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We present a flexible linear optimization model for correcting multi-angle curtaining
effects in Plasma Focused Ion Beam Scanning Electron Microscopy (PFIB-SEM) im-
ages. PFIB-SEM is a serial sectioning tomography technique capable of imaging large
3-dimensional volumes quickly, providing rich information in the critical 10-100nm fea-
ture length scale. During tomogram acquisition, a “rocking polish” is often used to reduce
straight-line “curtaining” gradations in the milled sample surface. While this mitigation
scheme is effective for deep curtains, it leaves shallower line artefacts at two discretized
angles. Segmentation and other automated processing of the image set requires that these
artifacts be corrected for accurate microstructural quantification. Our work details a new
Fourier-based linear optimization model for correcting curtaining artifacts by targeting
curtains at two discrete angles. We demonstrate its capabilities by processing images
from a concrete tomogram. We present methods for selecting the parameters which meet
the user’s goals most appropriately. Compared to previous works, we show that our
model provides effective multi-angle curtain correction without introducing artefacts into
the image, modifying non-curtain structures or causing changes to the contrast of voids.
Our algorithm can be easily parallelized to take advantage of multi-core hardware.
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Introduction

In order to gain a proper understanding of
structure-processing-property relationships in ma-
terials, it is crucial to characterize the three-
dimensional (3D) topology by means of tomogra-
phy and image processing. Topological features
within the 10 to 100nm length range and their con-
texts in relation to other structures have a large
influence on the material properties and are there-
fore of interest to microscopists studying a large
range of materials (??).

Focused Ion Beam Scanning Electron Microscopy
(FIB-SEM) tomography is based on alternating FIB
slicing and SEM imaging, in order to obtain a stack
of two-dimensional (2D) cut-face images, forming
a three-dimensional (3D) tomogram (?). Unlike
non-destructive 3D imaging techniques, e.g. X-ray
computed tomography (CT), positron emission to-
mography (PET) and nuclear magnetic resonance
imaging (MRI), FIB tomography is capable of pro-
viding sufficient contrast and spatial resolution to
resolve this important length size range (?). Addi-
tionally, since the probing beam for the tomogram
is an electron beam, there is the possibility of ob-
taining a rich variety of signals showing composi-
tion (e.g. backscatter electrons, energy-dispersive
X-ray spectroscopy — EDS) and crystal orientation
(electron backscatter diffraction — EBSD) using FIB-
SEM tomography (?).

Once a 3D tomogram is obtained, further quanti-
tative and qualitative analysis is often performed,
including statistical analysis of phase size and distri-
bution or 3D visualizations of the phases (e.g. those
described in ?). Further, secondary and backscat-
ter electron images can be simultaneously comple-
mented by other imaging modes to obtain 3D distri-
butions of elements in a specific volume (3D elemen-
tal maps) and three dimensional texture analysis
using electron backscatter diffraction (EBSD) (?).

Emerging Xe+ Plasma FIB (PFIB) beam replaces
the traditional Ga+ ion beam on the microscope,
promising much faster removal rates — thereby
greatly increasing the feasible volume which can be
analyzed in a given timeframe (visualized in figure
??). By using proper imaging and milling tech-
niques, milling rates of 60x faster can be achieved
with a minimal amount of imaging artefacts (?).

Figure 1: Plasma FIB provides much faster milling rates than
traditional FIB, allowing imaging of much larger
volumes in comparable timeframes. A meteorite
dataset (?) of of 6,110µm3 imaged by traditional
FIB is compared against our PFIB concrete dataset
of 529,000µm3, both having been imaged in approx-
imately 72h.

This allows microscopists to quantify heteroge-
neous multiphase structures like rocks, concrete
and biomaterials at the mesoscale (100nm - 200µm).

Curtaining

However, due to the inhomogeneous nature of the
phases in the sample, milling rates vary within a
specified cut face, causing vertical ripples on the
surface of the sample. These curtaining effects ap-
pear as darker or lighter straight lines on the sec-
ondary and backscatter electron images (see figure
??). Porous PFIB samples exhibit particularly deep
curtaining effects downward from the pores due to
a higher milling rate attacking the bottom of the
pore (?). These curtaining effects pose challenges to
further quantitative analysis of the 3D tomogram as
many of these algorithms are reliant on accurately
detecting edges within the images.

There are several means to reduce curtaining arte-
facts, including polishing the free face of the sample
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Figure 2: Curtains appear on images as lines darker or lighter
than the surrounding pixels. Due to the rocking
mill technique, they appear at two discretized angles
in our sample.

cube using a low ion current (????), applying a Pt
mask layer or sputter-coated gold films to the sam-
ple (??), and using a “rocking polish” or multiple-
angle ion beam technique to counteract curtains as
they form (??). The latter method is of interest to
us in this paper.

UHPC Test Sample

In order to test our algorithm, we imaged a sample
of ultra high-performance concrete (UHPC) pre-
pared one month prior to image acquisition (3D
tomogram is shown in figure ??). UHPC is a
low-water, low-porosity structure exhibiting high
strength and other favourable mechanical and dura-
bility properties (?). This makes UHPC an ideal
candidate in addressing concerns about the deteri-
oration, repair and replacement of modern infras-
tructure (?). Quantifying the 3D microstructure of
materials like concrete is crucial to understanding
how to further improve their strength, durability
and service life, thereby lowering their financial
and environmental costs.

The sample was imaged with an FEI-Thermo

Fisher PFIB using a backscatter electron (BSE) de-
tector at 2 keV. The initial cutting surface was pre-
pared with a cleaning cross-section and tungsten
was deposited on the top of the sample surface
to protect the sample from curtaining. The sample
was periodically aligned to fiducial markers to align
the beam. A rocking polish was used to to reduce
major curtaining while the cut face remained per-
pendicular to the beam, leaving minor curtains at
approximately 7◦ & -1◦ counter-clockwise from the
vertical direction (see figure ??).

The resulting dataset contains 705 16-bit
grayscale images at 3072px by 2048px each. Each
pixel on the x-y plane has a scale of approximately
49nm with a 50nm slice thickness. This gives a
total dimension of 150µm by 100µm by 35.3 µm,
for a total volume of approximately 529,000µm3.
The dataset was re-sampled to 8-bit grayscale using
ImageJ (?) for more efficient data processing. Con-
taining both complicated heterogeneous areas with
multiple phases and many different shapes of pores
as well as large homogeneous areas, it is an ideal
dataset in order to test the ability of our algorithm
to correct curtains in many situations.

Although not required for the algorithm de-
scribed in this paper, to account for small alignment
errors among slices during image acquisition, and
to allow for comparison with ?’s algorithm which
requires an aligned dataset, the ImageJ StackReg
plugin (?) was used in “Rigid Body” mode to fix
both translational and rotational misalignments.

Linear Model Design Principles

Our model makes the following assumptions about
curtaining artefacts, although the resulting algo-
rithm may work in more general situations:

A1. Curtains do not deviate from their straight-line
path along one of the specified angles.

A2. The deviation of the height of the curtain from
the cut surface is much less than the distance
between cut surfaces.

A3. There are no “real” structures which look like
and are parallel to curtains.

A4. Curtaining artefacts never appear on dark
voids.
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Assumption A1 is a valid assumption in most
cases. In rare instances the curtains may deviate
slightly. Assumption A2 is required for a 2D al-
gorithm, which operates on one slice at a time.
Assumption A3 limits the types of samples that can
be processed with our algorithm. If there are struc-
tures in the sample that are parallel to the curtain-
ing direction and of similar width (i.e. nanoscale
channels or printed metal lines in a semiconductor),
these may be effected. Finally, A4 encodes the fact
that curtains are a surface artefact and therefore do
not show up in the dark void sections of the image.

In order to design an algorithm that is useful in
a pipeline of image processing and quantification
steps, it must satisfy several criteria, against which
we will later analyze our algorithm:

C1. It should be able to correct curtaining artefacts
at arbitrarily specified angles.

C2. It should cause minimal change to image struc-
tures which aren’t curtains.

C3. It should not lighten or reduce the contrast of
voids, which show up as very dark areas.

Criterion C3 is critical not only because of A4 but
because the study of void distribution and networks
using FIB is very important. For example, pore
analysis is critical in the characterization of gas
shales (????), geological material properties analysis
(?) and the analysis of the structural properties of
concrete.

Previous Works

Although physically reducing curtaining through
improved sample preparation and techniques like
rocking mill is an important first step, artefacts may
still remain despite those efforts. Therefore, there
have been many past works aimed at removing
curtaining artefacts post-acquisition with computa-
tional methods. These include works aimed specif-
ically at correcting the curtaining problem as well
as those aiming to remove all types of striped noise,
of which curtaining is a subset. Several authors, in-
cluding ? and ?, have proposed general frequency-
domain-based methods of removing stripe artefacts
from images. ?, have proposed wavelet-based fil-
tering techniques. ? combines Fourier and wavelet
filtering.

? builds on the variational models of ? and ? and
proposes a 3D convex variational model aimed at
removing curtaining effects as well as the “laminar”
artefact, which we do not target in this work.

FEI’s Avizo 9.0 software has a tool for aligning a
stack of FIB-SEM images and correction of curtains
at specific angles; however, to target multiple angles
the wizard must be run multiple times.

To the best of our knowledge, no algorithm has
been proposed aiming specifically to correct rocking
mill PFIB imaging artefacts at multiple angles.

Methods

Our overall approach consists of three linear op-
timization models solved in succession. The first
linear optimization model (??) corrects curtaining
using a rotated univariate Fourier basis to correct
curtains along a specific angle. This problem is
run on many small boxes of the image in order to
reduce memory usage and computation time, and
to account for the case where some curtains begin
and end vertically. The second linear optimization
model (??) reduces any boxiness left by the first
optimization model. Finally, a third optimization
model (??) corrects for contrast loss after the first
two steps.

Curtaining Correction Optimization Model

The first step in our algorithm is the curtaining cor-
rection model. This step’s input is an uncorrected
2D image and its output is an array of overlapping
corrected boxes. For example, when solving with a
box size of 10 pixel by 10 pixels and an overlap of
2 pixels, we solve the first 10-by-10 box, then move
left or down by 8 pixels and solve the model again
on those 10-by-10 pixels. These will be recombined
into a single corrected image later. For the remain-
der of this subsection, “image” will refer to the one
small piece (“block”) of the overall image.

Rotatable Univariate Fourier Basis

In order to target curtains in a certain direction, we
set up a rotatable univariate Fourier basis (visual-
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ized in figure ??):

Fθ(x, y) = aθ0 +
N

∑
i=1

(
aθi cos

(
2πi
N

(~uxx + ~uyy)
)
+

bθi sin
(

2πi
N

(~uxx + ~uyy)
))

(1)
where

• Fθ(x, y) is the multiplicative contribution to the
change in brightness of the pixel at (x,y) for the
given θ.
• aθ0 . . . aθN are the Fourier co-efficients on the

real Fourier terms
• bθ1 . . . bθN are the Fourier co-efficients on the

imaginary Fourier terms
• N is a parameter controlling the number of

frequencies to which the image block is fit
• ~u is a unit vector perpendicular to the curtain’s

direction, θ. E.g. we define a completely verti-
cal curtain as having θ = 0◦ and ~u = (1, 0)

Any straight-line structure can be constructed
as weighted sums of these sines and cosines. This
allows the model to target only specific structures.
Note that, for ~u with an irrational ratio ~ux/~uy, it
would be possible to overfit the data by using as
many variables as there are pixels in the block, and
even values of N approximately equal to the box
width can produce “beat” patterns in which stripes
are alied at different angles, see figure ??. Extreme
problems are shown in the 16th and 20th waves.

Optimization Problem Description

Taking advantage of the properties of the above
Fourier basis, we set up the first linear optimization
model. The model is computed in such a way so as
to apply a multiplicative change to the image in or-
der to account for situations where curtains are up
against voids. In early tests of a similar but additive
algorithm, curtains which terminated at voids were
problematic. The following is a description of this
optimization problem.

Within each box of pixels, we seek a corrected
image, J, of the form

J(x, y) = I(x, y) ·∑
θ

Fθ(x, y) (2)

0◦

7◦

i = 0 i = 1 i = 3 i = 16 i = 20

Figure 3: A rotatable univariate Fourier basis is used to cor-
rect curtains in specific directions without affecting
other structures. Visualized here with block size
= 20px, aθi = 1 and bθi = 0. Higher frequencies
behave differently than expected, creating what look
like beat patterns, due to the sampling of a continu-
ous function at discretized pixel co-ordinates. These
frequencies can cause unwanted changes to the im-
age by giving the optimization model the ability to
cause changes to non-curtain structures. This can
be mitigated by reducing N, the number of frequen-
cies used to fit the data. Reducing the number of
frequencies also reduces processing time, but also
reduces effectiveness for thin curtains. In this paper,
we use N = 8 frequencies.

in which each pixel in the original image I is multi-
plicatively corrected. The differences between I and
J are restricted by (??) to be a sum of waves parallel
to the expected curtain directions. We expect that
the true image has a lower variation in the direction
perpendicular to the curtains, and that changes are
not too large.

We express this trade-off in the form of an opti-
mization problem

min
Fθ

∑
(x,y),(x+1,y)∈box

|J(x + 1, y)− J(x, y)|

+ λ ∑
(x,y)∈box,θ

|1− Fθ(x, y)|

subject to |1− Fθ(x, y)| ≤ α

(3)

where

• λ controls the trade-off (with changes being
discouraged by higher values) (see fig. ??)

• α limits the maximum percent change of any
pixel

The first term in the cost function provides the
most important penalty: reducing the `1-difference
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norm (i.e. the sum of absolute adjacent column
differences) in the x-direction. Since rocking mill
curtains are assumed to be along directions that
are close to the vertical (i.e. |θ| � 45◦), penalizing
horizontal variation is a good approximation to pe-
nalizing changes in the directions perpendicular to
the curtains. The second term penalizes changes
to the original image I. This term’s importance
relative to the first term is controlled by the exper-
imental constant λ. Increasing λ will result in a
lower difference between the original and corrected
images. This can be adjusted by the user in order to
improve image quality, by limiting changes to non-
curtain pixels. In similar problems, image quality
is usually not very sensitive to changes in λ. See
figure ?? for a comparison of λ values.

Per-pixel constraints encode prior knowledge and
assumptions about the dataset. A constraint of α
is applied to limit each pixel’s change. This value
represents the maximum allowed percent change
due to a curtain. A higher value for α may result
in deeper curtains being corrected; however, it may
also lead to an increased change of the image in
undesired ways. Therefore, care should be used
to set this value to the lowest value that gives ad-
equate curtaining correction in order to minimize
unwanted changes.

The linear optimization problem is solved on im-
ages in small, overlapping blocks, resulting in small
optimization problems, which reduces memory re-
quirements and increases throughput. Additionally,
since the Fourier basis is univariate and therefore
independent of the curtain’s y-direction, solving in
many small blocks helps to account for occasional
variation along the curtain’s direction, sometimes
disappearing and reappearing entirely.

Although our aim was to correct curtaining at
two angles, an arbitrary number of angles can be
combined into the optimization problem to correct
many angles at once should the instrument operator
choose to apply many angles during a tomogram
acquisition.

Box Normalization Step

Since the curtain correction optimization problem
is solved in boxes independently of one another,
small changes at the edges of boxes are noticeable.
A second optimization problem is used to correct

this.

Optimization Problem Description

To correct blockiness, the second optimization prob-
lem searches for the best constant value by which
to multiply each block in order to normalize the
difference between block edges. This optimization
problem is similar in structure to the first optimiza-
tion model. The aim of this optimization problem
is to find a multiplier mi,j to correct the decurtained
image J for each box from the first optimization
problem:

Ki,j(x, y) = mi,j · Ji,j(x, y)

where we use indices (i, j) for the boxes, and cor-
rdinates (x, y) for pixels within each box.

The chosen mi,j values should minimize the dif-
ference in the average value of the overlapping
sections:

min
mi,j

w,h

∑
i,j=0

 ∑
(x,y) in overlap of

boxes (i,j) and (i+1,j)

∣∣Ki,j(x, y)− Ki+1,j(x, y)
∣∣

+ ∑
(x,y) in overlap of

boxes (i,j) and (i,j+1)

∣∣Ki,j(x, y)− Ki,j+1(x, y)
∣∣


+ σ ‖K− J‖`1

subject to
∣∣1−mi,j

∣∣ ≤ α
(4)

where

• σ controls the amount of deviation from the
curtaining corrected box mean, Ii,j, and

• α limits the maximum percent change to each
block (same value as that used before).

Recombination Step

In the next step, brightness-corrected boxes are com-
bined into a single image, L. In order to further
avoid box boundaries, a weighted combination of
the overlapping boxes is used. The weighting of
each pixel depends on its distance from the edge
of the box in which it resides. If the overlap of the
curtaining correction optimization problem is set to
n, the minimum contribution weight is 1

n+1 and the
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maximum pixel contribution weight is n
n+1 . A value

of 2
n+1 . . . n−1

n+1 is then used for the pixels in between.
For areas with four overlapping boxes, pixel values
are similarly interpolated using bi-linear interpola-
tion.

Brightness-Adjustment Step

The original curtaining correction step tends to have
a bias towards 0, i.e. the brightest sections of the im-
age are brought down, leading to a loss of contrast.
This final step helps to fix this problem, increasing
contrast and brightness of the top-level pixels.

Optimization Problem Description

This optimization model fits the curtaining- and
box-corrected image to a quadratic function which
aims to minimize the difference between the origi-
nal image and the corrected one.

min ∑
(x,y)∈S

∣∣∣I(x, y)− (a · L(x, y)2 + b · L(x, y))
∣∣∣

(5)
where

• S is a subset of pixels, we take the centres of
the boxes used in the first step;
• I is the uncorrected image;
• L is the curtaining- and box-corrected image;
• a and b are the co-efficients of the quadratic

function.

The quadratic function is then applied to the
corrected image, L, to obtain the final image M:

M(x, y) = a · L(x, y)2 + b · L(x, y),

for every pixel (x, y).

Implementation

Our algorithm was implemented in Ubuntu 17.04
using the Anaconda Python 4.1.1 distribution,
which is based on Python version 3.5.2. The scikit-
image image processing library (?) was used to
read in our 8-bit image files as NumPy arrays (?)
in order to perform calculations. The PuLP linear
optimization library (?) was used to define each
optimization model and call the GNU Linear Pro-
gramming Kit (GLPK), version 4.62. GLPK is an

open-source C implementation of primal and dual
simplex methods used to solve linear programs (?).

Results

The proposed algorithm was compared to ?’s al-
gorithm and Avizo version 9.0’s FFT curtaining
removal wizard. The ? and Avizo algorithms were
run on the first 200 slices of the data. Our algo-
rithm was used to process 1000x1000px arrays from
selected slices. Slices were cropped to 972x972px
for display. Identical regions were selected from
each of the outputs and are compared side-by-side
in figure ??. Our algorithm was run using block
size 20px and an overlap of 2px with the following
parameters, described in the aforementioned opti-
mization problems: α = 0.09, σ = 0.5, λ = 0, θ1 =
7◦, θ2 = −1◦.

Canny Edge Detection

Figure ?? shows the result of the Canny edge de-
tection applied to the blow-ups (figure ??) of the
images in figure ??. Canny edge detection is an im-
age gradient-based edge detection algorithm that
uses a low and high threshold to determine whether
a pixel is part of an edge. Otsu’s method (?) is a
way of automatically determining a good threshold
factor, σ2

b . The Python package scikit-image 0.12.3
was used to compute both the Otsu threshold and
the Canny edge detection, using 1

4 σ2
b and 1

2 σ2
b as the

low and high thresholds. These thresholds were
selected to attempt to find a balance between find-
ing subtle features and detecting noise. With these
thresholds, if a curtain remains in the image, it will
be detected by Canny edge detection as an edge. As
a precursor to many segmentation routines, Canny
edge detection is a good visual indicator of curtain-
ing removal effectiveness.

Discussion

Choice of Block Size

The choice of block size determines the perfor-
mance of the algorithm, both in terms of image
quality and processing time. Internal testing found
that if a block was the same size as features (for
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a) Original b) Proposed algorithm

c) ? d) Avizo Curtaining Wizard

Figure 4: A comparison of curtaining correction algorithms. a) is the original image of a pore in our concrete dataset, b) is the
result of our proposed method (block size = 20px, overlap = 2px, N = 8, α = 0.10, λ = 2, σ = 0.5, θ1 = 7◦, θ2 = −1◦),
c) is the image processed by ?’s vertical curtaining algorithm, d) is the result of Avizo’s FFT Curtaining Filter run once
for each angle (97◦ & 89◦– measured from the positive x-axis), using the default 3◦ tolerance setting.
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Original Proposed ? Avizo

a)

b)

c)

Figure 5: A comparison of blown up sections shown in figure ?? a).

example, the same width as the diameter of circu-
lar features), this can cause unwanted changes to
the image because the optimization problem will
attempt to reduce the contrast between the feature
and its surroundings. In general it was found that
increasing the block size reduced the number of
unwanted changes to the image, however this also
increases computation time as the linear optimiza-
tion problems are bigger. Therefore, some exper-
imentation is required to find a good block size,
though 20px seems to work well.

Another advantage to smaller blocks is that al-
though we assumed A1, it is true that there is some
vertical deviation and changes of darkness, some-
times disappearing or reappearing altogether. Since
this method lacks a physical model to describe these
behaviours, keeping the block size small means that
the vertical change across the small block is mini-
mal and curtains are corrected effectively.

Choice of λ

The parameter λ controls the strength of the sec-
ond penalty in the optimization problem described
above. A larger value of lambda penalizes changes
to the image, preserving structure and contrast
from the original image. This allows the user con-
trol over image quality as desired, as the optimiza-
tion problem can cause undesired changes if there
is a vertical structure partially intersected by the
optimization problem box. The user is free to select
the value of λ which suits their goals, but there is
a general method of selecting a best value called
the L-curve method (?), representing an efficient
trade-off between fitting the raw data and having
the desired property, which in our case is a reduc-
tion in the `1-difference in the horizontal direction.
Figure ?? shows the corrected images with five dif-
ferent values of λ, and the corresponding L-curve,
plotting the `1-x-difference of the corrected image
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Original Proposed ? Avizo

a)

b)

c)

Figure 6: A comparison of the Canny edge detection results in the blown up sections shown in figure ?? a).

versus the logarithm of the mean energy of the
correction.

Finding a value for λ is more or less an experi-
mental procedure; however, a value in the 0-5 range
was found to provide a good balance of preserva-
tion of image structures and good curtaining arte-
fact correction.

Comparison to Other Methods

A comparison of our method to two other curtain-
ing correction models is presented in figure ??. The
method presented by ?, while intended for vertical-
only curtains, was able to remove most of the cur-
taining artefacts; however, as a result of the fact
that this method expects vertical curtains, it leaves
behind what can be described as a lower-frequency
waviness in the image, as well as occasionally im-
parting some extra, unwanted artefacts.

When filtered without aligned images, the

method tends to lighten voids and cause more
changes to the overall image, which is expected
given that the method is 3-dimensional in nature
and therefore requires aligned images to function
properly. One advantage of our proposed model
is the fact that it’s a 2D technique, which means
the dataset does not need prior alignment nor do
we need information about prior or future slices to
complete the filtering process. This also means our
algorithm could be implemented in realtime when
imaging on the microscope.

Perhaps more surprisingly, commercially avail-
able Avizo’s FFT curtaining removal filter, while
targeted at specific angles, imparted a similar, yet
much more noticeable effect to the image, while
also noticeably missing the curtaining effect in cer-
tain areas. Additionally, while the ? method ap-
pears to avoid large changes to voids (when used
properly with aligned images), the Avizo filter ac-

10



PFIB SEM Curtaining Correction Schankula, Anand & Bassim

tually imparts the same low-frequency effect onto
the darker void regions. While this implies that the
Avizo method is perhaps more general-purpose,
it is clearly targeting parts of the image we know
should not change (A5). These kinds of changes
are expected when using a traditional FFT filter
they are known to potentially introduce additional
artefacts when curtains do not cover the entire cross-
section of the image, in this case due to the presence
of voids (?).

Compared to these two methods, the method pre-
sented in this paper is able to effectively remove
the curtaining effect without imparting this new,
lower-frequency structure. However, our algorithm
does have the tendency to reduce contrast of un-
intended parts of the image. This doesn’t greatly
affect image segmentation (see figure ??), but can
affect the image visibly to the human eye. Choosing
a good value for λ can help to combat this, however
the model should be explored further to attempt to
mitigate this effect.

Curtains occasionally appear to deviate from
their straight-line paths. However, our algorithm
is still able to handle these situations fairly well.
This is likely because our linear model is solved
in blocks, meaning curtains tend to approximate
straight lines well enough within those blocks.

Figure ?? shows some regions of interest from
the images in figure ??. In a), we see an area that is
heavily affected by curtains in the original image.
The proposed method removes these curtains very
effectively, even across the boundaries of different
phases of the image. ?’s method is also effective at
removing these, but produces a darkened area in
the middle of the phase. Avizo’s curtaining filter
removes some of the curtains, but overall leaves
most of the effect.

In b), there are some subtle curtains in the origi-
nal image. Both our method and the ? method are
effective at removing the curtains in this location.
However, a lighter artefact directly above the crack
is created by the latter. This is likely an attempt by
the filter to increase the brightness of the dark area,
which is avoided by our method’s multiplicative
factor. Avizo’s filter imparts this same artefact in
both directions and to a greater extent, even caus-
ing a lightening of the void pixels, and transforms
the curtains into shaded regions.

In c), the method proposed here causes some re-
duction in contrast around the edge of the phase
shown. This can be seen in other areas where there
are subtle differences between adjacent gray val-
ues. Additionally, the curtain slightly deviates here,
violating the assumption A1, which causes those
curtains to not be fully removed. ? does a better
job at preserving contrast but does not fully remove
the angled curtain, since it is not designed to do so.
Avizo also does a good job at preserving contrast,
but does not fully remove the curtains either.

Future Work

Ongoing and future work is aimed at increasing the
computational efficiency of the algorithm, taking
advantage of the “embarrassingly parallel” nature
of the curtaining correction optimization problem.
Each block can be solved in separate threads, allow-
ing a speedup roughly proportional to the number
of CPU cores on the user’s machine. Additionally,
the Fourier basis matrix depends only on the ex-
perimental parameters (θi, N) . Therefore, it can be
generated once and shared amongst the blocks.

The PuLP library was advantageous in imple-
mentation and testing due to its human-readable
problem setup, ability to write direct linear pro-
gram files for debugging purposes and its ability to
interface with multiple solvers. However, its inter-
nal design makes it significantly slower than other
libraries, especially when dealing with a series of
many small linear programs. Therefore, it would
be worthwhile to implement the algorithm using
a faster library such as CVXOPT, which interfaces
directly with GLPK’s C library.

Additionally, future projects involve incorporat-
ing phase information to gain a better understand-
ing of the formation and propagation of curtains,
including “hoodoos”. This information can be used
to more intelligently target and correct the artefacts.
New microscope control APIs allow programati-
cally capturing information from multiple detec-
tors. This additionaly information should help in
the detection and correction of curtains.
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a. Original b. λ = 0

c. λ = 4 d. λ = 8

e. λ = 32 f. L-Curve

Figure 7: a) through e) show the effect of a range of λ values. Higher values penalize changes to the image more heavily, resulting
in an image which retains more of the original detail, but with the side effect of correcting curtaining artefacts less
effectively. The value of λ can therefore be tailored to the application. f) Is an LCurve plotting the sum of the absolute
values of x-direction differences (`1-difference) versus the mean-energy (`2) difference between the original and corrected
image. This plot suggests that λ ≈ 8 provides an optimal balance between curtain correction and changes to the image
(block size = 20 px, overlap = 2px, N = 8, α = 0.10, σ = 0.5, θ1 = 7◦, θ2 = −1◦)12
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