
Formal Development of a Real-Time Operating
System Memory Manager

Wen Su1, Jean-Raymond Abrial2, Geguang Pu3, and Bin Fang3

1 School of Computer Engineering and Science, Shanghai University
wsu@shu.edu.cn

2 Marseille, France
jrabrial@neuf.fr

3 Software Engineering Institute, East China Normal University
ggpu@sei.ecnu.edu.cn, fangbin@ecnu.cn

Abstract. This paper presents the complete development of the mem-
ory management module of a real time operating system. The interesting
feature of this type of memory manager is that its dynamic memory allo-
cation/deallocation mechanism behaves in O(1) (no loops). This brings a
serious challenge on the “correct by construction” approach used to build
this kind of system. This is due to the necessity to elaborate some delicate
algorithms associated with complex data structures. To overcome this
challenge, we follow the refinement principles of Event-B: we construct
the proved final executable code from some initial requirements. This
development is interesting because some of the encountered problems
are rather rarely studied in formal proved developments, among which
are a modular encapsulation development, the design pattern of a linked
list, and the usage of guarded events to develop pre-conditioned opera-
tions, etc. It also gives us the opportunity to study a complex program
construction in some general terms going beyond this specific example.

1 Introduction

There are many dynamic storage allocation algorithms proposed in the literature
for memory management [24]. Among these algorithms, the Two-Level Segregate
Fit (TLSF) algorithm [18] with a time cost O(1) is a good candidate, as the
time performance of a memory manager is an important factor for real-time
operating systems. TLSF has been widely used in many systems [29] such as
Hypervisors [34], Amiga OS [5], Orocos [23], and plenty of real-time kernels.
However, the complexity of this algorithm results in sophisticated data structures
and operations. These complexities entail some difficulties for guaranteeing the
correctness of TLSF implementation.

This very interesting example had been provided to us by our industrial
partners who want to ensure that their operating system (embarked on board
satellites) is bug free. This is the reason why they are quite interested to know
whether some mathematical methods could be used for that purpose. When given
to us initially, we thought this example was rather simple, but we found gradu-
ally that the formal handling of it raised some difficult questions that needed to
be solved by means of the elaboration of new techniques.

Related Work. In this development we follow the TLSF approach informally de-
scribed in [18, 19]. In these papers, the algorithm presentation is very descriptive
only (no proof of correctness). This is the reason why it is very interesting to
correctly construct this algorithm by means of refinements and proofs. We follow
the work of Abrial and Leino on constructing the memory management of an
hypervisor [3]. Some other related works are the following: the well-known work
of seL4 team [14, 13] contains the formal verification of a virtual memory [16, 15].
Finally, the formal verification of a baby virtual memory based on abstraction
is presented in [31].

Contributions. Our approach is presented by means of this dynamic memory
management. The intent of this paper is to emphasise four important new topics
in using formal methods for developing and proving complex software systems:

1. We experiment with a modular construction as advocated for a long time by
programming language technologies (Modula, ADA, Object Oriented Lan-
guages, etc.). Modular constructions however have not been so far used very
much in formal method approaches. Here we follow the early approach de-
veloped in [7] for Action System, and that developed for Object Z in [26].

2. Part of our development deals with the new construction of a delicate al-
gorithm (for a doubly linked list handling). Formal developments have not
been so far used very much in the construction of such algorithms. This algo-
rithmic construction is made independently of the rest of the paper in sect. 3.

3. Our development will use the Event-B technique (using abstraction, refine-
ment, and proofs) [2, 25, 32]. This technique makes a heavy usage of events
defined by means of guards and parallel actions. Although very powerful
(in particular for the formal verification proofs), this approach is not com-
pletely satisfactory to develop classical programs where the dynamic part is
defined by means of operations dealing with pre-conditions and sequential
actions. In this development, we show how a new technique allows us to use
events to formally develop such classical operations. This approach has not
been published yet. However, it has been presented in the Event-B workshop
connected to the last ABZ Conference (2014). Some slides are available in [4].

4. In this development, we push the refinements to a final most concrete one
that can then be easily translated into some executable code (C code in our
case). Although the translation we propose here is only done manually, we
hope to convince the reader that it could have been done by a tool. We
followed the translation approaches already developed in [11, 21, 22, 30, 20,
33, 10, 8, 9]. But we also use some new techniques for handling sequential
programs and modular organisation.

Outline. In this development, we follow the usual approach recommended for
Event-B model construction [2, 28]:

– Informal Requirement. A very solid informal requirements definition of the
system properties is proposed (sect. 2).

– Design Pattern. The handling a doubly linked list is presented (sect. 3).
– Refinement Strategy. Here we propose a well defined refinement strategy

(sect. 4) explaining in which order the requirements are taken into account
in the successive formal models. We also check that all requirements defined
in sect. 2 are taken into account.

– Formal Model. We give a complete formal model construction with refine-
ments and proofs (sect. 5). Model-checker and animator [6, 17] are also used.

– Code Generation. It is based on the final refinement (sect. 5.7).

All this is illustrated in Fig. 1. Interested readers can access our Event-B and
Rodin development and the C code as well in the web site [1].

Fig. 1. Overall Approach

2 Requirement Document

Before starting the formal development, it is very important to make very clear
what the functional requirements and environment assumptions are (hence the
size of this section). Such requirements and assumptions, written in natural
language, should not be an informal pseudo-implementation. Their roles are to
give arguments able to be used to judge that the final constructed system is
correct. They are labelled as follows: FUN, denoting functional requirements,
and ENV, denoting environment assumptions.

2.1 The Memory

This system manages the memory of an operating system. FUN-1

The memory is made of values stored at certain addresses.

The addresses of the memory all belong to a finite natural number
interval starting at 0.

ENV-1

2.2 The Blocks

The entire memory is covered by blocks. ENV-2

A block is made of an interval of contiguous addresses and related values.

The memory of a block is contiguous. ENV-3

Blocks always contain some addresses (at least one memory address).

There is no empty block. ENV-4

Each block has thus a first address and a positive size: they both identify com-
pletely the block in the whole memory pool.

Fig. 2. First address and
size

Fig. 3. Block is either
busy or free

Fig. 4. Not possible:
two free blocks adjacent

Fig. 5. free block 1 with
a size exactly equal to the
one required

Fig. 6. free block 1 with
a size greater than the
one required

Fig. 7. Block 4 is made
free and merged it adja-
cent free blocks

Each block has a first address and a size. ENV-5

On Fig. 2, one can see two blocks covering the memory: blocks 0 and 2. Notice
that we follow the convention that the name of a block is its first address.

The addresses of a block belong to the interval between its first and
last addresses (first address plus size minus 1).

ENV-6

There is no gap between blocks: the blocks form a partition of the memory.

Each element of the memory belongs to a block. ENV-7

A block’s interval of addresses should not interfere with other block addresses.

Blocks do not overlap. ENV-8

2.3 Allocating and Freeing Blocks

When a block is allocated it is said to be busy, otherwise it is free.

Each block is either busy or free. FUN-2

On Fig. 3, we see three block: 0, 1, and 4. Blocks 0 and 4 are busy whereas
block 1 is free. An important property of this system is that free blocks are not
surrounded (to the right or to the left) by other free blocks.

A free block is always surrounded by busy blocks. FUN-3

On Fig. 4, we see a bad situation : two free blocks are next to each other.

Initially, there is a unique free block covering the entire memory. FUN-4

Two operations are provided to make busy a free block or free a busy block.

The system provides two operations: “Allocate a new block of mem-
ory” and “Free a block of memory”.

FUN-5

2.4 The Allocating Operation

The effect of the allocating operation is to transform totally or partially a free
block into a busy one. It has one parameter: the size of the new busy block.

The size of the required memory block is the unique parameter of the
allocating operation.

FUN-6

Next is the details of the external behaviour of the allocating operation. A free
block is made totally or partially busy as indicated.

When the allocating operation is called with a parameter q:

– if a free block b with a size exactly equal to q is found, then block
b is made busy and the operation succeeds.

– if a free block b with a size greater than q is found, then the
block b, limited to the size q, is made busy, the remaining part
of b forms a new free block, and the operation succeeds.

– if no free block with a size greater than or equal to q is found,
then the operation fails.

FUN-7

The behaviour described in FUN-7 is illustrated in Fig.5 and Fig.6. The allocating
operation is optimised to find the most accurate free block to become busy.

The allocating operation should find a block whose size is closed to
the required size.

FUN-8

2.5 The Freeing Operation

The effect of the freeing operation is to make free a busy block which is a correct
parameter of this operation.

The busy block to be freed is a parameter of the freeing operation. FUN-9

If the parameter of the freeing operation is not a busy block, then
the operation fails otherwise it always succeeds.

FUN-10

A busy block being made free, it might be the case that this block is merged
with surrounding blocks (if any) in order to avoid having free blocks next to
each other.

When a busy block is freed by the freeing operation, some free sur-
rounding blocks (if any) of the new free block are merged with it. FUN-11

This is illustrated in Fig. 7.

2.6 Implementation of the Arrangement of Free Blocks

Free blocks are grouped according to their size. More precisely, we have a number
of “groups”, each of which corresponds to an interval of block sizes.

Each free block belongs to a certain group corresponding to its size. FUN-12

The sizes of the groups covers all possible sizes.

Each group is defined by means of a size interval. The various size
intervals of all groups partition the entire possible block sizes.

FUN-13

Next is the allocation strategy to search for a free block of the relevant size.

When searching for a free block of a certain size q to make it busy,
the allocation operation makes a search in the smallest group whose
interval lower bound is not smaller than the size q. If this group is
not empty then a free block in it is chosen. Otherwise a group with
bigger sizes is searched, and so on.

FUN-14

FUN-14 guarantees that in the group selected by a search, all blocks have a
size greater than or equal to q. Therefore, there is no need to search any more
for a block inside that group: a block can be chosen randomly. In other words,
the search for a free block is simple: one has to find the smallest group which
is not empty and whose lower bound is not smaller than the size q. In the
implementation of the TLSF algorithm, instead of searching groups one by one,
this group can be located directly by some hash functions. In order to locate the
group faster than with a one dimensional data structure, a two dimensional one
is used to organise the groups. TLSF algorithm can find a “good fit” free block
with a time cost in O(1). More explanation of O(1) implementation can be seen
in sect. 5.8.

Free blocks in a group are stored by means of a doubly linked list. FUN-15

An implementation of the free blocks in each groups is done according to a
doubly linked list as illustrated in Fig. 8. The double link allows for an easy
removal of a block from a list.

Fig. 8. Free block in a size interval group
are stored with a doubly linked list

Fig. 9. Basic operations forming a
module around the memory state

3 A Design Pattern: a Doubly Linked List and its
Operations

In this section, we develop an independent model for a dynamic doubly linked list
made of distinct elements (this model is different from the static one presented in
[2]). This model will be used as a design pattern [12] in our development in sect.
5.6. It contains an initial model defining the forward link and then a refinement
defining the backward link.

3.1 Initial Model: Forward Link

The state. We first define a carrier set S and the constant nil which is a
member of S. The state is defined by three variables: s, f , and nx.

– The variable s is a subset of S (inv1). It is supposed to record the distinct
elements of the list. Notice that nil is not part of s (inv2).

– The variable f points to the first element of the list when it is not empty. It
is equal to nil otherwise (inv3, inv4).

– The variable nx records the forward link of the list: it is a bijection from
the set s to the set (s ∪ {nil}) \ {f} (inv5). Finally, we state that the list
contains no cycles and is not infinite (inv6).

inv1: s ⊆ S

inv2: nil /∈ s

inv3: f ∈ s ∪ {nil}

inv4: f = nil ⇒ s = ∅
inv5: nx ∈ s�� (s ∪ {nil}) \ {f}
inv6: ∀p·p ⊆ nx−1[p] ⇒ p = ∅

The Events. We have an event for adding a new element at the beginning of
the list (add) and two events for removing an element from the list: rmv1 when
the removed element is not the first one in the list and rmv2 otherwise. These
events are shown as below. Initially, s := ∅, f := nil, nx := ∅.

add =̂
any
x

where
x /∈ s
x 6= nil

then
nx := nx ∪ {x 7→ f}
s := s ∪ {x}
f := x

end

rmv1 =̂
any
x

where
x ∈ s
f 6= x

then
s := s \ {x}
nx := ({x}�− nx�− {x}) ∪

{nx−1(x) 7→ nx(x)}
end

rmv2 =̂
any
x

where
x ∈ s
f = x

then
s := s \ {x}
nx := {x}�− nx
f := nx(x)

end

3.2 Refinement: Backward Link

The State. We have a new variable pr denoting the backward link. It is a
function defined in terms of the variable nx (inv1).

inv1: pr = {nil}�− (nx−1 ∪ {f 7→ nil})

The Events. We refined the events defined in the initial model in a straight-
forward way. Initially, s := ∅, f := nil, nx := ∅, pr := ∅.

add =̂
refine
add

any
x

where
x /∈ s
x 6= nil

then
nx := nx ∪ {x 7→ f}
s := s ∪ {x}
f := x
pr := ({f}�− pr) ∪

({nil}�− w)
end

rmv1 =̂
any
x

where
x ∈ s
f 6= x

then
s := s \ {x}
nx := ({x}�− nx�− {x}) ∪

{pr(x) 7→ nx(x)}

pr := ({x}�− pr �− {x}) ∪
({nil}�− {n 7→ p})

end

rmv2 =̂
any
x

where
x ∈ s
f = x

then
s := s \ {x}
nx := {x}�− nx
f := nx(x)
pr := ({x, nx(x)}�− pr)∪

({nil}�− {n 7→ p})
end

where n = nx(x), p = pr(x), w = {f 7→ x, x 7→ nil}

Table 1. Animation of the refined doubly linked list

Event s f nx pr

∅ nil ∅ ∅
add(a1) ⇓

{a1} a1 {a17→ nil} {a17→ nil}
add(a3) ⇓

{a1,a3} a3 {a17→nil, a37→a1} {a1 7→ a3, a3 7→ nil }
rmv1(a1) ⇓

{a3} a3 {a37→nil} {a37→nil}
rmv2(a3) ⇓

∅ nil ∅ ∅

The two models (initial and refined) required 33 proof obligations, all proved
automatically except 4 of them that were proved interactively.

4 Refinement Strategy

In this section we explain the order with which the requirements are taken into
account in the successive formal models.

4.1 Principles Followed in this Development

In this development we follow a modular approach, summarised as follows:

1. We first define carefully the static state of the memory and its blocks, that
is: the memory of a block is contiguous, blocks cover completely the entire
memory, blocks do not overlap, there are no empty blocks, free blocks are
not surrounded by other free blocks, etc.

2. We then define some basic operations on the memory (see sect. 5.1). These
operations are the following: make free, remove from free, reduce create, and
merge right. They modify the memory in a way that is convenient for the
complete definition and development of the allocating and freeing operations
defined in item 3 below. They are proved to maintain the static properties
of the state as defined in item 1 above.

3. Finally, we define the two main operations for allocating and freeing blocks
in the memory, These operations have no access to the state of the memory,
they can only call the basic operations defined in item 2 above.

This modular structure is illustrated in Fig. 9.

4.2 The Initial Model to the Fifth Refinement: Basic Operations

In the initial model, we first introduce the state of the memory. The main data
structure for a block is defined by means of two functions recording its size and
its right neighbour, and a set recording whether this block is free. Notice again
that the “name” of a block is its first address.

Four basic operations are defined in the initial model. As mentioned in the
previous section, these operations are proved to preserve the main properties of
the state of the memory. Here are some informal definitions of these operations:

– The operation make free takes a busy block as its parameter and transform
it into a free block.

– The operation remove from free takes a free block as its parameter and trans-
forms it into a busy block.

– The operation reduce create takes a busy block b as its parameter together
with a positive natural number q supposed to be strictly smaller than the
size of b. This operation splits b into two blocks b and c. The new block b is
the old block b reduced to the size q. The remaining part of the old block b
is the new block c.

– The operation merge right takes a busy block b as its parameter. Moreover,
the right neighbour c of block b is supposed to be a busy block as well. The
effect of this operation is to merge the two blocks (forming a new busy block
b) thus removing completely the old busy block c.

The refinements from the first to the fifth introduce the doubly linked lists (as
explained in sect. 3) and some minor details.

4.3 The Sixth and Seventh Refinement: Allocate and Free.

These refinements introduce “calls” made by the allocating or freeing operations
to the previous basic operations.

4.4 The Eighth to the Tenth Refinement: Search Algorithm.

In these refinements, we add more data and events in order to develop the search
of an available space to built a new block from some free ones. We take account
of requirement FUN-14 defining the way size intervals of free blocks are recorded.
A two dimensional data structure is used to organise the size intervals of groups.

4.5 Refinement Strategy Synthesis

In this section, we show carefully in which refinement (or in the initial model)
the various requirements are considered. It is summarised in Table 2 where FUN
denotes functional requirements and ENV denotes environment assumptions. The
purpose of this synthesis is thus to show the mapping between requirements and
refinements and to make sure that all requirements have been taken into account.

Table 2. Mapping Initial model and the eight refinements to the labels of requirements

Initial First Second Third Forth Fifth Sixth-Seventh Eighth-Tenth

FUN- 1,2(p), 4,11 3 12(p),13 15 12 2 5,6,7,9,10 8,14

ENV- 1-8 - - - - - - -

(p) means the related requirement is PARTIALLY taken into account.

5 Formal Models

The formal developments follow the principles of the modular approach explained
in sect. 4.1. Below is a short outline presenting the new techniques used in the
following formal models.
1. Modular construction: we first define the basic operations on the memory

from the initial model to the fifth refinement (sect. 5.1 to 5.6). We then
define the two main external operations (allocating and freeing) in sect. 5.7.
Such external operations can only call the basic operations .

2. Doubly linked list: the independent model of a dynamic doubly linked list
has already been introduced in sect. 3. It is used as a design pattern in the
formal development of sect. 5.4.

3. Pre-condition and sequential actions: Event-B makes a heavy usage of events
defined by means of guards and parallel actions (instead of pre-conditions
and sequential actions). However, the dynamic part of classical programs
is always defined by means of operations dealing with pre-conditions and
sequential actions. Sect. 5.7 shows how to use events to formally develop
such classical operations.

4. Code generation: the new technique of code generation is presented in sect.
5.7, where it explains how to handle sequential programs and modular or-
ganisation in code generation.

5. Search algorithm: the formal model of TLSF search algorithm is introduced
in sect. 5.8.

5.1 Initial Model: Construction of Basic Operations

The State. In this initial model, we first construct the state of the memory.
Notice again that the “name” of a block is its first address. The main data
structure for a block is defined by means of its size and right neighbour. We
also define the set of free blocks.

To begin with, we define the positive constant m denoting the size of the
memory (from 1 to m). However, the memory starts at address 0 and ends at
address m+ 1: we shall see that blocks 0 and m+ 1 are convenient dummy busy
blocks that are never touched. Here are the invariants of size:

inv1: size ∈ 0 .. m + 1 7→ 1 .. m

inv2: {0,m + 1} ⊆ dom(size)

inv3: size(0) = 1

inv4: size(m + 1) = 1

Notice that the domain of size defines the set of blocks. Also notice that the
size of a block is a positive number (ranging from 1 to m): therefore, there are
no empty blocks (inv1). The two dummy blocks 0 and m + 1 have both a size
equal to 1 (inv2, inv3, and inv4). Here are the invariants for right:

inv5: right ∈ 0 .. m 7→ 1 .. m + 1

inv6: dom(right) = dom(size) \ {m + 1}
inv7: ∀b·b ∈ dom(right) ⇒ right(b) = b + size(b)

inv8: ∀b, c · b ∈ dom(size) ∧ c ∈ dom(size) ∧ b 6= c
⇒ (c .. c + size(c)− 1) ∩ (b .. b + size(b)− 1) = ∅

Every block, except block m + 1, has a right neighbour and block 0 is not the
right neighbour of a block (inv5 and inv6). Notice the simple definition of
right(b) (inv7): we add the size of the block b to the name, b, of this block (its
first address). Finally, we state that blocks do not overlap (inv8). From these
invariants, we can prove the following three important theorems:

thm1: (
⋃

i·i ∈ dom(size) | i .. i + size(i)− 1) = 0 .. m + 1

thm2: ∀b, c·b ∈ dom(right) ∧ c ∈ dom(right) ∧ right(b) = right(c) ⇒ b = c

thm3: right ∈ 0 .. m 7� 1 .. m + 1

Theorem thm1 states that blocks cover the entire memory. Invariant inv8 allows
us to prove that right is an injective (one-one) function (thm2 and thm3). Since
right is an injective function, we can refer to right−1(b) when it is well defined.
Here are the invariants for free:

inv9: free ⊆ dom(size)

inv10: 0 /∈ free

inv11: m + 1 /∈ free

inv12: ∀b · b ∈ free
⇒
right(b) /∈ free ∧ right−1(b) /∈ free

We first state that free blocks are indeed blocks (inv9) and then that dummy
blocks 0 and m + 1 are not free blocks (inv10 and inv11). Finally, we state
the very important property of free blocks: they cannot be surrounded by free
blocks (inv12).

The Events. Initially, we have a single free block: this is block 1 of size m.
Blocks 0 and m + 1 are dummy busy blocks of size 1. The right block of block
0 is block 1 and the right block of block 1 is block m + 1. So, the initialisation
is defined as indicated. We introduce the four operations mentioned in sect. 5.1.
The operation make free and remove from free are used to handle free blocks.

INITIALISATION =̂
begin

free := {1}
size := {0 7→ 1, 1 7→ m,

m + 1 7→ 1}
right := {0 7→ 1,

1 7→ m + 1}
end

make free =̂
any

b
where

b ∈ dom(size) \ free
b /∈ {0,m + 1}

then
free := free ∪ {b}

end

remove from free =̂
any

b
where

b ∈ free
then

free := free \ {b}
end

The operation reduce create is used to reduce the size of a block, whereas the
operation merge right is used to merge a block with its right neighbour.

reduce create =̂
any
b
q

where
b ∈ dom(size) \ free
q < size(b)
q > 0
b /∈ {0,m + 1}

then
size := ({b}�− size) ∪ {b 7→ q}

∪ {b + q 7→ size(b)− q}
right := ({b}�− right) ∪

{b 7→ b + q} ∪ {b + q 7→ right(b)}
end

merge right =̂
any
b

where
b ∈ dom(size) \ free
b /∈ {0,m + 1}
rb /∈ free
rb /∈ {0,m + 1}

then
size := ({rb, b}�− size) ∪

{b 7→ size(b) + size(rb)}

right := ({rb}�− right�− {rb})
∪ {b 7→ right(rb)}

end

where rb stands for right(b))

5.2 First Refinement: Gluing Invariant Between left and right

The State. In this very simple refinement we introduce a new variable left,
defined as right−1 as indicated in the following invariant:

inv1: left = right−1

The variable right of previous model is removed and replaced by left. In [18],
the state used in the data structure of block is left, however, since right(b) =
b + size(b), the introduction of right makes the proofs and modeling simpler.
This is why we first introduce right in the initial model and prove that it is
injective. Then right is replaced by left in this refinement.

The Refined Events. The related event reduce create and merge right are
refined by replacing the assignment to right by that to left:

reduce create =̂
...
then

...
size := ({b}�− size) ∪ {b 7→ q}

∪ {b + q 7→ size(b)− q}
left := ({left−1(b)}�− left) ∪

{b + q 7→ b} ∪ {left−1(b) 7→ b + q}
end

merge right =̂
...
then

...
size := ({lb, b}�− size) ∪

{b 7→ size(b) + size(lb)}

left := ({lb}�− left�− {lb}) ∪
{left−1(lb) 7→ b}

end

where lb stands for left−1(b). Notice that we have:
lb = b + size(b), left−1(lb) = b + size(b) + size(b + size(b))

5.3 Second Refinement: Size Groups of Blocks

The State. This refinement takes care of the requirement that each free block
belongs to a block size group. We have a fixed number, d, of group (axm1). The
mapping linking each block size with a group is defined by means of a constant
function g (axm2). The group corresponding to the biggest size m is d (axm3).

axm1: d ∈ N1

axm2: g ∈ 1 .. m� 1 .. d
axm3: d = g(m)

inv1: box ∈ free→ 1 .. d

inv2: ∀b·b ∈ free ⇒ box(b) = g(size(b))

A new variable, box, is introduced (inv1). The function box maps each free block
with the group corresponding to its size (inv2).

The Refined Events. The variable box is initialized to {1 7→ d} (since initially,
the unique free block is block 1 whose size is m). The two operations dealing
with box are refined accordingly:

make free =̂
any

b
where

b ∈ dom(size) \ free
b /∈ {0,m + 1}
left−1(b) /∈ free
left(b) /∈ free

then
free := free ∪ {b}
box(b) := g(size(b))

end

remove from free =̂
any

b
where

b ∈ free
then

free := free \ {b}
box := {b}�− box

end

5.4 Third Refinements: Doubly Linked List

There are two third refinements. Here, we promote the construction of the doubly
linked list as defined in sect. 3 (it had an initial model and a refinement). We
introduce the variable sigma. It handles, for each group, the set of free blocks
stored in that group. It generalises the variable s defined in sect. 3. So, we have
the following invariant:

∀i · i ∈ 1 .. d ⇒ sigma(i) = box−1[{i}]
We also introduce the variable f . It handles, for each group, the head of the
corresponding list. It generalises the variable f defined in sect. 3. Finally, we
define both variables nx and pr generalising similar variables defined in sect. 3.
We update accordingly events make free and remove from free. The two other
events are not modified.

5.5 Fourth Refinement

In this simple refinement, we remove variables sigma and box since they do not
appear in guards. They were introduced in previous refinement to define the
invariants inherited from those defined in the little independent development of
sect. 3.

5.6 Fifth Refinement: Variable free bit

In this simple refinement, we introduce the variable free bit for the main data
structure of blocks. It is a boolean value associated with each block: TRUE when
the block is free and FALSE otherwise

inv1: free bit ∈ dom(size)→BOOL
inv2: ∀b·b ∈ dom(size) ⇒ free bit(b) = bool(b ∈ free)

It is initialized to free bit := {0 7→ FALSE, 1 7→ TRUE,m + 1 7→ FALSE}.
All the four operations surround this variable. They are refined as below:

make free =̂
status

ordinary
refine

make free
any

b
where

b ∈ dom(size)
b /∈ {0,m + 1}
free bit(left−1(b)) = FALSE
free bit(left(b)) = FALSE
free bit(b) = FALSE

then
free bit(b) := TRUE
nx(g0)) := (nx(g0)�−

{(nx(g0))−1(ls(g0)) 7→ b})
∪ {b 7→ ls(g0)}

end

remove from free =̂
status

ordinary
refine

remove from free
any

b
where

b ∈ dom(size)
free bit(b) = TRUE

then
free bit(b) := FALSE
nx(g0) := ({b}�− nx(g0) �− {b})

∪ {(nx(g0))−1(b) 7→ nx(g0)(b)}
end

where g0 = g(size(b)

reduce create =̂
status

ordinary
refine

reduce create
any

b
q

where
b ∈ dom(size)
q < size(b)
q > 0
b /∈ {0,m + 1}
free bit(b) = FALSE

then
size := ({b}�− size)∪

{b 7→ q} ∪ {b + q 7→ size(b)− q}
left := ({left−1(b)}�− left)∪

{b + q 7→ b} ∪ {left−1(b) 7→ b + q}
free bit(b + q) := FALSE

end

merge right =̂
status

ordinary
refine

merge right
any

b
where

b ∈ dom(size)
b /∈ {0,m + 1}
left−1(b) /∈ {0,m + 1}
free bit(left−1(b)) = FALSE
free bit(b) = FALSE

then
size := ({left−1(b), b}�− size)∪

{b 7→ size(b) + size(left−1(b))}
left := ({left−1(b)}�− left�− {left−1(b)})

∪ {left−1(left−1(b)) 7→ b}
free bit := {left−1(b)}�− free bit

end

5.7 Sixth to Tenth Refinements: Final Model and Code Generation

In previous refinements, we constructed our four basic operations: make free,
remove from free, reduce create, and merge right. Now we define two operations
for allocating and freeing blocks in the memory. These two operations have no
access to the state of the memory. They can only call the four basic operations
as shown in Fig. 9. In order to achieve this, the four basic operations defined
as guarded events have to be transformed into pre-conditioned operations. We
follow the approach explained in the following subsection.

Transforming Guarded Events into Pre-Conditioned Operations. Here
are some rules for the transformation.

1. We define an enumerated set P containing call and return values for each
basic operation, and an undefined value as well:

P = {call makefree, return make free,
...
call merge right, return merge right,
undefined}

2. We have a new variable prog of type P and initialised to undefined. When
an event wants to “call” a basic operation, it assigns prog to the correspond-
ing call. The mention of this call is made in the guard of the basic operation
(this is illustrated in the event make free below and in others as well). The
event corresponding to the basic operation assigns then prog to the corre-
sponding return value (again, it is illustrated below in the event make free
and others as well). This new value of prog is used in the guard of the event
supposed to take control after the return from the called basic operation.

3. Notice that the events corresponding to the basic operations have no guards
anymore (except the call value). This means that the guards we had in
previous refinements for these operations are now mere theorems that are
proved by means of some invariants: we have indeed transformed these guards
into pre-conditions that must be proved before the call.

This technique will be explained in details in a coming paper to be published
later. However, this technique has already been presented by means of slides
during the last ABZ Conference (2014) in the Event-B Workshop [4].

Final Construction of the Four Basic operations. The Event-B models
presented in this subsection show how to construct basic operations which can
be called by other events. It follows the rule of how to transform guarded events
into pre-conditioned operations presented in previous subsection.

The final versions of these operations in Event-B are given as indicated be-
low. Each of them is presented together with the related C code. An important
remark about these C codes is made in sect. 5.9.

The make free Operation. This event now has been transformed into a pre-
conditioned operation: it has no guards anymore except the call value.

As can be seen, the C code for make free event is clearly very close to the
event itself. However, a very special attention must be made in this transla-
tion: the “parallel statements” of the events are transformed into “sequential

statements” in the C code. We have thus to be sure that this can be done in
a straightforward way in this case, that is without introducing some local vari-
ables or some particular ordering (we shall see that in operations reduce create
and merge right some special ordering are needed for the C code). It is clearly
something that could have been analysed and decided automatically. Note the
way we made the hand translation of the various assignment. In the C code the
variables “free bit”, ”size”, etc. are all arrays whereas in the Event-B refinement
they are functions. Clearly some translation rules are needed here to justified
what we have done: this will be systematically developed in some future work.

make free =̂
when

prog = call make free
then

free bit(b) := TRUE
f(g(size(b))) := b
next := next ∪ {b 7→ a}
prev := ({a}�− prev) ∪

({−1}�− ({a 7→ b, b 7→ −1}))
prog := return make free

end

int make free (int b){
int a=f [g [s ize [b]]] ;
free bit [b] = TRUE;
f [g [s ize [b]]] = b ;
next [b]=a ;
prev [b]=−1;
i f (a!=−1) prev [a] = b ;
return (0) ;

}

where (in event make free:)
b = b mf, next = nx(g(size(b))), a = f(g(size(b))), prev = pr(g(size(b)))

The remove from free Operation. There are two events associated with the op-
eration remove from free. They correspond to the expression f(g(size(b)) being
equal to or not equal to b. In the code below this will impact the assignment
to next(prev(b)) and that to f(g(size(b))). The same remark as done for the
previous operation applies here as well: we have to make clearer the rules we
need to perform the translation of the various assignments.

remove from free 1 =̂
when
prog = call remove from free
f(g(size(b))) 6= b

then
free bit(b) := FALSE
next := ({b}�− next�− {b})∪

{(prev(b) 7→ next(b)}
prev := ({b}�− prev �− {b})∪

({−1}�− {next(b) 7→ prev(b)})
prog := return remove from free

end

remove from free 2 =̂
when
prog = call remove from free
f(g(size(b))) = b

then
free bit(b) := FALSE
next := {b}�− next
f(g(size(b))) := next(b)
prev := ({b, next(b)}�− prev)∪

({−1}�− {next(b) 7→ prev(b)})
prog := return remove from free

end

where: b = b rff, next = nx(g(size(b))), prev = pr(g(size(b)))

int remove from free (int b){
free bit [b] = FALSE;
i f (f [g [s ize [b]]] ! = b)

next [prev [b]]= next [b] ;
else

f [g [s ize [b]]] = next [b] ;
i f (next [b] !=NIL) prev [next [b]]=prev [b] ;
next [b] = −1;

prev [b] = −1;
return (0) ; }

The reduce create and merge right Operation. In the C code, notice that the
assignment to size[b] is put AFTER that of size[b + q]. This is because the
assignment to size[b + q] use the value of size[b].

reduce create =̂
when

prog = call reduce create
then

size := ({b}�− size) ∪ {b 7→ q}∪
{b + q 7→ size(b)− q}

left := ({b + size(b))}�− left)∪
{b + q 7→ b}∪
{b + size(b) 7→ b + q}

free bit(b + q) := FALSE
prog := return reduce create

end

int reduce create (int b , int q)
{ s ize [b+q]= s ize [b]−q ;

l e f t [b+q]=b ;
free bit [b+q]=FALSE;
l e f t [b+s ize [b]]=b+q ;
s ize [b]=q ;
return (0) ;

}

where (in the event reduce create): b = b rc, b + size(b) = left−1(b), q = q rc.
The merge right Operation is similar.
The merge right Operation. In the C code, we have the same remark as the one done
for the previous operation. The assignment to size[b + s] has to be put AFTER those
to size[b] and left[b + s + size[b + s]].

merge right =̂
when

prog = call merge right
then

size := ({b + s, b}�− size)∪
{b 7→ s + size(b + s)}

left := ({b + s}�− left�− {b + s)})∪
{b + s + size(b + s) 7→ b}

free bit := {b + s}�− free bit
prog := return merge right

end

int merge right (int b){
int s ;
s=s ize [b] ;
l e f t [b+s+s ize [b+s]]=b ;
s ize [b]=s+s ize [b+s] ;
s ize [b+s]=−1;
l e f t [b+s]=−1;
free bit [b+s]=−1;
return (0) ;

}

where (in the event merge right)
b = b mr, b + s = left−1(b), s = size(b), b + s + size(b + s) = left−1(left−1(b))

Allocating and Freeing. The events below show how to construct events which
can call the basic operations. It follows the rules of the transformation as explained
in previous subsection. These events also show how to construct sequential process by
events using an address (adrp in the model).

Here we have two groups of events of allocation: first, events allocate 1 1 to allo-
cate 1 4, and second, events allocate 2 1 and allocate 2 2. The first group corresponds
to the required quantity of memory, q loc 0, being strictly smaller than the size of
the chosen free bloc, bloc 0. The second group deals with the case where the required
quantity of memory is exactly equal to the size of the chosen block. The events below
and related C code are explained as follows:
1. Each of these events calls some basic operations by means of the assignment

“prog := call ...” and possibly returns from some basic operation by means of
the guard “prog = return ...”.

2. Each event works with an address counter adrp which makes the sequential trans-
lation easy: we just follow the successive values of the address counter to translate
the calls sequentially.

allocate 1 1 =̂
when

adrp = 1
bloc 0 6= −1
q loc 0 < size(bloc 0)

then
prog := call rff
b rff := bloc 0
q loc := q loc 0
adrp := 3

end

allocate 1 2 =̂
when

prog = return rff
adrp = 3

then
prog := call rc
b rc := b rff
q rc := q loc
adrp := 4

end

allocate 1 3 =̂
when

prog = return rc
adrp = 4

then
prog := call mf
b mf := b rc + q loc
adrp := 5

end

allocate 1 4 =̂
when

prog = return mf
adrp = 5

then
prog := undefined
q loc 0 := 0
bloc 0 := −1
adrp := 0

end

allocate 2 1 =̂
when

adrp = 1
bloc 0 6= −1
q loc 0 = size(bloc 0)

then
prog := call rff
b rff := bloc 0
adrp := 2

end

allocate 2 2 =̂
when

prog = return rff
adrp = 2

then
prog := undefined
q loc 0 := 0
bloc 0 := −1
adrp := 0

end

where (in allocate events),
rff = remove from free, rc = reduce create, mf = make free.

In these events, bloc 0 6= −1 denotes the success of searching a free block. The model
of search is shown in next subsection.

For the free operation, we have a similar situation as the one seen in the operation
allocate. The translation uses the same technique as for allocate.

int allocate mem (int q){
int bloc 0=search (q) ;
i f (bloc 0 !=−1) {

i f (q<s ize [bloc 0]) {
remove from free (bloc 0) ;
reduce create (bloc 0 , q) ;
make free (bloc 0+q) ;

} else i f (q==s ize [bloc 0]) {
remove from free (bloc 0) ;

}
printf (”SUCCESS”) ;

}
return (0) ;

}

The free Operation. For the free operation, we have a similar situation as the one
seen in the operation allocate. The translation uses the same technique as before for
allocate.

free 1 1 =̂
any

b
where

b ∈ dom(size)
free bit(b) = FALSE
b /∈ {0,m + 1}
left(b) ∈ dom(size)
free bit(left(b)) = TRUE
adrp = 0

then
prog := call rff
b rff := left(b)
bloc := b
adrp := 6

end

free 1 2 =̂
when

prog = return rff
adrp = 6

then
prog := call mr
b mr := left(bloc)
bloc := left(bloc)
adrp := 7

end

free 1 3 =̂
when

prog = return mr
adrp = 7

then
prog := undefined
adrp := 8

end

free 2 =̂
any

b
where

b ∈ dom(size)
free bit(b) = FALSE
b /∈ {0,m + 1}
left(b) ∈ dom(size)
free bit(left(b)) = FALSE
adrp = 0

then
bloc := b
adrp := 8

end

free 3 1 =̂
when

adrp = 8
left−1(bloc) = bloc + size(bloc)
free bit(bloc + size(bloc)) = TRUE

then
prog := call rff
b rff := bloc + size(bloc)
adrp := 9

end

free 3 2 =̂
when

prog = return rff
adrp = 9

then
prog := call mr
b mr := bloc
adrp := 10

end

free 3 3 =̂
when

prog = return mr
adrp = 10

then
prog := undefined
adrp := 11

end

free 4 =̂
when

adpr = 8
left−1(bloc) = bloc + size(bloc)
bloc + size(bloc) ∈ dom(size)
free bit(bloc + size(bloc))

= FALSE
then

adrp := 11
end

free 5 =̂
when

adrp = 11
then

prog := call mf
b mf := bloc
adrp := 12

end

free 6 =̂
when

prog = return mf
adrp = 12

then
prog := undefined
adrp := 0

end

int free mem(int b){
int bloc ;

i f (s ize [b]!=−1 && free bit [b]==0 && b!=0 && b!=m+1
&& s ize [l e f t [b]] !=−1) {

i f (free bit [l e f t [b]]==TRUE) {
bloc=b ;
remove from free (l e f t [b]) ;
bloc = l e f t [bloc] ;
merge right (bloc) ;

} else {
bloc=b ;

}
i f (free bit [bloc+s ize [bloc]]==TRUE) {

remove from free (bloc+s ize [bloc]) ;
merge right (bloc) ;

}
make free (bloc) ;
printf (”SUCCESS”) ;

} else {
printf (”FAILURE”) ;

}
return (0) ;

}

5.8 The search Operation

In the eighth refinement, we define two constants upper and lower defining the limit
of the sizes of each group as follows:

axm1: lower ∈ 1 .. d→ 1 .. m axm3: lower(1) = 1
axm2: upper ∈ 1 .. d→ 1 .. m axm4: upper(d) = m

axm5: ∀i·i ∈ 1 .. d ⇒ g−1[{i}] = lower(i) .. upper(i)

axm6: ∀i·i ∈ 1 .. d− 1 ⇒ lower(i + 1) = upper(i) + 1

In this abstraction, the groups (from 1 to d) are defined in one dimension. As can be
seen, the sizes assigned to the various groups partition the range of group sizes (from
1 to m). There are two functions to assign a size to a group: g(q) assigns the size q to
the group where free block of size q are stored; g srh(q) assigns the size q to the group
where the search for a block of size q should start from.

axm7: g ∈ 1 .. m→ 1 .. d

axm8: g srh ∈ 1 .. m→ 1 .. d

axm9: ∀q ·q ∈ 1 .. m ⇒ g(q) = min({i|i ∈ 1 .. d ∧ q ≤ upper(i)})
axm10: ∀q ·q ∈ 1 .. lower(d) ⇒ g srh(q) = min({i|i ∈ 1 .. d ∧ q ≤ lower(i)})
axm11: ∀q ·q ∈ 1 .. lower(d) ⇒ q ≤ lower(g srh(q))

axm12: ∀q, j ·q ∈ 1 .. lower(d) ∧ j ∈ 1 .. d ∧ g srh(q) < j ⇒ q < lower(j)

Example. Suppose groups i and i + 1 relates to the size interval [52, 55] and [56, 59]
respectively. A block with size 54 is located in the group holding intervals [52, 55].
This is done using the function g. But if a block of size 54 is requested, the search
using function g srh has to be used in order to locate a block in the interval [56, 59].
This is because if the search is done in the group [52, 56], blocks of sizes 52 or 53

have to be discarded. Therefore, in order to guarantee that the search is made without
loop, it is started from the group where the lower bound is as large as the requested size.

Refinement. A two-dimensional
data structure is introduced in this
refinement in order to locate free
blocks faster than with a one dimen-
sional structure. This data struc-
ture is explained as in Fig. 10. Note
that constants mf and ms are the
length of the first dimension and
second dimension respectively. Func- Fig. 10: Two Dimension for Groups
tions fl(q) and ft(q) get the first level and second level index of size q (size between 0
and m), respectively.

g srh(q) is implemented by g(nxt(q)) where ∀q ·q ∈ 1 .. m ⇒ nxt(q) = q +ms− 1.
If a requested size is q0, it is used to locate to the group g(q) (where q = nxt(q0)).
There are two cases for the search to succeed.

Success Case 1. In this case, the group j containing available free block is found when
searching the blocks between group g(q) and the last group of the first level fl(q). The
guard below is thus included in this event:

{i|i ∈ g(q) .. g(fl(q) ∗ms + ms− 1) ∧ f(i) 6= −1} 6= ∅

In this case, the founded group j for the requested size is the following:

j = min({i|i ∈ g(q) .. g(fl(q) ∗ms + ms− 1) ∧ f(i) 6= −1})

Success Case 2. In this case, in the first level of fl(q), no free block can be found.
The founded group j has a greater first level index than fl(q). The guards below are
included in this event:

{i|i ∈ g(q) .. g(fl(q) ∗ms + ms− 1) ∧ f(i) 6= −1} = ∅

{r|r ∈ fl(q) + 1 ..mf −1∧{i|i ∈ g(r ∗ms) .. g(r ∗ms+ms−1)∧ f(i) 6= −1} 6= ∅} 6= ∅

In this case, the founded group j for the requested size is as below:

k = min({r|r ∈ fl(q)+1..mf−1∧{i|i ∈ g(r∗ms)..g(r∗ms+ms−1)∧f(i) 6= −1} 6= ∅})

j = min({i|i ∈ g(k ∗ms) .. g(k ∗ms + ms− 1) ∧ f(i) 6= −1})

The explanation for O(1) (no loop) is now very simple. As can be seen, in both cases
above, we use various occurrences of the min operator to determine the value of the
concerned block j. If the value of mf and ms are correctly determined then implemen-
tations of these min operators can be done by means of single machine instructions.
In fact, these machine instructions are able to perform the loops involved in the min
operators: this is the important idea proposed in the TLSF paper [18].

Note that the C code we provide does not implement the complete system as de-
scribed in [18]. The O(1) search operation described in sect. 5.8 is part of our Rodin
formal development but not part of the code. Some further refinements would be nec-
essary in order to perform the complete O(1) achievement in the generated C code.

5.9 Discussion about the C code
The C-Codes presented in the previous sec-

tion for the basic operations and the external op-
erations are not the final codes one could find in
a real operating system as presented in Fig. 11.
In fact, we used different arrays for handling the
size, left, free bit, nx, and pr “fields” of each
block. In a real program for these fields, we could
have used a C “structure types” and also some
C “pointer types” for nx and pr. We preferred to
present the C code in the form we used in this

Fig. 11: Structure of Blocks in [18]

paper because it is simpler to read and also closer to the Event-B formal development.
The transformation of our C codes to more concrete ones must be done by means

of further data refinements (and proofs) on the Event-B development. In other words,
we insist to perform these ultimate C code developments by using Event-B because in
performing these transformations directly on the present C code to the more concrete
one, we could introduce some bugs.

5.10 Statistics.

The overall proof effort needed to develop this system with the Rodin Platform is 1074
proofs where 933 were proved automatically (87%) as shown in Fig 12. The remaining
proofs were done interactively: they are not difficult, only a bit tedious. Besides the
basic inference rules encoded in the Rodin platform, some provers such as SMT (CVC3
and veriT), Atelier P0, and Atelier B ML are also used. Moreover, model-checker and
animator are used to complement proving as explained in [27, 28].

Fig. 12. Statistics of the Proofs

6 Conclusion

In this paper, we presented the formal development of a short but complex software
system. In doing this, we propose various novel techniques for a modular software
structure, corresponding code generation, and related Event-B approaches. Interested
readers can access our Event-B and Rodin development and the C code as well in the
web site [1]. Some further refinements would be necessary to obtain a final code.

References

1. Rodin Development and Code for this Paper. http://www.lab205.org/memory4fm.
2. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.

Cambridge University Press, 2010.
3. Jean-Raymond Abrial and Rustan Leino. Mini-course around Event-B and Rodin:

hypervisor. http://research.microsoft.com/apps/video/default.aspx?id=151665,
2011.

4. Jean-Raymond Abrial and Wen Su. Transforming guarded events into pre-
conditioned operations. http://wiki.event-b.org/images/Abrial2RUDW2014.pdf,
2014.

5. Amiga Operating System, 2014. http://www.amiga.com.
6. AnimB. http://www.animb.org.
7. R. J. R. Back and K. Sere. From action systems to modular systems, 1996.
8. Pontus Boström. Creating sequential programs from Event-B models. In Integrated

Formal Methods - 8th International Conference, IFM 2010, Nancy, France, October
11-14, 2010. Proceedings, pages 74–88, 2010.

9. Pontus Boström, Fredrik Degerlund, Kaisa Sere, and Marina A. Waldén. Derivation
of concurrent programs by stepwise scheduling of Event-B models. Formal Asp.
Comput., 26(2):281–303, 2014.

10. Andrew Edmunds, Michael Butler, Issam Maamria, Renato Silva, and Chris Lovell.
Event-B code generation: type extension with theories. In Abstract State Machines,
Alloy, B, VDM, and Z, pages 365–368. Springer, 2012.

11. Andreas Fürst, Thai Son Hoang, David A. Basin, Krishnaji Desai, Naoto Sato, and
Kunihiko Miyazaki. Code generation for Event-B. In Integrated Formal Methods -
11th International Conference, IFM 2014, Bertinoro, Italy, September 9-11, 2014,
Proceedings, pages 323–338, 2014.

12. Thai Son Hoang, Andreas Fürst, and Jean-Raymond Abrial. Event-B patterns and
their tool support. Software and System Modeling, 12(2):229–244, 2013.

13. Gerwin Klein. Operating system verification an overview, February 2009.
14. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: formal verification
of an OS kernel. In Proceedings of the 22nd ACM Symposium on Operating Sys-
tems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009,
pages 207–220, 2009.

15. Gerwin Klein and Harvey Tuch. Towards verified virtual memory in l4. In TPHOLS
EMERGING TRENDS’04, PARK CITY, 2004.

16. Rafal Kolanski. A logic for virtual memory. Electr. Notes Theor. Comput. Sci.,
217:61–77, 2008.

17. Michael Leuschel and Michael J. Butler. ProB: an automated analysis toolset for
the B method. STTT, 10(2):185–203, 2008.

18. M. Masmano, I. Ripoll, A. Crespo, and J. Real. TLSF: A new dynamic memory
allocator for real-time systems. In ECRTS 2004, pages 79–88.

19. Miguel Masmano, Ismael Ripoll, Patricia Balbastre, and Alfons Crespo. A
constant-time dynamic storage allocator for real-time systems. Real-Time Sys-
tems, 40(2):149–179, 2008.

20. Dominique Méry and Rosemary Monahan. Transforming event B models into
verified c# implementations. In First International Workshop on Verification and
Program Transformation, VPT 2013, Saint Petersburg, Russia, July 12-13, 2013,
pages 57–73, 2013.

21. Dominique Méry and Neeraj Kumar Singh. Automatic code generation from Event-
B models. In Proceedings of the 2011 Symposium on Information and Communi-
cation Technology, SoICT 2011, Hanoi, Viet Nam, October 13-14, 2011, pages
179–188, 2011.

22. Dominique Méry and Neeraj Kumar Singh. A generic framework: from modeling
to code. ISSE, 7(4):227–235, 2011.

23. Open Robot Control Software, 2013. http://www.orocos.org.
24. Isabelle Puaut. Real-time performance of dynamic memory allocation algorithms.

In Real-Time Systems, 2002. Proceedings. 14th Euromicro Conference on, pages
41–49. IEEE, 2002.

25. Rodin. http://www.event-b.org/.
26. Graeme Smith. The Object-Z Specification Language. Kluwer Academic Publishers,

2000.
27. Wen Su and Jean-Raymond Abrial. Aircraft landing gear system: Approaches with

Event-B to the modeling of an industrial system. In ABZ 2014: The Landing Gear
Case Study. Springer, 2014.

28. Wen Su, Jean-Raymond Abrial, and Huibiao Zhu. Complementary methodologies
for developing hybrid systems with Event-B. In ICFEM, pages 230–248, 2012.

29. TLSF, 2013. http://www.gii.upv.es/tlsf/main/used.
30. Mohamed Tounsi, Mohamed Mosbah, and Dominique Méry. From Event-B speci-

fications to programs for distributed algorithms. In 2013 Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, Hammamet, Tunisia,
June 17-20, 2013, pages 104–109, 2013.

31. Alexander Vaynberg and Zhong Shao. Compositional verification of a baby vir-
tual memory manager. In Certified Programs and Proofs - Second International
Conference, CPP 2012, Kyoto, Japan, December 13-15, 2012. Proceedings, pages
143–159, 2012.

32. Laurent Voisin and Jean-Raymond Abrial. The rodin platform has turned ten. In
Abstract State Machines, Alloy, B, TLA, VDM, and Z - 4th International Confer-
ence, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceedings, pages 1–8, 2014.

33. Steve Wright. Automatic generation of C from Event-B. In Workshop on integra-
tion of model-based formal methods and tools, page 14. Citeseer, 2009.

34. XtratuM: one kind of Hypervisors, 2014. http://www.xtratum.org.

