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Abstract

When considering fairness one must ask two fundamental questions. Firstly, what does it mean to be
fair? And secondly, how does one measure that fairness? Different authors have offered different notions
and metrics to address these questions. We provide arguments identifying where past metrics fall short,
and offer our own metric to address these issues. That is, we propose using a system’s slowdown variance
(SDV) as a measure for its fairness. Advantages of SDV are demonstrated via a suite of simulation
experiments which compare a range of established policies under a range of service time distributions.
These advantages include a decoupling of fairness from performance, an intuitive distinction between
last come first serve and processor sharing, as well as recognition of starvation within shortest remaining
processing time.

1 Introduction

Fairness in queueing systems has been an active topic in the stochastic modelling research community [14].
Perhaps the most fundamental questions in this domain are “What does it mean to be fair?” and “How
can fairness be measured?”. In the literature this is still a point of debate. That is, there does not exist
a universally agreed upon definition of fairness. Moreover, different definitions of fairness may be in direct
conflict or be of questionable applicability in certain contexts. We do not aim to determine which previously
defined metrics are better than others. Rather, we offer a notion of fairness which is motivated by past
definitions while looking to address some of the concerns these past metrics raise. Specifically, we propose
using the slowdown variance (SDV) as a metric for fairness.

In order to understand the motivations behind our proposal, one must first understand how fairness has
been presented in the research community. There are two fundamental views of fairness to consider: temporal
fairness and proportional fairness. Temporal fairness suggests that jobs should be served in order of their
seniority. That is, if job J1 arrives before job J2, then job J1 should be completed before J2. A variety of
fairness metrics such as politeness and order fairness provide means to measure a policy’s temporal fairness.
Our work does not discuss temporal fairness or its measures in any level of detail. For further reading,
we direct the interested reader to [3, 13]. Instead, our work focuses on, and is inspired by, the notion of
proportional fairness. Proportional fairness posits that a job’s response time should be proportional to its
size. That is, informally, if a small job arrives shortly after a large job, it may be fair for the small job to
complete before the large job does. In other words, the longer a job is going to take to serve the more fair
it is that it waits in queue.

Popular metrics for evaluating fairness are often times measures of the system’s slowdown [4, 5, 8–10,
12, 15, 16]. Here, slowdown is defined as R/S, where R is the response time of a job and S is its size or
service time (this work uses the two interchangeably for ease of exposition). The justification of this metric
stems from the proportionality principle; it is fair that a job has a response time proportional to its service
time (larger jobs should wait longer). It is worth noting that while researchers look to the slowdown as a
base for fairness, slowdown is also considered a measure of performance; the response time is present in the
numerator.

With regards to fairness however, one of the first measures based off slowdown was simply examining
the maximum slowdown [5]. This gives insight into the worst-case scenario and in turn bounds it in many
cases, but not a picture of how fair a system is in the average case. To achieve a better overall understanding
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authors began looking at forms of the the slowdown’s expectation, i.e. E[R/S]. The conditional expected
slowdown [4] was introduced in response to growing interest in size-based policies that were suspected of
treating larger jobs unfairly. It is defined as E[R(x)/x], where R(x) is the expected response time for a job
of size x. This metric provides finer-grained information than the expected slowdown. For example, it allows
one to determine if certain job sizes are treated poorly.

Wierman and Harchol-Balter [15] leveraged the conditional slowdown to sort policies into categories.
Based on the intuition that processor sharing (PS) is an inherently fair policy they judge whether a policy is
“Always Fair”, “Sometimes Fair”, or “Always Unfair”. If a policy achieves a conditional expected slowdown
that is less than or equal to the conditional expected slowdown offered by PS for all job sizes under any
distribution it is Always Fair. If the conditional expected slowdown is less than or equal to that of PS for
some job sizes under some distributions (but not all) it is Sometimes Fair. However, we find that this metric
and criteria for evaluating proportional fairness has drawbacks. For one, the analysis in [15] is confined to
an M/G/1 setting and the authors comment that it is unknown whether similar criteria can be derived for
systems with general arrival processes and/or with multiple servers. Also, the categorization of policies into
Always Fair, Sometimes Fair, and Always Unfair does not allow one to compare policies that fall into the
same category, resulting in a partial ordering among policies.

To address these concerns, Avi-Izthak et al. [2] introduced the Slowdown Queueing Fairness measure
(SQF). SQF, alongside its distinction from the SDV, is discussed in more detail in Section 2. Avi-Izthak
et al. proposed that a fair policy should offer every job a constant slowdown. The authors argued that the
expected slowdown may not be sufficiently sensitive for evaluating fairness since policies can have similar
expected slowdowns but have different behaviours about the expectation. The idea is that one can measure
fairness with reference to an “ideally fair” slowdown.

Our work’s motivations are consistent with [2] but we offer a different viewpoint. We suggest that a
truly fair policy would ensure that the ratio between a job’s size and its response time remains constant
(or as close to constant as possible). Therefore, the closer the SDV is to zero, the more fair a policy is.
As observed in [2], we shall see that using this basis for fairness will provide insights that using expected
or conditional slowdown would otherwise not capture. Most notably, using the expected slowdown or the
conditional slowdown is known to equate two well-known policies, processor sharing and last come first serve,
in terms of their fairness. However, we find evidence that SDV will determine one to be more fair than the
other, as will be discussed in Section 3.

Any mention of SDV in the literature has been brief and passing and to our knowledge no such study or
presentation of SDV exists. Therefore, the contributions of this paper include, but are not limited to,

1. The introduction and justification of using SDV as a fairness metric, found in Section 2.

2. An extensive simulation study pertaining to SDV and expected slowdown under different scheduling
policies and distributions, found in Section 3.

3. A discussion of key observations and insights into the behaviour of SDV across these different config-
urations, also found in Section 3.

2 Definitions and Justification

As stated previously when discussing fairness, there are two important aspects which must be made clear.
Firstly, what does it mean to be fair? And secondly, how does one quantify fairness? As seen in Section 1
these are subjective issues. Nevertheless, we believe metrics for fairness exist which are grounded in intuition,
and moreover, such metrics are independent/decoupled from performance.

We proceed by addressing the broad but fundamental question of what it means to be fair. Consider a
scenario where each customer C has exact knowledge of its size, or service time, denoted by SC , as well as its
response time, denoted by RC , but no knowledge of how it is served. Suppose that customer C1 has a service
time of one minute, SC1 = 1, and a response time of three minutes, RC1 = 3. With no information about
other customers, they may simply perceive this as typical system performance. When a second customer C2

is introduced, things become more complicated. Continuing with the example, let SC2
= 2 and RC2

= 2, so
that SC1

< SC2
, but RC1

> RC2
. Therefore, we argue that even an impartial onlooker would view C1 as

poorly treated, since C1 demands less from the system than C2, but the system is punishing C1 more. As
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Policy RC1
RC2

RC1
/SC1

RC2
/SC2

π1 3 2 3 1
π2 1 3 1 1.5
π3 1.5 3 1.5 1.5

Table 1: Summary of metrics associated with C1 and C2

such, C1 is likely to be dissatisfied. This dissatisfaction stems from C1’s expectation of treatment relative to
others. That is, it stems from C1’s notion of fairness.

In this small example it is intuitive that all parties would agree the system is not fair. But when is
the system fair? A perfectly fair system can be demonstrated by considering the previous example where
the response times vary according to the scheduling policy implemented. Assume the previous example was
implementing the policy denoted by π1. That is, under π1, RC1

= 3 and RC2
= 2. Under another policy,

denoted by π2, suppose that RC1
= 1 and RC2

= 3. Lastly, under policy three, denoted by π3, suppose that
RC1 = 1.5 and RC2 = 3. Assuming both customers arrive at the same instant, a realization of these three
policies is illustrated in Figure 1, and the values are summarized in Table 1.

(a) π1 (b) π2 (c) π3

Figure 1: Time-lines of the three policies, black portions represent when a customer is receiving service.

Looking at these policies in greater detail allows one to begin formalizing fairness. As discussed previously,
π1 is an intuitively unfair policy. Inspecting π2 one discovers some appealing aspects. Specifically, the
customer with the larger size experiences a longer response time than the customer with the smaller size.
This would seem to agree with what most would consider fair. But a natural next question is if you have a
longer service time, how much longer should you have to wait? The answer to this question is, unsurprisingly,
dependent on the experience of the other customers, or customer in this case. Under π2, C1 has a response
time equal to its service time, while C2 has a response time greater than its service time. It is our stance that
such a configuration is inherently unfair. In π1, C1 is unfairly treated, while in π2, C2 is unfairly treated.
With this in mind we move our focus to π3. Similar to π2, under π3 the customer with a longer service time,
C2, also has a longer response time. But the difference here is the response time of C1 does not equal its
service time. That is, RC1

> SC1
. The response time of C1 is 1.5 times greater than its service time, i.e.

RC1
/SC1

= 1.5. With respect to fairness, we now have a benchmark to compare against. That is, customers
do not necessarily perceive the system as unfair if they experience longer than typical response times, but
rather they perceive it as unfair if their response time is inordinately large relative to their service time
(compared to the experience and size of other customers). Here, RC1/SC1 = RC2/SC2 . In other words, both
customers have equal slowdowns. From here, fairness can formally be defined.

Definition 1. Fair: A system is said to be perfectly fair if, and only if, for all jobs Ji and Jk, RJi/SJi =
RJk/SJk . In other words, a system is perfectly fair if the slowdown is constant.

There are a few things to note regarding this definition. Unlike some other definitions of fairness, ours
is completely decoupled from performance (to the best of our knowledge, Avi-Itzhak et al. [2] is the only
other work where such decoupling is present). That is, a system can be perfectly fair while having poor
performance. This can be seen in the extreme case where the system never processes jobs. A less extreme
case can be seen by viewing π2 and π3 in Figure 1. Here C1 has a lower response time under π2 than under
π3, while at the same time C2 has equal response time under both policies. Therefore, if performance was
the only concern π2 would be the better policy. Under Definition 1, π2 is not perfectly fair, while π3 is.
There is no denying that π2 would be preferable to π3 (from a performance viewpoint), as every job does at
least as well π2. The crucial point for our work is that we are defining the fairness of a policy in isolation,
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Average Response Time Average Slowdown SDV

π1 6.5 1.40 0.320
π2 6.5 1.45 0.005

Table 2: Example of ESD vs SDV

i.e. jobs under policy π3 only know how well other jobs do under π3, not how well they would do under π2.
So, π3 is seen as fair, but has sub-optimal performance. This example should serve to reinforce the notion
of the decoupling of fairness from performance.

Due to the stochastic nature of these systems, i.e. random arrival times, job sizes, etc., a perfectly fair
policy (which is also stable) in general does not exist. But using this definition as an ideal to strive towards,
it would seem one should be able to reason that one policy is more fair (or less unfair) than another. For
small systems and toy examples, like the ones presented earlier in this section, it is clear which policies are
preferred, if being fair is the ultimate goal. However, when these systems are viewed over longer periods of
time with many events occurring, it becomes harder to rely solely on intuition to determine which policy is
fair. And where it may be easy to find specific examples of clearly fair or unfair sample paths, one must
also consider the aggregate behaviour. Therefore, to compare the fairness of policies, it is imperative to have
a metric. The metric we propose to measure the fairness of a system is the slowdown variance (SDV), i.e.
Var(R/S).

The first and perhaps most important property of SDV to note is that by Definition 1, if a system is
perfectly fair then SDV is zero, i.e. Var(R/S) = 0. Moreover, from the definition of variance the higher the
SDV is the further the system is from being perfectly fair. In other words, SDV provides a means to rank
the fairness of a set of policies. Returning to our example, without using a metric such as SDV, the most
we could say about the three policies is that π3 is perfectly fair, while π1 and π2 are not. Intuitively, π2 is
more fair than π1; it is more fair for the longer job to wait behind the shorter one. When the SDVs of these
two policies are calculated and used as a measure of fairness, it agrees with our intuition that π2 is more fair
than π1. That is, letting Var(R/S)π denote the SDV under policy π, Var(R/S)π2 < Var(R/S)π1 .

2.1 Comparing Slowdown Variance to Other Fairness Metrics

Having given our definition of what it means to be fair, and furthermore, how to measure that fairness, it
is instructive to compare these ideas against existing fairness metrics. Perhaps the most natural metric to
compare SDV against is the expected slowdown (ESD). The first major differentiation is that, as mentioned
before, SDV is primarily concerned with fairness, while ESD is coupled to the performance of the system.
Moreover, while ESD incorporates the notion that larger jobs should wait longer, it lacks a strict definition
of perfect fairness.

Even with just these distinctions in mind, it is not surprising that these two metrics often disagree on
which policy is more fair. But a valid question remains: Does ESD disagree with SDV only due to its
coupling to performance? In other words, if E[R/S]π1 ≤ E[R/S]π2 and Var(R/S)π2 < Var(R/S)π1 must it
then be true that E[R]π1 < E[R]π2? To show that this is not always the case, we offer a counterexample.
Consider two policies π1 and π2, each of which serves two jobs, denoted by J1 and J2. Let the sizes and
arrival times of J1 and J2 be denoted by S1 = 5 and S2 = 4, and a1 = 0 and a2 = 3, respectively. For the
counterexample to be valid, it must hold that Avg(R/S)π1 ≤ Avg(R/S)π2 and Var(R/S)π2 < Var(R/S)π1

(the metrics disagree on which policy is the fairer of the two), while Avg(R)π1 ≥ Avg(R)π2 (the policy which
ESD favours, does not have a smaller expected response time). That is, the ESD under π1 is not lower due
to its coupling to performance, but rather ESD and SDV disagree strictly due to their conflicting notions of
fairness.

Following through with the example, let the service discipline of π1 and π2 follow that illustrated in
Figure 2. That is the departure times of J1 and J2 are 9 and 7, and 7 and 9, under policies π1 and π2
respectively. The corresponding values of interest can be seen in Table 2. Here it is seen that SDV and
ESD disagree on which policy is more fair (ESD favours π1 while SDV favours π2), but average performance
of the two policies are equal. Therefore, the disagreement of SDV and ESD cannot be attributed to ESD
coupling to performance, and must instead be attributed to their underlying notions of fairness.
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(a) π1 execution path (b) π2 execution path

Figure 2: Time-lines of π1 and π2, black portions represent when a job is receiving service, while striped/grey
portion represent a job is receiving shared service.

Although this is only a small example, the results can be extended to a more general case. The astute
reader may have noticed that π1 and π2 are following the well known policies LCFS and PS respectively. For
an M/G/1 queue it is known that E[R]LCFS = E[R]PS and furthermore E[R/S]LCFS = E[R/S]PS [8]. It will
also be seen in Section 3 that our simulation results strongly suggest that Var(R/S)PS < Var(R/S)LCFS. In
other words, if ESD is used as a metric for fairness, LCFS would be deemed just as fair as PS, which we
argue would contradict typical intuition. However, as will be seen in Section 3, SDV avoids this pitfall.

As mentioned in Section 1, another potential metric for fairness is the Slowdown Queueing Fairness (SQF)
measure from [2]. This metric was formulated using similar arguments we present to justify SDV. That is,
all jobs should have equal slowdown. Of course the question remains, what is the difference between these
two metrics, and why would one use one over the other?

To guide our discussion, we first present the definition of SQF:

SQF = E[(R− (E[R]/E[S])S)2] = E[R2] − (E[R]/E[S])E[RS] + (E[R]/E[S])2E[S2].

For comparison, the definition of SDV is:

SDV = E[(R/S)2] − E[R/S]2.

One noticeable difference between these two definitions is that SQF depends directly on the second
moment of the service time distribution, whereas SDV depends on the second moment of the slowdown. One
may see this as a small difference but the implications are drastic. Suppose that the service time distribution
is such that E[S2] is large (the Pareto distribution for example). In this case, (E[R]/E[S])2E[S2] can become
the dominating term for SQF, since 1 ≤ (E[R]/E[S])2. This becomes more problematic once one notes that
E[S2] is independent of the employed policy, resulting in fairness being insensitive to the choice of policy
one implements. On the other hand, all terms present in SDV, dominant or not, are dependent on the
employed policy. Moreover, if the second moment of the service time distribution is infinite, not only will
SQF become dominated by the aforementioned term, but policies become incomparable to each other, i.e.
they are all equally unfair. This observation is even more troublesome once one realizes that distributions in
which fairness is a concern are more often than not distributions where the service time variance is extremely
high. Therefore, we argue that under the distributions of interest, i.e. heavy tailed, decreasing failure rate,
etc., SQF could be a problematic choice. This issue could be one of the reasons [2] limited their experiments
to non-heavy tailed distributions.

While the above criticism is certainly a concern, we would be remiss if we did not point out a notable
advantage SQF has over SDV. SQF leads to closed form expressions in the case of an M/G/1 queue, whereas
for SDV, analytic results are difficult to arrive at. In fact, to the best of our knowledge an expression for the
slowdown variance of an M/G/1 queue under any scheduling policy remains unknown.

3 Simulation and Discussion

The SDV of a system is difficult to analyse directly, even for single server systems implementing well known
policies. As such, to examine the effects of policy choice on SDV, and in turn system fairness, we rely on sim-
ulation. All simulations are of M/G/1 queues, where we varied the system’s service time distribution, policy,
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and load, using basic Matlab libraries. To grant the reader a comprehensive understanding of the simulation
results, for each service time distribution we present the expected response time, response time variance,
expected slowdown, and slowdown variance. It is worth noting that the y-axis on the graphs corresponding
to variance and/or slowdown are logarithmic. One may also note the exclusion of the aforementioned SQF
metric from our experiments. We would conjecture that SDV fairness results would be comparable to those
of SQF for low variance distributions, while for high variance distributions, SQF is problematic (as discussed
in Section 2). Therefore, we narrow our discussion to a focused comparison of SDV to ESD. While not
written under the intent of public use, all source code can be found at [1].

3.1 Policies

Although most policies which we simulate are well known, for the sake of completeness we give their defini-
tions in full.

FCFS (First Come First Serve): Jobs are served in the order that they arrive.

LCFS (Last Come First Serve - Preemptive): Jobs are scheduled in order of how recently they arrived
to the system. If a job arrives while another is being processed, the job being processed is placed back into
the queue and the most recent arrival is processed.

PS (Processor Sharing): All jobs are given equal share of the processor’s capacity.

LAS (Least Attained Service): The job with the least attained service gets priority. If there is more
than one job with the least attained service, they are processed using processor sharing. Note, this policy is
also referred to as as Foreground-Background Processing.

P-ROS (Preemptive Random Order of Service): Jobs are served in random order. If a job is being
processed when a new job arrives, the job being processed is preempted and placed back into the queue. A
job is then randomly selected from the queue.

SRPT (Shortest Remaining Processing Time): Jobs are scheduled in order of remaining service time.
If a job arrives that has a smaller service time than the one currently being processed, the job in process is
preempted by the arriving job and placed back into the queue. If a job is placed back into the queue, no
accumulated service is lost (preemptive resume).

FSP (Fair Sojourn Protocol): Jobs are scheduled in the order in which they would complete in a pro-
cessor sharing queue.

While most of the above policies are well known in the queueing literature, FSP deserves some special
attention. It is known that under FSP every job will depart at least as soon as it would under PS [7]. In
turn this makes an interesting case when comparing the fairness of these two policies (FSP and PS). FSP is
strictly improving performance, while at the same time no individual is doing worse (relative to when they
would depart under PS). However, individuals may do worse relative to others, potentially leading to an
unfair system overall. This is a general case of the first example given in Section 2, where π3 is the most fair
policy, but π2 has strictly better performance.

The simulation results are sorted into three broad categories, first those with increasing failure rates (IFR
distributions), second those with decreasing failure rates (DFR distributions), and lastly specific distributions
which offer some additional insights.

3.2 Results for IFR Distributions

Within the set of IFR distributions, we begin with the simplest: constant service times. Here, an observation
immediately worth noting is that a number of policies become equivalent. Specifically, FCFS, SRPT, and
FSP will process jobs in the same order. It is known that FCFS will minimize the response times when the
service time distributions have an increasing failure rate amongst policies that do not use size information
(blind policies) [11], i.e. FCFS, LCFS, P-ROS, LAS, and PS. This leads to the well known result that when
service times are constant, FCFS will yield optimal slowdown amongst blind policies. What may not be as
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intuitive is how FCFS (and therefore SRPT and FSP) would perform when it comes to fairness. It would
be reasonable to hypothesize that a policy such as PS would be more fair than FCFS in this case, since at a
glance PS tries to be fair at every point in time. This is not the case however, as can be seen in Figure 3-(d),
FCFS has lower SDV than PS for all simulated loads. This is somewhat surprising since PS is thought to
be fair by construction (as discussed in Section 1). One explanation for this is the following. Consider jobs
which arrive to an empty system. Under FCFS, they have equal response times and slowdowns. Therefore,
conditioning on jobs which arrive to an empty system, the SDV is zero. Under PS another job could arrive,
causing the job currently in service to wait longer than it would have otherwise. This argument can be
extended to finding an arbitrary number of jobs upon arrival. That is, if a job arrives, and no others arrive
until said job is complete, the response time of that job is equal under FCFS and PS. But when one begins
to condition on jobs arriving after it, the response time for PS changes (inducing more variance), while under
FCFS the response time is independent of subsequent arrivals. An implication of this behaviour is that doing
something which is viewed as fair at a given time point (such as PS), can result in an unfair system. Overall
this is an appealing result, since it shows performance and fairness are not in direct contention with each
other. In other words, the policy which has the best performance, may also be the most fair.

Observation 1. It is possible for a policy to have the best performance, while being the most fair. As an
example, across all simulated policies, when service times are constant, FCFS, SRPT, and FSP have the best
performance while also being the most fair.

For the remainder of the IFR simulations, SRPT and FSP continue to perform well, although not neces-
sarily the best, while in some cases FCFS performs poorly. This is not unexpected however, as policies such
as SRPT and FSP use service time information, while policies such as FCFS, LCFS, PS, and LAS are blind.
This is demonstrated in Figures 4 and 5.

Under the Erlang-2 system we see that there is a difference in the rankings of policies in terms of ESD
and SDV. It was shown in [6] that for Erlang-2 systems LAS will yield optimal slowdown despite maximizing
the expected response time and one can observe this in our results (Figure 4). Despite performing well
in expectation, LAS is outperformed at higher utilizations in terms of SDV by PS, i.e. its ranking is load
dependent. This load dependent ordering is not a product of large jobs rarely receiving service, i.e. starvation,
since FSP mimics the service order of PS which always gives large jobs at least part of the total processing
power. Rather, this is due to small jobs experiencing unfair performance i.e. inordinately small response
times. When the load becomes large, the expected number of jobs in the system becomes large in turn. As
such, even under a policy which avoids starvation, such as PS, large jobs would expect to have large (albeit
reasonable) response times. Moreover, under a policy such as PS, the penalty for having a large number of
jobs in the system would also be felt by the small jobs. This is the distinguishing factor when comparing
PS to FSP. While the large jobs are not being starved, it is true the large jobs take on the entire penalty
of having many jobs in the system. This leads to small jobs getting a free pass through the system under
FSP. This is turn leads to a high SDV and an unfair system. It remains curious however, that SRPT still
does well here from a fairness standpoint, as it would seem a similar argument could be applied, implying it
should also be unfair. One explanation for this is SRPT is not constrained to worry about starvation, which
interestingly gives it the freedom to be more fair overall. Due to the distribution being IFR, extremely large
jobs are not likely to appear. Thus, perhaps this disregard of starvation is justified in this setting. However,
we leave the specifics of this behaviour for this specific distribution as an open question. Issues of SRPT
and starvation will be seen in Section 3.3.

Observation 2. For two policies π1 and π2, the ordering of fairness can be load dependent.

Under uniformly distributed service times, a similar but reversed effect is observed. That is, FSP performs
the best and is the most fair, while SRPT begins to become unfair as the load increases. We argue this is due
to the lower bound (a = 0.5) imposed on the uniform distribution. Unlike with the Erlang-2 distribution,
jobs cannot be extremely small compared to the mean. In fact, the bound on the distribution limits the
largest possible job to be only b/a = 1.5/0.5 = 3 times larger than the smallest possible job. As such, when
SRPT gives a job priority over another, it is known that the now highly prioritized job cannot be drastically
smaller than the now low priority job. Worse yet, if a slightly smaller job arrives while the low priority job
is waiting to receive service, that job is guaranteed to depart before the one which was waiting. On the
other hand, because FSP employs the departure order of PS, it may still be the case that a job may depart
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before a smaller one, if it was waiting longer. Taking these ideas into account under a uniform distribution
it becomes reasonable to expect SRPT will become relatively unfair at higher loads, while at higher loads
FSP becomes the most fair.

Given the fact that the uniform distribution has low variance, previous observations for FCFS under
constant service times remain applicable.

(a) E[R] vs Utilization (b) Var(R) vs Utilization

(c) E[R/S] vs Utilization (d) Var(R/S) vs Utilization

Figure 3: Simulation results for system where service times are constant: a = 1.
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(a) E[R] vs Utilization (b) Var(R) vs Utilization

(c) E[R/S] vs Utilization (d) Var(R/S) vs Utilization

Figure 4: Simulation results for systems where service times follow an Erlang distribution: k = 2, µ = 0.5

(a) E[R] vs Utilization (b) Var(R) vs Utilization

(c) E[R/S] vs Utilization (d) Var(R/S) vs Utilization

Figure 5: Simulation results for systems where service times follow a uniform distribution: a = 0.5, b = 1.5.
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3.3 Results for DFR Distributions

Arguably the more interesting and problematic distributions are those which are DFR. This is because such
distributions are apt to produce massive jobs relative to their means. This provides two broad challenges.
First, if jobs cannot be preempted, many small jobs can get stuck behind one large job leading to astronomical
slowdowns. Second, if jobs can be preempted, many small jobs could overtake the large job in priority, leading
to large job starvation. We simulated hyper-exponential and Pareto distributions. It is worth noting that in
the figures of this section, some curves are absent due to known behaviours which lead to results that are
orders of magnitude worse than the majority of the policies. For example, the expected response time of
FCFS under the Pareto distribution is infinitely large.

It is well known that when restricted to blind policies, LAS will minimize the mean response time and
slowdown across all service time distributions with a decreasing failure rate [6]. We observe this property of
LAS throughout the results.

(a) E[R] vs Utilization (b) Var(R) vs Utilization

(c) E[R/S] vs Utilization (d) Var(R/S) vs Utilization

Figure 6: Numerical results for systems where service times follow a hyper-exponential distribution: p1 =
0.75, p2 = 0.25, µ1 = 0.25, µ2 = 1.25, where pi denotes the probability of sampling from an exponential
distribution with corresponding rate µi

As with the IFR distributions, SRPT and FSP are appealing policies from the viewpoint of performance.
It is well known that SRPT minimizes all moments of the response time under all distributions for single
server systems. Furthermore, if one were using a traditional fairness metric, such as expected slowdown,
it would be difficult to make a case to employ any policy other than SRPT, as SRPT also has the lowest
expected slowdown. Another well known property of SRPT, however, is that it starves large jobs. As argued
in the previous section, starvation is unfair. Therefore, one would expect to see SRPT perform poorly under
a fairness metric, especially under a heavy-tailed distribution where these starvation issues are amplified.
SDV is consistent with this notion. In Figure 7-(d) not only does SRPT fail to be the most fair, but is one
of the least fair policies simulated. This of course arises due to the amount of time large jobs must wait
before they depart. In contrast, under SRPT, an extremely small job is likely to have a slowdown of one, the
minimum achievable. That is, SRPT is unfair in two respects; it gives both an unfair disadvantage to large
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jobs and an unfair advantage to small jobs. Hence SDV captures inherent unfairness which SRPT invokes,
whereas the expected slowdown not only fails to capture the issue of starvation, but goes further by implying
SRPT to be the most fair of all simulated policies.

When it comes to FSP, the expected slowdown does capture some of the unfair qualities as the load
increases, as was previously discussed for IFR distributions. But these unfair tendencies are amplified in
the SDV, where under heavy loads PS, P-ROS, and LAS are all deemed more fair than FSP. Looking to
the ESD, only LAS (and SRPT) are deemed more fair than FSP. It still remains then, that while FSP and
SRPT may be appealing choices from a performance standpoint, they may be extremely unfair.

Observation 3. While the non-blind policies SRPT and FSP seem like attractive choices from the viewpoints
of E[R] and E[R/S] they could be extremely unfair from the viewpoint of Var(R/S). That is, Var(R/S)
captures the unfairness of large jobs being starved, and small jobs getting an unfair advantage.

(a) E[R] vs Utilization

(b) E[R/S] vs Utilization (c) Var(R/S) vs Utilization

Figure 7: Simulation results for systems where service times follow a Pareto distribution: α = 1.5 , xm = 0.5,
where α and xm are the shape and scale parameters respectively. Note that the graph of E[R] vs. ρ has
been excluded due to the high variance of the Pareto distribution.

The previous observation does not imply that if one wishes to be fair under the Pareto distribution then
one must sacrifice performance. Here, one sees favourable results for LAS. Firstly, for DFR distributions,
LAS is known to be an optimal blind policy. While SRPT and FSP slightly outperform it, LAS remains
competitive with access to significantly less information. Moreover, when one examines the SDV of LAS it
is seen that it also is the fairest of all blind policies, and for high loads, it is the fairest of all policies, blind
or otherwise.

Observation 4. For all DFR experiments, of all the blind policies, LAS achieves the lowest expected response
time, while remaining the most fair, i.e. achieving the lowest Var(R/S). Furthermore at high loads, LAS is
the most fair over all simulated policies.
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3.4 M/M/1 and Bounded Distributions

Until now, there was an important set of distributions which we excluded from our simulations. That is,
distributions which have a significant probability of generating jobs which have an extremely small size. An
example of such a distribution is the well known exponential distribution. Here service times are not bounded
away from zero, and moreover, the mode of the density equals zero (an indicator that small jobs are likely
to be generated). As will be seen, such distributions present difficulties when simulating non-preemptive
policies, when moments of the slowdown are a concern.

Looking to Figure 8, this effect can be viewed explicitly. Here the service times are exponentially dis-
tributed, i.e. the system is an M/M/1 queue. Viewing the FCFS and P-ROS curves for SDV, one finds
them to be jagged. This is not a product of true steady state behaviour, but rather a consequence of the
system converging slowly to said steady state behaviour. That is, the simulation results can potentially
be dominated by a small number of jobs (or in this case, one). It is noted that this slow convergence is
emphasized more in non-preemptive policies. Consider a system with a single job present with a remaining
service time equal to the mean service time. Now consider the case when a job arrives which is very small
compared to the mean service time. For the sake of discussion, assume the new job is one thousandth the
size of the mean. Under a policy without preemption that new job will have a slowdown of at least one
thousand since it has to wait for the current job to complete. This is an inordinately large slowdown, and
in turn impacts the SDV drastically. However, because the probability of such a small job being generated,
while non-negligible, is still small, simulation results can be skewed to such a job being generated (or not
generated) during its runtime.

To demonstrate this slow convergence is indeed due to this effect, we direct the reader to Figure 9. In this
experiment, service times follow an exponential distribution shifted slightly to the right, i.e. a lower bound
is imposed on the service times. When this is done one notes the curve exhibits the anticipated shape. That
is, in contrast to the simulation with exponentially distributed service times, the curves are smooth and
increasing with the load. It is also noted that in practice, having a lower bound on the service times is
not an unreasonable assumption in many domains, e.g. computing, healthcare, telecommunications, etc. As
such, we argue that in practice these systems would exhibit a reasonable convergence to steady state, unlike
that exhibited by the curves in Figure 8. In other words, the slow convergence for service time distributions
which generate extremely small jobs is more of a theoretical issue, rather than a practical one.

Observation 5. When the service time distribution is prone to generating arbitrarily small jobs, non-
preemptive policies converge slowly to steady state. This in turn makes simulating the SDV for such systems
problematic.
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(a) E[R] vs Utilization (b) Var(R) vs Utilization

(c) E[R/S] vs Utilization (d) Var(R/S) vs Utilization

Figure 8: Simulation results for systems where service times are exponentially distributed: µ = 1.

(a) E[R] vs Utilization (b) Var(R) vs Utilization

(c) E[R/S] vs Utilization (d) Var(R/S) vs Utilization

Figure 9: Simulation results for systems where service times are exponentially distributed but bounded away
from zero: µ = 0.99, and a lower bound of 0.01 (giving a mean of 1).
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(a) E[R] vs Utilization (b) Var(R) vs Utilization

(c) E[R/S] vs Utilization (d) Var(R/S) vs Utilization

Figure 10: Simulation results for systems where service times follow a bounded hyper-exponential distribu-
tion; p1 = 0.75, p2 = 0.25, µ1 = 0.24, µ2 = 1.24, and lower bound of 0.01, where pi denotes the probability
of sampling from an exponential distribution with corresponding rate µi

3.5 Summary

Although it was seen that determining if one policy is more fair than another can be sensitive to the service
time distribution, some general observations can be made which hold across all of our simulations. Firstly,
and perhaps not surprisingly, the SDV of all policies increases with the load. There is a good deal of intuition
behind this. One notes that for a system with a load close to zero, the vast majority of jobs will arrive to an
empty system and are likely be processed before another job arrives. Thus most jobs will have a slowdown
of one, and therefore most jobs will have equal slowdowns; implying the system SDV to be close to zero. On
the other hand, when the load is close to one, the variance of the number of jobs that an arriving job sees
is high, and furthermore, the variance of the number of jobs that arrive before said job is processed is also
high. This in turn leads to a high variance in response times, and high variance in slowdown.

Observation 6. Var(R/S) appears to increase with utilization.

Measures of slowdown are often thought of as a mix between fairness and performance. One of the
primary motivations to developing a fairness metric different from the expected slowdown was the bothersome
equivalence, E[R/S]PS = E[R/S]LCFS [14], since taken alongside the well known equivalence E[R]PS =
E[R]LCFS, would imply that LCFS and PS are equally fair. This goes against a strong intuition however
(as we argued previously), that simply by construction PS is more fair than LCFS. When examining our
simulations however, one notes that for all simulated distributions LCFS has a higher SDV than PS, and is
therefore less fair. In other words, PS always performs just as well as LCFS, while also remaining the more
fair of the two policies.

Observation 7. For all experiments, Var(R/S)PS < Var(R/S)LCFS and from analysis it is known E[R]PS =
E[R]LCFS.
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Continuing with PS, it is noted that while for many of the simulations PS is a competitive policy with
respect to fairness, this is not always the case. This is perhaps surprising since it would seem PS is fair
by construction (at every point in time every job has an equal slice of the processor). Specifically, for
distributions with low variance, PS can be seen as an unfair policy. Thus, enforcing fairness at every point
in time, can lead to an unfair system overall. Another interesting result from these simulations regarding
PS is the load dependency of FSP. While previously observed that the ordering of SDV is load dependent,
FSP seems to be the most sensitive to it. Since FSP works off of PS it is clear that all jobs do just as well
under FSP as they would over PS, and on the service this may seems like a favourable result (and it is for
performance), but as discussed in Section 2, such a preference to small jobs can result in unfair treatment to
larger ones, and in turn create an unfair system (often times putting FSP in the lower half of the simulated
policies for higher loads).

Observation 8. While PS is thought of as fair by construction, according to Var(R/S) it can in fact lead
to unfair systems overall, in particular when the service time distribution has low variance.

Although for Pareto distributed service times SRPT was shown to be quite unfair due to starvation, under
almost all other simulated distributions, SRPT was shown to be the most fair policy. This is a favourable
observation because it is well known that SRPT stochastically minimizes the response time of the M/G/1
queue. As noted before, it was possible for a policy to win on all fronts, i.e. have the lowest expected response
time as well as the lowest SDV. But it seems with regard to SRPT this observation can be made in a stronger
fashion.

Observation 9. For all experiments, for all simulated policies π, E[R]SRPT ≤ E[R]π and Var(R/S)SRPT ≤
Var(R/S)π except under Uniform and Pareto distributions.

These results complement works and surveys that have been done on SRPT. An investigation into the
unfairness of SRPT is given in [4,15] where the authors comment that while some jobs of a certain size may
be treated very unfairly, SRPT may offer better slowdown in expectation in the majority of cases. In [15]
SRPT was classified as “Sometimes Fair” and the authors suggest that SRPT can be used in a wide variety
of situations. Even if the conditional mean slowdown is high for some distributions it might not impact how
fair a policy is as a whole. For distributions with high variance it is intuitive that the SDV of SRPT would
be high. When examining Pareto service times, one can informally view jobs as two classes: small jobs and
large jobs, where the large jobs are several orders of magnitude greater than the mean. Then the system can
be approximated as one with strict static priorities between the two classes (small jobs have priority over
large jobs). Once this is realized the issue of starvation and unfairness becomes even clearer.

4 Conclusion

While fairness is a subjective concept, we identified several shortcomings of existing metrics. As such, we
made a case for using the slowdown variance (SDV) as a metric for fairness, where the lower a system’s SDV,
the more fair it is. Through simulation we showed several key insights into the behaviour of SDV which,
across a wide range of service time distributions, overcame the aforementioned shortcomings of previous
metrics. Specifically, for the M/G/1 queue, SDV always considers PS to be more fair than LCFS, SDV
considers SRPT to be extremely unfair under Pareto distributed service times, due to starvation and giving
an unfair advantage to small jobs, and SDV provides a decoupling of performance from fairness. Regarding
future work on the subject, we would like to formally show some of the observations made through simulation,
such as arrive at closed form expressions for Var(R/S)PS, Var(R/S)LCFS, and Var(R/S)SRPT for general or
specific service time distributions. Furthermore, more numerical experiments can be run on systems other
than the M/G/1 queue, such as M/G/C, open Jackson networks, etc. Clearly, SDV behaviours have yet to
be explored in great detail, but we hope to start a discussion surrounding it as research on fairness evolves.
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