Concurrency: a relational approach

Ridha Khédri! and Jules Desharnais?

! Department of Computing and Software, McMaster University, Hamilton, ON, L8S 4K1 Canada,
E-mail: Khedri@mcmaster.ca
2 Département d’informatique, Université Laval, Québec, QC, G1K 7P4 Canada,
E-mail: Jules.Desharnais@ift.ulaval.ca

Abstract. We model processes by means of a mathematical entity that we call a relational process.
This model describes a process as an open system from which the description of the process as a closed
system can be easily obtained. Also, it represents not only the actions of the process but also the
resources needed to accomplish its behaviour. Using this model, we first define two operators. Each
of these represents an extreme perception of concurrency. One, the interleaved parallel composition
operator, reduces concurrency to interleaving and the other, the mazimal totally synchronous parallel
composition operator, reduces concurrency to a totally synchronous behaviour. Second, by combining
these operators, we define the mazimal true-concurrency composition operator, which is an operator
expressing true concurrency. When many processes interfere on the same resource in order to modify
it, each in its way, the two maximal operators express this situation by letting the final value of the
variable modelling this resource be indeterminate. So, they allow the detection of interferences between
processes. We present some of the properties of these operators.

Keywords: Concurrency, relational process, interleaved parallel composition, synchronous parallel com-
position, true concurrency.

1 Introduction

Since the work of Carl Petri on Petri nets (1962 [19]), which is the first general theory about
concurrency, many models of concurrency were introduced. These models vary depending on
the formalism used and on the simplifications made in the description of this notion.

The best-known methods dealing with concurrency are Petri nets [20], the Calculus of
Communicating Systems (CCS) [15] and the Communicating Sequential Processes (CSP) [11].
Petri nets emphasize the graphical representation of real concurrency [16]. But, except by
using the semantics of nets, there is no method allowing the verification or the calculation of
the components of concurrent systems. As regards CCS and CSP, they emphasize structure
and abstraction aspects [16]. Also, true-concurrency, in the two approaches, is neglected
in favour of an interleaving model with synchronised communications between processes.
Actual concurrent systems are usually composed of several independent processors, each of
them executing a process. In such systems, the execution of actions in different processors
sometimes overlaps and sometimes interleaves. This is what is called real concurrency or true

CONCUTTENCY.
Methods like CSP and CCS deal with uniform concurrency only. This means that pro-
cesses are studied, performing actions a, b, c, ... which are not subject to further investiga-

tions. So it remains unspecified if these actions are in fact assignments to variables or the
falling of dominoes or other actions [22]. Also, the resources needed to accomplish these
actions remain unspecified. Now, most software problems result from erroneous descriptions

2 Ridha Khédri and Jules Desharnais SERG Report 382

of the intended behaviour, and conflicts about resources in concurrent systems only compli-
cate the situation. The term uniform concurrency was used for the first time to qualify such
methods by De Bakker et al. in [5].

In this paper, we present a relational model for processes and we introduce various
operators expressing different perceptions of concurrency: interleaved, totally synchronous,
and true concurrency. In the next section, we present the relational background of this
paper. Next, we present the interleaved parallel composition. After, we present the totally
synchronous parallel composition followed by the true-concurrency composition. Finally, we
conclude and we point to our future work.

2 Background

Relations are sets and, as such, we can apply to them the usual set operators. However, to
avoid confusion between sets (other than relations) and relations, we use different operator
symbols for relations and sets other than relations. For example, set union is denoted by
U while relation union is denoted by LI. Union (L), meet (M) and complementation ()
are operators applicable to relations. The inclusion (C) confers an order to relations. Other
operations are defined on relations, such as the following ones (the symbol £ s equality by
definition).

Definition 1. Let RC X x Z and S C Z x Y be two relations.

(a) The converse of relation R, noted R”, is defined as R~ = {(z, 2) | (z,2) € R}.
(b) The relational composition of R and S, noted R;S, is defined as

RS={(z,y)|V(z:2€Z : (z,2) €R A (z,y) € S)}.

We remark that R:;S C X x Y. The precedence of the relational operators, from highest to

lowest, is: ,” 3,1, LI and the precedence of the set operatorsis , N, U. The empty relation,

the universal relation and the identity relation are denoted by L, T and I, respectively.
Some of the usual rules of the calculus of relations follow (see [4] [21]).

Theorem 2. Let P,() and R be relations. Then
1. Pi(Q U R)=P;Q U PR, = P;Q C P;R,

4 QCR
. (P L Q)R = P:R U QR, 5 PC Q= P;RC @R,
N@U R =PNQ L PNR, 6. QC R <— @ CR".

NSRS
S

For all the remainder of the paper, we fix a set of indexes U/ and a family of domains
(1 : i€U : D;). The set U is considered as a universal set in a given context.

Definition 3. Let I CU, D; = [](i : i€l : D). n

SERG Report 382 Concurrency: a relational approach 3

The set Dy can be seen as the set of all functions
f:Il— UG : i€l : D)
such that A (i : €1 : f(i) € D;). This can be written more formally as
4. feD; <= (f:1— Ui : i€l : D;)) N (NG i€l : f(i) € D;)), n
where I C U and f is a function.

Definition 5. Let f € D;. The restriction of the function f to a subset K C [is the
function element of Dy given by Zx;f, where Zf is the identity over K, i.e.

ZK:{(iaj)|i7j€K/\7;:j}-]
We use different fonts to distinguish between the identity over a subset of indexes K, noted
Tk, and the identity over Dy, noted [. For the latter, we simply write I when the context
allows to know K. It is easy to see that, for I and .J subsets of U, we have Zy = L,
Ir UWZ; =Ty, and I13Z; = Z7 MLy = Zyny. The following definition introduces projections.

Definition 6. Let I C U. The projection from Dy onto Dy, noted II,, is defined as:
o,2{(f,9) | f€Du N g=Tiif}.

From this definition, it ensues that, for I C U, II,, =1, IT;;II, =1y, and 11, is total.

Definition 7. Let I C U, 6, = II,:IT;. The relation d, is said to be an I-cylindrification
relation. "

Ezample 8. Let U = {z,y, 2z} and Dy, = Dy,y = D,y = N (the natural numbers). Then
I, ={((z,y,2),2") | 2’ = 2} and 0oy = {((2,9,2), («',y,) | 2" = 2},

where we use the well-known correspondence between the tuple notation and the func-
tion notation (e.g., using the ordering x,y, z, the tuple (3,4,5) corresponds to the function

{(2,3),(y,4), (2,5)}).

Projecting from D, onto D; followed by the inverse operation comes down to preserve
uniquely the components given by the family of indexes I. This is what the relation 0,
expresses. The effect of this relation is similar to what is expressed in cylindric algebras [1]
[9] [10] by some unary operators called cylindrification operators. It is mentioned in [9,
page 1] that this terminology is borrowed from analytic geometry. We note that if we were
to stay close to the cylindric algebras terminology, we should call §, an I-cylindrification
relation instead of an I-cylindrification relation; however, for convenience, we adopt the term
I-cylindrification. Composed to a relation R, the [-cylindrification relation introduces an
existential quantification. We say that we accomplish a right I-cylindrification on a relation
R in the case of R;d, and a left I-cylindrification on R in the case of §,;R. Either in the
literature [6] [10] or in the course of our study of concurrent systems, we saw that the
cylindrification relations introduced by definition 7 have very interesting properties that
could simplify the notation and the proofs. Some of these properties follow; their proof can
be found in [13].

4 Ridha Khédri and Jules Desharnais SERG Report 382

Theorem 9. Let P,Q, R be relations and let I and J be sets of indexes. Then,

1. 6,50, =06,:0, =9,.,, 8. IC 6, we. 9, is reflexive,

2.0, =T, 9. 9, is difunctional,

j’ %u?]l’_ e 10. 6, s an equivalence relation,

566 =0, 11. 1 CJ = (Q:0, NR):d, = Q:6, M R:6,,
6. 07 =24, 12. 1CJ=0,:(6,;;QMR)=10,:Q M0,R,
7.6,M =1, 13. 0, s total and surjective.

2.1 (J, K)-determined relations

Definition 10. Let R be a relation and let I and J be two subsets of . The relation R is
said to be (J, K)-determined iff R = 6,;R;:0,, . n

In other words, given two subsets of ¢, J and K, a relation R is said to be (J, K)-determined
if and only if the left J-cylindrification with the right K-cylindrification of R do not lose any
of the information carried by R. If we see R as an input-output relation, this means that all
the information carried by R concerns input components that are elements of .J and output
components that are elements of K.

By the following proposition, we give some of the properties of (.J, K)-determined rela-
tions.

Proposition 11. Let P and @) be two relations such that P = ¢,;P;0, and Q = 0,:Q;0,,.
We have

(a) P l_l Q:(SJUL;(P |_| Q)76KUM7
(b) PT1Q = 0,,,5(PN Q)0
(¢c) Pio___ = P, _ = Pid_.

KNL

Proof.

(a) It follows from Theorem 2(1, 2), and Proposition 9(1).
(b) It results from Proposition 9(1), Proposition 9(11), and Proposition 9(12).
(c) It follows from Proposition 9(1), the distributivity of N over U, and Proposition 9(5).

The following proposition gives a connection between cylindrification relations, (I, .J)-
determined relations and partial identities.

Proposition 12. Let P and @) be relations such that P = 0,;P;6, NI et Q) = ¢,:Q;:6, M 1.
We have

PNQ=96,,;(PNnQ)s,,, Nl

uJ’

Proof. It follows from Proposition 11(b) .

SERG Report 382 Concurrency: a relational approach 5

3 Relational processes

Sequential systems do not interfere with other systems which could block them an acces to
a resource or could modify the result of a job that they are doing. All the accesses to the
resources that they use is done either before they start or after they finish. Consequently,
when modeling sequential programs (which are instances of sequential systems), neither the
atomicity of program actions nor the distinction between read and modified variables or
between controlled and non-controlled variables is needed. A system which interacts inter-
actively with its environment (with the environment possibly acting on the system before
it stops) is said to be a reactive system. A model of a reactive system should make explicit
what the resources used by each action are. Also, the modeling should refer to the atomicity
of actions [3]. When modeling a given process, we group the resources of the process and
its environment in three categories: the resources from where the process draws the needed
raw material, the resources that it could modify and the resources which it does not use.
Certainly a model that takes into consideration the atomicity of actions and the resources
used contains some useless information for the study of sequential systems. However, this
information becomes useful when the system acts concurrently with other systems and its
environment.

In this section, we propose a relational model of processes. This model can be used either
to represent stand-alone systems without any kind of interaction, or to represent systems
acting with the cooperation of other systems to accomplish a work. Our mathematical entity
is called a relational process and is introduced by the following definition.

Definition 13. A relational process P is a b-tuple
((J,K . J,K eUu PJK),ap,Ep,wp,Fp)

satisfying

(a) PJK = (5J7PJK7(5K
(b) Qp =46, :Qqpid, NI
() Wp=0,,:Wpid, NI

The 5-tuple defining a relational process is formed by

— a family of (J, K)-determined relations. Each of these relations describes the behaviour
of the part of the system which reads its values from the variables given by the set of
indexes J and which writes the result of its processing on the variables indicated by the
set K.

— an input relation (¥ p which is included in the identity and is also (Ep, Ep)-determined.
This relation characterizes the states from which the process can be activated. To sum
up, (Xp characterizes a subset of input states.

— a set Ep of indexes; these indexes are those over which the input relation may impose
constraints (by clause (b) of the definition).

6 Ridha Khédri and Jules Desharnais SERG Report 382

— the output relation W p which is included in the identity and is also (Fp, Fp)-determined.
This relation characterizes the states in which the process may stop. Thus, W p charac-
terizes a subset of output states.

— a set Fp of indexes; these indexes are those over which the output relation may impose
constraints (by clause (c) of the definition).

In the remainder of this paper, a relational process will be indicated by calligraphic capital
letters, such as P in Definition 13. The relations in the first component of the 5-tuple (Pyx
in Definition 13) are denoted by standard font capital letters and they are indexed by the
set of the read resources, followed by the set of the (possibly) modified resources. The other
four components of the relational process ((Xp, Ep, W p, Fp in Definition 13) are indexed by
the same capital letter which denotes the process, but in standard font. From now on, to
lighten the notation, we will write by (J,K :: P,)instead of (JJK : J K€U : P,).

Example 1/. Let P and Q be two relational processes such that

P ={P e Poourivan 1 Aps {D, 9}, L, D)

and
Q=({CQuieny Queryion 1 Xy {e,y}, L, 0),
where
Poyiomy = {p=1Ap=2An 2" =1},
oy =P =2 AP =1L AYy<N Ay =y+a}, Qp={p=1Ay=0}n1I,

Q{C,y}{c,y,z}:{czl AN =2 N y>0 A y'zy—l A\ z’:l};

Quiypeny =1c=2 N =1 AN t'=f(zt)}, and Ag={c=1 A y=0}N1L

We remark that @,, for example, describes the part of a Q which reads its information
from the resources indicated by {¢, y} and which modifies the resources indicated by {¢, vy, z}.
We assume that the two relational processes are intended to run forever, so that their output
relation is the empty relation. The two processes are graphically illustrated in Figure 1. Each
node is labelled by a predicate characterizing a set of states. The nodes labelled by p = 1 and
¢ = 1 are initial nodes. These are pointed to by a small arrow and labelled by a predicate
constraining the values of some variables at the initiation of the system. These values are
taken from the input relation. Each arrow of the transition systems is labeled with a triplet
formed by the set of read variables, by a predicate relating primed and unprimed variables
(except those present in the nodes), and the set of potentially modified variables. Since these
transition systems are used here only to illustrate examples visually, we do not describe
further the connection between them and the formal description of a relational process.

Definition 15. Let P = ((JJK = P,),(Xp,Ep,Wp, Fp) be a relational process. The
associated relation of the relational process P is the relation P = U(J, K :: P,, T 6.). =

SERG Report 382 Concurrency: a relational approach 7

({p},2" = 1,{p,z}) {eyhy>0 Ay =y—1 A 2" =1,{cyz})

Q N
7 7
N \ 3 \
p=1 @ c=1 c
({29} y <N Ay =y+uz,{p,y}) ({e,t, 231" = f(z2,1), {c,1})

Process P Process Q

I
~

Fig. 1. A graphical illustration of P and Q

The associated relation is a union of relations. Each relation is obtained from a member
belonging to the family of relations given in the relational process expression, and this by
imposing that the variables not intended to be modified (i.e. indicated by K) are preserved.
This associated relation is a good approximation of the specification of a system and this
under the hypothesis that this system is a closed system. A system is said to be closed if it
does not have an environment; otherwise, the system is said to be open. If a system is closed,
a variable that is modified is necessarily modified by the system (no interference).

FEzample 16. Consider the relational process P of Example 14. If we take U = {¢, p, z, vy, 2, t},

then the relation associated to P, called P, is obtained as follows

P
= (Definition 15)
P{p}{p,z}ﬂém - P{p,z,y}{p,y}ﬂém
= (all calculations done)
{ d=cAp=1Ap=2Ad=1ANyYy=yANzZ=zAt=t
Vi=cAp=2Ap=1ANd =z ANy<NANy=y+az AN2Z=2ANt=t}

Proposition 17. Let * and * be two binary relational operators. Let o be a binary set

operator. Let ((J,K = P,.),Qp,Ep,Wp,Fp) and ((J,K = Q,.), g, Eg,Wq, Fg) be

two relational processes. Let t an operator over relational processes such that
PI1OQ=2((J,K = P, %Q,.), QpxQly,EpeEg,Wp*xWq, Fpe Fp).

(a) If %, % and e are commutative, then { is commutative.
(b) If x, x and e are associative, then ! is associative.

Proof.
(a) PrQ
= (hypothesis (definition of ?))
((L,K == P, xQ,.),OpxQlgy,Epe Eg,Wp*Wqg, Fpe Fp)
= (*, x et ® are commutative)
(LK = Q,xP,.),0ogxp,Ege Ep,Wg*Wp, FyeFp)
= (hypothesis (definition of ?))
QP

8 Ridha Khédri and Jules Desharnais SERG Report 382

(b) PUQIR)

= (hypothesis (definition of ?))
PZ((J,K i QJK *RJK),aQ*aR,EQOER,WQ*wR,FQ.FR)

= (hypothesis (definition of }) & #, x and e are associative)
((J,K b PJK* JK*RJK),CVP*Q{Q*CVR,EPOEQ.ER,
wP*wQ*wR,FPOFQOFR)

= (hypothesis (definition of }) & #, x and e are associative)
((L,K = P, xQ,.),OpxUg, Epe Eg,Wp*Wq, Fpe Fp)
((J,K o RJK),OZR,ER,CUR,FR)

= (hypothesis (definition of ?))
(P11 R

4 Interleaved parallel composition

The basic notion of modeling concurrency by “interleaving” was first used by Dijkstra [7],
who also coined the term “interleaving” [8]. In this model, an execution of a system that
contains two parallel processes is represented by an interleaving of the atomic instructions
of the participating processes. This model reduces concurrency to nondeterminism due to
the many possible interleavings. In each possible execution, only one action from one of the
involved processes is performed at a time. With this requirement, this model provides a
higher degree of protection from interference than is avaible when overlapping is allowed.
The following definition introduces the interleaved parallel composition operator.

Definition 18. Let P and Q be two relational processes such that
P=((JK == P,,),Cp,Ep,Wp,Fp)and Q= ((J,K == Q,.),Xg, Eg,Wq, Fo).
The interleaved parallel composition of P and Q, noted P | Q, is defined as
PLO=((JK = P, UQ,.),QpQly, EpUEyWpnWo, FpU Fy).
]

From Definition 18, we note that an element R, of the family of relations of the relational
process P | Q is the union of the corresponding (.J, K)-determined relations of the argument
relational processes. Also, a state is an input (output) state of P | Q if it is an input (output)
state of one or the other argument process.

4.1 Properties

First, according to Proposition 11(a), Proposition 12, and Definition 13, we conclude that
P | Q is indeed a relational process.

SERG Report 382 Concurrency: a relational approach 9

Proposition 19. The operator | is commutative and associative.

Proof. The operators U, LI and M are commutative and associative. Hence, according to
Proposition 17(a), we have the commutativity of | and, according to Proposition 17(b), we
have the associativity of | . =
Proposition 20. For any relational process P, we have P \P = P.

Proof. This follows from the idempotence of LI, M, and U. [

Proposition 21 connects the notion of associated relation to the interleaved parallel com-
position operator.

Proposition 21. Let P, Q and R be relational processes such that R =P | Q. Let P, Q
and R the associated relations to P, Q and R, respectively. We have R =P U Q.

Proof. It follows from Theorem 2(3).

Consider the 5-tuple
22. 0, = ((JK = T,.), LU, 1LU).

As defined, O, is a relational process. From its family of (universal) relations, we see that
O, models a particular process which can do anything and which controls all the resources.
Since its input (output) relation is empty and since the set E (F') is the universal set U, the
subset of states where the process O, may start (stop) its behaviour is empty. This process
is an absorbing element for interleaved concurrent composition, which is expressed by the
following proposition.

Proposition 23. Let P be a relational process. We have O, \ P =P L O, = O,.

Proof. This results from Definition 13, the commutativity of (i.e. Proposition 19), P L
T:T,PI_IJI_:JL,EPQZ/IandFPQZ/{. |

Consider the 5-tuple
24. Z,= ((J,K = L,.),1,0,1,0).

As defined, Z, is a relational process and it represents a process which is not doing
anything and which does not control any resource. This relational process is a neutral element
for interleaved concurrent composition.

Proposition 25.

Z,\P=PZ =7P.

Proof. The result follows from Proposition 19 (i.e. | is commutative), Definition 13, P L
JL:P,CVPE]I,WPE]I,aHdSUQZS. |

10 Ridha Khédri and Jules Desharnais SERG Report 382

Ezample 26. We take the two relational processes of Example 14. Let R, = P L Q. Then,

Re
= (Definition 18 & {p,y} U{c,y} ={p,c,y} & Lnl=1 & 0nh=0)

(P er Py onnr renrieny @eenmyieny 1 Op N Qg {p, ¢, 1}, L, D).
The input relation of R, is

Ar=0pnQg={c=1ANp=1Ay=0}nL

The mathematical model of the system formed by the interleaving of the two processes
modeled by P and Q is then R.. This system is graphically illustrated in Figure 2.

{p}, 2" =1,{p,a})

{p.ryby<N Ay =y+a,{py})
{eyby>0 Ay =y—1 A2 =1{cyz})
{e,t, 2z}, t' = f(z,t),{c, t})

e fle e [le

Fig. 2. A graphical illustration of the interleaved parallel composition of P and Q

5 Totally synchronous parallel composition

The totally synchronous parallel composition expresses a concurrency mechanism where, if
there is a system involved in a cooperation and executing an atomic action, then each one of
the other participating systems has to take simultaneously an atomic action. The free product
of transition systems [2] expresses a similar semantics of concurrency. An action is said to be
atomic if it is not a sequence of actions. In general, an action formed by many atomic actions
performed simultaneously is an atomic action. The representation of a communication action
as a pair of complementary atomic actions is a particular case of this rule. This manner of
seeing many atomic actions performed simultaneously as an atomic action is also used in the
synchronous calculus [15].

Concerning the simultaneous modification of a resource by many processes, we consider
two possibilities.

— The first one could be called “progress under full agreement”: if the processes involved
agree on the same modification, the modification is done, otherwise, the processes are
blocked (no transition is possible). This is expressed by what is called in [13] the minimal
totally synchronous parallel composition operator.

SERG Report 382 Concurrency: a relational approach 11

— The second could be called “anarchic progress under resource sharing”: if the processes
involved do not share any resource in a modification, the modification is done, otherwise,
the processes may take a transition, but the final value of the variable denoting the
shared resource is undetermined (is arbitrary). This is expressed by the maximal totally
synchronous parallel composition operator presented in Definition 27 below. In this paper
we present only this operator.

5.1 Maximal totally synchronous parallel composition

The term “maximal” qualifying here this parallel composition is not related to what we
find in [12] [14] under the name Mazimal Parallelism. In the maximal parallelism, all the
communication events appear as soon as possible and no process is let in a waiting state
when it could do some action. It is not the semantics associated to what we present in the
next definition.

Definition 27. Let P and Q be two relational processes such that
P = ((J, K PJK), Q{p, Ep, wp, Fp) and Q = ((J, K QJK), Q{Q, EQ, CUQ, FQ)

The mazimal totally synchronous parallel composition of P and Q, noted P 1T Q, is defined

as
PTT Qé ((J,K o RJK),OZPI_IOZQ,EPUEQ,CUPI_ICUQ,FPUFQ)

where

R

JK

== U(JP,JQ,KP,KQ : J:JPUJQ A K:KPUKQ
Y

JpKp ;5KanQ M QJQKQ KSKanQ)

In the definition of R,, , the variables representing the resources that could provoque a
conflict between the two processes, at the time of a modification, are given by KpNKgy. When
there is a conflict, the operator || assigns an indeterminate final value to these variables.
For instance, take P, = {2z’ > 0} and Q, ., ., = {2’ =4 A y' =z + y}. The relation
describing the actions obtained by the maximal totally synchronous parallel composition of
the actions given by P, . and @, .. . is the relation R . . = {y" =z +y}. Note that
in spite of the fact that = is controlled in the modification, its final value is arbitrary.

The following equalities hold. They can be used to derive expressions equivalent to that

of relation R,, in Definition 27.

28. P T(Qs_ M R;é
QKR

Kpn(KQUKR) KQmKR)’ Kpn(KQUKR)

P:o. M Q;o. [M—
KQUKR KpUKpg KpUKQ

(Psd

MQ:)i MRo____
KpnKg KpnKqy’ (KpUKQ)NKg (KpUKQ)NKp

12 Ridha Khédri and Jules Desharnais SERG Report 382

To be able to claim that the result of the maximal totally synchronous parallel compo-
sition of two relational processes is a relational process, we need to show that the relations
R, . of Definition 27 are (J, K)-determined. This follows from Definition 27, Theorem 2(1,

JK
2), Proposition 9(12), Proposition 9(1) and Proposition 9(11). Also, using Proposition 12,
we can prove that the input and the output relations satisfy both conditions of the definition
of a relational process (i.e. Definition 13(b, c¢)). Hence, the maximal totally synchrounous
parallel composition of two relational processes is a relational process.

Proposition 29. The operator] is commutative and associative.

Proof. The commutativity of 1T is a consequence of the commutativity of U, N, and M. The

proof of associativity follows.

P11 (QTR)
= (Definition 27)
P ((Js, Kg == U(Jg,Jr, Ko, Kr : Js=JogUJr N Kg=KgUKpg
F Qiorg ;5KQHKR Nk, . ;5KQm<R), O M g, EqUER,WoMWpg, FoU Fpg)
(Definition 27)
(K = UJp,Js,Kp,Ks : J=JsUJp A K =KsUKp

: PJPKP;(SKPHKS Il H(JQ,JR,KQ,KR : JS:JQUJR VAN KS:KQUKR
: (Q‘]QKQ KSKQHKR ([R']RKR ;5KQ0KR); KPnKS)))’aP M CVQ ([OZR,

EpUEqQUER WpNWoNWeg, FpUFgU Fg)

((‘LK B l—l(JPanaJR;KPaKQaKR
3J:JPUJQUJR/\K:KPUKQUKR
: PJPKP ﬁm x (QJQKQ ;6KQF1KR M RJRKR; KQDKR); Kpn(KQUKR))’
ApNOgNQAg, EpUEQUER,WpNMWoMWeg, FpU Fg U Fg)
= (Equation 28)
((‘LK B l—l(JPanaJR;KPaKQaKR
3J:JPUJQUJR/\K:KPUKQUKR
: (PJPKP ﬁmﬂ QJQKQ ;5KP0KQ); (KpUKQ)NKR M JRKR;(SW))’

ApNOgMNOQe,EpUEQUER,WpNWgMWeg, FpU Fg U Fg)

((J,K o U(JS,JR,KS,KR : J:J5UJR A\ K:K5UKR
|—|(JP7JQ7KP7KQ

: JS:JPUJQ VAN KS:KPUKQ

: (PJpr ;(5W M QJQKQ ;5KPHKQ);5K50KR)n R, . KSW)),

ApNOgNAg, EpUEQUER, WpMWoMWeg, FpU Fg U Fg)
= (S=P1Q)

SERG Report 382 Concurrency: a relational approach 13

((JS,KS o U(JP,JQ,KP,KQ : JS:JPUJQ A KSZKPUKQ
t Py, ;5KPHKQ M QJQKQ KSW))

CVPI_ICVQ,EPUEQ,CUPI‘IWQ,FPUFQ)
R

(Definition 27)
(PTQNMR

Consider the 5-tuple
30. 0 = ({T,,},1,0,1,0).

Because T,, = T = 0,5T 4, and §,;1:0, NI = I, the 5-tuple O is a relational process. It
models a process which does not control any resource and it is able to perform only actions
that do not need any resource for their accomplishment (as a skip statement — which is a
trivial do-nothing statement —). Also, it is a process such that each of its states is both an
input state and an output state.

The following proposition claims that the relational process O, given by Equation 30, is
a neutral element for the operator 1.

Proposition 31. Let P be any relational process. We have O 1T P =P 171 O =P.

Proof. This results from Proposition 29 (i.e. 1] is commutative), Definition 27 and Propo-
sition 9(3). "

Consider the 5-tuple
32. Z=((J,K = L,,.), LU, LY.

It is a relational process, since 1L = ¢,:1:d, MTand L, = 1L = ¢,:L,,:d,. The following
proposition asserts that it is an absorbing element for 7.

Proposition 33. Let P be a relational process. We have Z [T P=P 11 Z2 = Z.
Proof. The result follows from Proposition 29, Definition 13, and Definition 27. [

The operator 1] is not idempotent. Indeed, let P = ({{z' = 1}o), Op, Ep,Wp, Fp),
where (¥p, Ep, W p and Fp are arbitrary. We have

P TT P = ({T(D,{:L‘}}a aP,EP,wP,FP).

First, we note that P 1 P # P. Second, we note that there is an interference leading to
an indeterminate final value of z. This interference could represent well the reality of what
could happen when x models a section of railway and the value 1 indicates the authorisation
to let a train take this section. Imagine the final state of this section of railway when each
one of these processes sends a train on it.

The following proposition claims that the operator 1] distributes over | .

14 Ridha Khédri and Jules Desharnais SERG Report 382

Proposition 34. Let P, Q, and R be relational processes. We have
PN@QYR)=(P1TQHPIR).

Proof. This results from Definition 18, Definition 27, and Theorem 2(2, 3).]

Ezample 35. We take again the relational processes of Example 14. Let Ry = P 11 Q.
Then,

Rm:L‘
(Definition 27 & {p,y}U{c,y} ={p,c,y} & LNl =1 & ONnO=0)

(B emoney By ematt Biemontiomner Beepemierienwi)s Xk AP, &y}, L, 0)

where

— g, =0pnNCg={c=1Ap=1Ay=0}11I,

{e;p,yHe,pz,y,2}

— (Definition 27 & {p,z}N{c,y,z} =0)

Py ey 05 M Qe ey ey 105

— (6 =6,=1 & PI=P)
0

P{P}{Paiﬂ} M Q{c,y}{c,y,z}

= (by replacing P{p}{m} and Q{C,y}{c’y,z}

{e=1ANd=2Ap=1ApP=2AN2=1ANy>0NANy=y—1A2=1}

by their value)

{e.p,t,2} {e,p,2,t}

- (Definition 27 & {p,z}n{c,t} =0)

Py 05 T Qe ey 19
— (6,=6,=1 & PI=P)
Pty N Qretirien

= (by replacing P{p}{w} and Q{C,t’z}{c,t}

{c=2ANd=1Ap=1Ap=2AN2=1ANTt=Ff(2t)}
- R

{c,p,z,y}{c,py,2}

= (Definition 27 & {p,y} N {c,y,2} = {y})

Perion 07 T Qrenieny O

= (by replacing Py, o and Qo

{p=2ApP=1ANy<N A y':y+35};6m
NM{c=1ANd=2ANy>0 ANy =y—1A ,2’21};5m

= (0,:P30,.30_ = 0,:P:6,__ = 0,iPi6,_, & all calculations done)
{e=1ANd=2Ap=2ApP=1ANy<NANy>0A2=1}

Note that ¢’ is not present in the expression of R in the previous line (its value

{e.p,x,y}{epy,2}
is thus arbitrary), in spite of the fact that the system controls the resource represented

by their value)

by their value)

SERG Report 382 Concurrency: a relational approach 15

by the variable y. This is caused by the interference of P (attempting y' = y +) with
Q (attempting y' =y — 1).

{ce,p,z,y,t,2}{e,p,y,t}

- (Definition 27 & {p,y}N{c,t} =0)

P eriont 95 T Qeeiy ey 10
= ((%zéuzll & PiI=P & valuesof P

{p,z,y}{p,y}

and Q{c,t,z}{c,t} >

P erom M Qe
= (all calculations done)

{e=2ANd=1Ap=2ApP=1ANy<NANY=y+z At=Ff(2t)}

The relational process R,,, is graphically illustrated in Figure 3.

{epzyl,y<N Ay>0 A 2" =1,{¢py,z2})
{epa.yt,zhy <N Ay =y+a A= f(z1){cpy,t})
{epyt,a'=1 AN y>0 Ay =y—1A2=1{cpuzvy,z})
{e,p, .2} =1 At = f(z,t),{c,p, 2, t})

(
(
(
(

e e e e

Fig. 3. A graphical illustration of the maximal totally synchronous parallel composition of P and Q

6 True-concurrency composition

First, we introduce a generic operator expressing true concurrency by using the interleaved
composition operator and any of the synchronous composition operators. Then we give some
of its properties. Finally, we instantiate the generic operator by choosing the totally syn-
chrounous maximal parallel composition operator in its definition.

Definition 36. Let
P = ((J,K o PJK),a{p,Ep,wP,Fp) and Q = ((J,K o QJK),CYQ,EQ,CUQ,FQ)

be two relational processes. The true-concurrency composition of P and Q, noted P { Q, is

defined as PHQ = P L Q L (P || Q), where || is a totally synchronous parallel composition
operator that is commutative, associative and distributes over | . [

Proposition 37. If P || Q is a relational process, then P Q is a relational process.

16 Ridha Khédri and Jules Desharnais SERG Report 382

Proof. This follows from the fact that
A(P,Q : P, Q relational processes : P | Q is a relational process).

]
In the sequel, we assume that the totally synchronous parallel composition operators (i.e.
17,]]) have a higher precedence than 1. Then, we have

PHQ = PLQL (P Q) = P1Q\P|Q

This expression indicates that at any moment P, or Q, or both simultaneously, are accom-
plishing an action.

Proposition 38. The operator {

(a) is commutative,
(b) is associative,
(c) distributes over | .

Proof.

(a) This follows from Definition 36 and the commutativity of | and ||.

(b) Associativity follows from Definition 36, the associativity of 1, the distributivity
of || over |, the associativity of || and the commutativity of .

(c) This follows from Definition 36, the associativity of |, the distributivity of || over |,
the commutativity and associativity of 1, and Proposition 20. [

Using the operators | and 17, the following definition introduces the maximal true-con-
currency composition operator.

Definition 39. Let
P=((JK = P,),Qp,Ep,Wp,Fp)and Q= ((JK == Q,.),Ng,Eq,Wq, Fp)

be two relational processes. The mazimal true concurrency composition of P and O, noted

PH Q,is defined as PH Q=P L QL P 1T Q. -

We already showed that P] Q is a relational process if P et Q are relational processes.
Then, according to Proposition 37, P Q is a relational process.

Also, according to Proposition 29, Proposition 34 and Proposition 38, the operator { is
commutative, associative and distributes over | .

SERG Report 382 Concurrency: a relational approach 17

Ezample /0. We take the relational processes of Example 14. Let Ry = PH Q. Then,

Rtw
= (Definition 39)

PLOLPTT Q
= (P L Q is calculated in Example 26 and called R, & P 11 Q is calculated
in Example 35 and called R,)
Re L|72m:1:
= (Definition 18 & all calculations done)

((P{p}{p,m}’ P{p,m,y}{zﬂ,y}’ Q{c,y}{c,y,Z}’ Q{c,t,Z}{c,t}’ R{c,p,y}{c,p,z,y,Z}’ R{c,p,t,Z}{c,p,w,t}’

aP r aQa {pa C, y}all—a @)

{c.p,z,y}H{c,p,y,z}’ {c,p,w,y,t,z}{c,p,y,t}) ’

where P{p}{p,w},P{p,m,y}‘{p,y},.Q{C,y}{c,y,z},Q{C,t,z}{c,t}, Oé}.: and (Xq are giyen in Example 26 and
the others terms are given in Example 35. The relational process R;; is graphically illustrated

in Figure 4.

({p},2"=1,{p.x})

{pz,yh,y< N Ay =y+a,{py})

e, y>0 A y=y—1 A 2 =1{cy,2})
(et 2}t = f(z,1), {c,t})
(
(
(
(

{e,pyx,yh,y< N A y>0 A 2" =1,{c,p,y,z})
{e,p,yt, 2, y< N Ay =y+z A t'=f(zt),{c,py,t})
{epyhd =1 Ay>0ny=y—1 A2 =1{cpuxy,z})
{e.ptzh o' =1 At = f(z,1), {c,p,z,1})

>SN 0 Q0 o9

(I L [o (| 1T

= >

Fig. 4. A graphical illustration of the maximal true-concurrency composition of P and Q

7 Conclusion

We have presented a process model suitable for representing both sequential an concurrent
systems, since it represents a process (system) as an open system, and the associated relation
gives a description of this system perceived as being closed. We have then defined two
operators, each representing an extreme perception of concurrency. One reduces concurrency
to an interleaved behaviour and the other reduces concurrency to a totally synchronous
behaviour. Then, by combining these operators, we have defined an operator expressing true
concurrency. When many processes interfere on a given resource in order to modify it, each
in its way, the maximal totally synchronous parallel composition operator and the maximal
true-concurrency composition operator express this situation by letting the final value of

18 Ridha Khédri and Jules Desharnais SERG Report 382

the variable modelling this resource being indeterminate. Hence, it allows the detection of
interferences between processes.

In order to be able to use the relational processes to model large-scale systems, our
future work aims at equipping them with a documentation inspired by what is presented for
sequential systems in [18] and which allowed the study of large-scale critical systems [17].
Concerning the operators expressing concurrency, we aim at using them in requirements
engineering to model concurrent scenarios.

References

[1] H. Andréka and I. Németi. On cylindric-relativized set algebras. In A. Dold and B.
Eckmann, editors, Cylindric Set Algebras, volume 883 of Lecture Notes in Mathematics,
pages 131-315. Springer-Verlag, 1981.

2] A. Arnold. Systémes de transitions finis et sémantique des processus communicants.
Masson, 1992.

[3] G. Boudol and I. Castellani. Concurrency and atomicity. Theoretical Computer Science,
59(1,2):25-84, 1988.

[4] L. Chin and A. Tarski. Distributive and modular laws in the arithmetic of relation
algebras. University of California Publications, 1:341-384, 1951.

[5] J. W. de Bakker, J. N. Kok, J. J. C. Meyer, E. R. Olderog, and J. I. Zucker. Contrasting
themes in the semantics of imperative concurrency. In J. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, Current trends in concurrency, volume 224 of Lecture Notes
in Computer Science, pages 51-121, Berlin, 1986. Springer-Verlag.

(6] J. Desharnais. Monomorphic characterization of n-ary direct products. In 3rd Semi-
nar on Relational Methods in Computer Science, pages 359-368, Hammamet, Tunisia,
January 1997.

(7] E. W. Dijkstra. Solution of a problem in concurrent programming control. Comm.
ACM, 8(9):569, 1965.

[8] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica,
1:115-138, 1971.

9] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras, Part I. North-Holland
Publishing Company, Amsterdam, 1971.

[10] L. Henkin, J. D. Monk, and A. Tarski. Cylindric set algebras and related structures. In
A. Dold and B. Eckmann, editors, Cylindric Set Algebras, volume 883 of Lecture Notes
in Mathematics, pages 1-129. Springer-Verlag, 1981.

[11] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International Series
in Computer Science, 1985.

[12] J. Hooman and J. Widom. A temporal-logic based compositional proof system for
real-time message passing. In E. Odijk, M. Rem, and J.-C. Syr, editors, PARLE’89
Prarllel Architectures and Languages Europe, volume II, pages 424-441, New York,
1989. Springer-Verlag.

[13] R. Khédri. Concurrence, bisimulation et équation d’interface : une approche relation-
nelle. PhD thesis, Faculté des études supérieures de I'Université Laval, Québec, Canada,
1998.

SERG Report 382 Concurrency: a relational approach 19

[14] L. Y. Liu and R. K. Shyamasundar. Static analysis of real-time distributed systems.
IEEE Transactions on Software Engineering, 16(4):373-388, April 1990.

[15] R. Milner. Communication and Concurrency. Prentice Hall International Series in
Computer Science, 1989.

[16] E.-R. Olderog. Operational Petri net semantics for CCSP. In Advances in Petri Nets,
volume 266 of Lecture Notes in Computer Science, pages 196-223, Berlin, 1987. Springer-
Verlag.

[17] D. L. Parnas, G. J. K. Asmis, and J. Madey. Assessment of safety-critical software in
nuclear power plants. Nuclear Safety, 32(2):189-198, April-June 1991.

[18] D. L. Parnas, J. Madey, and M. Iglewski. Precise documentation of well-structured pro-
grams. IEEE Transactions on Software Engineering, 20(12):948-976, December 1994.

[19] C. A. Petri. Kommunikation mit automaten. Bonn: Institut fiir Instrumentelle Mathe-
matik, Schriften des IIm No.2, 1962. Also published as technical report: Communication
with Automata. RADC-TR-65-377, Vol.1, Suppl.1, Applied Data Research, Princeton,
NJ, 1966.

[20] W. Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1985.

[21] G. Schmidt and T. Strohlein. Relations and Graphs. EATCS Monographs in Computer
Science, Springer-Verlag, 1993.

[22] R. J. van Glabbeek. Comparative Concurrency Semantics and Refinement of Actions.
PhD thesis, Vrije Universiteit te Amsterdam, 1990.

