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ABSTRACT
In this paper we present a formulation of k-anonymity as a mathe-
matical optimization problem. In solving this formulated problem,
k-anonymity is achieved while maximizing the utility of the result-
ing dataset. Our formulation has the advantage of incorporating
di�erent weights for attributes in order to achieve customized util-
ity to suit di�erent research purposes. The resulting formulation is a
Mixed Integer Linear Program (MILP), which is NP-complete in gen-
eral. Recognizing the complexity of the problem, we propose two
practical algorithms which can provide near-optimal utility. Our
experimental evaluation con�rms that our algorithms are scalable
when used for datasets containing large numbers of records.
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1 INTRODUCTION
Big Data applications are increasingly related to privacy sensitive
information, such as medical records, �nancial transactions and
location footprints. Therefore, mining of such information requires
special treatment of data to minimize privacy risks ideally with-
out sacri�cing the knowledge extraction value of the data mining
task. A common practice to address the privacy concerns of data
mining is the k-anonymity model that guarantees each individ-
ual record in the dataset is indistinguishable from at least k � 1
other records, so the probability of re-identi�cation is always less
than or equal to 1/k [Samarati and Sweeney, 1998, Sweeney, 2002].
While other disclosure limitation techniques such as adding noise
[Chawla et al., 2005], statistical obfuscation [Ardagna et al., 2011,
Burridge, 2003], data perturbation [Liu et al., 2006] and more re-
cently di�erential privacy [Dwork, 2011] have been developed to
decrease privacy risks, k-anonymity model is relevant and desirable
when individual records must remain truthful to their origins after
the privacy preservation technique is applied. As a real use case,
the co-author of this paper is a collaborator of a multi-disciplinary
research team that is currently developing an active classi�er to
predict patients’ cancer risk from medical imaging radiations [Sut-
ton et al., 2018]. The diagnostic imaging data and health records, in
this project, are originated from multiple medical institutions. The
current practice for data sharing allows each institution to only
share anonymized records with pseudo-identi�ers and the burden
on linking the health records, using the assigned identi�ers, is on
the research team. In such a scenario, the record linkage cannot be
fruitfully applied if each source shares di�erentially private records.
The truthfulness characteristic and the fact that the model was
recommended in di�erent privacy legislation and guidelines (such
as HIPAA [U.S. Department of Health & Human Services, 2015] and

FIPPA [Information and Privacy Commissioner of Ontario, 2016])
contributed to the wide adoption of k-anonymity and multiple al-
gorithms (e.g., [Bayardo and Agrawal, 2005, Byun et al., 2007, Doka
et al., 2015, El Emam and Dankar, 2008, Lee et al., 2017, Zhang
et al., 2015]) have been devised for application of the technique to
privacy-sensitive dataset prior to release.

The process of k-anonymization involves applying two major
operations: generalization and suppression. In generalization the
value of an individual attribute is replaced with a broader category
(e.g., Age: 54 will be replaced by Age: 50-60). When generalization
is not applicable or will not achieve k-anonymity, record-level or
attribute-level suppression will be applied, where the entire record
or the cell value will be deleted, respectively. The operation of
generalization will impact the utility of the anonymized dataset
variably depending on the degree of generalization (and in a worst
case suppression). For example, Age: 54 can be generalized to Age:
50-60 or Age: 50-55, where more information loss is incurred in
the former than in the latter. Thus, it is desirable that while k-
anonymity is guaranteed, the objective of maximal utility be built
into the anonymization process. The objective of this paper is to
formulate the anonymization process as a mathematical optimiza-
tion problem, where we seek to maximize data utility subject to
k-anonymity constraints. Although in general the k-anonymization
process is NP-hard [Meyerson and Williams, 2004], an optimal for-
mulation is valuable as it can provide insights into the complexity
of the problem, serve as a basis for developing heuristics and as a
benchmark tool for future algorithms.

In this paper, we focus on the generalization operation of k-
anonymity and de�ne information loss for each attribute as the
ratio between the range of anonymized values and the range of
the possible values of the attribute. For example, if the permissible
upper and lower bounds for Age is (0, 100), then generalization of
the attribute value to 50-55 leads to an information loss value of
0.05 (= (55 � 50)/(100 � 0)) compared to information loss value
of 0.1 when the attribute value is generalized to 50-60. Thus, the
former generalization is favoured by the objective function. We
also introduce a weight vectorW for the attributes involved in the
generalization operation such that the relative importance of each
attribute in information loss can be customized by the user. We
formulate the model as a Mixed Integer Linear Program (MILP).
Given the complexity of MILP, we then propose two practical al-
gorithms based on the intuition that rows of data that are closer to
each other are likely to end up as equivalent rows. For example, if
the dataset has just a single attribute with numerical values (e.g.,
Age), then neighbouring rows of the sorted column are relatively
closer to each other and the operation of generalization will only
involve grouping consecutive records. We capture the concept of
closeness with a preprocessing step of sorting the dataset for numer-
ical values. When we are facing multiple attributes, we use variance
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for determining the relative order of the sorting among attributes.
Although we are not able to provide a rigorous proof in this paper,
we observe empirically that an attribute with less variance incurs
more information loss when generalized compared to an attribute
with larger variance. Therefore, the attribute with less variance will
be sorted �rst.

Our �rst heuristic model is based on splitting and carrying over
records between the split subsets (Split & Carry algorithm). The
splitting allows us to solve a sequence of smaller sub-problems with
MILP. By carrying over a portion of records from each sub-problem
we provide a linkage between the otherwise disjoint sub-problems.
Although the complexity of this algorithm is linear in the number of
the records, it is very sensitive to the number of attributes or what
is called the curse of dimensionality [Aggarwal, 2005]. To address
the dimensionality problem, we develop a Greedy Search algorithm
inspired by the algorithm presented in [Doka et al., 2015], how-
ever, with the di�erence that our algorithm generates anonymized
datasets consistent with the general de�nition of k-anonymity (not
based on the customized de�nition in [Doka et al., 2015]). We exper-
imentally demonstrate that our practical algorithms can be used to
anonymize datasets containing large numbers of records more e�-
ciently with comparable information loss. According to the results
of the experiments, we recommend the Split & Carry algorithm
when the dataset is very large (millions of records) but the value of k
is small (less than 8) and the number of attributes is also small (less
than 6); otherwise we recommend our Greedy Search algorithm.

The contributions and structure of the paper is as follows. In
Section 2 we introduce a mathematical formulation for the k-
anonymization process, followed by discussions on several aspects
of the model including complexity, weighting attributes, treatment
of categorical data and the utility metric. We then present two
practical algorithms for k-anonymity in Section 3, with test results
in Section 4 to demonstrate their optimality and performance. In
Section 4 we also present some benchmarking results with similar
algorithms and scalability measure for our algorithms to show they
can be used for anonymizing large datasets. We discuss a number
of related work in Section 5. Finally we conclude the paper and
provide potential research directions for future work in Section 6.

2 GENERAL OPTIMAL MODEL
In this section we �rst provide a preamble to the optimal model
including the mathematical de�nitions of k-anonymity and the
necessary mechanics for model formulation (Section 2.1). We then
formulate k-anonymity as a general Mixed Integer Linear Program
(MILP) and discuss its complexity in Section 2.2. In Section 2.3 we
discuss an initial feasible solution which is the basis of our heuristic
algorithms. Two additional aspects in our optimal model formu-
lation, weighting the attributes and treating categorical attributes
are discussed in Section 2.4 and Section 2.5, respectively.

2.1 De�nitions
The following de�nitions can be found throughout various
k-anonymity literature; here we state them in the context of our
general optimal model.

DEFINITION 1: Quasi-identi�ers are subsets of attributes of

a dataset which can be used to deduce the identity of an individual.
Note: In this paper all attributes are considered as quasi-identi�ers.

DEFINITION 2: k-anonymity is achieved in a dataset if each record
of the dataset cannot be distinguished from at least k � 1 other
records by quasi-identi�ers.

DEFINITION 3: k-anonymization is the procedure of apply-
ing generalization and suppression to the quasi-identi�ers of the
dataset in order to achieve k-anonymity.

DEFINITION 4: Let x be an n ⇥ m matrix of records with
each column corresponding to a quasi-identi�er and each row
corresponding to a record of some subject. Let x 0 be the matrix
obtained from x by generalization, and x 0i j denote the generalized
value of an entry xi j of x for attribute j 2 � := {1, 2, ...,m} on
record i 2 I := {1, 2, ...,n}. We can write x 0i j as:

x 0i j = [�i j , zi j ], (1)

where�i j and zi j are the lower and upper bounds for the generalized
values of xi j and �i j  xi j  zi j . Then the degree of information
loss, Di j , for the entry xi j , is de�ned to be:

Di j =
zi j � �i j
Uj � Lj

, (2)

whereUj , Lj are the minimum and maximum permissible values
of attribute j. Note that:

0 
zi j � �i j
Uj � Lj

 1. (3)

When �i j = xi j = zi j , information is not generalized and the entry
has 0 information loss. When �i j = Lj , zi j = Uj , all information
about this entry is lost, i.e., the attribute is suppressed.

LEMMA 1: Let �il be a binary variable, let �i j , zi j be the
lower and upper bounds that represent the generalized entry x 0i j ,
for 1  i, l  n, i , l , and 1  j m. The following set of constraints
guarantees k-anonymity in the matrix x 0:

�
1 �1

� ✓�i j
�l j

◆
 M� (i, l , j)(1 ��il ) (4)

�
1 �1

� ✓�i j
�l j

◆
� m� (i, l , j)(1 ��il ) (5)

�
1 �1

� ✓zi j
zl j

◆
 Mz (i, l , j)(1 ��il ) (6)

�
1 �1

� ✓zi j
zl j

◆
� mz (i, l , j)(1 ��il ) (7)

’
l,i

�il = k � 1,�il 2 {0, 1} 8i , l (8)

where the M� (i, l , j), Mz (i, l , j) are upper bounds and m� (i, l , j),
mz (i, l , j) are lower bounds on the pair (�i j � �l j , zi j � zl j )

P����. We provide a construction of the constraints. Recogniz-
ing that the process of k-anonymization involves selecting k rows
and generalizing the entries in such a way that the k rows are in-
distinguishable from each other, we need to be able to represent
equivalence between two rows. We want to show that �il is the



binary variable that represents whether rows i and l are equivalent.
Let �i j , zi j be the lower and upper bounds that represent the gen-
eralized entry x 0i j , and �l j , zl j represent those of x

0
l j . We want to

impose the relation that:

(�il = 1)! (�i j = �l j & zi j = zl j ). (9)
Or equivalently for all j 2 � :

(�i j , �l j _ zi j , zl j )! (�il = 0). (10)

In other words, rows i , l are considered equivalent if each attribute
of row i has the same generalized lower and upper bounds as those
of row l . We can formulate equation (9) as:

(�il = 1)!
✓ �
1 �1

� ✓�i j
�l j

◆
= 0&

�
1 �1

� ✓zi j
zl j

◆
= 0

◆
. (11)

Using the ideas from [Mosek, 2018], which is in turn based on the
books [Nemhauser and Wolsey, 1988, Williams, 1993], the above
relation can be further decomposed as equations (4) - (7). It is also
easy to see that relation (9) is equivalent to equations (4) - (7); when
�il = 0, we have:

m�  �i j � �l j  M� , (12)
mz  zi j � zl j  Mz , (13)

which are true by de�nitions ofm� ,mz ,M� andMz . When�il = 1:

0  �i j � �l j  0, (14)

0  zi j � zl j  0, (15)
i.e. when �il = 1, we have �i j = �l j and zi j = zl j .

Note that the constraint for the other direction

{(�i j = �l j & zi j = zl j ) | 8j 2 � }! (�il = 1) (16)

is not necessary. To see this, suppose we have two sets of equivalent
rows S1, S2 such that:

�i1l1 = 18i1, l1 2 S1, �i2l2 = 18i2, l2 2 S2, (17)

|S1 | = k � 1 = |S2 |. (18)
Possibly there exists l 2 S1 \ S2, but �i1i2 , 1 for i1 2 S1 \ {l} and
i2 2 S2 \ {l}, i.e., in x 0 we actually observe a larger set of equivalent
rows:

S1 [ S2, |S1 [ S2 | > k � 1, (19)
but in this case, the model interprets the situation as two non-
disjoint equivalent sets.

We have shown that the binary variables �il as constructed rep-
resent equivalence between two rows. Thenwe can see immediately
that for any row i to be equivalent to k � 1 other rows, all such
binary variables associated with row i must sum to at least k � 1.
Equation (8) provides the equality constraint, and the preceding
discussion in equations (16) - (19) implies the inequality. ⇤

DEFINITION 6: Let S1, S2 be two equivalence classes in x 0 such
that S12 := S1 \ S2 , ;. We say the records in S1 \ S12 and S2 \ S12
are indirectly equivalent.

DEFINITION 7: Finally, a general optimization problem can
be mathematically de�ned as of the form:

min
x 2X

f (x)

Subject to �(x)  0.
(20)

In our context, f (x) is the objective function (information loss)
and �(x) is the set of k-anonymity and generalization range validity
constraints.

2.2 Model Formulation
Using De�nition 7 and Lemma 1, we formally state the optimization
problem for k-anonymization as follows:

min
(�,z,�)

’
i 2I, j 2�

zi j � �i j
Uj � Lj

(21)

Subject to
�
1 �1

� ✓�i j
�l j

◆
 M� (i, l , j)(1 ��il ) (22)

�
1 �1

� ✓�i j
�l j

◆
� m� (i, l , j)(1 ��il ) (23)

�
1 �1

� ✓zi j
zl j

◆
 Mz (i, l , j)(1 ��il ) (24)

�
1 �1

� ✓zi j
zl j

◆
� mz (i, l , j)(1 ��il ) (25)

’
l,i

�il � k � 1,�il 2 {0, 1} 8i , l & i, l 2 I (26)

and
�i j , zi j 2 Z, 8j 2 SD ✓ � (27)
�i j , zi j 2 R, 8j 2 SC ✓ � . (28)

Where:
�i j , zi j : upper and lower bounds in generalizing attribute j.
�il : binary variable for whether row i is equivalent to row l .
Uj , Lj : min and max permissible values of attribute j.
SC ✓ � : the set of indices for continuous attributes.
SD ✓ � : the set of indices for discrete value attributes.

We choose the bound constants for the ith and lth record of
attribute j as follows:

M� (i, l , j) = max(xi j ,xl j ) � Lj � �i j � �l j , (29)

m� (i, l , j) = Lj �max(xi j ,xl j ) = �M� (i, l , j)  �i j � �l j , (30)
Mz (i, l , j) = Uj �min(xi j ,xl j ) � zi j � zl j , (31)

mz (i, l , j) = min(xi j ,xl j ) �Uj = �Mz (i, l , j)  zi j � zl j . (32)
Remark: Note that by our choice of lower bound constants,
it might seem that inequalities (5) and (7) are redundant as
m� = �M� and mz = �Mz ; in fact both constraints are needed
in order to ensure relation (9) is satis�ed. Suppose we remove
inequality (5). When �il = 1, to satisfy inequality (4) we can
actually have �i j < �i j , which would not satisfy relation (9).

We formulated the model described above as a Mixed Integer
Linear Program (MILP) which is hard in general [Papadimitriou,
1981, von zur Gathen and Sieveking, 1978]. There exist subclasses of
MILPs which have better complexity, but measuring the complexity
of any MILP itself is a di�cult task and relies on heuristics and
conditions on the constraint matrix [Genova and Guliashki, 2011].
Meyerson and Williams showed that the general k-anonymization



Name |Age |Sex |Zipcode |Disease
Mary |37 |F |22071 |Pneumonia
Alice |35 |F |22098 |Diabetes
Betsy |36 |F |23061 |Anemia
David |61 |M |55107 |Pneumonia
Tom |63 |M |55099 |Diabetes
James |66 |M |55324 |Diabetes
Eric |63 |M |55229 |Diabetes
(a) Original dataset ([Lee et al., 2017])

Age |Sex |Zipcode
[35-37] |[0-0] |[22071-23061]
[35-37] |[0-0] |[22071-23061]
[35-37] |[0-0] |[22071-23061]
[61-66] |[1-1] |[55099-55324]
[61-66] |[1-1] |[55099-55324]
[61-66] |[1-1] |[55099-55324]
[61-66] |[1-1] |[55099-55324]
(b) 3-anonymized outcome

Table 1: Example of anonymized Electronic Health Record using our model

problem (using suppression) is hard using Graph Theory tech-
niques [Meyerson and Williams, 2004].
MILPs are best solved using Branch-and-Cut (Branch-and-Bound
with Cutting Planes) methods [Genova and Guliashki, 2011]. There-
fore, it is not surprising that many existing algorithms aim to solve
a relaxed version of the problem using some variant of Branch-
and-Bound [Bayardo and Agrawal, 2005, Lee et al., 2017]. Although
MILPs are hard in general, there are commercial implementations of
Branch-and-Cut which are quite e�cient (e.g., Gurobi 1 or CPLEX
2); there are also heuristics for selecting better nodes at which to
branch out (e.g., [Bayardo and Agrawal, 2005]).

To con�rm whether commercial solvers can provide any break-
through to the complexity of our optimal formulation, we imple-
mented our MILP model in Python with state-of-the-art optimiza-
tion solver Gurobi, which implements the Branch-and-Cut method
in parallel [Gurobi Optimization, LLC., 2018]. Gurobi and CPLEX
are arguably the best available MILP solvers [Mittelmann, 2018].
We have also implemented the general model with CPLEX and
open source solver CBC 3; we ran a few simple tests. We take a
small example from [Lee et al., 2017] in Table 1a to demonstrate
the outcome of our model in Table 1b, where we anonymized three
quasi-identi�ers (Age, Sex, and Zipcode) using our optimal MILP
model.

Although we found comparable performance between Gurobi
and CPLEX which both are 30x faster than CBC, even the fastest
solver struggles to solve the k-anonymity MILP on a dataset with
the size of 100 records and 8 attributes in a reasonable amount
of time. Therefore, devising practical algorithms is necessary for
solving k-anonymity problems.

2.3 Initial Feasible Solution
In light of the complexity of the optimal model, we provide an
initial feasible solution to the solver to prune some of the sub-
optimal nodes early on in the search. The idea behind our initial
feasible solution is that rows of records that are closer to each other
are likely to end up as equivalent rows. For example, if we have
just a single column of numbers, then neighbouring rows of the
sorted column are close together. However, when we have multiple
columns, we need to determine the order of the attributes with
which we compare the tuples.

The individual information loss component of attribute j

D j =
n’
i=1

Di j =
n’
i=1

zi j � �i j
Uj � Lj

(33)

1http://www.gurobi.com/
2https://www.ibm.com/products/ilog-cplex-optimization-studio
3https://projects.coin-or.org/Cbc

(a) Original dataset (b) Sorted by variance

Table 2: FARS dataset on 4 attributes

depends largely on the upper-lower bound gapUj � Lj where the
information loss is inversely proportional to the gap. Thus, for
columns with smaller upper-lower bound gaps, we would like their
entries to appear as sorted as possible in the matrix; however, it is
likely that we have multiple columns with the same gaps (e.g., when
we have multiple binary attributes). For this reason, we opted to use
ascending variance for determining the order. In general a larger
upper-lower bound di�erence contributes to a larger variance in
the column. Moreover, for attributes with the same upper-lower
bound gaps, because the values of their entries lie within intervals
of the same length, a larger variance implies the values are more
dispersed on the interval; whereas a smaller variance implies there
are more points centred around the mean, which leads to larger
information loss when we try to bring such points to equivalent
sets with those points near the boundaries. Therefore, attributes
with smaller variances will be sorted �rst and attributes with larger
variances last. We demonstrate the impact of sorting based on
variance with the following example.

Consider an example of a dataset from the FARS [US Department
of Transportation, 2016] database containing tra�c accidents
data. This dataset contains 20 records with 4 attributes (AGE, SEX,
INJ_SEV (injury severity) and DRINKING). In Table 2a we have the
original dataset, and in Table 2b we show the dataset sorted with
comparison order determined by increasing variance. The actual
equivalence classes determined by our optimal MILP are {0,2,15,17},
{1,11,12}, {3,4,18}, {5,6,8,9}, {7,10,16}, and {13,14,19}. Notice most of the
equivalence classes appear as consecutive rows in the sorted matrix.

2.4 Weighting Attributes
Another observation made is that in our current optimal modelling
of k-anonymity, all attributes are treated equally in their impact
on information loss encoded as the objective function. However,
generally speaking utility is a subjective measure and depending on
the use, some researchers might prefer to have less information loss
in certain attributes even if it is at the expense of other attributes.
By placing weights on the attributes, the requester of data has some
control over which attributes he/she would want to have tighter
generalized bounds. We useW to assign weightw j for all j 2 � (the



set of indices of all attributes).W is used to adjust the likelihood
of an attribute being generalized/suppressed in the anonymization
process, where a larger weight means the attribute is less likely to be
generalized/suppressed. We provide an example in Appendix A to
demonstrate the e�ect of applying unequal weights to the attributes.
Then the objective function in equation (21) is adjusted as follows
to include the attribute weights:

min
(�,z,�)

’
i 2I, j 2�


w j

zi j � �i j
Uj � Lj

�
. (34)

We have to also add the following additional constraint to the
model: ’

j 2�
w j = 1. (35)

Applying weights to the initial feasible solution (Section 2.3)
requires an additional step. When we have a vector of unequal
weights, we need to scale the variances of the columns to re�ect
the weights in the objective function. Variances for attributes with
smaller weights need to be scaled by a larger amount than those
with larger weights. Therefore, we can adjust the variance function
with

wVar (c j ) :=
Var (c j )
w2
j
, (36)

for column c j with weightw j , j 2 � := {1, ...,m}.

2.5 Categorical Data
The objective function in our formulation su�ers from one draw-
back. The information loss calculated as in De�nition 4 would only
make sense if the subtraction between two permissible values is
de�ned, i.e., a clear distance metric is de�ned for the attribute. This
is also a problem for the initial feasible solution in Section 2.3 where
sorting is undoubtedly based on a distance metric. For binary data,
there is a natural distance metric; however, for some categorical
data with more than two permissible values, the distance metric is
not clear. One way to mitigate the problem is to number the permis-
sible values of a categorical attribute in a way that implies a sense
of distance. For example, if we have Countries as an attribute, we
can number the countries based on their geographical distances to
some reference country (e.g. Canada) or language similarity. If the
attribute is important to the researcher, and a weak sense of distance
is not adequate, then we can split the categorical data into binary
data where each new attribute corresponds to one permissible value
of the original categorical attribute. When we are converting cate-
gorical data to binary data, we recommend adjusting the weight
by multiplicative factor of 1/|H |, where H is the set of permissible
values of the categorical attribute. This puts the sum of utility loss
of the constituent binary attributes to be within the range [0,1]
and thus the original categorical attribute still satis�es equation
(3) of De�nition 4. This treatment of categorical data is similar to
the Global Certainty Penalty (GCP) utility function in [Doka et al.,
2015, Wong et al., 2010] and in fact there is a natural one-to-one
correspondence from one to the other. Please see Appendix B for
detailed de�nition of GCP.

2.6 On Utility Metric
For anonymization on relational datasets (or any dataset where
each record can be represented as a tuple of attributes), there are
utility metrics which are more general and applicable to di�erent
data types, such as the Discernibility Metric (DM) [Bayardo and
Agrawal, 2005] and Classi�cation Metric (CM) [Iyengar, 2002]; how-
ever, these metrics do not measure the amount of information loss
contributed by the individual records which might be important to
the user of the anonymized data. Information loss metrics are used
in various literature [Doka et al., 2015, Ghinita et al., 2009, Wong
et al., 2010], especially when generalization is an operation used to
anonymize the data. In the formulation of our model in Section 2.2,
we have de�ned our utility metric to be the sum of the degree
of information loss over each anonymized entry x 0i j as we aim to
minimize the total amount of information loss in our anonymiza-
tion process, i.e., maximize the utility of the anonymized data. The
linearity of this metric is also desirable as linear optimization prob-
lems are among the easiest subclass of optimization problems in
terms of complexity and availability of tools. We understand that
the usefulness of this utility function might be limited in some
application domains. As described in Section 2.4, we introducedW
to help customize the utility function but this can still be an issue
when a more complicated utility function beyond an optimized
generalization is being sought. In theory our general optimal for-
mulation can be adapted to di�erent utility metrics; however, since
sorting is an important part of our practical algorithms, ideally the
utility metric should respect the ordering in the permissible values
of each attribute, i.e., for permissible values a1 < a2 < a3 the metric
should favour anonymized outcome [a1,a2] to [a1,a3].

3 PRACTICAL ALGORITHMS
We have implemented the general model with the best available
MILP solver; however, as we have discussed in the previous section,
the complexity of the model quickly leads to undesirable perfor-
mance as we increase the number of records, making the model
unsuitable for practical use despite o�ering optimal utility. We
also provide an initial feasible solution which can help in pruning
some of the sub-optimal nodes early on in the search. In general
it is not easy to see how much performance improvement such
initial solutions can provide; moreover as the size of the problem
increases, the majority of the time for the solver is spent trying
to improve the bounds between the so-far best feasible node and
the relaxed optimum. Even if we feed in an initial solution that is
optimal, the solver might still need to traverse many nodes and
solve many relaxed problems before determining that the solution
was already optimal. Therefore, in practice we cannot rely on solv-
ing the general model to anonymize any reasonably sized dataset.
In this section, we use the initial feasible solution to devise two
di�erent practical algorithms with improved utility over the initial
feasible solution.

3.1 Split & Carry Algorithm
The �rst practical algorithm based on the initial feasible solution
is the Split & Carry algorithm. We use the initial solution to split
the original problem into smaller sub-problems with manageable
sizes, i.e. sub-problems that are solvable using the general MILP.



As discussed in Section 2.3, consecutive rows in a sorted matrix are
likely to be equivalent rows in an optimally k-anonymized dataset.
Thus, we expect the rows that are far apart in a sorted matrix
are unlikely to be equivalent, and can be placed into di�erent
sub-problems to be solved by the general model. This idea is
the basis of our Split & Carry algorithm as described in Algorithm 1.

The input values to the algorithm are:
(1) arrT�pe an array describing the data type of each column

(from {Integer, Continuous}, used in Gurobi solver)
(2) x = [xi j ]i 2I, j 2� , the dataset in a matrix form
(3) U = [Uj ]j 2� , L = [Lj ]j 2� , upper and lower bounds of each

column
(4) W = [w j ]j 2� , weights for each column
(5) k , minimum number of equivalent rows desired
(6) S , minimum number of k-sets4 in each sub-problem (S � 2).

Data: x ,U , L,W , k , S , arrT�pe
Result: A, f

1 VAR = [VAR]j 2�  compute variances of all attributes;
2 x̃ sort (x , VAR);
3 C0  ;;
4 f  0;
5 form := 1 to d n

k ·S e do
6 Subm  Cm�1 + Read the next k ⇥ S rows from x̃;
7 (Am, fm) Solve(Subm,arrT�pe) optimally (Section

2.2);
8 f  update(f , fm);
9 A update(A,Am);

10 Cm  rows in equivalence classes of last k rows in Am;
11 m =m + 1;
12 end
13 return (A, f)

Algorithm 1: Split & Carry Algorithm

Besides the �rst �ve input values which are common to the
optimal model, we use the parameter S to adjust the start size of
the sub-problems; S captures the minimum number of k-sets to
be included in each sub-problem. S is a user parameter with value
greater than 2 because there is only one trivial k-set when S = 1.
The value selected for S depends on the desired e�ciency and
utility of the k-anonymization process. When S is small we are
limiting the potential space from which we make k-sets; but since S
determines the minimum size of the sub-problem a large value will
increase the complexity of each sub-problem. We will demonstrate
in our experiments that a small S su�ces when k is small and the
number of records is large. In general the running times of the
sub-problems depend largely on the statistical properties of the
dataset, when we have a large dataset we are likely to �nd many
records that are similar which means each sub-problem to be solved
has a small solution space; they also depend on the availability of
computational resources because MILP solvers are often multi-
threaded (e.g. Gurobi). In Fig. 5a and Fig. 5b we demonstrate the

4k -set: shorthand for a set of equivalent records of size k .

Figure 1: Chain of sub-problems
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Sub4
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e�ect of S on a reasonably-sized dataset in terms of utility and
running time.

In Fig. 1 we present an illustration of the Split & Carry algorithm.
The sub-problems are indexed as (Sub1, Sub2, ..., Subt ), t = d n

k ·S e.
We have also the concept of carry-over records in this algorithm,
represented as (C1,C2, ...Ct�1). We can visualize the algorithm as
being a chain of sub-problems, where the locks that chain together
sub-problems are the boundary carry-over records. Records in the
sorted matrix that are near the boundary of two consecutive sub-
problems can be similar to records in both sub-problems; therefore,
after we have determined the equivalence class for such a bound-
ary record in a sub-problem, we carry the entire equivalence class
to the next sub-problem. A careful consideration is needed to en-
sure that the records indirectly equivalent to the boundary record
can satisfy k-anonymity on their own, i.e. the total number of all
indirectly equivalent records to this boundary record must be at
least k ; otherwise we have to also carry these records to the next
sub-problem. Because the number of carry-over records from the
previous sub-problem can be di�erent, each individual sub-problem
may end up with a di�erent run-time size. In the worst case sce-
nario, it is possible that an entire sub-problem gets carried over to
the next. For example, suppose we have k = 3 with S = 2. We index
the records in this sub-problem as {x1,x2,x3,x4,x5,x6}, one of two
scenarios can happen: 1) The last k records form an equivalence
set within themselves. 2) Each of the �rst k records is equivalent
to at least one of the last k records. In the �rst scenario the equiva-
lence classes are exactly {x1,x2,x3} and {x4,x5,x6}. In the second
scenario we must have an equivalence class of the form {x1,xi ,xl },
{x2,xi ,xl } or {x3,xi ,xl } with {xi ,xl } ⇢ {x4,x5,x6}; in this case
all of the records will be carried over to the next sub-problem. In-
tuitively as the size of the next sub-problem increases, it becomes
unlikely that all of its records will be carried over further. Thus, we
expect the sizes of the sub-problems to be bounded. We provide an
upper-bound on the sizes in Lemma 2. Note that a more general
implementation would be to carry over equivalent rows to the last l
records, where l , k is also a customizable parameter. In the current
implementation, k a�ects the sub-problem sizes which becomes a
problem as k gets larger.

In Line 1 of Algorithm 1, we compute the variances of each col-
umn, where we then sort the matrix across entries with comparison
order equal to the order of increasing variance in Line 2. We ini-
tialize the �rst set of carry-over records C0 to be empty in Line
3 and initialize the objective value (i.e. total information loss) f
to be 0 in Line 4. We then loop over the chain of sub-problems in
Line 6 - Line 11; for each sub-problem Subm we get the set of next
k ⇥ S records and add to it the carry-over records Cm�1 from the



previous sub-problem in Line 6, where we then solve the resulting
sub-problem by the general MILP to obtain anonymized outcome
Am and objective value fm in Line 7; we then update the total in-
formation loss f by adding to it the part of the objective value fm
corresponding to non-carry over records (Line 8) and also store
the subset of corresponding anonymized records in Am (Line 9) to
A. In Line 10 we get the set of carry-over records Cm , which are
records equivalent to the boundary records (i.e. the last k records).
We repeat Line 6 to Line 11 until we solve all sub-problems. We
include a worked example in Appendix C to demonstrate the steps
of this algorithm.

Remarks: The reason for carrying over records equivalent to the
boundary records is two-fold: we have described that boundary
records can be close to both sub-problems, and as equivalence
is transitive this is true for their equivalent records as well. The
equivalent rows also serve as initial equivalent rows to the next
sub-problem, i.e. the optimal solution for the next sub-problem can
in fact determine that the records carried over from a previous
sub-problem are not closer to the new subset of records, and output
the carry-over records as sets of equivalent rows the way they
were fed in. The lower and upper bounds used in the sub-problems
must be the same as those computed in the original problem, as
the sub-problems should be optimized with respect to the original
objective function.

LEMMA 2: The size of each sub-problem is bounded by k ⇥ (2k �
1 + S).

P����. In each sub-problem, at the step where we carry over
records the worst scenario happens when the last k records are in
distinct equivalence classes. For each boundary record, we carry
over only records that are necessary, i.e., we carry over exactly
k records if the remaining indirectly equivalent records satisfy k-
anonymity on their own (with size >= k). Thus, the worst case
happens when we have (k � 1) indirectly equivalent records to
each boundary record, then we must also carry over the entire
set of such indirectly equivalent records. That is, we carry over
k ⇥ (k + (k � 1)) records to the next sub-problem, which contains
k ⇥ S records before the carry-over. Thus, we have k ⇥ (2k � 1 + S)
records in the resulting sub-problem in the worst possible case. ⇤

In practice we expect that we should rarely encounter a
sub-problem with size equal to its possible upper-bound; we
provide the actual distributions of the sizes of the sub-problems for
the tests of Fig. 5 in Appendix D, Table 8.

THEOREM 1: An upper-bound for the complexity of the
Split & Carry algorithm is:

O(d n

k ⇥ S e ⇥ 2
p(k⇥(2k�1+S )⇥( k⇥(2k�1+S )�12 +2m))). (37)

P����. Consider the complexity of the general MILP. Since non-
integer linear programs (LP) have polynomial complexity [Dobkin
and Reiss, 1980], in the worst case scenario the general MILP has to
search all of the nodes and solve an LP at each node. Thus, an upper
bound for the complexity of the general MILP is O(2p(N )) where
p(·) is a polynomial function, N is the number of variables in the

problem. In our formulation N =
✓
n
2

◆
+2⇥m⇥n = n(n�1)

2 +2⇥m⇥n
for an input matrix of size n⇥m. The Split & Carry algorithm solves
a series of sub-problems each with at most k ⇥ (2k � 1 + S) records
as shown in Lemma 2, where the complexity of each sub-problem
is bounded by:

O(2p(k⇥(2k�1+S )⇥(
k⇥(2k�1+S )�1

2 +2m))). (38)
Since we have to solve d n

k⇥S e such sub-problems, this gives expres-
sion (37). ⇤

Early Termination: From expression (38) we see that the running
time for solving a sub-problem can increase quickly as we increase
k,m or S . A feature of the Gurobi Solver is that it supports Early
Termination, i.e., it can halt the search for feasible nodes after a
pre-de�ned condition is reached. Thus, it is possible to set a strict
time limit on the Split & Carry algorithm. For example, if one would
like the algorithm to run for no more than T seconds (ignoring
overhead costs other than the solving of the sub-problems), one
can set the "TimeLimit" parameter of the Gurobi solver to be
T
.
d n
k⇥S e seconds. Inevitably, setting a time limit would reduce

optimality of the solution.

Categorical attributes encoding:We have talked about the treat-
ment of categorical data in our model in Section 2.5. If we decide
to split up the categorical attribute into binary attributes we may
encounter a limitation of the Split & Carry algorithm, as this will
increase the number of attributes and the sizes of the sub-problems
for this algorithm.

3.2 Greedy Search Algorithm
In this subsection we describe another algorithm which improves
upon the initial feasible solution. As we observe in expression (37),
while the complexity of Split & Carry algorithm scales linearly in
the number of records as opposed to exponentially in the case of the
general optimal problem, the complexity still scales exponentially in
terms of the number of attributes and k . In this section we provide
a greedy search algorithm which is not plagued with the curse of
dimensionality [Aggarwal, 2005]. This algorithm uses similar ideas
as the algorithms presented by Doka et al. [Doka et al., 2015], but
it produces anonymized outcomes consistent with our formulation
in Section 2.2 (i.e. containing sets of at least k equivalent records)
instead of outcomes appearing as in the freeform formulation of
Doka et al. [Doka et al., 2015].

In the Doka et al. algorithms, k outer iterations are performed
where at each iteration the original dataset structure is transformed
into a complete bipartite graph5. In our algorithm, we perform a
series of k inner iterations. We again start from the initial feasible
solution containing records sorted according to the order of
increasing variance. Then for each indexed record xi in the sorted
list, we construct the k-set (Eqi ) by iteratively choosing from the
remaining records and adding to it, and subsequently removing
the chosen record from the remaining set. In each iteration, we
aim to generate the smallest objective value, fi := f (Eqi ), until
5A graph is complete bipartite if the set vertices can be partitioned into two disjoint
sets where there is an edge from each vertex in one set to each vertex in the other.



Eqi contains k records. Two advantages of our algorithm are: 1) it
does not work with complete bipartite graphs and as such does
not need to store weights for n ⇥ n edges; 2) it does not require a
backtracking6 process and thus does not need to store information
from the previous states. Given these advantages the algorithm is
more memory e�cient and can be applied over datasets containing
large numbers of records. However, we remark that both our
Greedy Search and the Doka et al. algorithms [Doka et al., 2015]
have the limitation that they aim to �nd equivalence classes of size
k . This is a major limitation of the greedy algorithm approach as in
order to �nd a globally optimal solution the set should be allowed
to contain many equivalence classes of di�erent sizes greater than
k . Our Greedy Search algorithm is described in Algorithm 2. Since
this algorithm is not constrained by the number of attributes
in terms of performance, we have the option of decomposing
categorical attributes into vectors of binary attributes which is
desirable to maintain better utility for categorical data.

The inputs to our greedy search algorithm are:
(1) arrT�pe an array describing the data type of each column

(from {Integer, Continuous} or {Categorical, Numerical})
(2) x = [xi j ]i 2I, j 2� , the dataset in a matrix form
(3) U = [Uj ]j 2� , L = [Lj ]j 2� , upper and lower bounds of each

column
(4) W = [w j ]j 2� , weights for each column
(5) k , minimum number of equivalent rows desired

In Line 1 and Line 2 of Algorithm 2, we again compute the
variances of each column, and sort the records as in the initial
feasible solution and Algorithm 1. In line 3 we have an optional
step to transform the columns with categorical attributes into
vectors of columns of binary attributes. A discussion on how this
is represented can be found in Appendix B. In Line 4 we initialize
the total objective value f to be 0, and the collection of equivalent
sets A to be empty. In Line 5 - Line 18 we loop over each remaining
record of the sorted list; we initialize the equivalence class of
record xi to be the set containing itself in Line 6, and the objective
value fi for the equivalence class Eqi to be 0 in Line 7. In Line 8
we remove the record xi from the remaining records. Then we
perform k � 1 iterations in in Line 9 - Line 17. In Line 10 - Line 17
we compute the objective value f ji for each remaining record x j , so
that in Line 13 we can �nd the record that corresponds to incurring
min loss if it is added to Eqi , and it is then added to Eqi in Line
14. We then update the objective value fi to be the information
loss corresponding to the new Eqi in Line 15, and remove the new
member of Eqi from the remaining records in Line 16. At the end
of k � 1 iterations we obtain Eqi of size k , and we update the total
information loss f by adding fi to it in Line 18. We update the
collection of equivalence classes A with the new found Eqi in Line
19.

Convergence: Since we are always removing k indices from
I := {1, 2, ...,n}, when the size n is a multiple of k , convergence is
clear; if n is not divisible by k , for each remaining index j after the
bn/kc iterations, we distribute x j to the existing k-set that would
6Backtracking describes a step that involves revisiting records that have been put into
an equivalence class in a backward fashion as in [Doka et al., 2015].

Data: x ,U , L,W , k , arrT�pe
Result: A, f

1 VAR = [VAR]j 2�  compute variances of all attributes;
2 x̃ sort (x , VAR);
3 (Optional per arrT�pe)Transform the columns containing

categorical data into vectors of columns containing binary
data;

4 A ;; f  0;
5 for xi 2 x̃ do
6 Eqi  {xi }, initialize equivalent set Eqi for xi ;
7 fi  0;
8 remove xi from x̃;
9 for l = 1 to k � 1 do
10 for x j 2 x̃ do
11 compute and store objective value

f ji := f (x j [ Eqi ) using arrT�pe;
12 end
13 �nd x j0 that would give lowest f ji ;
14 add x j0 to Eqi ;
15 fi  update(fi, f j

0

i );
16 remove x j0 from x̃;
17 end
18 f  update(f , fi);
19 A update(A,Eqi )
20 end
21 return (A, f)

Algorithm 2: Greedy Search Algorithm

incur the least utility loss if we were to add x j to it. Thus, the set of
indices I will be exhausted.

THEOREM 2: The complexity of the Greedy Search algo-
rithm is:

O(
bn/k c’
p=0

{(k � 1) ⇥ (n � (p � 1) ⇥ k) + n)} (39)

P����. Each time we loop over an index we remove k entries
(including itself) from the dataset x . Thus, the outermost for-loop
is repeated at most n/k times. At the pth iteration of the outermost
for-loop, we need to compute the min of n � (p � 1) ⇥ k objective
values, thus, the complexity of the middle for-loop isO((k�1)⇥(n�
(p � 1)⇥k)). If n is not divisible by k , for each remaining record we
distribute it to the equivalence class that would incur the least utility
loss by adding this record; since there are n/k equivalence classes
and at most k � 1 remaining records this last step has complexity
O(k ⇥ n

k ). ⇤

Given the above theorem, although greedy algorithm may pro-
vide relatively less favourable solutions, its complexity is much less
dependent on the number of attributes and is bounded by O(n2)
regardless of the choice of k .



Attribute Cardinality [Min,Max] DataType
\Gender 2 [1,2] Categorical/Integer
\Age 75 [16,90] Numerical/Integer

\Marital Status 6 [1,6] Categorical/Integer
\Race 7 [1,7] Categorical/Integer

\Birthplace 83 [1,426] Categorical/Integer
\Education Level 17 [4,20] Numerical/Integer

\Work Class 7 [13,29] Categorical/Integer
\Occupation 47 [4,79] Categorical/Integer

Table 3: CENSUS Dataset

4 EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of our prac-
tical algorithms in terms of optimality, performance and scalability.
In Section 4.1 we describe the dataset we have used for running the
experiments and the experimental environment setup. In Section 4.2
we present the �rst set of experiments and provide the results from
our algorithms along with results from the optimal solution (i.e.
solution of the general MILP). In Section 4.3 we provide benchmark
results of our algorithms against the other algorithms in terms of
utility and running time. In Section 4.4, we report the results of
the last set of experiments focusing on the scalability aspect of the
algorithms. We selected three classes of k-anonymity algorithms
for this study; namely heuristic-based algorithms by [Doka et al.,
2015], a partitioning-based algorithm by [LeFevre et al., 2006] and
a clustering-based algorithm by [Byun et al., 2007]. We provide a
discussion and interpretation of the results in Section 4.5.

4.1 Experimental Setup
The main database for our tests is from IPUMS USA, consisting of
500,000 records of U.S. census data [University of Minnesota, 2018]
(hereafter referred to as the CENSUS dataset). For each experiment
we extracted datasets of various sizes from the main dataset as
described in each experiment. Table 3 describes the characteristics
of the main datasets with 8 attributes in terms of the attribute
name, type (numerical or categorical), min/max values and number
of distinct values available for each attribute. The characteristics
of the extended datasets with up to 35 attributes are described in
Table 10 in Appendix E. The tests were performed on machines
with 8 CPUs and 7.2 - 8 GB of RAM. The results were validated to
be consistent across the machines. Moreover, tests appearing in the
same �gure were strictly run on the same machine.

To avoid database bias, we have reported the results of our ex-
periments using an alternative database in Appendix F.

4.2 Optimality
To demonstrate optimality, we benchmark our practical algorithms
(Split & Carry and Greedy Search) against the optimal formulation
(general MILP with Gurobi solver) in terms of information loss,
and from di�erent dimensions. In Fig. 2a and Fig. 2c we show the
averages of ratios of objective values from our algorithms over
those from the MILP when the number of records grows and when
the number of attributes grows, respectively. To reduce the impact
of variability in the datasets the averages are computed over 20
datasets randomly drawn from the CENSUS database. The number
of attributes is set to 4 for the results illustrated in Fig. 2a and
Fig. 2b, and the number of records is set to 20 for the results shown

in Fig. 2c and Fig. 2d. We observe that consistently our Split & Carry
achieves better utility than Greedy Search. An interesting �nding
from this experiment is that increasing the number of attributes
does not increase loss in optimality for both algorithms.

We also show the averages of ratios for the running times on
the same datasets when the size of dataset increases and when the
number of attributes grows in Fig. 2b and Fig. 2d, respectively. We
see that there are signi�cant performance bene�ts in our algorithms
especially as we increase the size of the dataset. In particular we
observe that the running time for Greedy Search compared to the
optimal solution is negligible. Although we see in Fig. 2 that Greedy
Search has signi�cantly better performance than Split & Carry, it
is not generally the case and we show this as we further compare
the running times of these two algorithms for large datasets in the
scalability section. The di�culty in measuring the complexity of
the Split & Carry algorithm comes from the di�culty in providing
an exact or even tighter upper bound in the complexity of any
speci�c instance of the MILP. The complexity for Split & Carry
we’ve provided in Theorem 1 is merely an upper bound, and in
practice as the size of our dataset increases we expect a much better
performance than what we presented in Theorem 1. Nonetheless,
expression (37) in Theorem 1 provides the relationship between the
number of records n and complexity of the Split & Carry; that is,
the complexity scales linearly in the number of records, which we
also demonstrate in the scalability section.

4.3 Benchmarking
We �rst benchmarked our algorithms with the three algorithms
presented by Doka et al. [Doka et al., 2015], hereafter we refer
to these as: Doka Greedy, Doka SortGreedy and Doka Hungarian.
We implemented all three algorithms in Python. While we have
con�rmations from the �rst author regarding speci�c details in the
implementations, we acknowledge that there could be implemen-
tations that can give slightly better running times than what we
will display here; for example we had used the Munkres module 7

for the Hungarian algorithm combined with the iteration scheme
described in [Doka et al., 2015] for the implementation of Doka
Hungarian. Despite potential di�erences in the implementation
details, however, two important facts provide a sound basis for any
conclusions we draw from our experiments:

(1) As consistent with the results in [Doka et al., 2015], in gen-
eral the Doka Hungarian algorithm provides the best utility
among all three Doka algorithms.

(2) By theoretical construction, our Greedy Search algorithm
has better complexity than all three Doka algorithms.

We also benchmarked our algorithms against the Mondrian Mul-
tidimensional k-Anonymity algorithm [LeFevre et al., 2006] (here-
after referred to as Mondrian), and we were able to download the
program directly from [UT Dallas Data Security and Privacy Lab,
2012]. The Mondrian algorithm is a partitioning-based algorithm
in which the dataset is repeatedly partitioned into disjoint subsets
according to some statistic in a tree-like manner. The Mondrian
algorithm can produce anonymized outcome as generalized ranges,

7munkres 1.0.12: https://pypi.org/project/munkres/



Figure 2: Running time and object values of Split & Carry and Greedy Search against optimal MILP, as number of records or attributes change.
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Figure 3: Benchmarking running time and information loss of Greedy Search against other algorithms, as number of records and value of k change.
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Figure 4: Ratios of objective values of Greedy Search over other algorithms.
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it can also produce outcome providing complete distribution infor-
mation for categorical data; however the Mondrian does not output
a utility measure. We could compute our utility measure directly
on the Mondrian, but the algorithm provides open bounds for some
records and in fact it does not always provide the tightest possible
bounds; e.g., in the anonymized outcome by Mondrian in Fig. 5, for
one equivalence class on the Age attribute it produced generalized
range (60, 90] while the tightest bounds for this equivalence class
were [61, 80]. We make the following notes for the benchmarking
results we present on Mondrian:

Figure 5: Comparison of objective values and running times of Split & Carry
and Greedy Search against other algorithms.
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b) 5000 records, 4 attributes

(1) Since it takes a simple post-processing step to �nd the tight-
est bounds for any equivalence class, utility values were com-
puted on the equivalence classes using the tightest bounds.

(2) The running times presented for Mondrian do not include
the time it took to compute utility; however the Mondrian
has theoretical complexity equal to O(n log(n)) where n is
the size of the matrix.

Finally we benchmarked our algorithms against the K-Member
Clustering algorithm by [Byun et al., 2007] (hereafter referred
to as K-Member). K-Member is a clustering algorithm where
the algorithm forms clusters of size k as equivalence classes.
There are similarities between K-Member and our Greedy Search



algorithm, in that for the record currently under consideration, both
algorithms greedily �nds the next record to be in its equivalence
class by minimizing the additional information loss incurred.
Apart from incorporating weights, the most di�erentiating step in
Greedy Search is the order with which we move to the next record.
The basis of Greedy Search is to improve upon the initial feasible
solution.

We present our benchmark results against Mondrian, K-Member
and Doka algorithms in Fig. 3 and Fig. 4 with various values of k ,
where we use the GCP to measure utility as the GCP had been used
in other literature previously and so does not put our algorithm
at an advantage (please see Appendix B for GCP). This also shows
that our Greedy Search algorithm can be adapted to other utility
measure since its optimality and performance do not depend on the
choice of utility measure. In the tests reported in Fig. 3a and Fig. 3c
we used 1000 records on all 8 attributes, and in Fig. 3b and Fig. 3d
we used 2000 records on the 8 attributes. We can see that Greedy
Search can achieve utility that is not too far from those achieved
by Doka algorithms but it has a much better running time; while
the Mondrian has a very e�cient running time and always �nishes
in a few seconds, the utility it provides is far less favourable. Our
Greedy Search performs similarly to K-Member, but as the value
of k increases we begin to notice a slight advantage. We can also
observe that as we increase the dataset size from 1000 records to
2000 records, the gap in the utility between our Greedy Search
and the Doka algorithms narrowed, and in particular the utility
of our Greedy Search converged to that of Doka SortGreedy. We
also display the ratios of objective values of our Greedy Search
over Mondrian, K-Member and the Doka algorithms. We see that
for small k , Greedy Search is performing better than Doka Greedy,
but as k increases Doka Greedy starts to have advantage over our
Greedy Search. The general trend for the tests on 1000 and 2000
records is, when we �x the size of the dataset, as k increases the
utility of the Doka algorithms increases. We also see in general
that for a �xed k the utility gap between our Greedy search and
Doka Hungarian decreases, when we increase the dataset size. That
is, as we increase the size of the dataset, the probability of having
records that are equivalent or very similar increases. Therefore,
even though Doka algorithms produce outcomes that assume a
freeform, which has a larger solution space than our anonymized
outcomes (containing equivalence classes of size at least k), the
utility gain from using freeform is small as the anonymized out-
comes of these algorithms contain many records that di�er in a
small number of attributes by small amounts. Fig. 4a and Fig. 4b
also show that as we increase from 1000 to 2000 records, the utility
of Greedy Search increases relative to all algorithms (as the ratios
of objective values over Doka, Mondrian and K-Member decrease).

In Fig. 5 we compare the objective values and running times of
our algorithms (Split & Carry with S = 3, 4, 5 and Greedy Search)
against the Doka, Mondrian and K-Member algorithms, on a dataset
of 5000 records with 4 attributes, where the attributes are treated
as numerical. We see that for a dataset with a reasonable size and
small number of attributes, and for small k (= 4), our algorithms
have utility close to Doka Hungarian but with better performance,
and our algorithms perform better against Doka Greedy and Doka
SortGreedy in both utility and performance; whereas the Mondrian

has much better performance but also far less utility than our algo-
rithms. However, if the user is only interested in performance, then
we recommend the initial feasible solution which provides decent
utility and e�cient performance and in this test it performs better
than Mondrian in both aspects.

4.4 Scalability
In this section we examine the scalability of the algorithms. The
tests in this section are based on datasets containing at least 20,000
records. We do not include the Doka algorithms in our scalability
evaluation due to two reasons: 1) we observed in Section 4.3 that
the Doka algorithms took 3 - 24 hours to anonymize 5000 records
(Fig. 5b); 2) we tried to run the Doka algorithms on a dataset with
10,000 records but we received an "OutOfMemoryError". Indeed, the
Doka algorithms require storage of previous states for backtracking
as well as representation of n ⇥ n edges for complete bipartite
graphs, where the latter requires storing 100,000,000 numbers when
n = 10, 000. We consider scalability of the remaining algorithms in
terms of the number of records as well as the number of attributes
in Fig. 6 - Fig. 8, where the attributes are treated as numerical.

In Fig. 6 we show the running time and information loss values
of the algorithms for small values of k (= 3, 5) on several CENSUS
datasets with 4 attributes. The sizes of the datasets range from
20,000 to 100,000. Note for the case of k = 5 in Fig. 6b and 6d we
used the Early Termination (ET) feature for Split & Carry, and set
"TimeLimit" to be 1000 seconds for each sub-problem, though only
very few sub-problems actually triggered ET. We see that for a
small number of attributes and small values of k , K-Member has
slightly better utility than Greedy Search, but Greedy Search has
better running time. We also see that Split & Carry signi�cantly
outperforms K-Member and Greedy Search in both running time
and utility. The e�ciency of Split & Carry is due mainly to two
aspects: 1) it solves small sub-problems and e�ciency is reaped
from state-of-the-art MILP solver; 2) the small sub-problems have
small solution spaces since it’s likely that there are identical or very
similar records in a sub-problem as the dataset contains a large
number of records. The results for Mondrian were omitted from
these �gures for better visual presentation of the other algorithms.
Although Mondrian always �nishes in a few minutes in all of the
tests in this experiment, it has information loss ranging 9 - 56 times
that of the initial feasible solution.

In Fig. 7 we look at how the algorithms react to increasing values
of k . We acknowledge that Split & Carry is not suited for large
values of k and thus it has been excluded from all the experiments
with large k . We use a CENSUS dataset with 20,000 records and 8
attributes. We see that while Mondrian has negligible running time
compared to other algorithms, its utility is much less. Moreover, the
utility gap between Mondrian and the other algorithms increases
as k increases. On the other hand, we see that although Greedy
Search has slightly less utility than K-Member for small k (= 5),
but as k increases it starts to gain utility over K-Member and this
utility gap further widens for large k (= 200).

In Fig. 8 we look at how the algorithms perform when we in-
crease the number of attributes. We use CENSUS datasets contain-
ing 20,000 records on 15, 25 and 35 attributes. We observe that
Mondrian is still taking minimal time to compute, however the



Figure 6: Running time & information loss for smaller k (3, 5) as the number of records grows up to 100,000.
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Figure 7: Running time & information loss for 20,000 records and 8 attributes, as the value of k grows up to 200.
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Figure 8: Running time & information loss on 20,000 records, for smaller k (= 10) and large k (= 100), as the number of attributes grows up to 35.
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utility gap between Mondrian and other algorithms increases as
the number of attributes increases. At small k (= 10) we see that
Greedy Search and K-Member have almost the same utility. At
k = 100 we observe again that Greedy Search has slightly better
utility. Interestingly, we observe consistent results across di�erent
numbers of attributes, it appears only the value of k a�ects how
these two algorithms perform compared to each other.

4.5 Discussion on Evaluation Results
In the Optimality experiments in Section 4.2 we see that our prac-
tical algorithms provide near-optimal utility for a small k with
signi�cant performance improvement over the general MILP. In
some cases, Split & Carry actually provides the same optimal objec-
tive value as the MILP. We see in the Scalability experiments that
for a small number of attributes and small k , Split & Carry delivers
excellent performance and utility. Split & Carry is distinguished
from the other algorithms in that it always produces optimal so-
lutions for small subsets of the original dataset, and the chaining

of the sub-problems enables (in some cases) the possibility of a
global optimal solution. In Split & Carry, many equivalence classes
might have size greater than k as long as doing so minimizes the
information loss. On the other hand, the Greedy Search, K-Member
and Doka algorithms are greedy algorithms but their common focus
is on �nding equivalence classes of size k . Other than indirectly
equivalent records, only in cases where the number of records is
not divisible by k one would see a small number of equivalence
classes with size greater than k in these algorithms. In the case of
the Mondrian partitioning algorithm, while it is true that records
in the same partition are close to each other, the boundary records
of two adjacent partitions are also close. Since the partitions are
determined by median values, utility might not be preserved as
such boundary records might be closer to each other than to the
records in their own partitions. Thus Split & Carry features two
important aspects which are crucial to solving the k-anonymity
problem optimally in an e�cient way: 1) that the construction of
the equivalence classes is not constrained to �nding sets of size k ,



but also any size greater than k ; 2) when we work with smaller sub-
sets for e�ciency reasons, there is possibility to move records from
one subset to another, i.e. we do not lose the link to the original
dataset.

The biggest challenge for our Split & Carry algorithm is still in
the size of the sub-problems. For e�ciency we are limited to only
small sub-problems on small numbers of attributes with small val-
ues of k( 6). In practice we often see k = 3 or 5 being cited as the
minimum requirement [Canada Institute for Health Information,
2014, Cancer Care Ontario, 2018, National Center for Health Sta-
tistics, 2019, Statistics Canada, 2014]. Therefore our Split & Carry
algorithm can still be a useful tool for k-anonymization.

We see that in the Benchmarking experiments in Section 4.3, the
Doka algorithms in general have better utility than our practical
algorithms. We discussed in Section 4.3 that this utility gain in Doka
algorithms, comes mainly from the fact that their k-anonymized
outcomes take a freeform, which does not makek equivalent records
in the anonymized outcome but rather that for each anonymized
record one can identify k records from the original dataset that fall
into the ranges of the anonymized record. Moreover, we see in our
experiments that for a �xed value of k , as the number of records
increases, the utility gap between the Doka algorithms and Greedy
Search decreases; in particular Greedy Search performs similarly to
Doka Greedy and Doka SortGreedy in Fig. 3b where n = 2000,m =
8, and Split & Carry is close to Doka Hungarian in Fig. 5a where n =
5000,m = 4. However, our algorithms have much better running
time. In general, we expect that for datasets where the value of k
andm are large relative to n (e.g. n < 5000,m = 8,k > 15) the Doka
algorithms will have the best utility due to the freeform formulation;
but scalability becomes an issue for Doka algorithms for large-sized
datasets due to their theoretical complexities and their need to
store previous states and n ⇥ n edges. In the cases where k is small
relative to n, then the advantage of freeform diminishes due to high
probability of having many similar records in the dataset.

Throughout the Benchmarking and Scalability experiments, we
observe that Mondrian has e�cient running time but much larger
information loss compared to other algorithms. Thus, it is only
scalable in terms of running time; but we note that still the initial
feasible solution provides better running time and even better utility
than Mondrian. Moreover, the utility gap between Mondrian and
Greedy Search increases with the value of k and the number of
attributes, as can been seen in Fig. 7b, Fig. 8c, and Fig. 8d.

The initial feasible solution captures an ordering that gives
Greedy Search an advantage over K-Member for large values of k .
Consider a sorted list of records, such as the one in Table 2b. Notice
that the top record appearing in the sorted list is only close to the
rest of the list in one direction, i.e., it is only close to records that
are immediately below it in this list. Suppose we begin constructing
the equivalence class for record i , where i is not the top record
(e.g. in this example i , 12). If we remove records that are close
to 12, then 12 becomes farther away from the rest of the list, and
more information loss would be incurred to bring 12 to another
equivalence class. The larger the value of k , the more records we are
likely to remove that are close to 12 before we get to it. Now if we
�rst start with 12, then after removing the equivalent records for 12,
we will have a new top record in the remaining list and the process
repeats. This is the logic behind the choice of ordering to construct

equivalence classes for Greedy Search. We see the e�ectiveness
of this ordering in the Benchmarking and Scalability experiments,
where in Fig. 3, Fig. 4, Fig. 7 and Fig. 8, Greedy Search has consistent
better utility (though sometimes only slightly) than K-Member for
larger values of k (e.g. k >= 15).

5 RELATEDWORK
The model of k-anonymity for privacy protection from its intro-
duction by Samarati and Sweeny [Samarati and Sweeney, 1998,
Sweeney, 2002] has received considerable attention from research
community and over years di�erent algorithms have been proposed
for applying generalization and suppression techniques in order to
achieve k-anonymity. The algorithms di�er depending on the do-
main of application (e.g., data publishing, data mining and statistical
disclosure control) [Ayala-Rivera et al., 2014] or the techniques used
to provide k-anonymity guarantee while preserving data utility.

Among these algorithms many seek to achieve k-anonymity
using search strategies or optimization objectives [Bayardo and
Agrawal, 2005, Li et al., 2007, Xiao and Tao, 2006a,b]. Multiple re-
search studies (e.g., [Aggarwal et al., 2005, Meyerson and Williams,
2004, Xu et al., 2006]) have shown that optimally solving a k-
anonymization problem is an NP-hard problem. Thus, a number of
e�cient algorithms have been developed to enable the practicabil-
ity of anonymization on large datasets. For the purpose of studying
our related work, we group the algorithms by the primary tech-
niques or problem representations they use, as partitioning-based,
clustering-based and heuristic-based.

The algorithms that employ a partitioning-based technique take a
geometric view (exhibiting notions of hyper-cubes) on the problem.
They can be seen as taking a top-down approach, where the dataset
is repeatedly partitioned into smaller subsets according to some
criteria, usually de�ned by thresholds, where eventually partitions
of size at least k are formed [LeFevre et al., 2006]. Partitioning-based
algorithms usually have the advantage of e�cient performance,
as equivalence classes are created in a one-pass manner without
repeated visits to the constructed equivalence classes.

The clustering-based algorithms can be seen as taking a spa-
tial view (but not necessarily geometric due to the non-de�nitive
shapes of the clusters) on the problem, where clusters are formed
based on the similarities of the records represented as points in
the space. These algorithms usually take a bottom-up approach, in
that clusters are formed in a successive manner until the entire
dataset is exhausted [Aghdam and Sonehara, 2016, Byun et al., 2007,
Gionis et al., 2008, Goldberger and Tassa, 2009]. Clustering-based
algorithms appear naturally suited for k-anonymization, where
information loss can be appropriately encoded as a distance metric,
and equivalence classes are clusters of records of size at least k .

We consider as heuristic-based algorithms those that employ
a speci�c problem representation; in particular those algorithms
which represent the dataset as a graph, where the records are viewed
as vertices, and equivalence is de�ned via matchings [Doka et al.,
2015, Tassa et al., 2012]. The bene�t of sound problem representa-
tion is evident in the case of the Doka Hungarian algorithm [Doka
et al., 2015], where an existing algorithm (Hungarian for �nding
perfect matchings) can be readily used for solving the problem.



In this work, we aimed to provide a perspective from an optimiza-
tion stand point. The problem of maximizing utility while satisfying
k-anonymity constraint is clearly an optimization problem. A math-
ematical formulation of k-anonymity as an optimization problem
allows us to gauge how much utility is lost in any practical algo-
rithms we devise compared to a theoretical optimum. A similar
approach has been taken by Zhang et al. [Zhang et al., 2015] where
a formal optimization problem is de�ned and k-anonymity by con-
tainment is considered the constraint. They de�ned containment as
a subset S of the feature space that satis�es k-anonymity. The focus
of this proposal is on categorical data (speci�cally binary data) only,
with the objective to maximize the size of subset S . In our work,
we formulated the general optimal k-anonymization problem as an
MILP.While the general model has exponential complexity, we used
two properties to devise a practical optimization-based algorithm
(Split & Carry): 1) records that are far apart are unlikely to end up in
the same equivalence class in an optimal solution; 2) equivalence in
k-anonymity is transitive. We remarked that a global optimal solu-
tion is sometimes achieved with our algorithm, as demonstrated in
Section 4.2 of our experimental evaluation. However, we recognize
the cases where there are many attributes or a larger k is desired,
Split & Carry will have ine�cient performance and thus provide an
alternative (Greedy Search) that provides less utility but e�cient
performance. Our Greedy Search employs a search strategy which
shares similar aspects with the K-Member Clustering algorithm
proposed by [Byun et al., 2007].

The K-Member algorithm by [Byun et al., 2007] is similar to our
Greedy Search in the way we construct an equivalence class for a
single record; however the ordering with which we consider records
for construction are di�erent, and we’ve shown our Greedy Search
has an advantage for larger values of k . Our objective function is
also di�erent from theirs as we have introduced weighting. In the
work by Doka et al. [Doka et al., 2015], they o�er a MIP formulation
for the freeform k-anonymity problem. The formulation by Doka et
al. is freeform in the sense that a record can be assigned to many
di�erent equivalent classes and such equivalence is not transitive.
This gives rise to a larger solution space and thus better utility in the
optimization problem. In freeform formulation, each anonymized
record matches k � 1 other records of the original dataset, but the
number of matches is unknown when we link it to an externally
available dataset. Because the data custodian cannot check every
external table, Samarati [Samarati, 2001] argued that k-anonymity
requirement should be satis�ed in the anonymized data themselves.

On the same note as freeform k-anonymity, we also remark that
there are related algorithms which seek to provide weaker forms
of k-anonymity [Gionis et al., 2008, Tassa et al., 2012] that do not
make k identical records, but either that an original record is con-
sistent with k records in the anonymized dataset ((1,k)-anonymity);
or that an anonymized record is consistent with k records in the
original dataset ((k ,1)-anonymity), or both ((k ,k)-anonymity). Tassa
et al. [Tassa et al., 2012] further introduced k-concealment that is
a stronger variant of (1,k)-anonymity which they argued to o�er
the same security guarantee as k-anonymity computationally. This
gives an interesting research direction for future work, as our Split
& Carry can theoretically be adapted to these forms of k-anonymity
by relaxing some constraints.

6 CONCLUSIONS
In this paper we introduced a mathematical formulation for k-
anonymity as a Mixed Integer Linear Program with a weighted
objective function, where the weights can be customized to adjust
the likelihoods of generalization on the attributes to suit di�erent
research uses. Recognizing that MILPs are hard in general [Pa-
padimitriou, 1981, von zur Gathen and Sieveking, 1978], we also
introduced two practical algorithms, both of which are memory
e�cient and can be applied to datasets containing large numbers of
records. We evaluated our algorithms based on their optimality, per-
formance and scalability; we also provided benchmark tests against
other classes of algorithms (heuristic-based, partitioning-based and
clustering-based). We demonstrated that our Greedy Search algo-
rithm can either achieve similar utility with more e�cient running
time, or better utility with a less e�cient yet still very good running
time. We also provided tests to show a remarkable improvement in
performance and utility in our Split & Carry over other algorithms
when the number of records is large and the number of attributes
is small, for small k . From our experiments and theoretical justi�-
cations, we conclude that both our algorithms are suitable tools for
anonymization on large datasets. We recommend that the Split &
Carry algorithm be used when the number of attributes is small
and the dataset is very large, for common values of k which are
small. When we have many attributes or if we are interested in a
larger k value, the recommended choice is Greedy Search whose
complexity is always bounded by O(n2) regardless of the number
of attributes and choice of k .

There are several future directions for our research. We have
implemented the Split & Carry algorithm with the number of carry-
over records equal to k plus the number of distinct equivalent rows
to the last k records. As discussed this can lead to performance
issues as k becomes larger. As a future research direction, we can
instead use a customizable parameter l in place of k to mitigate the
problem. It would be interesting to experiment with this parameter
to see whether there would be recommendable choices for l .

We can also modify the existing algorithm in the set of records
we carry. The current algorithm carries over thek-set of each bound-
ary record if there are either zero or at least k remaining indirectly
equivalent records, otherwise we carry over the k-set plus all indi-
rectly equivalent records. We could instead carry over a subset of
the k-set, in particular for themth sub-problem, we can determine
the subset as follows: Let xi be the boundary record under consid-
eration, denote its equivalence class by Eqi := {xi ,xi2 , ...,xik }. For
l = i2, .., ik , compute the objective value fl := f (Eqi \ xl ). Then
we de�ne the set of carry-over records for xi to be the k � (k � r )
records with the largest fl ’s, where r is the size of the set of indi-
rectly equivalent records, r < k . In other words, we carry those
records that contribute the smallest information loss in Eqi , which
means these records can be potentially grouped into an equivalence
class with less information loss than Eqi in the next sub-problem.

Another way to remedy the situation is, instead of specifying S -
the minimum number of the k-sets to include in a sub-problem, we
can use a parameter P to specify the exact size of each sub-problem,
and a parameter A which describes how many k-sets we accept
into our �nal solution. For example, for k = 3 we can have P = 12,
and A = 2, i.e. we accept the two k-sets with minimum utility loss



into our �nal solution, and carry the remaining records into the
next sub-problem of exact size P = 12, creating a chain of sub-
problems by bubble carry. Inevitably in this modi�ed algorithm we
will have to solve more sub-problems than our current Split & Carry
(leading to a linear increase in complexity), however, in this way
we are controlling the size of each sub-problem which we know
to have good complexity when the number of attributes is small.
This simple modi�cation might have better running time than our
current algorithm where in the latter there is some variation in the
sizes of the sub-problems.

Both our algorithms use the initial feasible solution as the start-
ing point, and we have seen in the experiments that the initial
feasible solution is very e�cient and already has utility advantage
over the Mondrian algorithm. Therefore, determining an optimal
sorting order is also valuable as future work; it can potentially im-
prove utility to an extent that the initial feasible solution by itself,
can also be merited as an e�cient solution for anonymization.

The k-anonymity model as a privacy preservation technique
has a number of limitations that impact our formulation. When
an adversary is in possession of external knowledge that can be
linked to the anonymized dataset, the adversary might be able to
deduce additional information about an individual; some of such
adversarial scenarios are described by De Capitani Di Vimercati et
al.[De Capitani Di Vimercati et al., 2012]. In these scenarios there
are attributes that contribute more to potential re-identi�cation of
an individual than others (e.g., a person with a particular birth date
who lives in an area of a particular zip code). In our formulation,
we can assign smaller weights to these attributes to over generalize
them, thus decrease the risk of re-identi�cation. There is, however,
one concern with using weights; in a scenario that an adversary
has access to multiple datasets originated from the same dataset but
anonymized by di�erent weight vectors, the adversary might be
able to infer additional information on the original dataset. In partic-
ular, in each anonymized set, the attribute with the largest weight
has the smallest gap in its generalized bounds. Thus by combining
di�erent datasets the adversary can arrive at a much �ner dataset.
This problem can be mitigated by randomizing the anonymized
datasets before their release, however the adversary might still be
able to detect additional patterns. A more in-depth study to address
the security properties of applying weights presents an interesting
future research direction.
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APPENDIX
A Weighting Attributes
We present an example of applying weights to the attributes using
a dataset from the database of FARS [US Department of Trans-
portation, 2016]. In Table 4, we have the original dataset in (a) on
4 attributes: AGE, SEX, INJ_SEV (injury severity) and DRINKING;
we also have the outcome of the dataset anonymized with equal
weights in (b), and the outcome anonymized with weight vector
(0.8, 0.05, 0.1, 0.05) in (c). We see that the upper-lower bound gaps
in the anonymized outcome for the AGE attribute narrowed when
we applied a large weight to this attribute, i.e., we achieve better
utility for AGE; however this is achieved at the expense of the SEX
and DRINKING attributes.

B Categorical Data
When we convert a categorical attribute into a vector of binary
attributes, we use 1 to indicate presence of the property. For
example, in the dataset used for the results shown in Figs. 3a - 3d,
"Marital Status" attribute is represented as (u1,u2,u3,u4,u5,u6)
with each binary attribute ui representing a permissible value
in Marital Status. In record 628 the entry for this attribute is
1 (representing status "Married; spouse present"), and thus
represented as (1, 0, 0, 0, 0, 0). Its equivalence class by Greedy
Search are the records {628, 648, 819}, and the entries for records
648, 819 under Marital Status are 1 and 6 (representing status
"Never married/single"), respectively. The anonymized outcome is
represented as "1 | 1 | 6", which means the entries in this class can
be translated back into high-level attributes as {"Married; spouse
present", "Never married/single"}.

We give a de�nition of the GCP here that is similar to the
de�nitions in [Doka et al., 2015, Wong et al., 2010].

DEFINITION 8: The Normalized Certainty Penalty (NCP)
information loss metric for the anonymized outcome x 0i j of an
attribute aj is de�ned by:

NCP(x 0i j ) =
( count (x 0i j )�1

|aj | : aj is categorical

Di j : aj is numeric

where Di j is as de�ned in De�nition 4.

DEFINITION 9: We also de�ne the Global Certainty Penalty (GCP)
information loss metric for anonymized record x 0i := [x 0i j ]j 2� to be:

GCP(x 0i ) =
’

j 2� NCP(x
0
i j ) (40)

C Worked Examples
In this subsection we work through two examples to demonstrate
the steps of the Split & Carry and Greedy Search algorithms. Our
input dataset is as in Table 2a. We let k = 3 and S = 3.

Example 1: Split & Carry
The �rst step is to sort by variance as described in Sec-
tion 2.3. The initial feasible solution creates 6 k-sets, namely
{[12, 1, 11], [14, 7, 10], [16, 19, 13], [6, 9, 5], [8, 2, 5], [17, 0, 8, 18, 3]}.

The �rst sub-problem contains the �rst 3(S = 3) k-sets, and an
initial solution with each k-set as equivalent rows is passed into to
the Gurobi solver. The optimal solution for the �rst sub-problem is
give in Table 5b. The k boundary records are {16, 19, 13}, and they
are equivalent to records {14, 7, 10}, thus the carry-over records
from Sub-problem 1 to Sub-problem 2 are {14, 7, 10, 16, 19, 13}. The
equivalence classes of the non-carried records become part of the
�nal solution. The carry-over records are added to the remaining
3 k-sets to form Sub-problem 2 as in Table 6a. We then solve
Sub-problem 2 and obtain the optimal solution in Table 6b. Putting
the solutions together we obtain the outcome in Table 4b. In this
example, the optimal solution to Sub-problem 2 does not change
the equivalence classes of the carry-over records, in general this
need not be the case. We also note that the �nal solution provided
by Split & Carry in this example is the same as the optimal solution
by the general MILP.

Example 2: Greedy Search
The �rst step is again to sort by variance as described in Section 2.3.
Then we move down the sorted list of records. For each record we
�nd k � 1 records such that the least information loss is incurred
when they are assigned to the k-set of this record. In this example,
we �rst look at the record with index 12, and determine {1, 11}
to be in its equivalence class. We remove the records {12, 1, 11}
from the list. The next record in the remaining sorted list is 14,
and we determine to k-set for 14 to be [14, 7, 10] and remove these
from the list. We continue in this manner until we are left with 2
records {4, 18} in the list. For each remaining record, we �nd in
our existing collection of k-sets the set that would incur the least
information loss if the said record was added to it, and add the said
record to this k-set. The complete set of iterations for this example
is given in Table 7.

D On the parameter S
The upper bounds on the sizes of the sub-problems in Fig. 5a - 5b
are provided by LEMMA 2, and they are: 24, 27 and 30, for S = 3,
S = 4 and S = 5, respectively. We give the actual distributions on
the sizes of the sub-problems in Table 8a - 8c and see that the sizes
rarely reach their upper bounds.

E Statistics of the Datasets
In this subsection we provide the statistics on the datasets used in
our tests. In Table 9 we display the variances of the CENSUS dataset
(on 8 attributes) for di�erent numbers of records, the min/max
values were given in Table 3. We also display the statistics for the
extended datasets of 15-35 attributes in Table 10.

Note that the variances for each attribute in Table 9 are similar
across di�erent sizes, thus we expect the information loss incurred
to be similar across these datasets when the same k is used. Indeed
this is what we observed in Section 4.4 Fig. 6c and Fig. 6d.

F Alternate Database
In this subsection we present some test results using alternative
datasets from the FARS [US Department of Transportation, 2016]
database containing tra�c accidents data. We have datasets on



(a) Original dataset (b) Anonymized - equal weights (c) Anonymized - unequal weights (.8, .05, .1, .05)

Table 4: Sample dataset from FARS[US Department of Transportation, 2016] anonymized by equal and unequal weights

(a) Sub-problem 1 Dataset (b) Solution to Table 5a

Table 5: Sub-problem 1 of Worked Example 1

(a) Sub-problem 2 Dataset (b) Solution to Table 6a

Table 6: Sub-problem 2 of Worked Example 1

4 attributes: MONTH (of occurrence), AGE, SEX, INJ_SEV. All 4
attributes can be viewed as numeric (with SEX being binary).

In Fig. 9a - 9b, we see that our algorithms still achieve similar
utility to the Doka Hungarian algorithm while having better per-
formance. Our Greedy Search appears to have better performance
than our Split & Carry in Fig. 9b when we have only 1000 records;

Index Remaining Records k-Sets
12 {14,7,10,16,19,13,6,9,5,8,2,15,17,0,4,18,3} [12,1,11]
14 {16,19,13,6,9,5,8,2,15,17,0,4,18,3} [12,1,11],[14,7,10]
16 {19,13,6,8,2,15,17,0,4,18,3} [12,1,11],[14,7,10],[16,5,9]
19 {8,2,15,17,0,4,18,3} [12,1,11],[14,7,10],[16,5,9],[19,13,6]
8 {2,15,4,18,3} [12,1,11],[14,7,10],[16,5,9],[19,13,6],[8,0,17]
2 {4,18} [12,1,11],[14,7,10],[16,5,9],[19,13,6],[8,0,17],[2,15,3]
4 {18} [12,1,11],[14,7,10,4],[16,5,9],[19,13,6],[8,0,17],[2,15,3]
18 {} [12,1,11],[14,7,10,4],[16,5,9],[19,13,6,18],[8,0,17],[2,15,3]

Table 7: Steps of Greedy Search for Example 2.

Size Count
9 1
11 1
12 432
13 33
14 30
15 21
16 22
17 16

(a) S = 3, k = 3

Size Count
12 1
14 1
15 292
16 27
17 29
18 16
19 16
20 11
21 8
22 5
23 5
24 3
26 1
27 2

(b) S = 4, k = 3

Size Count
15 1
18 200
25 15
22 16
23 12
26 19
20 17
28 9
19 23
21 12
27 3
24 4
29 1
30 1
13 1
(c) S = 5, k = 3

Table 8: Distributions of sub-problem sizes for Fig. 5a - 5b.



Number of
Records Gender Age Marital

Status Race Birthplace Education
Level Work Class Occupation

20,000 0.25 224.47 4.83 0.57 3340.06 7.33 11.27 78.00
30,000 0.25 225.03 4.82 0.56 3402.68 7.30 11.22 78.53
40,000 0.25 225.31 4.82 0.57 3414.58 7.33 11.20 78.72
50,000 0.25 225.64 4.81 0.58 3417.06 7.38 11.31 78.70
60,000 0.25 226.29 4.81 0.57 3372.39 7.36 11.34 78.66
70,000 0.25 226.37 4.83 0.56 3410.34 7.36 11.28 78.51
80,000 0.25 226.32 4.83 0.56 3412.74 7.38 11.28 78.53
90,000 0.25 226.96 4.83 0.56 3424.04 7.38 11.28 78.69
100,000 0.25 227.14 4.83 0.57 3412.27 7.39 11.31 78.50

Table 9: Variances (rounded to 2 decimals) by attribute for the CENSUS datasets with 8
attributes.

Attribute Variance [min, max]
Family Unit 0.004533004 [1,3]
Family Size 1.442669131 [2,16]
Age of Oldest Child 58.72416437 [0,90]
Age of Youngest Child 56.41184578 [0,90]
Relationship to Household Head 0.824784829 [1,12]
Gender 0.241520454 [1,2]
Age 100.447806 [16,90]
Birth Quarter 1.252327406 [1,4]
Marital Status 1.167666581 [1,6]
Birth Year 100.3407262 [1889,1963]
Times Married 0.148862341 [0,2]
Age at First Marriage 20.55224999 [0,90]
Children Ever Born 4.679614458 [0,13]
Race 0.393475514 [1,7]
Birthplace 4471.679274 [1,465]
Years in the United States 0.63840967 [0,5]
Language Spoken 30.45895319 [1,96]
Highest Grade of Schooling 8.217952835 [1,23]
Class of Worker 0.068740375 [1,2]
Class of Worker - Detailed 11.5164085 [13,29]
Weeks Worked Last Year 168.0059844 [0,52]
Hours Worked Last Week 140.8818287 [1,99]
Usual Hours of Work 156.7482934 [0,99]
Weeks Unemployed Last Year 26.31284308 [0,52]
Income From Wages 98538554.92 [0,75000]
Other Income 2669021.007 [0,75000]
Occupation 81.01775489 [4,79]
Migration Status, 5 Years 0.459946975 [1,4]
Place of Work, State 94.98776039 [1,80]
Means of Transportation to Work 39.7001238 [11,70]
Vehicle Occupancy 0.708769336 [0,7]
Time in Transit 239.9953666 [0,99]
Citizenship 0.13065803 [0,3]
Year of Immigration 0.68959079 [0,6]
Work Disability Status 0.033916173 [1,2]

Table 10: Variances, min/max values of the CENSUS datasets with 15-35 attributes.

however, we see in Fig. 10b that when we increase the number of
records to 40000, Split & Carry has both better performance and
utility. These results are consistent with our earlier observations.

G Hardware Information
In this subsection we list the typical hardware speci�cations for
running the experiments. We used Google Cloud Computing Ser-
vices (https://cloud.google.com/) with machine type n1-highcpu-8.
In Table 11 we list the speci�cations for one of the processors, the
remaining seven are identical except for the processor id, core id,
apicid and initial apicid.

Figure 9: Comparison of objective values and running times for FARS database with 1000
records, 4 attributes and k = 3
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Figure 10: Comparison of objective values and running times for FARS database with
40,000 records, 4 attributes and k = 3
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MemTotal 7352436 kB
MemFree 6587692 kB
MemAvailable 6966836 kB
Bu�ers 50336 kB
Cached 542508 kB
SwapCached 0 kB
Active 409856 kB
Inactive 233532 kB
Active(anon) 50700 kB
Inactive(anon) 10120 kB
Active(�le) 359156 kB
Inactive(�le) 223412 kB
Unevictable 0 kB
Mlocked 0 kB
SwapTotal 0 kB
SwapFree 0 kB
Dirty 0 kB
Writeback 0 kB
AnonPages 50540 kB
Mapped 23064 kB
Shmem 10280 kB
Slab 43912 kB
SReclaimable 29668 kB
SUnreclaim 14244 kB
KernelStack 2160 kB
PageTables 2780 kB
NFS_Unstable 0 kB
Bounce 0 kB
WritebackTmp 0 kB
CommitLimit 3676216 kB
Committed_AS 95452 kB
VmallocTotal 34359738367 kB
VmallocUsed 0 kB
VmallocChunk 0 kB
HardwareCorrupted 0 kB
AnonHugePages 0 kB
ShmemHugePages 0 kB
ShmemPmdMapped 0 kB
HugePages_Total 0
HugePages_Free 0
HugePages_Rsvd 0
HugePages_Surp 0
Hugepagesize 2048 kB
DirectMap4k 99316 kB
DirectMap2M 3256320 kB
DirectMap1G 5242880 kB

Table 11: Memory Speci�cations

processor 0
vendor_id GenuineIntel
cpu family 6
model 79
model name Intel(R) Xeon(R) CPU @ 2.20GHz
stepping 0
microcode 0x1
cpu MHz 2200
cache size 56320 KB
physical id 0
siblings 8
core id 0
cpu cores 4
apicid 0
initial apicid 0
fpu yes
fpu_exception yes
cpuid level 13
wp yes
bugs cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs
bogomips 4400
cl�ush size 64
cache_alignment 64
address sizes 46 bits physical, 48 bits virtual
power management:

Table 12: CPU Speci�cations


