 (because d3 = 0), which equals the differentiation index.
The number of DOF is Val(Σ) = ∑ j d j−∑i ci = 4−2 = 2.

3 Structural Analysis’s Failure

We say that the Σ -method fails, if a DAE (1) has a finite Val(Σ) and an identically
singular System Jacobian J. In the failure case, the SA reports Val(Σ) as an “appar-
ent” DOF but not a meaningful one.

In this article, we only focus on the case where such an identically singular J is
not structurally singular—that is, there exists a HVT T of Σ such that Ji j is gener-
ically nonzero for all (i, j) ∈ T . For a detailed description and discussion of SA’s
failure, we refer the reader to [13, §4].

Example 2. We illustrate a failure case with the following DAE2 in [3, p. 23].

1 When we give a DAE for example, we present with it its signature matrix Σ , offsets ci and d j ,
and the associated System Jacobian J.
2 In the original formulation, the driving functions are f1, f2. We change them to g1,g2.

4 Guangning Tan, Nedialko S. Nedialkov, and John D. Pryce

0 = f1 = x′+ ty′−g1(t)

0 = f2 = x + ty −g2(t)
Σ =

x y ci[]
f1 1• 1 0

f2 0 0• 1

d j 1 1

J =

x y[]
f1 1 t
f2 1 t

The SA fails since det(J) = 0. Now J is identically singular but not structurally
singular: on a HVT marked by •, each of J11 = 1 and J22 = t is generically nonzero.

One simple fix is to replace f1 by

0 = f 1 =− f1 + f ′2 = y+g1(t)−g′2(t) ,

which results in an algebraic problem; cf. [4, Example 5].

0 = f 1 = y+g1(t)−g′2(t)

0 = f2 = x+ ty−g2(t)
Σ =

x y ci[]
f 1 0• 0

f2 0• 0 0

d j 0 0

J =

x y[]
f 1 1
f2 1 t

Now that det(J) =−1 6= 0, the SA succeeds. Notice Val(Σ) = 0 < 1 = Val(Σ).

Another simple fix is to introduce a new variable z = x+ ty and eliminate x in f1
and f2; note z′ = x′+ ty′+ y.

0 = f 1 =−y + z′−g1(t)

0 = f 2 = z −g2(t)
Σ =

y z ci[]
f 1 0• 1 0

f 2 0• 1

d j 0 1

J =

y z[]
f 1 −1 1
f 2 1

For this resulting DAE, det(J) = −1 6= 0, and the SA succeeds. After solving for y
and z, we can obtain x = z− ty. This fix gives Val(Σ) = 0 < 1 = Val(Σ) also.

We shall note that each of the above fixes actually uses each of the methods
described below.

4 Conversion Methods

We present two conversion methods for systematically fixing SA’s failures. The first
method is based on replacing an existing equation by a linear combination of some
equations and derivatives of them. We call this method the linear combination (LC)
method and describe it in Sect. 4.1. The second method is based on substituting
newly introduced variables for some expressions and enlarging the system. We call
this method the expression substitution (ES) method and describe it in Sect. 4.2.

We only present the main features of these methods; the reader is referred to [13]
for more details and especially the proofs of Theorems 1 and 2 below.

Given a DAE (1), we assume henceforth that Val(Σ) is finite and that a System
Jacobian J is identically singular but not structurally singular.

Symbolic-Numeric Methods for Improving Structural Analysis of DAEs 5

4.1 Linear Combination Method

Let u be a nonzero n-vector function in the cokernel of J, that is, u ∈ coker(J)
and JT u = 0. Let ui denote the ith component of u. Here, we consider J and u as
functions of t, the x j’s and derivatives of them. For such a function ω , ω 6= 0 means
that ω is nonzero for all t in some time interval I.

For our convenience, we let

σ (x j,u) =
{

order of the highest derivative to which x j occurs in u; or
−∞ if x j does not occur in u .

Denote

I = { i | ui 6= 0}, c = min
i∈I

ci, and L =
{

i ∈ I | ci = c
}
. (4)

The LC method is based on the following theorem.

Theorem 1. If
σ (x j,u)< d j− c for all j = 1, . . . ,n , (5)

and we replace some fl with l ∈ L by

f = ∑
i∈I

ui f (ci−c)
i (6)

(denoted as f l), then Val(Σ) < Val(Σ), where Σ is the signature matrix of the re-
sulting DAE.

We call (5) the condition for applying the LC method. The following example
illustrates this method.

Example 3. Consider

0 = f1 =−x′1 + x3

0 = f2 =−x′2 + x4

0 = f3 =x1x2 +g1(t)

0 = f4 =x1x4 + x2x3 + x1 + x2 +g2(t) ,

where g1 and g2 are given driving functions.

Σ =

x1 x2 x3 x4 ci

f1 1• 0 0

f2 1 0• 0

f3 0 0• 1

f4 0 0 0• 0 0

d j 1 1 0 0

J =

x1 x2 x3 x4

f1 −1 1
f2 −1 1
f3 x2 x1
f4 x2 x1

A shaded entry σi j in Σ denotes a position (i, j) where d j − ci > σi j ≥ 0 and
hence Ji j = 0 by (3). The SA fails since det(J) = 0, where J is identically (but not
structurally) singular.

6 Guangning Tan, Nedialko S. Nedialkov, and John D. Pryce

We use u =
(
x2,x1,1,−1

)T ∈ coker(J). Then (4) becomes

I =
{

i | ui 6= 0
}
=
{

1,2,3,4
}
, c = min

i∈I
ci = 0 ,

and L =
{

i ∈ I | ci = c = 0
}
=
{

1,2,4
}
.

The condition (5) holds since

σ (x1,u) = 0 < 1−0 = d1− c, σ (x2,u) = 0 < 1−0 = d2− c ,

σ (x3,u) =−∞ < 0−0 = d3− c, σ (x4,u) =−∞ < 0−0 = d4− c .

Choosing l = 4 ∈ L =
{

1,2,4
}

for example, we replace f4 by

f 4 = ∑
i∈I

ui f (ci−c)
i = x2 f1 + x1 f2 + f ′3− f4 =−x1− x2 +g′1(t)−g2(t) .

The resulting DAE is (f1, f2, f3, f 4) = 0.

Σ =

x1 x2 x3 x4 ci

f1 1 0• 0

f2 1 0• 0

f3 0 0• 1

f 4 0• 0 1

d j 1 1 0 0

J =

x1 x2 x3 x4

f1 −1 1
f2 −1 1
f3 x2 x1
f 4 −1 −1

Now Val(Σ) = 0 < 1 = Val(Σ). The SA succeeds at all points where det(J) = x2−
x1 6= 0.

From (4) and (6), we can recover the replaced equation fl by

fl =
(

f l−∑i∈I\{l} ui f (ci−c)
i

)/
ul .

Provided ul 6= 0, it is not difficult to show that the original DAE and the resulting
one have the same solution (if there exists one); see also [13, §5.3].

If the resulting DAE still has an identically (but not structurally) singular System
Jacobian, we can iterate the LC method, provided the condition (5) is satisfied. Since
each conversion reduces the value of the signature matrix by at least one, the number
of iterations does not exceed the original Val(Σ).

4.2 Expression Substitution Method

Let v be a nonzero n-vector function in the kernel of J, that is, v∈ ker(J) and Jv = 0.
Denote

Symbolic-Numeric Methods for Improving Structural Analysis of DAEs 7

J =
{

j | v j 6= 0
}
, s = |J| ,

M =
{

i | d j− ci = σi j for some j ∈ J
}
, and c = max

i∈M
ci .

(7)

We choose an l ∈ J, and introduce s−1 new variables

y j = x
(d j−c)
j −

v j

vl
x(dl−c)

l for all j ∈ J \
{

l
}
. (8)

In each fi with i ∈M, we

substitute
(

y j +
v j

vl
x(dl−c)

l

)(c−ci)

for every x
(σi j)
j with σi j = d j− ci and j ∈ J \

{
l
}
.

(9)

Denote by f i the equations that result from these substitutions, and write f i = fi for
i /∈M. By (8), we append to these f i’s the equations

0 = g j =−y j + x
(d j−c)
j −

v j

vl
x(dl−c)

l for all j ∈ J \
{

l
}

(10)

that prescribe the substitutions. Hence the resulting enlarged system consists of

equations
(

f 1, . . . , f n
)
= 0 and g j = 0 for all j ∈ J \

{
l
}

in variables x1, . . . ,xn and y j for all j ∈ J \
{

l
}
.

Critical to the ES method is the following theorem.

Theorem 2. Let J, s, M, and c be as defined in (7). Assume

σ (x j,v)≤

{
d j− c−1 if j ∈ J

d j− c otherwise ,
and d j− c≥ 0 for all j ∈ J . (11)

If we

• introduce s−1 new variables defined in (8),
• perform substitutions in fi for all i ∈M by (9), and
• append the equations g j in (10),

then Val(Σ)< Val(Σ), where Σ is the signature matrix of the resulting DAE.

We call the (11) the conditions for applying the ES method.

Example 4. We illustrate the ES method with the artificially constructed DAE below.

0 = f1 = x1 + e−x′1−x2x′′2 +h1(t)

0 = f2 = x1 + x2x′2 + x2
2 +h2(t)

Σ =

x1 x2 ci[]
f1 1• 2 0
f2 0 1• 1

d j 1 2

J =

x1 x2[]
f1 −α −αx2
f2 1 x2

8 Guangning Tan, Nedialko S. Nedialkov, and John D. Pryce

Here h1 and h2 are given driving functions, and α = e−x′1−x2x′′2 . Obviously det(J) = 0
and the SA fails.

Suppose we choose v = (x2,−1)T ∈ ker(J). Then (7) becomes

J =
{

1,2
}
, s = |J|= 2, M =

{
1,2
}
, and c = max

i∈M
ci = 1 .

We can apply the ES method as conditions (11) read

σ (x1,v) =−∞≤−1 = 1−1−1= d1− c−1, d1− c = 1−1 = 0≥ 0 ,

σ (x2,v) = 0 ≤ 0 = 2−1−1= d2− c−1, d2− c = 2−1 = 1≥ 0 .

For example, we choose l = 2 ∈ J. Now J \
{

l
}
=
{

1
}

. Using (8) and (10), we
introduce a new variable

y1 = x(d1−c)
1 − v1

v2
x(d2−c)

2 = x(1−1)
1 − x2

−1
x(2−1)

2 = x1 + x2x′2 ,

and append an equation 0 = g1 = −y1 + x1 + x2x′2. Then we substitute (y1− x2x′2)
′

for x′1 in f1 to obtain f 1, and substitute y1 − x2x′2 for x1 in f2 to obtain f 2. The
resulting DAE and its SA results are shown below.

0 = f 1 = x1 + e−y′1+x′22 +h1(t)

0 = f 2 = y1 + x2
2 +h2(t)

0 = g1 =−y1 + x1 + x2x′2

Σ =

x1 x2 y1 ci f 1 0 1 1• 0
f 2 0• 0 1

g1 0• 1 0 0
d j 0 1 1

J =

x1 x2 y1[]f 1 1 2x′2β −β

f 2 2x2 1
g1 1 x2

Here β = e−y′1+x′22 . Now Val(Σ) = 1 < 2 = Val(Σ). The SA succeeds at all points
where det(J) = 2β (x2 + x′2)− x2 6= 0.

From the steps of applying the ES method, we can undo the expression substi-
tutions to recover the original DAE. Similar to the LC method, the ES method also
guarantees that, provided vl 6= 0, the original DAE and the resulting one have the
same solution (if there is one); this is shown in [13, §6.3].

From our experience, we usually attempt the LC method first, and when its con-
dition (5) is violated, we try the ES method. Also, it is desirable to choose an l ∈ L
[resp. l ∈ J] in the LC [resp. ES] method, such that an ul [resp. vl] never becomes
zero. For example, it can be a nonzero constant, x2

1 +1, or 2+ cosx2. Such a choice
of l guarantees that the resulting DAE is “equivalent” to the original one—that is,
they always have the same solution, if there exists one.

We show below that the LC method does not work on the DAE in Example 4
because the condition (5) is not satisfied.

Choose u =
(
1,α

)T ∈ coker(J), where α = e−x′1−x2x′′2 . Then (4) becomes

I =
{

i | ui 6= 0
}
=
{

1,2
}
, c = min

i∈I
ci = 0, and L =

{
i ∈ I | ci = c

}
=
{

1
}
.

Since x1 and x2 occur of order 1 and 2 in u, respectively, we have

Symbolic-Numeric Methods for Improving Structural Analysis of DAEs 9

σ (x1,u) = 1 6< 1−0 = d1− c and σ (x2,u) = 2 6< 2−0 = d2− c .

Hence (5) is not satified. Choosing l = 1 ∈ I for example and replacing f1 by

f 1 = u1 f1 +u2 f ′2 = x1 +h1(t)+α
(
1+ x′1 + x2x′′2 +(x′2)

2 +2x2x′2 +h′2(t)
)

results in a DAE
(

f 1, f2
)
= 0.

Σ =

x1 x2 ci[]
f 1 1• 2 0

f2 0 1• 1

d j 1 2

J =

x1 x2[]
f 1 −γα −γαx2
f2 1 x2

Here γ = x′1 + x2x′′2 +(x′2)
2 +2x2x′2 +h′2(t). The SA fails still, since J is identically

(but not structurally) singular. Now Val(Σ) = Val(Σ) = 2.

5 Conclusions and Future Work

We proposed two symbolic-numeric conversion methods for improving the Σ -
method. They convert a DAE of finite Val(Σ) and an identically (but not structurally)
singular System Jacobian to a DAE that may have a nonsingular System Jacobian.
A conversion guarantees that both DAEs have (at least locally) the same solution if
there exists one. The conditions for applying these methods can be checked auto-
matically, and the main result of a conversion is Val(Σ) < Val(Σ), where Σ is the
signature matrix of the resulting DAE.

In our experiments, the linear combination (LC) method and the expression sub-
stitution (ES) method succeed in fixing many solvable DAEs on which the SA fails.
We believe that these methods can help make the Σ -method more reliable. We also
conjecture that reducing the value of the signature matrix tends to give a better for-
mulation of a DAE in the SA’s perspective and then a nonsingular System Jacobian.

An implementation of the conversion methods requires (a) computing a sym-
bolic form of a System Jacobian J, (b) finding a vector in coker(J) or ker(J), (c)
checking the conditions, and (d) generating equations of the resulting DAE. These
symbolic computations may seem expensive. Fortunately, we can combine block
triangularization techniques [10, 11] with the conversion methods. When J is iden-
tically singular, we can locate the diagonal block of which the Jacobian is singular,
and perform a conversion on this block. For DAEs that have a nontrivial block tri-
angular form (BTF), that is, having more than one diagonal blocks, the symbolic
computations can be reduced significantly.

For problems that do not have very complicated formulas, the aforementioned
symbolic computations can be handled reasonably well by a symbolic tool, such as
MATLAB’s Symbolic Math Toolbox [14]. We combine this toolbox with our struc-
tural analysis software DAESA [6, 11], and build a prototype code that applies the

10 Guangning Tan, Nedialko S. Nedialkov, and John D. Pryce

conversion methods automatically. We aim to produce a solid implementation of
these methods and incorporate this feature in a future version of DAESA.

Acknowledgements The authors wish to acknowledge with thanks the fundings for supporting
their research: GT supported in part by the Ontario Research Fund (ORF, Canada), NSN supported
in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), and JDP
supported in part by the Leverhulme Trust (UK). GT wishes to thank R. McKenzie for proofreading
the draft of this article and providing valuable suggestions.

References

1. Barrio, R.: Performance of the Taylor series method for ODEs/DAEs. Appl. Math. Comp.
163, 525–545 (2005)

2. Barrio, R.: Sensitivity analysis of ODES/DAES using the Taylor series method. SIAM J. Sci.
Comput. 27, 929–1947 (2006)

3. Brenan, K., Campbell, S., Petzold, L.: Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations, second edn. SIAM, Philadelphia (1996)

4. Mattsson, S.E., Söderlind, G.: Index reduction in differential-algebraic equations using
dummy derivatives. SIAM J. Sci. Comput. 14(3), 677–692 (1993)

5. Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor series (I):
Computing Taylor coefficients. BIT Numerical Mathematics 45, 561–591 (2005)

6. Nedialkov, N.S., Pryce, J.D., Tan, G.: Algorithm 948: DAESA: A Matlab tool for structural
analysis of differential-algebraic equations: Software. ACM Trans. Math. Softw. 41(2), 12:1–
12:14 (2015). DOI 10.1145/2700586. URL http://doi.acm.org/10.1145/2700586

7. Nedialkov, N.S., Tan, G., Pryce, J.D.: Exploiting fine block triangularization and quasilinearity
in differential-algebraic equation systems. arXiv:1411.4128 (2014). 18 pages, download link:
http://arxiv.org/pdf/1411.4128v1

8. Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM. J. Sci.
Stat. Comput. 9, 213–231 (1988)

9. Pryce, J.D.: A simple structural analysis method for DAEs. BIT Numerical Mathematics
41(2), 364–394 (2001)

10. Pryce, J.D., Nedialkov, N.S., Tan, G.: Graph theory, irreducibility, and structural analysis of
differential-algebraic equation systems. arXiv:1411.4129 (2014). 24 pages, download link:
http://arxiv.org/pdf/1411.4129v1

11. Pryce, J.D., Nedialkov, N.S., Tan, G.: DAESA: A Matlab tool for structural analysis of
differential-algebraic equations: Theory. ACM Trans. Math. Softw. 41(2), 9:1–9:20 (2015).
DOI 10.1145/2689664. URL http://doi.acm.org/10.1145/2689664

12. Scholz, L., Steinbrecher, A.: A combined structural-algebraic approach for the regularization
of coupled systems of DAEs. Tech. Rep. 30, Reihe des Instituts für Mathematik Technische
Universität Berlin, Berlin, Germany (2013)

13. Tan, G., Nedialkov, N.S., Pryce, J.D.: Symbolic-numeric methods for improving structural
analysis of differential-algebraic equation systems. arXiv:1505.03445 [cs.SC] (2015). 84
pages. Available at http://arxiv.org/pdf/1505.03445v1

14. The MathWorks, Inc.: Matlab Symbolic Math Toolbox (2015). URL
https://www.mathworks.com/help/symbolic/index.html

