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Abstract. Many network systems secure their resources using a defense
in depth strategy, which can result in complex policies being distributed
on the many access control points of a network. These policies are sub-
ject to frequent changes to deal with different factors such as change
in security situation or change in resources. Moreover, while we have a
vague intuitive understanding of the defense in depth strategy, we cer-
tainly lack a rigorous definition for it that would allow us to objectively
assess whether a policy distribution on a network satisfies this strategy.
In this paper, we propose a definition for defense in depth based on a
notion of refinement given in product family algebra. We use this defini-
tion to articulate several implementations of the defense in depth strat-
egy taking into account local access policies and global constraints on
the resources of the considered network. We also discuss the automation
of the calculations needed to derive the appropriate access policies to
deploy at the nodes of a network.

Keywords: Access Control Policies, Dynamic Access Control, Defense
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1 Introduction

Access control policies are a necessary tool toward mitigating security risks of
network-accessible resources. They aim at protecting data and resources against
unauthorized users, which contributes to ensuring information confidentiality
and proper use of resources. When access control policies are comprehensive and
well implemented, they shield the network system by creating a filter that re-
stricts the access to only authorized users. An access control policy defines the
(high-level) rules according to which access control must be regulated [24]. Many
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policies need to include additional rules expressing the general security situation
such as excluding some sources that are known to be facilitating or participating
in building threats to resources. Moreover, real world network systems have more
complex policies, where access decisions at firewalls depend on the application of
different access rules coming from several sources and covering different societal
and organizational perspectives (e.g., laws, practices, and organizational regula-
tions). These policies are subject to frequent changes to deal with unexpected
factors related to the general security situation or to changes in the service pro-
vided to users. Therefore, in an organization, access policies to resources involve
different kinds of stakeholders that each bring a unique perspective on the con-
ditions enabling access to resources. For instance, we can consider the views of
management, finance, resource owners, and security officers as examples of rel-
evant views in articulating access policies. Commonly, the policies derived from
these views share some rules and differ on others. Hence, from this perspective,
we can consider that we have a family of policies that have commonality and
variability. The actual policy executed on a firewall is derived from these policies;
most current firewalls execute a policy that is a sequential composition of these.
One can conceive firewalls that execute these policies in parallel if the policies
are composed of rules that satisfy the integrability property (i.e., consistency
property) presented on Page 11.

The adaptation of networks to cope with changing security factors is of-
ten performed manually. In addition, different variants of access control policies
need to be systematically integrated. In integrating them and then distribut-
ing them on the several firewalls of the network, or to different access control
points, one needs to take into account their commonality and variability. From
this perspective, the overall network access policy can be looked at as a family
of policies where the members of the families might have similarity and slight
variability. Taking this view demands a product line engineering approach for
enhanced reuse of policies and factoring common access policies to low nodes in
the network to be applied at firewalls closer to the perimeter of the access-target
resource.

To reason on policies and to amend defense mechanisms on the fly require
the automation of the reasoning induced by changes to the security situation
and the communication of the attained decisions to concerned access control
nodes. The automation is critical when we are considering a large network with
a considerable number of dynamic resources (created and removed as needed
such as in the case of virtual machines). The goal for the reasoning task is to
ensure the consistency among policies (integrability as it is addressed in our
work) or to determine the best way to assign policies to nodes. These needs have
been pointed to by Burns et al. in [1] more than a decade ago. However, the
progress remains very slim in attaining this goal. In [28], Dave Clark states:

The idea that people are still programming routers using CLIs is a little
mind-boggling. And the very idea that human beings are expected to
figure out the global consequences of what might happen if they should
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make one little fix here or another little fix there... it’s like we never
escaped the 1980s!

The proposed work provides the background for reasoning about security poli-
cies towards automatic and dynamic defense mechanisms. At this stage of our
work, and with the collaboration of our industrial partner CMC Microsystems,
we developed a prototype tool that performs the calculations needed for the ver-
ification of the integrability of policies (i.e., consistency among policies) and for
assigning to each node its policy that satisfies, according to Propositions 3–5,
the Defense in Depth (DD) strategy.

DD strategy aims to defend valuable assets by creating layers of defenses that
challenge the attacker in attaining access to the protected assets. Also, it is a
strategy that calls for the network to be aware and self-protective. It has showed
its merit in several areas such as fire prevention or nuclear energy. It is also
intuitively used in [18] for network security using access policies. In our context
of network resources protection, it has to put the resources behind layers of
defensive policies that are more and more deterministic in the actions they take
and the permission they grant. There are several basic questions that rise in our
context. The most pressing questions are the following: How can we formally
articulate this security strategy? If we are given a network topology and the
policies assigned to each of its firewalls, how can we assess whether indeed we
have our policies assigned according to the DD strategy? Are there schemes for
assigning policies to access nodes that lead to a network of access control points
employing DD strategy? In the remainder of this section, we are going to tackle
these questions.

Another aspect to the problem is related to one of the fundamental tenants
of secure designs. It is about not relying on one policy to achieve security, nor to
locate all your policies in one access point. Multiple independent access points
enabling access policies should be employed assuring a defense in depth [27].
However, an unauthorized user should be kept as far from the resource as possi-
ble. They should be blocked by the outermost possible firewall on the path to the
sought resource. The proposed approach allows us to use algebraic calculations
to determine the common policies that deny user access and then assign the role
of denying them access to the outermost possible firewall.

The paper approaches the problem of assigning access control policies to
firewalls from a product family perspective. It uses Product Family Algebra
(PFA) to reason on policies within an information system as a family of related
policies. Then by modelling access control rules as guarded commands, they can
detect conflict among rules assigned to a firewall. The paper proposes for the
first time a formal definition to the DD strategy. As far as we know, DD has been
discussed only intuitively in the literature. We then propose several schemes for
deploying policies according to the DD strategy. Also, PFA algebraic calculations
enable us to determine the exact set of rules to be assigned to the firewall.

In Section 2, we give the background needed to make the paper self-contained.
In Subsection 2.1, we briefly present the various access control policies found in
the literature. In Subsection 2.2, we present PFA and guarded commands and
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their mathematics. In Section 3, we formally articulate our understanding of
DD strategy. Then, we propose schemata to assign access policies to nodes in
order to get a network that employs a DD strategy. In Section 4, we discuss
the automation of the proposed approach to implementing DD strategy and we
describe the architecture of the prototype tool we are using. In Section 5, we
discuss the merit of adopting a product family approach to reason on access
control security and what would be the contexts where this paradigm can be
helpful. We also, assess the strengths of our approch and its limitations. Through
these limitations, we point to future research work. In Section 6, we briefly recap
the main results of the paper.

2 Background

2.1 Access Control

An Access Control List (ACL) is the most basic form of access control specifi-
cation. A resource on a system to which access should be controlled by an ACL
is referred to as an object. We find also that we have Role-Based Access Con-
trol (RBAC) [5,6,25,26] in which access rests on the requester’s role or function.
When the decisions to access resources are based on a set of characteristics, or
attributes, associated with the requester, the environment, and/or the resource
itself, we have Attribute Based Access Control (ABAC) [14,15]. Each attribute
is a field in a session state that a policy decision point can compare against a set
of values to reach a decision on the appropriate action to take regarding access
to the requested resource. When we take into account the dynamic nature of the
security situation and would like to have realtime, adaptable, risk-aware access
control to the enterprise, we have what is referred to as Risk-Adaptive Access
Control (RAdAC) [2].

Current (hardware) firewalls implement either ABAC or RAdAC [27]. They
rely on the session state space to examine all the packets and execute a more
controlling access policy. This is called a stateful inspection. The states of each
connection are stored in a datastore (e.g., database) for the duration of the ses-
sion. They might include details such as the IP addresses, ports, the destinations,
and the sequence numbers of the packets being transferred. It uses these stored
states to decide what response to give to a requestor. In a certain sense, the
datastore is the memory of the firewall policy. There are also software defined
firewalls that are mainly stand-alone applications running in the background of
a computer or on an access point to a local network. Hence, whether we are con-
sidering current hardware firewalls or software firewalls, we have a state space
that encompasses the set of states governed by the access policies. The stateful
control of access to resources is in use more and more to deal with growing so-
phistication in the attacks on networks. For example, we see increasingly that
firewalls limit the number of embryonic connections to shield the network from
Denial-of-Service (DoS) attacks. Or, for instance the ASA uses the per-client
limits and the embryonic connection limit to trigger Transmission Control Pro-
tocol (TCP) Intercept, which protects inside systems from a DoS attack that is
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perpetrated by flooding an interface with TCP SYN packets. These attack pre-
ventative activities require a memory and association with each packet that is
examined at the firewall, which we refer to as the state space of the packet. Our
work in this paper explores the use of the state space to reason on access control
policies. One should look at policies as a special kind of program specification
that should abide by the laws governing program specifications.

1 −A INPUT −s 156 . 17 . 49 . 0/24 −p tcp −m s t a t e −−s t a t e NEW,RELATED,ESTABLISHED −m tcp −−dport 4000 −j ACCEPT
2
3 −A INPUT −s 156 . 17 . 49 . 0/24 −p tcp −m s t a t e −−s t a t e NEW,RELATED,ESTABLISHED −m tcp −−dport 22 −j ACCEPT
4
5 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT
6
7 −A INPUT −p icmp −j ACCEPT
8
9 −A INPUT −p udp −m mult iport −−dports 5353 −j ACCEPT

10
11 −A INPUT −j REJECT −−r e j e c t−with icmp−host−proh ib i t ed

Fig. 1. An Example of Firewall Policy

Figure 1 shows an example of an iptables‡ firewall policy. We interpret the
rule in Line 1 as the following command with a guard and an action. We use
the notation g −→ a, where g is a guard and a is an action (as defined further
in Definition 4).

(Direction = Input) ∧ (SourceIP ∈ [156.17.49.0/24] ∧ (Protocol = TCP)

∧ (State ∈ {NEW,RELATED,ESTABLISHED}) ∧ (DestinationPort = 4000)

−→ Action = ACCEPT

We can similarly give the corresponding command to Line 3 in Figure 1.
Also, we can directly combine the commands of Lines 1 and 3 into the following
command, where the change from the previous one is only in the underlined
condition. Therefore, a concrete policy can be interpreted as a set of commands
or a single command obtained by combining in a coherent way all the commands
as we did with Lines 1 and 3.

(Direction = Input) ∧ (SourceIP ∈ [156.17.49.0/24] ∧ (Protocol = TCP)

∧ (State ∈ {NEW,RELATED,ESTABLISHED}) ∧ (DestinationPort ∈ {4000, 22})
−→ Action = ACCEPT

In the following section, we present the background that relates the rules in
an access policy to the mathematical concepts that allow us to reason on policies
and on the strategies to deploy them on the firewalls of a network.

2.2 Mathematical Background

‡ iptables is a command line utility for configuring Linux kernel firewall implemented
within the Netfilter project
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Product family algebra The paradigm of product line or product family in
general has been transferred from hardware to software. Plainly, a product family
is a set of products that share common hardware or software artefacts such as
hardware components, requirements, architectural properties, middleware, or (in
our case) security policies. A subfamily of a family A is a subset with elements
sharing more features than the rest of the members of A. Sometimes, for practical
reasons (i.e., managerial, or resource related), a specific software subfamily is
called a product line.

One can think that when dealing with security, a policy can be a manifesta-
tion of the notion of product when one is reasoning on all the family of policies
deployed all through a network. A feature is a conceptual characteristic that
is visible to stakeholders (e.g., users, customers, developers, managers, etc.). In
this paper, relevant stakeholders are security officers or any other organization
actor who has a say on access control policies. Policies governing access to simi-
lar resources can be referred to as policy family or policy product family . We will
base our theoritical results on PFA [9,10,11] that is briefly presented below.

Feature models, which are the means to give the mandatory, optional and
alternative features within a domain, are used to represent families. They are
widely used in product-line engineering to capture the commonality and vari-
ability of product families in terms of features. Using small feature models (in
size of their graphs) can help to further guide distributing policies on firewalls
or finding common rules among policies. However, the increasing complexity of
network systems and the scale of the policies governing them, reveals that a large
feature model cannot be understood and analyzed if they are treated as a mono-
lithic entity. A similar situation is observed in the general use of software feature
models. However, when we adopt an algebraic language to specify product fam-
ily, this problem is avoided as a family is captured by an algebraic term and
queries to feature models are carried through algebraic calculations. Algebraic
approaches in general have the merit of being very suitable as lightweight formal
methods with heavyweight automation [7]. Moreover, point-free reasoning, in
the family of algebras based on variants of idempotent semirings such as PFA,
can be formally linked with point-wise reasoning in concrete models, enabling
us to switch back and forth between point-free abstract algebraic reasoning and
point-wise concrete reasoning within a model [7]. In this paper, we use PFA not
only to capture specific policies, but also to calculate the policy that should be
assigned to each firewall of our network system.

Product family algebra (or briefly PFA) extends the mathematical notions of
semiring to describe and manipulate product families. A semiring is an algebraic
structure denoted by a quintuple (S,+, ·, 0, 1), such that S is a set, + and · are
binary operations over S, and 0, 1 ∈ S. The support set S is closed under + and
· operations. In particular, the binary operation +, called addition, is associa-
tive, and commutative, and has an identity element 0. The binary operation ·,
called multiplication, is associative, and has an identity element 1. Multiplication
left and right distributes over addition. Moreover, 0 is the annihilator element
for multiplication. Furthermore, a commutative and idempotent semiring is a
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semiring (S,+, ·, 0, 1) such that multiplication is commutative, and addition (+)
is idempotent.

Definition 1 (Product Family Algebra (e.g., [11])). A product family al-
gebra is a commutative idempotent semiring (S,+, ·, 0, 1), where

a) S corresponds to a set of product families;
b) + is interpreted as the alternative choice between two product families;
c) · is interpreted as a mandatory composition of two product families;
d) 0 corresponds to an empty product family;
e) 1 corresponds to a product family consisting of only a pseudo-product which

has no features.

An optional feature f can be interpreted as an alternative choice between the
feature f and 1. For example, let us consider policies p1 that is assigned to a
node N1 and p2 that is assigned to a node N2. Nodes N1 and N2 are the only
immediate successors on the graph representing a network to a node that we
denote by N0. The policies p1 and p2 share only the rules r1 and r2. However, p1
has only one extra rule r3. If we want, for example, to consider the policies that

are employed starting from N0, we represent them as a family F
def
= p1 + p2 =

r1 ·r2 ·r3+r1 ·r2 = r1 ·r2 ·(r3+1). The commonality of the members of the family
F is the term (r1 · r2). If we look at product family algebras like the set-based
or the the bag-based ones discussed in [11], we can formalize the problem of
determining the commonality of two families as finding the Greatest Common
Divisor (GCD), or to factor out the features common to all given products.
We can use the classical Euclidean algorithm for finding the GCD, which is an
advantage of using an algebraic approach. Solving the GCD is well known, easy
and efficient, whereas finding commonalities using diagrams as used in several
feature modelling approaches is more complex. We also have a divisibility relation

among families that is given by (a | b) ⇐⇒ (∃ c | · b = a.c ) ∓. We say that

two product families a and b are coprime iff gcd (a, b) = 1.
A requirement relation over PFA is used to capture constraints in feature

models. The requirement relation is defined using two other relations: subfamily
and refinement . The subfamily relation indicates that, for two given product
families a and b, a is a subfamily of b if and only if all of the products of a
are also products of b. Formally, the subfamily relation (≤) is defined as a ≤
b

def⇐⇒ a + b = b. For example, the above policy p1 represents a subfamily of
F that is given above, since we have p1 + F = p1 + (p1 + p2) = p1 + p2 = F .
The refinement relation indicates that, for two given product families a and b, a

∓ Throughout this paper, we adopt the uniform linear notation provided by Gries
and Schneider in [8], as well as Dijkstra and Scholten in [4]. The general form of

the notation is (? x | R · P ) where ? is the quantifier, x is the dummy or

quantified variable, R is predicate representing the range, and P is an expression
representing the body of the quantification. An empty range is taken to mean true

and we write (? x | · P ); in this case the range is over all values of variable x.
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is a refinement of b if and only if every product in family a has at least all the
features of some products in family b. Formally, the refinement relation (v) is

defined as a v b def⇐⇒ (∃ c | · a ≤ b · c ). In our example, we have p1 v p2 as

p1 has all the rules of p2 and more (the additional rule r3). Also, we have p1 v F
as p1 v F ⇐⇒ (∃ c | · p1 ≤ F · c ) ⇐⇒ (∃ c | · p1 + F · c = F · c ) ⇐⇒
(∃ c | · r1 · r2 · r3 + (r1 · r2 · (r3 + 1)) · c = (r1 · r2 · (r3 + 1)) · c ), which is satisfied

for c = 1 due to the idemptence of +.
An element a ∈ S is said to be a product if it satisfies the following laws [9,11]:

(∀ b | b ∈ S · b ≤ a =⇒ (b = 0 ∨ b = a) ),

(∀ b, c | b, c ∈ S · a ≤ b+ c =⇒ (a ≤ b ∨ a ≤ c ).

These laws define that a product cannot be divided using the choice operator
+, or in other terms, it does not offer optional or alternative features. A feature
can be defined by indivisibility w.r.t. multiplication rather than addition [9,11].

For elements a, b, c, d and a product p in PFA, the requirement relation (→)
is defined in a family-induction style [11] as:

a
p→ b

def⇔ p v a =⇒ p v b

a
c+d→ b

def⇔ a
c→ b ∧ a d→ b

The requirement relation is used to specify constraints on product families. For
elements a, b and c, a

c→ b can be read as “a requires b within c”. The special case
of a constraint a · b c→ 0 indicates that the composition of a and b generates an
empty family. Such a constraint can be used to reflect the fact that not all feature
compositions are possible or desirable in reality. For more details on the use of
this mathematical framework to specify product families, we refer the reader
to [9,10,11]. In our context, the constraints are used to express the will of security
officers in the articulation of policies/rules applied to several access points. For
example, we might need to state that if a user is denied access to resource x, then
they must be denied (or allowed) access to resource y. These requirement rules,
when taken into account, are very helpful for ensuring that the access policies
capture the link among assess rules. Using PFA, a policy specifier can implement
a set of policies and then constrain them using these requirement relations.
Through calculations, the rules that breach these requirement constraints are

eliminated. We say that a family f satisfies a constraint (a
q→ b), and we write

((a
q→ b) ` f), iff (∀ p | p ≤ f ∧ q v p · a p→ b ).

Commands, Guarded Commands, and if fi-commands In this section, we
present guarded commands as a proposed model for access control policies. We
adopt a variant of Dijkstra’s guarded command presented in [19,12]. Basically, a
command is a transition relation from starting states to their possible successor
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states. To guarantee the command does not have the possibility to lead to fail-
ure/abortion of a policy action, a command is modelled as a pair consisting of
transition relation and a set of states for which no abortion is possible [21,20].

Definition 2 (e.g., [12]). Consider a set Σ of states. A command over Σ is
a pair (R,P ) where R ⊆ Σ × Σ is a transition relation and P is a subset of
Σ. The restriction of a transition relation R ⊆ Σ × Σ to a subset Q ⊆ Σ is

Q↓R
def
= R ∩ (Q×Σ).

The set P is intended to characterize those states from which the command
cannot lead to abortion. The command abort is the one that offers no transitions
and does not exclude abortion of any state: abort

def
= (∅, ∅). It can be interpreted

as the policy that does not involve any transitions on the state space or simply
the absence of policy. Hence, since we have an absence of policy, there are no
states that we trust to lead to normal termination of the policy command, which
means we have an empty set P . There are other special commands that we will
use in the remainder of the paper. For example, the command skip does not
do anything: it leaves the state unchanged and cannot lead to abortion for any

state: skip
def
= (I, Σ), where I def

= {(s, s) | s ∈ Σ} is the identity relation on
states. The command fail does not offer any transition but guarantees that no

state may lead to abortion: fail
def
= (∅, Σ). We now define the operators dc of

non-deterministic choice.

Definition 3 (e.g., [12]). Let C = (R,P ) and D = (S,Q) be commands. The
command CdcD is intended to behave as follows. For a starting state s, non-
deterministically a transition under R or S is chosen (if there is any). Absence
of aborting is guaranteed for s iff it can be guaranteed under both C and D, i.e.,

iff s ∈ P ∩Q. We define dc as: (R,P )dc(S,Q)
def
= (R ∪ S, P ∩Q).

The operation dc is associative, commutative, and idempotent and fail is its
neutral element. The reason for set union in the first and set intersection in the
second is that if the choice of transitions gets greater, then the set of states for
which no abortion is guaranteed gets smaller. We say that a command (R,P ) is
feasible when P ⊆ dom(R).

Definition 4 (e.g., [12]). Let (R,P ) be a command and Q ⊆ Σ be a set of
states. Then the guarded command Q −→ (R,P ) (where Q is called the guard)
is defined as Q −→ (R,P ) =df (Q↓R,Q ∪ P ), where Q is the complement of Q
w.r.t. Σ.

In a starting state s this command can lead to a transition only if s is in

both Q and the domain of R (denoted by dom(R) and defined as dom(R)
def
=

{s ∈ Σ | (∃ t | t ∈ Σ · (s, t) ∈ R )}). Abortion is excluded if s is not in Q or

P . Note that Q −→ (R,P ) is not feasible even if (R,P ) is. Therefore, in [12], a
way around this issue is proposed by defining the if fi-statement.

Definition 5 (e.g., [12]). Given a command (R,P ), then the if fi-statement is

defined by if (R,P ) fi
def
= (R,P ∩ dom(R)).
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The reason the command is surrounded with if fi is to transform it into a fea-
sible command. This is used to define the semantic of the general construct of
non-deterministic branching as follows. Given sets Qi of states and commands
(Ri, Pi), for (1 ≤ i ≤ n), then

if Q1 −→ (R1, P1) fidc · · · dcQn −→ (Rn, Pn) fi =(⋃
(Qi
↓Ri), (

⋃
(Qi ∩ dom(R))) ∩ (

⋂
(Qi ∪ Pi))

)
We refer the reader to [12], from where the above definitions are taken, for

more discussion on the if fi construct and its mathematical properties.
In modelling access control rules, we use guarded commands. A guard ensures

that the conditions implemented by a rule are satisfied before changing the state
of the access system. A state change is done according to the transition relation
of the command. Let Dr, S, P, St,Ds, and A be respectively the sets of values of
the directions (input, output), the source IP number, the protocols, the states,
the destination ports, and the actions. We have Σ = Dr× S ×P × St×Ds×A.
Then, for example, the rule given on Page 5 and corresponding to Line 1 in
Figure 1, that we call C1 can be written as follows:

C1 = [Q −→ (R,P )], where

Q ⊆ Σ is the guard and defined as follows:

{(dr, s, p, st, ds, a) | (dr = Input)

∧ (s ∈ [156.17.49.0 · · · 156.17.49.24] ∧ (p = TCP) ∧ (st ∈ {NEW,RELATED,ESTABLISHED})
∧ (ds = 4000)}.

The relation R can be defined in this case as

R = {((dr, s, p, st, ds, a), (dr′, s′, p′, st′, ds′, a′)) | a′ = ACCEPT},

and we take simply P = ∅; we are stating that without the guard, we cannot
guarantee that the command avoids abortion. The guarded command C1 corre-
sponds to the guard (Q↓R,Q∪P ) = (R ∩ (Q×Σ), Q∪∅) = (R ∩ (Q×Σ), Q) =

(R ∩ (Q × Σ), Q). The second element of the tuple giving the guard (i.e., Q)
indicates that with the guard we are stating that all of the states outside of Q
cannot lead to abortion.

We also take from the literature on guarded commands (e.g., [19,12]) the
definition of the notion of refinement relation on commands. We say that (R,P )

refines (S,Q) and we write (R,P ) v (S,Q)
def⇔ Q ⊆ P ∧ Q↓R ⊆ S. This relation is

reflexive, transitive, and not antisymmetric. The associated equivalence relation

is given by C ≡ D
def⇔ C v D ∧D v C. In [12], the authors define equivalence

of commands as (R,P ) ≡ (S,Q)
def⇔ P = Q ∧ P ↓R = P ↓S. We find also that

the if fi-construct is the “closest feasible refinement” of a command. We have
if (R,P ) fi is the v-least refinement of (R,P ) that preserve the transition R.
Then we find in [12] the following relation between the refinement relation and
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non-deterministic choice: for commands C,D we have C v D ⇔ CdcD ≡ D.
Hence, two classes are related by v if their representatives are, which defines a
partial order on equivalence classes of commands. We can imply from the above
that the equivalence class of CdcD is the least upper bound of the equivalence
class of C and D w.r.t. v. We can also define greatest lower bound of commands

(R,P ) and (S,Q) w.r.t. v as (R,P )u(S,Q) =
(

(R∩S)∪(P↓S)∪(Q↓R), P∪Q
)

.

For two relations R and S, the meet of the feasible commands (R, dom(R)) and
(S, dom(S)) is feasible iff dom(R ∩ S) = dom(R) ∩ dom(S). In other terms, the
meet of the feasible commands (R, dom(R)) and (S, dom(S)) is feasible iff R and
S agree on the action to be carried on their common domain. It entails that
for every state in the intersection of R and S we have to offer at least one
transition. This allows for a common specification for the integration of R and
S. This property is called integrability . Verifying the integrability of commands
is a task that can me automated; it has been used before for the integration
of requirement scenarios and has been automated using Prototype Verification
System (PVS) [3,17]. In Section 4, we give an idea on the automation of the
verification of the integrability of two commands in the paper’s context. We note
also that u is commutative, associative, and has abort as its neutral element and
fail as its absorbing element. Also, dc and u distribute over each other, which give
the commands a distributive lattice structure. We refer the reader to [19,12], for
further discussion on the greatest lower bound of commands (R,P ) and (S,Q)
w.r.t. v.

3 Firewall Policies as Product Families

We showed the link between access control rules, guarded commands, and if fi-
statements. Using operations on commands dc and u, we can define composite
and quite complex commands. These cammands can be either simple access
control rules or policies obtained by combining commands. Let G be the set of

mutually integrable if fi-statements. Let IP
def
= P(G). The elements of IP are

called Attribute Based Access Control Policies (ABACP). For A,B ∈ IP, we

define A u
IP
B

def
= {a u b | a ∈ A ∧ b ∈ B}. We can see that a u

IP
{abort} = a as

abort is neutral for the u on commands. Now, we can state the following:

Proposition 1. F = (P(IP),⊕,�, 0F , 1F ) is a product family algebra, where

1. (∀A,B | A,B ∈P(IP) · A⊕B def
= A ∪B )

2. (∀A,B | A,B ∈P(IP) · A�B def
= {a uIP b | a ∈ A ∧ b ∈ B} )

3. 0F
def
= ∅

4. 1F
def
= { {abort} }

The above proposition states that F is a model for PFA. A�0F = {au
IP
b | a ∈

A ∧ b ∈ 0F} = {a uIPb | a ∈ A ∧ b ∈ ∅} = {a uIPb | a ∈ A ∧ false} = {a uIPb |
false} = ∅ = 0F . Also, we have A� 1F = {auIPb | a ∈ A ∧ b ∈ 1F} = {auIPb |
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a ∈ A ∧ b ∈ { {abort} } } = {auIP{abort} | a ∈ A} = {a | a ∈ A} = A. Hence,
0F is the annihilator element for � and 1F is the neutral for �. It is easy to see
due to the properties of set union and the the operation u on commands that
(P(IP),⊕,�, 0F , 1F ) satisfies all the properties of an idempotent semiring and
therefore it is a product family algebra. An element of P(IP) is called a Family of
Attribute Based Access Control Policy and for brevity we say family of policies.
On a product family, we a have a natural order that comes with the semiring

structure that we denote for F by �F . It is defined as a �F b
def⇔ a ⊕ b = b.

Hence, as discussed in Section 2.2, we can define a notion of family refinement

of the elements of F as follows: a vF b
def⇔ (∃ c | · a �F b� c ). For reasons of

conciseness, we do not discuss the relationship between the command refinement
to that of the family refinement. Obviously, they are linked.

We also, can instantiate the requirement relation defined in Section 2.2 in
the structure F as it is a model of a product family algebra as stated in Propo-
sition 1. For elements a, b, c, d and a product p in F, the requirement relation
(→) is defined- in a family-induction style as:

a
p→ b

def⇔ p vF a =⇒ p vF b

a
c⊕d→ b

def⇔ a
c→ b ∧ a d→ b.

A relation a
p→ b is called a Policy Requirement Constraint (PRC). It states that,

within the family of policies p, if we satisfy the policies within family a, then
we must satisfy the policies within family b. We usually use PRCs to express
global network access policies. When we want to articulate the constraint that,
in family of policies p, we should not satisfy the policies in family a we write

a
p→ 0F . In other terms, we are stating that no policies in family P should refine

any policy in family a.

3.1 Defense in Depth Strategy and its Usage

When we consider a resource network that has an access entry r allowing its
access from the outside world, we can represent it as a rooted connected directed
acyclic graph. The leafs of the graph represent the resources to be accessed. The
remaining vertices would be internal access nodes that execute policies. Figure 2
shows the graph model of a network that has a root r, leafs v6 to v10, and internal
access points v1 to v5. All the vertices can execute policies. The edges represent
access traffic links between access points. For example, in Figure 2, the edge
(v1, v4) indicates the access connection from access node v1 to access node v4.

We might have networks with n entry points. In this case, we model it with
n rooted connected directed acyclic graphs that each has one of the entry points
as its root. The formal treatment presented below would need to be repeated to
each rooted connected directed acyclic graph. Then, each of the network access
points, would enforce a family of policies that is the sum of all the families of
policies associated to it and obtained from each of the rooted graphs.

- As it is a simple instantiation in a model of PFA of that of Section 2.2, we use the
same notation.



Defense in Depth Formulation and Usage in Dynamic Access Control 13

We execute policy p(v1) r

v2

v3

v4

v5

v1

v v v v v6 7 8 9 10

The leafs represent resources that also can enforce local policies

Fig. 2. A Resource Network as a Rooted Connected Directed Acyclic Graph

Let G
def
= (V,E, r) be a rooted connected directed acyclic graph that repre-

sents a resource network, where:

– V is the set of vertices and it represents the set of access control points that
enforce access policies;

– E is a set of ordered pairs of vertices that represent the link between access
control points;

– r is the root of the graph and it represents the access point between the
network and the external word.

From now on, we call G a network of access control points.

Definition 6 (Defence in Depth Law (DDL)). Let G
def
= (V,E, r) be a

network of access control points. We denote by p(v) the family of attribute based
access control policies enforced by vertex v in G. The network G employs a DD

strategy if p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) vF p(a) )

Obviously, if a node v satisfying (r, v) ∈ E has p(v) = 1F , then the root will
have p(r) satisfying 1F ≤ p(r) ⇐⇒ 1F⊕p(r) = p(r). It is because 1F can refine
1 + c for some c, or refine 0F . The 0F is not allowed as it is the “impossible”
family of policies. The family 1F contains only one policy with one rule given

by the command abort
def
= (∅, ∅), which offers no transitions (no change of state)

and does not exclude abortion of any state. The second condition ensures that
every policy at a level higher than the root (we assume the root to be at level
0; the lowest) needs to be at least as restrictive, if not more, than the one above
it. This fact is articulated explicitly in Proposition 2(a).

Definition 6 does not prevent trivial instances in which all access control hap-
pens at the leaves and all other nodes accept all traffic. Practically this situation
could happen when we adopt for instance the approach given in Proposition 4
for co-prime policies executed at the leafs (resources) and without global con-
straints; no way to have a common restrictive rule that can be applied at their
ancestor nodes. In this case, we are forced to let the resources enforce the rules
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and allow each to accept the traffic only destined to them. Otherwise, any control
at a node upstream would block access to some resources.

One can think of a more strict form of DD than that of Definition 6 by
strengthening the condition to prevent trivial instances in which all access con-
trol happens at the leaves and all other nodes accept all traffic. It would simply
require to change the refinement relationship between p(a) and p(b) in the con-
dition of Definition 6 to a strict refinement as follows:

p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) @F p(a) ),

where p(b) @F p(a) ⇐⇒ (p(b) vF p(a) ∧ p(a) 6= p(b)). In the rest of
this paper, we adopt the weak form of DD that is given in Definition 6 for the
simplicity that it provides to the treatment of DD.

Proposition 2. Let G be a network of access control points that employ a DD
strategy. Let P = 〈v1, v2, ..., vm〉 be a path of P . We have

a) (∀ i | 1 ≤ i ≤ m · p(vm) vF p(vi) )

b) (∀ v | v ∈ E · p(v) vF p(r) )

Proof. The proof for item a uses the reflexivity and transitivity of vF and some
basic quantifier rewriting rules. While the proof for item (b) is done by induction

on Q(m)
def⇔ (∀ i | 1 ≤ i ≤ m · p(vi) vF p(v1) ). The detailed proof is given in

the Appendix.

The result 2(a) states that whatever path the access takes in a network that
implements a DD strategy, it will be faced by more and more restrictive (in a
weak sense) families of policies. The result 2(b) states that any family of policies
at any of the network nodes is at least as restrictive as that of the root.

3.2 Generating Lower Level Policies from Higher Level Ones

In a network of access control points G
def
= (V,E, r), we assign level 0 to r. We

say that r has the lowest level in G. Let vi be a vertex having level n, then a
vertex vj such that (vi, vj) ∈ E will have the level n + 1. A vertex might have
more than one level as it might be reached by several paths of different lengths.
Only when G is a tree, the vertices have unique levels.

Proposition 3. Let G
def
= (V,E, r) be a network of access control points. Let

T be a directed spanning tree of G rooted at r and having a set L of leaves. For
every l ∈ L, we are given p(l). If we have

p(v)
def
= (⊕ vi | (v, vi) ∈ E ∧ p(vi) 6= 1F · p(vi) )

for every v ∈ V that is an ancestor of an l ∈ L, then G employs a DD strategy.
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Proof. Since for every v ∈ E, we have p(v) is constructed using the operator ⊕
of all the families of policies that are enforced at nodes that come after node v.
Therefore, each of these policies refines p(v) which satisfies the condition in
Definition 6.

This proposition enables assigning policies starting from the highest (level)
vertices in the network (i.e., the resource). We start by manually assigning the
access policies to the resources (leaves in the tree). Then the policies of the lower
nodes are generated according to the scheme proposed by Proposition 3.

In the case where G has several spanning trees T1 · · ·Tj , for j ≤ |V |(|V |−2)
(as for a complete graph with n vertices, Cayley’s formula gives the number of
spanning trees as nn−2), then a vertex v ∈ G belongs to each of the spanning

trees has a family of policies p(v) = (⊕ i | 1 ≤ i ≤ j · pi(v) ), where pi(v) is

the family of policy for vertex v obtained according to Proposition 3 using the
spanning tree Ti for 1 ≤ i ≤ j. In this context, the family approach to deal with
policies where many paths from the root can lead to one access control point is
very convenient; we have a family of policies that apply not only to one tree.

We suggest in the next proposition another deployment scheme of families of
policies.

Let G
def
= (V,E, r) be a network of access control points. Let T be a directed

spanning tree (DST) of G rooted at r and having a set L of leaves. For every
l ∈ L, we are given p(l).

Proposition 4. If we have p(v) = ( gcd vi | (v, vi) ∈ E ∧ p(vi) 6= 1F · p(vi) )

for every v ∈ V that is an ancestor of an l ∈ L, then G employs a DD strategy.

Proof. The proof uses the fact that in a product family algebra, a · c v a. This is
true in our model of product family (i.e., a� c vF a). At the node v, we deploy
the family of policies that is given by the commonality of the policies at vi.

If one of the vi for (v, vi) ∈ E is coprime to one of the others vj at the
same level and that are related to v, then p(v) = 1F . Two families are coprime
indicates that they do not have policies/rules that are shared by the two of them.

The following proposition is about the preservation of the defense in depth
when we apply PRCs.

Proposition 5. Given a network of access control points G that employs a DD
strategy, where each node v has a family of policies p(v) assigned to it. Let C be
a given set of PRCs. The following scheme gives a network that employs a DD
strategy.

For every v ∈ V that is an ancestor of an l ∈ L, we assign a family of policies
p′(v) such that

1. p′(v) ≤ p(v), and

2. (∀ c, v, w | c ∈ C ∧ (v, w) ∈ E · (p(w) ≤ p(v)) ∧ (c ` p′(v)) ∧ (c ` p′(w)) ).
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Proof. Since p′(v) is a subfamily of p(v) and the refinement between a node and
its successor on the tree L is reduced to the subfamily relationship. Therefore,
applying the constraints preserves the refinement needed for the DD strategy.
Without the condition of p(w) ≤ p(v) as given above, there is no guarantee that
the refinement is preserved by applying the PRCs.

4 Automation of the Management of Policies and the
Verification of their Integrability

In this section, due to space limitation, we simply point to the main components
of our prototype tool and the technology used to automate the results proposed
in this paper. Our prototype tool includes two major elements: Analysis element
(Analyzer) and broker element (Broker).

The Analyzer is responsible for all the calculations needed to ensure the inte-
grability of policies and for assigning policies (according to one of the schemata
given in Propositions 3, 4, or 5) to each access control node based on the given
policies assigned to the resources.

The Broker has the responsibility to keep track of the policies at each node
and to transmit newly calculated policies to their corresponding nodes. Each
node subscribes with the Broker , notifies it of any change to its situation. Then,
the Broker , with the help of the Analyzer , decides on the appropriate policy for
each node, and transmits them to their destinations. The design of the Broker
is based on the observer pattern, which is a software design pattern in which
an object maintains a list of its observers (in our case the nodes to be assigned
policies) and notifies them automatically of any state changes (policies changes),
usually by calling one of their methods. Hence, the Broker construction is a
straight forward application of observer design pattern.

The policies for each of the network resources are automatically translated
into tabular expressions commonly known as Parnas’ Tables (e.g., [22,16]). A
tabular expression can be encoded using a markup language. In our prototype,
we use a language that has been introduced in [17]. The Analyzer of our proto-
type tool uses PVS to perform the verification and calculations needed whether
for verifying policies or for determining appropriate policies for each node. It has
been demonstrated in [23] that PVS is an appropriate theorem prover for carry-
ing calculations using a formalism similar to the one we are using in this paper.
The Analyzer is a modified version of the tool SCENATOR [17] developed for
the verification of requirements scenarios. The formalism used in SCENATOR is
similar to the one we are using for the analysis of security policies. The main ad-
dition to SCENATOR is the development of modules to automatically calculate
the GCD of a family of policies. The Analyzer is implemented using C, Tcl\TK,
and runs on Unix/Linux platform. It uses PVS in batch mode. If two policies
are not integrable, it highlights in their corresponding tables, the cells that are
inconsistent. Also, when given families of policies, it performs calculations such
as the GCD of the members of a family or calculates the operations defined on
families of policies. The approach for generating conjectures for PVS to prove
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(in batch mode) and how the results are interpreted are thoroughly discussed
in [17]. We simply reused the existing tool SCENATOR with the few additions
described above.

Our prototype is only a proof of concept for the automation of a dynamic
access control. Issues related to time-length of control cycles and the observabil-
ity of changes to policies or to the states of the resources need to be considered
with more care and precision for an efficient dynamic access control solution.
Moreover, from a design perspective, the question on how to prevent the Broker
from becoming a target of attacks needs to be addressed. These are issues that
require further investigations.

5 Discussion and Future Work

We think that a family approach is appropriate to reason on the access policies
of a network for the following motives: (1) We distinguish between the actual
specific implementation of the policies and the family of policies coming from
several viewpoints that gave that implementation. A family of policies can give
other implementations such as the concurrent version that most current firewall
technologies do not support. However, the requirements of today’s technology
demands for the enhancement of resource access performance; especially in this
era of Internet of Things where a large number of devices can create resource
access contention. (2) Using a family approach keeps the separation of concerns
in the considered family of policies. Any change to a policy usually concerns one
view point (coming from one security stakeholder) and therefore it is easy to
locate and carry the change. Then, in a systematic way, we generate the actual
implementation of the family as a sequentially executed list of rules or as a set
of rules that are safe to be executed in any order (which our proposed model
allows). Having correct methods for automatically and dynamically verifying
these changes and reconfiguring firewalls would be a step towards a dynamic
approach to a system’s access control. (3) Adopting a family approach to reason
on access policies, as we presented, enables us to not rely on a person to articulate
the policy into a sequence of rules where an alteration in the order of execution
of two rules can threaten the security of our resources. A systematic way should
be adopted to generate the actual policy so that its function is independent of
the order of execution of its rules.

Another context where the usage of a family approach is beneficial is when
reasoning on the overall security of a network of resources. Let us consider, in
a network, a node N under which we are running n virtual machines, where
each machine has its own access policy. Abstractly, when we want to reason on
the whole network security, we can consider that at node N , we are executing a
family of policies where its members are each of the n virtual machine’s access
policy. We can use this abstract approach to go up layer by layer until we have
constructed the family of policies under the control of the root of the network.
Moreover, in Section 3, we proposed other usages of families of access policies,
such as defining the defense in depth strategy and presenting several of its im-
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plementations. Also, when we consider a node that can be accessed from several
paths from the root, it has several policies that can be executed depending on
the path taken by the access request. It is the case when we have several span-
ning trees in the network (case discussed in Section 3.1). In this case, a family
approach is more intuitive in reasoning on security policies.

Articulating and implementing access control security policies is no different
than other similar activities related to enterprise security policies. When an
organization is faced with several challenging priorities, the business rational
drives prioritizing resources and dedication to each activity. The challenge is that
resource access control policies can become low-priority and their maintenance
and management will be assigned to technical staff that do their best as they
see fit. Automating the process of verifying policies as they are introduced or
as they are amended will ensure that, even with few resources, the security
system behind the network can take care of itself in configuring and implementing
policies. However, to ensure sound automation, a formal background is needed
to base on it the detection, recovery, and prevention mechanisms. The ideas
and the schemata for assigning security policies presented in this paper give the
background for this automation. Indeed, we developed an access control policy
software that does the verification of the integrability of policies as discussed on
Page 11 and assigns policies to nodes according to Propositions 3–5.

We find in [13] a product family approach to relate the security policies to the
security functionalities. A security policy is enforced through the deployment of
certain security functionalities within the application. Then, to handle the issue
of frequent changes in security policy requirements they adopt an aspect oriented
approach. This issue is also present in articulation and deploying access control
policies. A means to quickly deal with changes to the rules is a must. Sometimes,
when a security flaw is discovered, we are required to replace some conditions
by others that address the problem and apply that change to all the policies.
An aspect oriented approach would be appropriate for quickly propagating the
correction to all the policies. In our case, we build our work on PFA. An extension
of PFA, which is Aspect-Oriented Product Family Algebra (AO-PFA) [30,31],
has an aspect oriented language. Moreover, recently, Zhang et al. [29] proved
that its weaving process is convergent, leads to unambiguous weaving results,
and that its rewriting system is terminating and confluent. As our formalism
is based on PFA, we will be able to easily handle the issues of weaving policy
changes to their corresponding policies and that at the right join points. However,
the need for assessing the affect of these changes to all the access control nodes
and the affect on the DD strategy remains to be investigated.

Our proposed approach requires a quite heavy calculational effort as well as
some of its decision functions are, in general, undecidable. For example, deter-
mining whether two commands are integrable is undecidable in general. When
we use SCENATOR [17], if there is an undecidability problem, the cells, in the
used tabular expressions, that give rise to undecidability will be marked and the
security analysis will be considering it and making the appropriate decision. In
practice, these commands that their integrability verification is undecidable, can
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be amended into decidable cases by, for example, restricting the state space (a
discussion on this issue can be found in [3]). Using PVS of the required logical
calculations is straight forward and can scale to handle large network system.

Some might argue that this approach is state based and with a large network
we might observe a state space explosion. This point has some merit, however
we should keep in mind the following: (1) The state space does not increase with
each resource that is added. We alway consider a quite stable set of attributes
of the network such as the source, the destination, the user, the protocol, etc.
The dimensions of our space is some what stable. (2) We can divide a complex
and quite large network of resources into subnetworks and we assign a policy
Broker (as described above) for each subnetwork. However, the constraints of
one subnetwork on the other can be seen as global constraints and be handled as
prescribed by Proposition 5. We are opting for a centralized approach to assign
policies. In [28], Google’s tech lead for networking and others argue that, for
traffic control, a central perspective allows to make better decisions.

6 Conclusion

As far as we know, in the context of access control policies within a network, the
paper formally captures for the first time the widely intuitively discussed De-
fense in Depth strategy. It allowed us to formally assess whether a network, with
a given topology and a set of policies distributed on it, satisfies the DD strategy
or not. We point to a stronger version of DD strategy that might not possible
for any given set of policies. Moreover, we can articulate several sound schemata
for assigning policies such that the configuration of policies on a network satisfy
the DD strategy. The schemata presented in Propositions 3, 4, and 5 constitute
an effort to automatically distribute security policies that satisfy the DD strat-
egy. They can be used to allow a dynamic reconfiguration of firewalls policies
each time there is a change to the access policy of a resource (Propositions 3, 4)
or moreover when there is a change in the set of overall access-constraints put
on the network (Proposition 5). This dynamic aspect of reconfiguration of fire-
wall policies after each modification creates a kind of mobile defense. It makes
predicting a policy that is executed on a firewall more difficult. This hinders
mounting attacks on the system or at least makes them more challenging due to
the mobility of the rules between firewalls (e.g., due to their change each time a
resource is temporally unavailable, or because a resource reached its load capac-
ity). Moreover, the access to a resource is granted by all firewalls on the path to
the resource. This presents a separation of duties that is a key concept of internal
controls. It is achieved by disseminating the tasks and associated privileges for
a specific security process among multiple firewalls on the path to a resource, so
that compromising a single node does not, in general, compromise the network.

More work needs to focus on articulating more efficient schemata that fit
some given criteria. In this paper, we examined involving global access policies
(i.e., PRCs). However, one can think about other performance related criteria
that can affect the distribution of policies.
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Appendix: Detailed Proof of Proposition 2

Proof. a) (∀ i | 1 ≤ i ≤ m · p(vm) vF p(vi) )

⇐⇒ 〈 1 ≤ i ≤ m ⇐⇒ 1 ≤ i ≤ m− 1 ∨ i = m 〉
(∀ i | 1 ≤ i ≤ m− 1 ∨ i = m · p(vm) vF p(vi) )

⇐⇒ 〈 Range Split and One Point Axiom, and Reflexivity of vF 〉
(∀ i | 1 ≤ i ≤ m− 1 · p(vm) vF p(vi) ) ∧ true

⇐⇒ 〈 Identity of ∧ 〉
(∀ i | 1 ≤ i ≤ m− 1 · p(vm) vF p(vi) )

⇐⇒ 〈 1 ≤ i ≤ m− 1 ⇐⇒ 1 ≤ i ≤ m− 2 ∨ i = m− 1 〉
(∀ i | 1 ≤ i ≤ m− 2 ∨ i = m− 1 · p(vm) vF p(vi) )

⇐⇒ 〈 Range Split and One Point Axiom 〉
(∀ i | 1 ≤ i ≤ m− 2 · p(vm) vF p(vi) ) ∧ p(vm) vF p(vm−1)

(∀ i | 1 ≤ i ≤ m− 2 · p(vm) vF p(vi) )

⇐⇒ 〈 1 ≤ i ≤ m− 2 ⇐⇒ 1 ≤ i ≤ m− 3 ∨ i = m− 2 〉
(∀ i | 1 ≤ i ≤ m− 3 ∨ i = m− 2 · p(vm) vF p(vi) )

⇐⇒ 〈 Range Split and One Point Axiom 〉
(∀ i | 1 ≤ i ≤ m− 3 · p(vm) vF p(vi) ) ∧ p(vm) vF p(vm−2)

⇐⇒ 〈 Since (vm−2, vm−1) ∈ E =⇒ p(vm−1) vF p(vm−2) and transi-
tivity of vF 〉

(∀ i | 1 ≤ i ≤ m− 3 · p(vm) vF p(vi) ) ∧ true

⇐⇒ 〈 Identity of ∧ 〉
(∀ i | 1 ≤ i ≤ m− 3 · p(vm) vF p(vi) )

⇐⇒ 〈 Range Split several times and transitivity of vF 〉
true

b) Let Q(m)
def⇔ (∀ i | 1 ≤ i ≤ m · p(vi) vF p(v1) ), for some m ∈ IN.

Base Case: Q(1)
def⇔ (∀ i | 1 ≤ i ≤ 1 · p(vi) vF p(v1) ), which is obviously

true due to the One Point Axiom and the reflexivity of vF .
Inductive Step: For arbitrary m ≥ 1, we prove Q(m+1) using the hypothe-
ses (Q(m) is true) and (G employs a DD strategy).

(∀ i | 1 ≤ i ≤ m+ 1 · p(vi) vF p(v1) )

⇐⇒ 〈 1 ≤ i ≤ m+ 1 ⇐⇒ 1 ≤ i ≤ m ∨ i = m+ 1 〉
(∀ i | 1 ≤ i ≤ m ∨ i = m+ 1 · p(vi) vF p(v1) )

⇐⇒ 〈 Range Split and One Point Axiom 〉
(∀ i | 1 ≤ i ≤ m · p(vi) vF p(v1) ) ∧ p(vm+1) vF p(v1)

⇐⇒ 〈 From the hypothesis Q(m) is true 〉
true ∧ p(vm+1) vF p(v1)

⇐⇒ 〈 From (a), and Idompotency of ∧ 〉
true
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