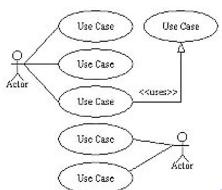
Use Case Diagrams & Sequence Diagrams SE3A04 – Tutorial

Jason Jaskolka

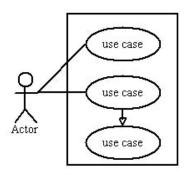
Department of Computing and Software Faculty of Engineering McMaster University Hamilton, Ontario, Canada jaskolj@mcmaster.ca

October 14/15, 2014


Outline

- Use Case Diagrams
- 2 Sequence Diagrams
- Questions

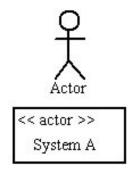
Use Case Diagrams


Definition (Use Case Diagram)

Use case diagrams model the functionality of system using actors and use cases.

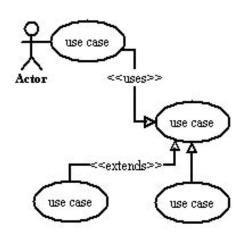
Use Case Diagrams System

- Draw your system's boundaries using a rectangle that contains use cases
- Place actors outside the system's boundaries


Use Case Diagrams Use Cases

- Draw use cases using ovals
- Label with ovals with verbs that represent the system's functions

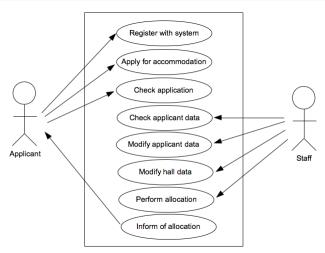
Use Case Diagrams


- Actors are the users of a system
- When one system is the actor of another system, label the actor system with the «actor» stereotype

Use Case Diagrams Relationships

- Illustrate relationships between an actor and a use case with a simple line
- For relationships among use cases, use arrows labeled either «uses» (or «includes») or «extends»
- A «uses» relationship indicates that one use case is needed by another in order to perform a task
- An «extends» relationship indicates alternative options under a certain use case

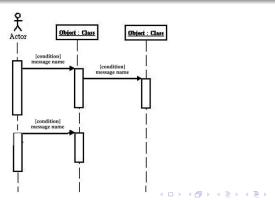
Use Case Diagrams Relationships


Use Case Diagrams Example

Example

Draw a use case diagram to represent the following system.

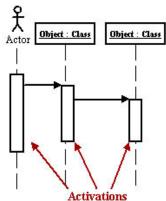
- Over the summer holiday, university students can book college hall accommodation online. They must specify their name, student number, course, year, and identify three college residences as their preferences.
- The system makes an allocation of students to rooms before the start of the term, trying, where possible, to allocate students to a room in one of their preferred halls.


Use Case Diagrams Example

Sequence Diagrams

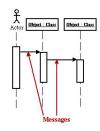
Definition (Sequence Diagram)

Sequence diagrams describe interactions among classes in terms of an exchange of messages over time.


Sequence Diagrams Class Roles

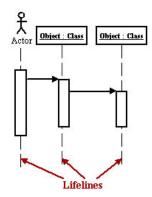
- Class roles describe the way an object will behave in context
- Use the UML object symbol to illustrate class roles, but don't list object attributes

Object : Class

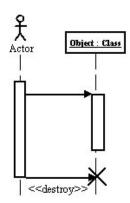

Sequence Diagrams

 Activation boxes represent the time an object needs to complete a task

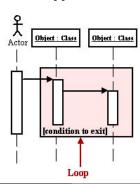
Sequence Diagrams Messages


- Messages are arrows that represent communication between objects
- Use half-arrowed lines to represent asynchronous messages
- Asynchronous messages are sent from an object that will not wait for a response from the receiver before continuing its tasks

Arrow	Message type
→	Simple
→	Synchronous
	Asynchronous
	Balking
0	Time out


Sequence Diagrams Lifelines

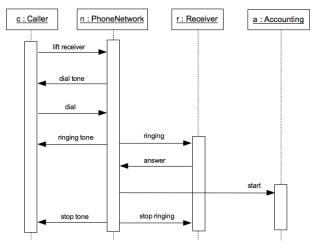
• **Lifelines** are vertical dashed lines that indicate the object's presence over time


Sequence Diagrams Destroying Objects

 Objects can be terminated early using an arrow labeled «destroy» that points to an ×

Sequence Diagrams Loops

- A repetition or loop within a sequence diagram is depicted as a rectangle
- Place the condition for exiting the loop at the bottom left corner in square brackets []


Sequence Diagrams Example

Example

Draw a sequence diagram representing the process of making a phone call from a cell phone.

Hint*: The objects involved include the caller, the phone network, the receiver of the phone call, and the cell phone accounting department.

Sequence Diagrams Example

Questions

• Questions?