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CHAPTER 1: INTRODUCTION

1.0 Thesis organisation

This chapter introduces the reader to the older trace assertion method (TAM) and a

new TAM.  In producing the new TAM (ITAM), this chapter gives a brief introduction to

the improvements and the reasons for these improvements.

Chapters 2,3 gives the details of the improvements, and chapter 4 presents the

resulting revised specification structure (i.e. format), incorporated with these improvements.

Chapter 5 discusses the examples found in Appendices A and B.

Chapter 6 presents the conclusion and some suggestions for future work.

In Chapter 2 we present the semantic base for our alternative replacement to using

canonical traces, a canonical representation that uses sets.  It also presents relations used in

composing a module specification.

Chapter 3 provides a syntax for describing the canonical representation, and an example

using this syntax.

Appendix A presents revised versions of all examples found in [10].  Appendix B

presents newer examples.  Appendix C gives some notes in using the syntax checking tool

when one needs to describe a canonical representation.

1.1 TAM and some basic definitions

The trace assertion method is among the many formal methods recommended for

specifying software module requirements.  For the reader to understand this method, we
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have used terminologies that may be define differently outside of this thesis.  We reduce any

confusion of some terminologies, by explaining their meaning.

1.1.1 A view of software construction

This work is based on a very simple and pragmatic view of software development.

Software Development is the design and production of programs that will be used, and often

changed, by other people.  Programs consist of algorithms and variables.  A software

developer begins with a previously constructed set of algorithms and the ability to declare

new variables of previously defined types.  Using these, the software developer constructs

new algorithms and new types of variables.

Because software will be used and changed by others, documenting each new

program and class of variables is an essential part of the software developer’s task, one that

is (unfortunately) often neglected or left to others.

In other words, the software developer has three types of products: algorithms;

variable types; and documentation.  In the remainder of this section, we discuss these in more

detail.

1.1.2 What is an algorithm (program)

For our purposes, an algorithm is something that constrains the sequence of state

changes of a digital computer (a finite state machine), [12 ].  We refer to a program as

deterministic if the constraints fully determine the sequence of state changes and

non–deterministic otherwise, [12].

1.1.3 Variables/Objects and Types/Classes

Although there is no mathematical basis for the distinction, we customarily view a

computer program as consisting of two components, a fixed part, called the control portion,

and a variable part, which we call the data.  While the data can be viewed as a single, finite
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state, machine, we customarily view it as composed of a finite set of smaller machines, called

variables.  Each variable is characterised by its set of states (values) and the set of possible

state transitions (operations).  In some programming languages, variables that have been

constructed by writing programs, are called objects, [12].  All objects have some way to

identify them.  Two variables that are identical in every way except their identifiers, are said

to be of the same type, [18]. Variables can be grouped into types or classes; it is most useful

to do so on the basis of shared characteristics.  Early programming languages provided users

with variables of a small number of predetermined types.  Later languages provide facilities

that allowed users to extend the set of built–in types with additional, user–defined, types.

However, even in the early programming languages it was possible for users to define new

types of data – but these were then syntactically different from built–in types [9].

1.1.4 Modules and Access Programs

Software is usually constructed by teams consisting of several people.  Each

programmer writes one or more groups of programs, which we call modules, [12]. Even

when there is only a single developer, the programs that he/she writes should be grouped into

modules.  Of the programs included in a module, some may be invoked by programs that

are not part of the module.  We call these externally accessible programs access programs.

People developing other modules should be aware only of those access programs.  It is

considered ”good design” to make sure that those who use a module need not be aware of

any aspects of it that are likely to change [9].

A module is referred to as deterministic if all of its programs are deterministic and

non–deterministic otherwise.

1.1.5 Modules and Objects

New types of objects are made available by writing programs that implement the

operations on those objects.  These programs may be grouped into modules as illustrated in
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[9] and many subsequent papers.  The operations are performed on the objects by invoking

the access programs of the module.  In [9], each module implemented exactly one object.

By adding object identifiers as additional arguments for programs, a module’s

implementation may be used to create more than one object.  If the access program allow

their user’s to create and/ delete objects, one has effectively introduced a new, user defined,

data type.  This can be done in any programming language;  in [9], the ”old” programming

language FORTRAN was used.  Many programming language designers have thought that

it was helpful to include special features for data type definitions in their languages.  The

most recent languages to do this are usually called ”object–oriented”.

1.1.6 Documenting Software

The problem of software documentation rarely receives adequate attention from

computer scientists, who seem so preoccupied with program creation that they have

neglected the problems of program maintenance.  Even when thinking about program

maintenance, they have paid more attention to tools that try (in vain) to compensate for the

programmer’s neglect of documentation, than to the problem of what the programmer

should have done.  Nonetheless, there are few general remarks about software

documentation that should be made in this chapter.  More detailed discussions of software

documentation can be found in [13, 14, 12].

1.1.6.1 Specifications vs. Descriptions

Engineers make a useful distinction between specifications of products and

descriptions of those products.  This distinction seems to be ignored in Computer Science

literature.  A description is a statement of some of the actual attributes of a product, or a set

of products.  A specification is a statement of properties required of a product, or a set of

products, [12].
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A description may include attributes that are not required, i.e. incidental properties.

For example, a description of a program may include the number of ones in its binary

representation.  A specification may include attributes that a (faulty) product does not

possess.  The statement that a product satisfies a given specification, is a description of the

product.

Any list of attributes may be interpreted as either a description or a specification.

”A volume of more than 1 cubic meter” may be either an observation about a specific

container that has been measured, or a requirement for one that is about to be purchased.

If you are given a list of attributes, you must be told whether it is to be interpreted as a

description, or as a specification.  Sometimes one may use one’s knowledge of the world of

guess to decide whether a statement is a description or a specification; for example, when

discussing Olympic athletes, the attribute ”steroid–consuming” is unlikely to be a

specification.  Moreover, a specification may offer a choice of attributes; a description of a

specific product must describe its actual attributes.

Since most of the programs we build are deterministic, i.e. their output is determined

by their starting states, non–determinism is much less important in connection for

descriptions than for specifications.  Unless we allow some attributes to be not fully

determined, we may find ourselves stating requirements that are not really required.

1.1.6.2 Documenting programs

Individual programs are best documented by describing or specifying the effects that

their execution has on their data structure.  For terminating programs, we usually want to

describe the relation between the initial and final values of those variables.  For

non–terminating programs we want to describe the sequence of values for those variables

identified as inputs or outputs [12].
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1.1.6.3 Documenting Modules and Objects

When programs are grouped into information hiding modules, the modules should

be described without reference to the hidden data structure.  Consequently, methods that are

appropriate for individual program descriptions, are not appropriate for black box

descriptions of modules, [8].  Black box descriptions of information hiding modules, are the

subject of the remainder of this thesis.

1.1.7 Composition

Program developers are given sets of building blocks, primitive programs and

primitive data types, from which they construct or compose their own products, larger

programs and more convenient data types.  A question that is frequently asked about

documentation methods, is whether they are ”composable”.  This term apparently means that

the method is capable of describing how larger units are composed of, or constructed from

smaller ones.  It is our view that this is an irrelevant question to ask about the documentation

method.  The composition is done by programmers and described in the programming

language.

As is the case with other engineering products, we can provide more than one ”view”

of a software product.  These ”views” include, but are not limited to: system requirements

documents, module interface documents, program function specifications, and the programs

themselves.  While the various views provide different information, they must be consistent.

The content and consistency rules for those documents have been discussed in [13].

1.2 What is a Trace Assertion Method

”Black–box” methods for the specification of module interfaces are used to provide

a complete description of the interface to a module without suggesting or revealing the

implementation of that module.  If programs that use the module are based on such a
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specification, they won’t have to be changed when the implementation is revised without

changing the interface.  Designing such abstract interfaces can be broken down into two

phases:

� A list of assumptions that are unlikely to change during the life cycle of the product.

� The specification of interface relations whose ability to implement objects of the module

is guarantied by those assumptions, [23].

A simple method for black–box module specification, is described in [8].  This

method had proven useful in small early trials, but soon proved to have fundamental

limitations; it could only be used to describe modules in which the effects of invoking a

program were immediately visible.  A simple queue could not be described because, unless

the queue is empty, the fact that a specific value is inserted is not visible until previously

inserted items have been removed.

Trace assertion methods are a way to describe effects whose visibility is delayed.  A

trace is a record of the interactions between the module and the environment, [12].  It

describes all data passed to the module and all data returned by the module.  Trace Assertion

Methods are based on the observation that any information we wish to put in a black–box

module specification, can be presented as an assertion about traces.  Information that cannot

be expressed in that way, does not belong in such a specification.  A model for this method

is presented in [27].

There are 3 types of assertions defining traces: legality (L); assertions defining the

values returned by V–programs (V); assertions defining equivalences among legal traces,

[10, 27].  A legal trace is a trace for which the module is expected to be useful[10].  A

V–program, returns values that make up the state of a module.  For a V–assertion, if T is a

legal trace, X is a syntactically correct call on a V–program , and L(T.X) is true, then V(T.X)

describes the value delivered by X when called after an execution of T.
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If two traces are defined to be equivalent, the outputs associated with those traces,

and all their future output possibilities, must be the same, [10].  In other words, equivalent

traces have the same externally visible effect on a module.  Formally, let T1, T2, S be any

traces and X be a V–program call, then T1 is equivalent to T2 only if :

L( T1) = L( T1)   and   L( T1) � (V(T1.S.X) = V( T2.S.X))

The assertions about traces that comprise a specification must answer the following

two questions:

� When are two traces equivalent, i.e. given two traces, will the future visible behavior of

the module be identical?

� Given a specific trace or history, what values will the module return when one of its

programs are invoked?  Note that the answer to this question, must be the same for all

equivalent traces.

Any method which provides black–box descriptions by making assertions about

traces, can be considered, a trace assertion method (TAM), [1].

1.2.1 Detailed explanation of a ”trace”

In giving a detailed explanation of what is a ”trace”, we regard the terminology

”input variables”, as a vector of external state variables that an object observes.  We also

regard the terminology ”output variables”, as a vector of variables whose values are

computed by an object, and can be observed externally, [10].

State changes to an object may be caused only by external invocations of an access

program, or changes in the values of the input variables. We refer to these as ”events of

interest”.  Each invocation of an access program is an event, characterised by the name of

the access program and the actual values of possible input arguments.

The complete history of an object is a finite sequence of arbitrary length,

O0E1O1E2O2E3....., where O0 is the vector of values of the output variables when the object
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is initialised; Ei is the ith event of interest; Oi is the vector of values of the output variables

after the ith event of interest.  A finite sequence which is a prefix to this history,  (i.e.

O0E1O1E2O2E3.....En), is a ”trace”.

1.2.2 What is TAM’s relation to algebraic methods

The original move from the approach in [8] to that in [1], was inspired by  early work

on algebraic specifications [2,3].  Algebraic specifications, another approach to black–box

specifications define an algebra by a set of equations.  The carrier set of the algebra,

implicitly constrained by the set of equations, is considered to be the set of possible values

of the ”objects” or ”variables” created by a module.  In many cases, TAM specifications and

algebraic specifications are similar; it often appears that one is a rewrite of the other in a

trivially different syntax.

TAM is state machine based, algebraic specifications are algebra based.

There is however a fundamental difference between the two approaches.  In TAM,

the objects being discussed are described explicitly; they are traces.  In algebraic approaches,

the ”carrier set” is constrained implicitly and may not even be constrained enough that the

cardinality of the set is known.  This has led to a large literature on variations in algebraic

methods, where the major source of variation is the decision about which of the carrier sets

that satisfies the equations, is actually meant.  These concerns are non–issues for TAM.  We

believe that by making the objects of discourse explicit, the method is closer to the intuition

of practising programmers.

At least in theory, every TAM specification can be translated into an algebraic

specification (see [30]).
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As we will discuss in section 1.3, TAM approaches focus on two issues that have not

been central to discussions in the algebraic specification approach: canonical forms, and

systematic construction.

There are also many variations of TAM.  They differ in more pragmatic issues,

including notation and the way that non–determinism is handled.  As we will see, TAM

researchers tend to be more concerned with organisational issues and notation, rather than

the theoretical issues that arise in the algebraic discussions.

A good discussion on some algebraic methods and TAM (before 1989) can be found

in [19].

1.2.3 A brief history of the trace assertion method

The first paper on TAM as a “black–box” approach to specifying modules, was done

by Bartussek and Parnas, [1].

John Mclean developed a formal theoretical model for TAM software module

specifications, and developed a formal deductive system for trace specifications, [20].

Daniel Hoffman developed a systematic way of writing Bartussek and Parnas trace

specifications, [4,21].  He based his methodology on the following five heuristics:

(1) Choose a normal form.

(2) Structure the semantics according to normal form prefixes and single element extensions.

(3) Use predicates to decompose complex assertions.

(4) Develop specifications by incrementations.

(5) Write macros to make specifications more readable.

Parnas and Wang, seeking to improve readability, introduced tabular formats, a rigid

structure for writing and verifying correctness in specifications.  A detailed report on their

work can be found in [10].
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Wang further suggested improvements to making an even more rigid structure in his

thesis, [27].

1.2.3.1 Other related TAM work

Research involving TAM has been not limited to just the Software Engineering

Research Group at McMaster University.  There is orthogonal work being done at Institute

of Informatics, Warsaw University in Poland and the University of Quebec, Hull, Quebec,

Canada, [29, 31, 32, 33, 34].

In Wang’s work ([27]), he showed that for the purposes of simulating module

interfaces, an extension to the traditional term rewriting systems (a trace rewriting system)

provided an adequate operational semantics for trace specifications.  A support tool based

on the semantics presented in Wang’s work, was further developed, [31].

Other interesting work and discussion of TAM in the Software Engineering Research

Group at McMaster University includes, separately, those of Theodore Norvell and Ryshard

Janicki.

Norvell suggest ideas, for TAM to use a base of firm mathematical foundations, [28].

His work was built on the ideas of [27, 10, 29].

Other important illustrations of solutions to some problematic modules’ (involving

the role of non–determinism, normal and exceptional behaviour, value functions and

multi–object modules,) have been introduced and discussed by Janicki, [30].

One of the main goals of the group at Warsaw University (Institute of Informatics)

is to develop tools to support TAM.  Their tools include a trace simulator and editor.

Discussion of their approach and that presented by Wang (for simulation), can be found in

[38].  More information on their TAM editor can be found in [36, 37].  Their work has

recently included a rigorous report on TAM and proof strategies for TAM specifications.
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1.2.4 The essential characteristics of trace assertion methods

Although there is considerable variation among the various ”flavors” of TAM, there

are two fundamental characteristics that distinguish the method from other approaches.

Although Parnas and Bartussek did not use canonical forms explicitly, a canonical

representation based on traces plays a central role in TAM, [1].  Further, the recent variations

have stressed a systematic and restricted specification style.

1.2.4.1 Use of a canonical representation

Trace assertion methods all provide a way of systematically reducing a trace to an

expression that is a unique (hence canonical) representative of all traces that are equivalent

to that trace.  In earlier versions, that canonical representation has been one member of the

set of equivalent traces.  In most variations, a predicate on the set of possible traces,

characterising the set of canonical traces is a key part of the specification.  The canonical

representation of equivalence classes of traces provides an easy way of determining whether

or not two traces are equivalent.  Each trace can be reduced to its canonical representation.

The use of canonical representations is a way of assuring that a specification is not

biased towards any particular implementation.  Efficient implementations usually have

many equivalent data structure states and may differ in the number of states.  By always using

a representation that is canonical, i.e. one that has the minimum number of abstract states,

we avoid giving information about the actual representation.  In fact, the sets of

representations described by all correct specifications written using a trace assertion method,

will be isomorphic.  One specification will not be closer to a particular implementation than

another one.  The specification will be ”closer” to an implementation with the minimum

number of states, than to other implementations, but there are many such implementations

and they are rarely practical enough to be considered.
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1.2.4.2 Systematic Descriptions

In the more recent versions of TAM, there has been a stress on imposed

(mathematically unnecessary) restrictions to the way that the specifications are organised.

Black–box module specifications can be viewed as collections of axioms or equations.

Consequently, many researchers have observed that, unlike commands in programs,

assertions in a specification can be written in an arbitrary order.  However, engineering

experience suggests that a rigid organisation has practical advantages.  It is easier to

systematically detect either incompleteness or inconsistency if there is only one place where

information can be found.  Rigidity in organisation also facilitates the use of a specification

as a reference work.  It is important that one need not read or search the whole specification

in order to use it.

The key structural restriction in TAM specifications is known as Single Element

Extension (SEE).  The rules for reducing a trace to its equivalent canonical trace are written,

by describing what happens if a canonical trace is extended by a single invocation of an

access program.  The resulting trace must be equivalent to a canonical trace.  Using the SEE

method, a deterministic specification is organised as a set of extension functions.  There is

one such function for each of the access programs.  The domain of each function is the cross

product of all canonical representations and all possible trace extensions involving the access

program.  A specification written in this form must be complete and consistent.  It is easy

to check for completeness; checking for consistency in a deterministic module, requires

making sure that each extension function is, in fact, a function.  On the other hand, for

non–deterministic modules, only operations by access programs which do not contribute in

giving the module it’s non–deterministic property, can be checked for consistency.  For more

e details on non–determinism see [30, 28].
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This method was often used in the original TAM, but never explicitly stated as a rule

or principle.  Explicit discussion on the SEE principle first appeared in journal form in [4].

The SEE principle was refined somewhat by using tabular notation to assure coverage of all

extension cases in [10].

1.2.4.3 An older TAM format

Below we describe, the general format of the older TAM, used in specifying

modules, [10].  This format does not work for really non–deterministic modules because of

the Mealy machine basis, (see [30, 28]).

The typical key words for module specification are in standard font.  Italics explain

what is required at the point of their appearance (see example below).

Conditions Equivalences

predicate on the trace before access program invoca-
tion

%illegality% or new trace

� �

� �

Table 1. A Meta table from TAM’s format, section (3)

Conditions Equivalences

T = _ %empty%

T � _ T1 where T = T1.PUSH(a)

Table 2. Equivalence T.POP of stack example using Table 1.

”T = _” and ”T � _” are predicates on a trace, T.  ”%empty%” is the illegality of the

extension to the trace, T.  ”T1 where T = T1.PUSH(a)” gives the new trace, T1.
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In the meta tables below, the symbol :

”���” is, continue across.

” �” is, continue downwards.

”���” is, continue downwards and across.
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TYPE IMPLEMENTED: module type

(1) SYNTAX

OUTPUT VARIABLES (optional)

Variable Name Type

first variable name variable type

� �

� �

last variable name variable type

ACCESS PROGRAMS

Program Name Arg1 ��� ��� Argn Value

first access program
name

Arg1 type, if any ��� ��� Argn type, if any return value
type, if any

� � ��� ��� � �

� � ��� ��� � �

last access program
name

Arg1 type, if any ��� ��� Argn type, if any return value
type, if any

 

(2) CANONICAL TRACES

canonical (T) � (T = a mathematical expression using access program name/s)

(3) EQUIVALENCES

Either

T.program name with arguments � a new trace

or

T.program name with arguments �

         (a table with conditions and corresponding new traces or %legality%

as           shown below)



17

Conditions Equivalences

predicate on the trace before access program invoca-
tion

%legality% or new trace

� �

� �

(4) VALUES

OUTPUT VALUES (optional)

  Either

V[variable](T) = a value

  or

Conditions Values

predicate on a trace before access program invoca-
tion

%legality% or a value

� �

� �

�

�

RETURN VALUES =

Program Name Argument No. Values

first access program name Value variable name or function
name or %legality%

� � �

� � �

last access program name Value variable name or function
name or %legality%
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1.3 Motivation for a new TAM (ITAM)

Although the TAM has been studied extensively and support tools are available [35,

27, 36, 37], its acceptance in industry has been disappointing.  Those who have examined

it, feel that it has definite advantages over algebraic specifications and other earlier methods,

but with a few exceptions, those who have attempted to use it find it clumsy and difficult to

use.  The expressions seem unnecessarily long and the canonical representations hard to

understand.  More serious is the need to deduce conclusions from complex mathematical

expressions.  Programmers, our ultimate audience, prefer information that is stated directly

rather than information that is stated implicitly.

It has become clear that although the method is good ”in theory”, and the

fundamental characteristics described are good ones, some changes are needed before it is

found to be in ”good practice”.  The new TAM (ITAM) shares the fundamental

characteristics described earlier and is more ”natural” for programmers.  Canonical

representations are now structured to help programmers understand the composition of any

object created by a module.

1.3.1 Canonical Representations

In the older TAM the canonical representations are always traces, i.e. sequences of

access program invocations.  This had several disadvantages :

� The representations are unnecessarily bulky.  In many cases the names of the access

programs carries little or no information and are a distraction.

� It is difficult and clumsy to refer to parts of the representation.

� The requirement that the representation be canonical often forces the designer to impose

restrictions on the entire canonical representation.  Even where some parts of the

representation, can be independent of other parts, an order was imposed.  The descriptions
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of those restrictions is a source of confusion in the specification.  (This issue has also been

discussed in [30].)

One can represent a sequence as a function whose domain is a set of contiguous

natural numbers commencing from 1.  This has led us to develop a richer collection of

functions (including the function for sequences,) to choose from when describing a

canonical representation.  This has led us to make the following major adjustments to

canonical representations :

� A representation may be structured as a set of named components; any named component

may be a set of components, (e.g. Example 2 of Appendix A).

� A set without certain restrictions may be used instead of a sequence in the canonical

representations in order to avoid imposing arbitrary ordering.  Sets, whose members are in

an arbitrary order, can be indexed by a set of : mnemonic (string) names or arbitrarily chosen

natural numbers (greater than 0). 

� When ordering is necessary (i.e. the need for a sequence), we use a function whose domain

is restricted, (see Table 9. in chapter 2).  The use of this function is clearly demonstrated by

the stack examples (Example 1) in Appendix A.

The set of stacks in Appendix A, Example 2, are independent of each other and there

is no need to pick just one continuous ordered representation as its canonical representation.

(This can be blamed mainly on the notation provided by some older TAMs.)  Instead we pick

a set of canonical states to represent all the objects of the module thereby conveying to the

reader that the order of the stacks do not matter.  On the other hand since there is order within

each stack, we use a function whose domain is constrained.

Although we do not show a model for ITAM in this thesis, the model will resemble

the one presented in [30].
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We describe canonical representations by an expression that describes the

characteristic predicate of the set of canonical states1.  The structure of this descriptive

expression and the notation used, is based on common programming languages (e.g. [24]).

Such notation is more familiar to programmers than the more traditional mathematical

notation we were using.

Preliminary experience with the last three innovations mentioned above suggests

that they greatly improve the readability and understanding of module interface

specifications.  In ITAM, we do use access program names in describing the canonical

representation.  We regarded this as clutter in the old TAMs.  The ability to name components

of the representation greatly simplifies making precise reference to parts of the

representation.  The use of sets is valuable when we wish to specify that there will be

acceptable user visible differences in behaviour from one implementation to another, i.e.

where we wish to allow a choice to be made by the implementor.

It must be stressed that the use of sets for canonical representations, rather than the

old form of traces, does not change the fundamentals of the method.  There is nothing we

can specify that we could not have specified before.  However we believe that the

specifications are easier to read and to write.  The expressive powerful of the older TAM and

ITAM is the same but the latter is more user–friendly.

If the order of objects in a sequence is significant, we can still choose between several

representations and the specification writer must make that choice and use the special set for

sequences.

If the order of the objects is not significant we use set notation that disregards

ordering of objects instead of using a single sequence which leads the reader to think that

––––––––––––––––––––––––––––––––––––––––––
1. In an ITAM module specification, the canonical state of an object is any state that satisfies the
characteristic predicate for that specific module.
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all objects must be ordered.  In some later versions of TAM this was done by dividing the

sequence into separate sequences, each representing an object with no identifiable order.

The use of sets make specifications of non–deterministic modules easier to read an

write.

1.3.2 Canonical Rep. for a bounded ”multi–object” module

As shown in some earlier examples, ”multi–object” module specifications can be

written as an infinite set of finite state machines, (e.g. the unbounded examples in [10]).

However if the number of objects allowed to be created by a module is known, and the order

of creation is arbitrary, we must present the module as a finite set of finite state machines.

In the older TAM, it is difficult to write the characteristic predicate of the set of canonical

traces for a ”bounded multi–object” module when creation and naming of objects, is done

at run–time.

Ensuring the finiteness of multi–object modules has led to the non usage of a

subscripted (named) empty trace ”Tn =_” in a canonical representation, (given in the

multi–object examples of [10]).  The disadvantage is, named empty traces represent objects.

Realistically there are an infinite amount of names, so by using an infinite amount of names

in a ”multi–object” module specification conveys to a the specification reader that there are

an infinite amount of objects that can be created on a single system.  Thus by using ”Tn =_”

creates difficulty when one needs to specify a module that will create one finite state machine

(i.e. the primary object2) with a collection of finite state machines.

We are able to remove this disadvantage :–

� by naming only those objects or sets of existing objects created by a module, making it

easier to place bounds on the module, thus ensuring one finite state machine.

––––––––––––––––––––––––––––––––––––––––––
2. A primary object is self–contained.  In ITAM it is referred to as ”rep”.
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� by using access programs with names as arguments, to create new or delete old objects in

order to make specifications more realistic.

We redocumented those not–fully bounded module of [10], as fully bounded

modules.  A fully bounded module will create a finite state machine.

1.3.3 Use of Program Function and Other Tables

Earlier versions of TAM introduced the use of tabular notation in a rather ad hoc way.

 The tables used in these documents were different from those studied in our other work

[5,11,14,6,7,15].  In more recent work, we have learnt that tables are simply expressions that

are useful representations of mathematical relations.  In ITAM although we can use any type

of tables from our other earlier work, we have chosen to use vector tables [11].  These tables

are also known as program function tables [14].  We use them to describe state changes of

a module’s objects, caused by invocations of that module’s programs, (operation tables).

By using sets, the SEE principle and vector tables, we have made it easier for readers to

separately :

� identify objects that have state changes in an object’s state representation.

� identify the new state representation of an object that has changed state,

1.3.4 Parameterised Specifications

When languages such as C++, are used in naive ways (which seems to be the usual

case), we can end up with hundreds of types of objects that are almost alike.  Doing reverse

engineering we discover that the TAM specifications for these objects also end up to be

almost alike.  A simple analogy would be resistors.  We would not want to write the

descriptive equations for resistors or other circuit components over and over again and, more

importantly, nobody would want to read them.  Instead, we have written those specifications

(e.g. in a textbook), in terms of key parameters such as resistance, power handling capacity,

and accuracy, then specify each resistor by giving values to the parameters.  The same
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technique can be applied to families of more complex circuits.  We include parameterisation

of specifications in ITAM.  (See the parameter ”CAP” in example 1b, Appendix A.)

1.3.5 Using ”Legality” to reduce table size

In the older TAM when an object’s state representation (a trace) was extended by a

single access program call under a specific condition, the resulting state of the object would

have been either a ”legal” or ”illegal” trace, see [ 1,10].  Intuitively, legal traces were those

for which the module was expected to be useful.  Illegal traces contained events that a user

of the module was supposed to avoid.  Illegal traces would not occur if the module was used

correctly.  There is no way of preventing an uninformed user from using a modules program

in an illegal way especially when that user does not know the present state of the module’s

objects.

In ITAM legality is not an issue and is handled differently than before, every access

to a program of a module can be now viewed as being ”legal” (i.e. useful and useless

extensions are allowable).  When all the objects of a module have similar states after the

invocation of an access program, this does not mean that they should be handled similarly.

In such instances the ”legality” (as replaced by the extension class3 of an access program

table) will be different, giving rise to many different cases of legality some useful others

useless.

In the ITAM the phrase ’extension class’ appearing in an operation table (shown in

chapter 4), is treated as if it were a variable and the value is a status.  Handling strategies for

the status of the extension class of an access program may be taken care of in some other

documentation and not in a module specification document.

––––––––––––––––––––––––––––––––––––––––––
3. The extension class allows two extensions that are equivalent to the same canonical representation
to be classified differently.  The main purpose is status reporting.
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When the extension classes are similar under different conditions, these conditions

can be logically “OR”ed together and be represented as one column in a table ( as was done

in the older TAM).

1.3.6 Using abbreviations to reduce table size

In further reduction of large tables, in ITAM, we have introduced a method of

abbreviating conditions found in both auxiliary functions and access programs.  Our

abbreviations are short pieces of text that are mapped onto longer pieces of text.  We evaluate

abbreviations before all evaluations of the expressions in which they appear and we do so

by simple text substitution without any regard for the semantics of the operations.

Abbreviations may themselves be composed of other abbreviations, the latter referred to as

an intermediate abbreviation.

1.3.7 Using auxiliary relations for further reductions

We have introduced other predefined auxiliary relations to reduce repetitive use of

long mathematical expressions in, describing canonical representation.  At the same time

users of ITAM should be aware of these relations beforehand and will not have to spend any

extra time writing their own or learning newer relations that serve the same purpose.

There are two distinct predefined auxiliary functions written to check type and check

presence, of objects.  These functions are used quite frequently in our examples.

An access program can operate on objects of different types, (see polymorphism in

[26]).  When we specified modules with access programs operating on different types, we

found the need for type checking.

When objects are created at run–time, it is essential that the object’s name be unique.

Objects cannot be operated on unless they are present.  Consequently, checking for the

presence of an object is essential.
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When using our predefined auxiliary functions, occasionally an ITAM user may find

it unnecessary to pass some arguments.  In such cases we provide a strategy that allows ITAM

users to not provide these arguments, (in chapter 2).

In documenting a module using ITAM, there are only two specific subsections of the

ITAM format allotted for defining local auxiliary relations.  The scope of using a locally

defined auxiliary function will depend on which subsection it was defined within.  The two

subsections and the scope of using local auxiliary functions are discussed in more detail in

Chapter 4.  Such small cosmetic rigidity, helps a specification writer to organise the

specification so that a reader can understand the document more quickly.

1.3.8 Other format changes to improve reading

ITAM’s format consists of four sections, the first being the header, the second the

canonical representation section, the third being the syntax section and lastly the operation

tables section.  Some of these sections are further subdivided. The details of ITAM’s format

are in Chapter 4.

With respect to return values, we have incorporated the old TAM’s Output Variables

of the Syntax section and the Values section into ITAM’s Operation Tables section.  All

output values will be returned as an n–vector of values, [16].  We provide a method to refer

to an element of the vector by using subscripted access program names as output variables.

In chapter 4 other subtle format changes will be introduced.  This will provide a

consistent format for readers and writers so that they can locate information more easily.
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CHAPTER 2: CANONICAL REPRESENTATIONS

2.1 Semantics for ITAM module specifications

In this part of the document we lay the foundation for module interface

specifications.

The meaning of the following terminology should be understood, and most can be

found in any good mathematics textbook: relation, binary relation, function, predicate,

variable, constant, parameter, argument, ordered pair, string, real, boolean, integer,

primitive types.

Tuple,  n–tuple, simple n–tuple are explained in [16 ].  A report on types is found in [18].

The general concept of a set is assumed to be known from any book on set theory, (e.g. [17]).

2.1.1 Terminology and notation

As an aid to the reader, in this and the following chapters, set descriptors will be in

bold italics.

4When we refer to word as a set descriptor, then we are using that word in referring

to a specific set.

5The set descriptors of primitive types are: real, integer, natural, string, boolean.

The primitive types real, string, boolean are pair–wise disjoint.

For the purpose of ITAM we define value, by saying that the set of values is the

smallest set such that :

––––––––––––––––––––––––––––––––––––––––––
4. e.g. integer is the collection of all possible integers, thus integer is a (predefined) set descriptor.

5. natural � integer and integer � real.
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� all elements of the primitive types are values.

� the empty set is a value.

� each set consisting of values is also a value.

value is the set descriptor for the set of all possible values.

In an ITAM module interface specification when we refer to a set as being fixed, we

mean there are no operations that are allowed to change the set throughout the specification.

The result of changing (i.e. adding, removing or substituting elements of) a set, is a different

set.

Every software system composed of modules, should have a method of identifying

each module uniquely.  The title of a module specification document identifies that particular

module specification.  For a software system with ITAM module specifications, we identify

each module by a unique title.  In the older TAM what we refer to as the module’s type is

what we will call the title in this chapter, (i.e. the string that follows ”type implemented”,

of a module in [10]).

2.1.1.1 Abbreviations, new primitive types and the TYPE relation

We will abbreviate the following terminologies and use them as we progress through

this thesis.

PT (primitive types) is the set of set descriptors, {real, integer, natural, string,

boolean}.

PTU is the set, real � string � boolean.

A PE (element of a primitive type) refers to any one element of PTU.

A UDT is an abbreviation for user–defined type.  There are 2 parts required in

defining a UDT, a set descriptor and a set description.  Both the set descriptor and the set

description must be unique in the module specification they appear in.  A UDT set



28

description is constructed using the notation in section 2.3.2, Table 11.  A user can construct

set descriptions that are tuples using this notation.  The set descriptor identifies the set given

by the description.

name is the set string6 � natural.

We define contignat(S) by, ((i�S) � ((i�natural)�(i>0)�((i>1)�((i–1)�S))))

and contignats = {S | contignat(S)}.

TYPE is a relation that is used in a module’s specification, whose domain is the set,

 valueM and range is a set, typeM, where M is the title of the module specification.  valueM

contains all values used in representing the state of possible objects that can be created by

the module, and typeM is all set descriptors of the values used by the module.

Thus for a module specification titled M , (�v, (v � valueM) �(TYPE(v) � typeM)

� (TYPE(v) �{ })).

2.1.2 Representing an object’s state in a module’s specification

An object’s state for a module’s specification, titled M, will be a value of a type

belonging to typeM.

2.1.3 Sets used to represent an object’s state in module specifications

We will refer to the 2 elements of an ordered pair as components.  All structures that

represent the externally observable state of an object will be declared in ITAM as a set with

constraints.  We will constrain the set in the following ways :–

� the type of the elements and, if the elements are ordered pairs, their components.

� the structure of the elements.

� the operations that we can perform on the set.

––––––––––––––––––––––––––––––––––––––––––
6. Elements of string are quoted (e.g. ”a”, “1”, “1a”, “a1”, ...)
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We will use three kinds of sets in constructing a state representation for objects: PT

members, SPs and PSETs.  We define SP and PSET below.

An SP set is expressed either as, a set of Table 4. or Table 5.

Any PSET is expressed as, either of the sets given in Tables 7. to 10.  PSETs used

in describing canonical representations were developed from the PSET structure

constructors appearing in section 2.2.

A summary for the notation to construct both SP and PSET structures can be found

in Table 11.

2.1.3.1 SP

� SP is a user defined set of PEs, (refer to tables 2 and 3).

2.1.3.2 PSET

� PSET is a user defined function, whose domain is a set of PEs and range is a set

of values.

2.2 The PSET structure–name tree

The PSET structure–name tree, (Fig 1.) was brought about during our trials of the

examples of Appendix A and B.  The root of this tree is in the middle (i.e. OP) and the

branches grow outwards.

The boxed structure–names are used to define other PSETs that we use in describing

the canonical representations in the examples of Appendices A and B.  Formal definitions

of these functions and the way we will write them in a specification, is given in Tables 7. to

10.
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An arc form node X to node Y means that Y is a subclass of X.  For instance if

OP_DENNC_RE is a subclass of OP_DENN_RE, in the tree it will be shown as : 

OP_DENNC_RE

OP_DENN_RE

A legend for understanding the cryptic structure names used in the tree is provided

on the page following the tree structure.

To read the abbreviations of Fig 1., we assemble the definitions found on the right.

For instance, the structure–name OP_DF:ENS_R:E definition will be read as follows :

“ordered pairs of a PSET, with a fixed domain which is, a singleton and a member, of a fixed

type; the singleton is a subset of string, with a range which is, a singleton and a member, of

a fixed type“.



2.2.1 Naming structures for sets of ordered pairs

OP

OP_DFE_RF:E

OP_DE_REOP_DF:E_R:E

OP_DF:E_RFE

OP_DEN_RE

OP_DENS_RE

OP_DENNC_RE

OP_DF:ENS_R:E

OP_DF:EN_R:E

OP_DF:E_RF:E

OP_D:E_R:E

OP_D:E_RF:E

OP_DE_R:E
OP_DE_RF:E

OP_DFE_R:E OP_DF:E_RE

OP_D:E_RFE
OP_D:E_RE

OP_DFE_RE

OP_DE_RFE

OP_DFE_RFE

OP_DENN_RE

Fig 1. A tree of the PSET’s structure names base.
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Legend for structure–name constructors:

OP – ordered pairs of a PSET7

_ – , with

DE – a domain of PEs

RE – a range of elements which is a subset of a defined type8

DFE – a fixed domain of PEs

RFE – a fixed range of elements

D:E – a domain which is, a singleton and a member, of a defined type; the element

of the singleton is a PE

R:E – a range which is, a singleton and a member, of a defined type

DF:E – a fixed domain which is, a singleton and a member, of a defined type; the

element of the singleton is a PE

RF:E – a fixed range which is, a singleton and a member, of a defined type

DEN – a domain which is a subset of name

DENS – a domain which is a subset of string

DENN – a domain which is a subset of natural

DENNC – a domain which is a member of contignats

DF:ENS – a fixed domain which is, a singleton and a member, of a defined type; the

singleton is a subset of string

The tree of Fig 1. allows for growth of other PSET type structures.

––––––––––––––––––––––––––––––––––––––––––
7. Refer to definition in section 2.1.2.2; only PEs are used in the domain.  In our examples we only
needed names.  PEs were chosen to accommodate any future changes that may require the other PTU
elements, in PSET’s domain.

8. A defined type is either a PT or UDT and will appear in the Type Definition section of a module
interface specification of an ITAM document.  This specification section is explained in chapter 4.
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2.3 The syntax for state representations in module specifications

In creating specifications using ITAM, we will use sets (mentioned earlier in the

semantics section,) to represent the abstract state of modules.  The representative state of a

module can be altered only by deletion, addition or substitution.

In our work so far, the only sets that were required to document module specifications

without redundancy and with efficiency were sets that were: members of PT, SP and PSET.

We found that the only PSET structure–names that were used to explain the functions

used in describing canonical representations, are: OP_DF:ENS_R:E, OP_DENS_RE,

OP_DENN_RE and OP_DENNC_RE.

Below, ’dt’ is used as a set descriptor.  It abbreviates the phrase, defined type.

Syntactically a defined type is denoted by a set descriptor in the canonical representation

section (see section 4.2.2, type definition section) of a module specification.

The following are used below : PT, PTU, natural, string, contignats, and type.

Their explanations can be found in section 2.1.1.

2.3.1 SP and PSET

The following table explains some syntax that will be used often in the type definition

section for describing canonical representations in ITAM module specifications.
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Some fixed syntax Meaning

type T = (a) T�typeM (i.e. for a module titled M, T is a set des-
criptor that is not already used).

(b) type – is syntax and is reserved in a module’s spec-
ification, only to be used in prefixing all set descrip-

tors.

(c) = – is syntax which will follow all set descriptors
and means ’is defined to be’.

type SNE = {{}} SNE defines the fixed set {{}}, (refer section 2.4.3) .

Table 3. Common type definition syntax9

The syntax for a module titled M, with a set descriptor T, is given below.

We will use the following sets to describe canonical representations.

2.3.1.1 SP syntax

An SP set will be written in either of the 2 ways as shown in the Tables 4. and 5.,

below.  The first one use the structure constructors: parentheses and commas, the other uses

SUBP (see Table 11.).

2.3.1.1.1 Explicit SP set

Table 4. shows the typical (mathematical) syntax used in describing a set of elements

which is a subset of a PT member.  We refer to this as an explicit set.10

Syntax Meaning

type T = {x1,x2,....,xn} T = {x1,x2,....,xn}�(�P,(P�PT)�(x1,x2,....,xn�P))

Table 4. Meaning of an SP set using typical math syntax

––––––––––––––––––––––––––––––––––––––––––
9. The “=” notation appearing after a set descriptor must not be confused with the predicate operator
=.  Here it simply separates the set descriptor from its definition.

SNE will be treated from here on as a reserved string.

10. We use the phrase explicit set since all the elements of the set are explicitly listed for the reader.



35

2.3.1.1.2 SUBP

Table 5. shows the syntax we use to describe a set of elements which are subsets of

a defined type, dt.  This defined type is a subset of PTU.

Syntax Meaning

type T = SUBP dt ((dt�typeM)�(dt�PTU)) � (T={S | (S�dt)})

Table 5.  Meaning of SUBP syntax

2.3.1.2 PSET structure names and syntax

In Fig 1., the boxed structure names were found to be the only PSET structure–names

common to all our examples.  Later we will define special functions, (those listed in the right

column of Table 6.) which use the following structure–names given in the left column.

CSET, SSET, NSET and ARRAY, are PSETs.  SSET, NSET and ARRAY, are CSETs.  The

functions SSET NSET and ARRAY are used to describe canonical representations.  In our

examples, CSET was never used to describe canonical representations but was used in the

signatures for predefined auxiliary functions (section 2.4.5.1).

 CSET, SSET, NSET and ARRAY can be viewed as relabelling of the structures

represented by their corresponding structure names (left column in Table 6.).

REC is a PSET composed from other PSETS.  REC has a fixed domain whose

elements are the first components (of singletons pairs,) of OP_DF:ENS_R:E structures, and

range is the second components from those same structures.

Structure–names from Fig 2. Special functions

OP_DEN_RE CSET

OP_DENS_RE SSET

OP_DENN_RE NSET

OP_DENNC_RE ARRAY

OP_DF:ENS_R:E REC

Table 6. Useful PSET structure–names and sets
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The syntax that we use to describe the PSET functions, is not the conventional way.

We write them in a fashion that programmers are more familiar with.  The structure

constructors for PSETS are: SSET; NSET; ARRAY; REC, commas, colon and round

brackets, (see Table 11.).

2.3.1.2.1 SSET

Table 7. shows the syntax we use to describe all functions, whose domain are strings

and range is a subset of a defined type, dt.

Syntax Meaning

type T = SSET dt (dt�typeM)�(T = {f:S�dt | S�string})

Table 7. Meaning of SSET syntax

2.3.1.2.2 NSET

Table 8. shows the syntax we use to describe all functions, whose domain is a subset

of natural and range is a subset of a defined type, dt.

Syntax Meaning

type T = NSET dt (dt�typeM)�(T = {f:S�dt | S�natural})

Table 8. Meaning of NSET syntax

2.3.1.2.2.1 ARRAY

Table 9. shows the syntax we use to describe all functions, that represents a sequence

of elements.  A set of all elements of the sequence, is a subset of a defined type, dt.

Syntax Meaning

type T = ARRAY dt (dt�typeM)�(T = {f:S�dt | S�contignats)})

Table 9. Meaning of ARRAY syntax
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2.3.1.2.3 REC

Syntax Meaning

type T = REC (x1,:dt1),
(x2,:dt2),.....,(xn,:dtn)

((dti�typeM)�(�q,r,(1�q�n)�(1�r�n)�((q�r)
�(xq�xr))�(xq�string)))�(T = {(xi,yi) | yi�dti})

Table 10. Meaning of REC syntax

Table 10. shows the syntax we use to describe a function whose domain is a subset

of name.  The range is a set of elements where each element is a member of a defined type

given in the description (e.g. a dti).  For further explanation refer to the explanation given

for REC in section 2.3.1.2, above.
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2.3.2 Summary of notation for UDT descriptions

Notation Explanation

(   ) Used for ordering elements

{   } Used for sets

, Used to separate elements

SNE Refer to Table 3.

SUBP Refer to Table 5.

 � Refer to Table 13.

 � Refer to Table 13.

 – Refer to Table 13.

 � Refer to Table 13.

 \+ Refer to Table 18.

 \– Refer to Table 18.

SSET Refer to Table 7.

NSET Refer to Table 8.

ARRAY Refer to Table 9.

: Used to prefix REC elements that are types

REC Refer to Table 10.

Table 11. UDT description notation
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2.4 A new rule, old relations, connectives, new notation and relations for
ITAM

In this section the earlier tables to follow, will have notation that is already familiar

to the reader whereas the later tables have, new notation.

The order of the relations to follow in this section will be: the common set relations,

appearing first (including the relations on string and real); new notation and relations

common to all sets; predefined PSET relations.

New Rule: We have added a new rule when we use relations (especially the

predefined auxiliary functions) in the new access programs (operation tables), to operate on

an object.  As a default, when the condition/s of the relation is/are not satisfied and the

unsatisfied condition/s is/are not considered elsewhere in the operation table, then the

object’s state remains unchanged, (discussed in Chapter 5, example 4).

2.4.1 Common set relations, set operations, and predicate connectives

Assume S and Q are set descriptors and x is a value

Relation Notation Predicate Operators’
Examples

Explanations

� Q=S equality

� Q�S non–equality

� x�S set membership

� x�S set non–membership

� S�Q left is proper subset of right

� S�Q left is a subset of right

Table 12. Common allowable predicates on set, S
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Relation Notation Set Operations’
Examples

Explanations

	 S	Q set union of S and Q

� S�Q set intersection of S and Q

– S–Q set difference between S and Q

� S�Q Cartesian product of S and Q

CARD CARD(S) number of primary elements of a set, S

Table 13. Common allowable set relations

Assume p,q are predicates and x is a variable

Notation Examples Explanations

� �p not

� p�q implication

� p�q implication both ways

� p�q  or


 p
q and

� �x,p universal quantification

� �x,p existential quantification

Table 14. Common connectives and notational conveniences for predicates

2.4.2 Operations on string and real

Assume x and y are elements of string

Relation Notation Predicate Operator
Examples

Explanations

= x=y equality

� Q�S non–equality

Table 15. Allowable predicates on strings
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Assume x and y are elements of real

Relation Notation Integer Oper-
ations Examples

Explanations

* x*y the product of x and y

/ x/y the maximum number of times we can subtract
y from x with a non–negative result

mod x mod y  the result x–((x/y)*y)

+ x+y the sum of x and y

– x–y the result of subtracting y from x

Table 16. Allowable real operations

Relation Notation Predicate Operator
Examples

Explanations

= x=y equality

� Q�S non–equality

< x<y x less than y

� x�y x less than or equal to y

> x>y x greater than y

� x�y x greater than or equal to y

Table 17. Allowable predicates on reals
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2.4.3 New common set notation and relations

Notation Definitions

R(n)x if R is a relation, n is in its domain, an m–tuple in its range, and
x�m then R(n)x is the xth element in the m–tuple of an object o,

such that the ordered pair (n,o)�R

S[n] if S is a PSET, S[n] is an object o, such that the ordered pair
(n,o)�S

{} the empty set; for empty set S, CARD(S)=0

{{}} Set of sets with one element, an empty set

DOM(X) the domain of a set X

RAN(X)  the range of a set X

S1 \+ s S1 � {s}, S is a set descriptor and s is an element to be added to S

S1 \– s S1 – {s}, S is a set descriptor and s is an element to be removed from
S

Table 18. New common set notation11

Relation Relation
Examples

Definitions

Tchk Tchk(t,v) true for (v,t)�TYPE

Tchks Tchks(S) true for a set S, for all y, y�S implies Tchk(t,y)

Cvt Cvt(t,v1,v2) true for (Tchk(t,o1)�Tchk(t,o2))

Ls Ls(S,X,n)  true for sets S, X and an integer, n,
CARD(X)=CARD(S)–n and X⊂ S

Table 19. New common set predicates12

––––––––––––––––––––––––––––––––––––––––––

11. An example to further clarify, if R(n) = (1,(b,3,((d,5,6r,7f),a5))8) then R(n)1 is 1; R(n)2,1 is b;
R(n)2,3,4 is 7f; R(n)3 is 8; etc...

12. It should be noted that TCHK’s first argument is always a set descriptor whose definition is a fixed
set.
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2.4.4 New PSET predicates

Notation Operations
Examples

Definitions

N_fnd N_fnd(S,n) true for n�DOM(S)

NO_fnd NO_fnd(S,n,o) true for (n,o)�(S)

O_fnd O_fnd(S,o) true for �n, (n,o)�S

Table 20. New predicates for a PSET, S



2.4.5 Naming PSET’s predefined non–predicate auxiliary functions

The examples of Appendices A and B have shown that only the following 3 basic operations are needed for changing PSETs: delete,

add and substitution.

del add sub

del_N del_NO del_Os sub_N sub_NO sub_Ossub_O

PX

delA

F1 F2 F3

F4

F5 F6 F7 F8delA_N delA_NO delA_Os

delAT FA1

FA1.1

addA

addAT FA4

FA4.1

Fig 2. A tree of predefined auxiliary PSET function names.
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In Fig 2. predefined auxiliary function table identifiers are connected by dotted lines

to their corresponding function definitions names.  Table identifiers are located in the upper

left corner of the tables, see section 2.4.5.1 .  Assembling the function name constructors are

done in the same fashion as for Fig 1.

Legend for the PSET function name constructors:

PX – predefined PSET auxiliary function which are not predicates

del – delete a pair

add – add a pair

sub – substitute

delA – delete a pair from an ARRAY

delAT – delete the pair at the top of an ARRAY

addA – add an object’s value into an ARRAY at a given existing index.

addAT – add an object’s value at the top of an ARRAY

_ – , with

N – a given name

O – a given object’s value

Os – objects having a common given value

NO – a given name and corresponding named–object’s value
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2.4.5.1 New PSET functions that are not predicates

This section consist of both total and partial functions.  The signature that is given

for any partial function may specify a superset of the domain.  We have presented the

definition of the partial functions in a tabular format.  The right column header specifies a

predicate that characterises the domain of the function when the domain is smaller than the

superset.

del_N: CSET �name � CSET

F1 N_fnd(S,n)

del_N(S,n) = S \– (n,S[n])

del_NO: CSET �name � value � CSET

F2 NO_fnd(S,n,o)

del_NO(S,n,o) = S \– (n,o)

del_Os: CSET � value � CSET

F3 O_fnd(S,o)

del_Os(S,o) = S – {(n,q) | (n,q)�S�o=q}

add: CSET � type �name � type � value� CSET

F4 �N_fnd(S,n)�Tchk(t1,n)�Tchk(t2,o)

add(S,t1,n,t2,o) = S \+ (n,o)

sub_N: CSET �type �name �name � CSET

F5 N_fnd(n1)��N_fnd(n2)�Cvt(t,n1,n2)

sub_N(S,t,n1,n2) = S \– (n1,S[n1]) \+ (n2,S[n1])
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sub_NO: PSET �name � value � type � value� PSET

F6 NO_fnd(S,n,o1)�Tchk(t,o2)

sub_NO(S,n,o1,t,o2) = S \– (n,o1) \+ (n,o2)

sub_O: PSET �name � type � value� PSET

F7 N_fnd(S,n)�Tchk(t,o)

sub_O(S,n,t,o) = S \– (n,S[n]) \+ (n,o)

sub_Os: PSET � value � type � value� PSET

F8 O_fnd(S,o1)�Tchk(t,o2)

sub_Os(S,o1,t,o2 ) = S – {(n,q) | (n,q)�S�o1=q} � {(n,q) |
(n,S[n])�S�o2=q}

2.4.5.1.1 Predefined auxiliary functions for ARRAY operations

Decr: ARRAY  � integer � NSET

Decr(S,n) �
��

 {(i,S[i+1]) | (1�n�i<CARD(S))}

Incr: ARRAY  � integer � NSET

Incr(S,n) �
��

 {(i+1,S[i]) | (1�n�i�CARD(S))}

Daft: ARRAY  � integer � NSET

Daft(S,n) �
��

 {(i,S[i]) | (1�n�i�CARD(S))}
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Dbef: ARRAY  � integer � ARRAY

Dbef(S,n) �
��

 S – Daft(S,n)

Indx: NSET � natural � integer

i�CARD(S)

Indx(S,i) =  j | (j�Dom(S))�(CARD({(k,e) | (((k,e)�S)�(k�j))}) = i)

Reseq: NSET � ARRAY

Reseq(S) �
��

 {(i,o) | o = S[Indx(S,i)]�i�CARD(S) }

2.4.5.1.2 Operations on ARRAYs

delA_N: ARRAY  � integer � ARRAY

FA1 N_fnd(S,n)

delA_N(S,n) = Dbef(S,n) � Decr(S,n)

delAT13: ARRAY  � ARRAY

FA1.1 CARD(S) > 0

delAT(S) = Dbef(S,Card(S))

delA_NO: ARRAY  � integer �value� ARRAY

FA2 NO_fnd(S,n,o)

delA_NO(S,n,o) = delA_N(S,n)

––––––––––––––––––––––––––––––––––––––––––
13. delAT(S) is equivalent to delA(S,CARD(S)).  In the definition of delAT, S – Daft(S,CARD(S)) is
the same as S – (CARD(S),S[CARD(S)]).
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delA_Os: ARRAY  � value� ARRAY

FA3 O_fnd(S,o)

delA_Os(S,o) = Reseq(del_Os(S,o))

addA: ARRAY � integer � type � value� ARRAY

FA4 �N_fnd(S,n)�Tchk(t,n)

addA(S,n,t,o) = Dbef(S,n) \+ (n,o) � Incr(S,n)

addAT: ARRAY  � type � value � ARRAY

FA4.1 �N_fnd(S,n)�Tchk(t,o)

 addAT(S,t,o) = S \+ (CARD(S)+1,o)

2.4.5.2 Reducing the number of arguments for “del”, “add” and “sub”

For the new PSET functions that are not predicates, we will adopt a simple

convention that was used by some earlier computer system calls (e.g. DEC VAX/VMS).

To avoid redundant writing, ITAM specification writers can leave out some predefined

auxiliary arguments. For example if a Tchk(b,c) appeared in a table above an addAT(a,b,c)

function, then the latter can be written as addAT(a,,c).  The perception is that the ”Tchk”

predicate in the conditions of addAT, is ignored.  See further discussions of example 1c in

section 5.2.1.

2.4.6 Other predefined functions

Mini(S): NSET � integer

Mini(S) �
��

 j | {(i,o) | (i,o)�S � j�i ) }
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Maxi(S): NSET � integer

Maxi(S) �
��

 j | {(i,o) | (i,o)�S � j�i ) }

Minv(S): PSET � real

Minv(S) �
��

  v | {(i,o) | (i,o)�S � o�real� v�o ) }

Maxv(S): PSET � real

Maxv(S) �
��

 v | {(i,o) | (i,o)�S � o�real� v�o ) }

2.4.7 Predefined relations which are not functions

Any_Ls: SET � integer � SET

CARD(S)>0

ANY_LS(S,n) = S1 | Ls(S,S1,n)

All_Ls: SET � integer � SET

CARD(S)>0

ALL_LS(S,n) = S1 | {X | Ls(S,X,n)} = S1
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CHAPTER 3: A SIMPLE GRAMMAR FOR CANONICAL REPs.

3.1 Introduction to the grammar for describing the Canonical Representa-
tion

The grammar is written using BNF notation, (see [24]).  This grammar is based on

set theory.  Section 2.4 includes some of the syntax of relations and operations; standard and

non–standard notation, used in constructing this grammar.

We use this grammar in describing canonical representations, for a finite state

machine called, ”rep”.  The grammar presented for ”rep”, will have a constraint which will

include its bounds.  In constructing the grammar for constraints on ”rep”, we follow ideas

presented for predicates, in [16].  The latter paper demonstrates ways of rewriting

mathematical expressions without introducing more notation.  Such creates redundancy and

may complicate reading.  However, to reduce writing we did introduced some redundancy

into the grammar, as will be seen with some notational conveniences, (e.g. existential

quantifier and implication were introduced).

The grammar is based mainly on those sets that we found useful during

experimentation, (refer to section 2.3 and Appendices A, B). We foresee no difficulty in

modifying our grammar to accommodate any additional sets which may be required in the

future.  Such additional sets includes the others of Fig 2. not presently used, or any extensions

to that figure.
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In describing the canonical representation we use set notation of section 2.4.  This

grammar is designed to guide the writer in describing the canonical representation in small

steps.  For instance, the grammar allows the writer to present set descriptors in a gradual

synthesis which leads to the single set descriptor for declaring “rep”.  This makes it easier

for readers (e.g. programmers) to understand canonical representations.

3.2 Trace and set syntax for a canonical representation

The following examples show how the trace of a canonical representation can be

represented using ITAM’s set structures.

3.2.1 An example using traces

This following example is taken from [10].  It is the canonical representation of the

module titled, ”UNBOUNDED PRIORITY INTEGER QUEUE”.

canonical (T) <–>��� 	����
���	��
���� ��
 �

�

��

� � ((x0)=(%empty%)) �

(�T1,S1,p,p1,x,x1)((T=T1.INSERT(p,x).(x).INSERT(p1,x1).S1)  �

(p<p1) � (p=p1) � (x�x1))

3.2.2 The revised example, bounded and using set representation

In this revised version, we define a local auxiliary function ”Numele”. Numele is

used to describe the module’s bounds.  The original module has no bounds [10].

Numele(x) �
��


��
�	���

� 
��
�	���

�

The following is our description of the canonical representation :–

Type definition

type t1 = NSET integer

type t2 = NSET t1
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type t3 = SNE � integer

type S = REC (”oval”, :t3) , (”data”, :t2)

Representation declaration 

rep : S | ((CARD(rep[”data”])�CAPQ) � (Numikey(RAN(rep[”data”]))�CAPIK))

Initial representation

rep = {(”oval”, {}), (”data”,{})}

3.2.2.1 Revised example using our notation for syntax testing purposes

Type definition

type t1 = NSET integer

type t2 = NSET t1

type t3 = SNE !!U integer

type S = REC (‘oval‘,:t3) , (‘data‘,:t2)

Representation

rep: S | (Numele(rep)<=CAPI)

Initial rep

rep = {(‘oval‘, {}), (‘data‘,{})}

3.3 Setting precedence

Generally, operator precedence on expressions can eliminate the use of curved

brackets (parentheses), [16].

In interpreting the meaning for a UDT set description here, the precedence between

the following 3 set operators, will be in the assumed order: � (intersection), � (union), – (set

difference).  We do not use curved brackets when describing a new UDT.  The distributive

law must be applied to create a single set descriptor’s definition, from other defined sets,

[17].  In case this is too cumbersome or bulky, the writer has the option of predefining some

set descriptors and substitute these instead, into the definition for simplicity.  By doing this

the writer guides the reader to some precedence.
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For example, in creating a UDT Ty, type Ty =T2  �  (T4 – T6) must be written in

our grammar as type Ty= T2  �  T4  –  T2  �  T6.  The latter part gives the appearance of

being bulky for a reader so another way is to predefine T4–T6.  Let type Tx = T4 – T6 and

then we can write type Ty = T2 � Tx.

We constrain ”rep” by using predicates.  Our precedence for the predicate

connectives is in the following order : � (and), � (or),  � (implication).

When we have a set ’S’ and an element ’e’, using normal set notation we union 2 sets

to do this, so here we write S � {e}.

When we want to remove e from S we can  write S – {e}.  We have added the

non–standard notational conveniences \+ and \– to add and remove single elements to a set,

in doing this we do not have to enclose these elements in parentheses (to be a set,) before

we operate.  We have found that this is clear and straight forward at times, in defining UDTs.

The set descriptor of the set that is being operated on, to produce the newly defined

set, must appear before the \+ and \– operations.  For example, if we need to define the set

descriptor T1, to be a set of numbers consisting of –1 and all the natural numbers except 1,

we write the following:

type T1 = natural14  \+   –1   \–  1

The operators \+ and \– have equal precedence.  We follow the left to right appearance

in a sentence when removing or adding an element to a set.  The writer has the option of

providing his/her own precedence by predefining some set descriptors and using them

appropriately.

For the mathematical operations, the precedence is the norm, that is * (multiply), /

(quotient), MOD (remainder), + (plus), – (minus).  These operations are only for real

––––––––––––––––––––––––––––––––––––––––––
14. In an ITAM module specification we write ’natural’ for the set descriptor natural.
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numbers.  It is recommended that any bulkiness resulting from the use of these operations

may be substituted with a locally defined auxiliary function.

3.4 Convention

Characters found within ’< >’ are nonterminal symbols.

The strings ’:==’ and ’|’ are the meta–symbols.

The start symbol will be <DerCanRep>

An uppercase nonterminal is mapped to a terminal symbol.  Terminal symbols are

system dependent.  In Appendix C we give the necessary nonterminals that will be required

to write a description of a canonical representation and the corresponding terminal symbol

for our particular system, (see details in Appendix C).  A user can substitute his/her own

corresponding terminal symbols to write the description of the canonical representation.

Terminal symbols must be recognised by the tool being used for testing a presented grammar.

For instance, on the system that we used to test the grammar, the symbol, � was unavailable

so instead we used A! .

3.4.1 Grammar for describing the Canonical Representation

<DerCanRep> :== <TypeDef>  <CanRep> <NL> <InitRep>

<TypeDef> :== <TD> <NL> <defsornone>

<defsornone> :== <NONE> <NL> | <spectydefs>

<spectydefs> :==<tysentconstr> | <tysentconstr> <spectydefs>

<tysentconstr>:== <TYPE> <setdescreq> <setdescrdef> <NL>

<setdescreq> :== <setdescr> <EQUAL>

<setdescrdef> :== <SETdef> | <SUBPdef> | <SSETdef> | <NSETdef> | <ARRAYdef>

| <RECdef> | <tupdef> | <setdifdef> | <undef> | <indef>
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| <setremadd>15 | <unSNE>

<SETdef> :== <LPARA> <streles> <RPARA> | <LPARA> <realeles> <RPARA>

<SUBPdef> :== <SUBP> <subPEdescr>16

<SSETdef> :== <SSET> <csetdescr>

<NSETdef> :== <NSET> <csetdescr>

<ARRAYdef> :== <ARRAY> <csetdescr>

<RECdef> :== <REC> <RECprs>

<RECprs> :== <aRECpr> | <aRECpr> <COMMA> <RECprs>

<tupdef> :== <csetdescr> <CROSSPRO> <csetdescr> 

| <csetdescr> <CROSSPRO> <tupdef>

<setdifdef> :== <setdifele> <SETDIFF> <setdifele>

| <setdifele> <SETDIFF> <setdifdef>

<setdifele> :== <undef> | <indef> | <csetdescr>

<undef> :== <unele> <UNION> <unele> | <unele> <UNION> <undef>

<unele> :== <indef> | <csetdescr>

<indef> :== <csetdescr> <INTERSECT> <csetdescr>

| <csetdescr> <INTERSECT> <indef>

<setremadd> :== <csetdescr> <remadd>

<remadd> :== <addele> | <remele>

<addele> :== <ELEADD> <astrele> | <ELEADD> <areal>

| <ELEADD> <astrele> <remadd> | <ELEADD> <areal> <remadd>

<remele> :== <ELEMINUS> <astrele> | <ELEMINUS> <areal>

| <ELEMINUS> <astrele> <remadd>

| <ELEMINUS> <areal> <remadd>

––––––––––––––––––––––––––––––––––––––––––
15. A notational convenience for adding element/s to a set without using set union or difference.

16. For a SUBP structure (see section 2.3.1.1), <subPEdescr> is a set descriptor for a fixed set of PEs.
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<unSNE> :== <SNE> <UNION> <csetdescr>

<aRECpr> :== <LBRAC> <astrele> <COMMA> <COLON>  <csetdescr>

<RBRAC>

<csetdescr>17 :== <PEdesrc> | <setdescr>

<setdescr> :== <alphanum>

<subPEdescr> :== <alphanum> | <PEdescr>

<PEdescr> :== <REAL> | <INTEGER> | <NATURAL>

| <STRING> | <BOOLEAN>

<astrele> :== <QUOTE> <alphanum> <QUOTE>

<streles> :== <astrele> | <astrele> <COMMA> <streles>

<alphanum> :== <alpha> | <alpha> <an> | <alpha> <ban>

<an> :== <alpha> | <digit> | <alpha> <an> | <digit> <an>

| <alpha> <ban> | <digit> <ban>

<ban> :== <UNDERBAR> <an>

<alpha> :== <UALPHA> | <LALPHA>

<digit> :== <GT0DIGIT> | <ZERO>

<realeles> :== <areal> | <areal> <COMMA> <realeles>

<areal> :== <notint> | <MINUS> <notint> | <anint>

<notint> :== <GT0DIGIT> <repdigit> <PERIOD> <repdigit>

| <GT0DIGIT> <PERIOD> <repdigit>

| <ZERO> <PERIOD> <repdigit>

<repdigit> :== <digit> | <digit> <repdigit>

<anint> :== <posnum> | <MINUS> <posnum> | <ZERO>

<posnum> :== <GT0DIGIT> | <GT0DIGIT> <repdigit>

––––––––––––––––––––––––––––––––––––––––––
17. All set descriptors appearing on right hand side of a type definition must be defined (i.e. appear on
the left hand side only once).
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<CanRep> :== <CR> <NL> <CanRepdef>

<CanRepdef> :== <REP> <csetdescr>18 <SUCHTHAT> <pred>

<pred> :== <primpred>

| <LBRAC> <FORALL> <vars> <pred> <RBRAC>

| <LBRAC> <pred> <RBRAC>

| <pred> <AND> <pred>

| <pred> <OR> <pred>

| <pred> <implies> <pred>

| <NOT> <pred>

<implies> :== <RIMPLIES> | <RLIMPLIES>

<primpred> :== <prefixpred> | <infixpred>

<prefixpred>19:== <func1>

<func1>20 :== <alphanum> <LBRAC> <args> <RBRAC>

<args> :== <expr> | <expr> <COMMA> <args>

<expr> | <constant> | <var> | <parameter>  | <PEdescr>

| <objref> | <func1> | <func2> | <func3>

| <RBRAC> <expr> <LBRAC>

<infixpred> :== <setexpr>  | <mathexpr> | <strexpr>

<setexpr> :== <lftsetarg> <setboolop> <rgtsetarg>

<lftsetarg>21 :== <constant> | <var> | <parameter> | <objref>

| <func1> | <func2> | <func3> | <func4>

<rgtsetarg>22 :== <var> | <PEdescr> | <objref> | <func2> | <func4>

<setboolop> :== <SETNEQUAL> | <SETEQUAL> | <MEM>

| <NONMEM> | <SUB> | <PROPSUB>

––––––––––––––––––––––––––––––––––––––––––
18. This must be a set descriptor that is a PT or one defined in the type definition section.

19. Written as a predicate.

20. A predicate or a non–predicate function.

21. A set’s element or reference to a set’s element.

22. A set or reference to a set.
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<mathexpr> :== <realarg> <realboolop> <realarg>

| <realarg> <realboolop> <mathexpr> 

<realarg>23 :== <areal> | <var> | <parameter> | <objref>

| <func1> | <func3> | <func4>

<realboolop> :== <NEQUAL> | <EQUAL> | <GE> | <GT> | <LT> | <LE>

<strexpr> :== <strarg> <strboolop> <strarg>

<strarg>24 :== <astrele> | <var> | <objref> | <func1>

<strboolop> :== <STRNEQUAL> | <STREQUAL>

<constant> :== <astrele> | <areal>

<var> :== <alphanum>

<vars> :== <alphanum> <COMMA> | <alphanum> <COMMA> <vars>

<parameter> :== <Ualphanum>

<Ualphanum> :== <UALPHA> | <UALPHA> <Uan> | <UALPHA> <bUan>

<Uan> :== <UALPHA> | <digit> | <UALPHA> <Uan> | <digit Uan>

| <UALPHA> <bUan> | <digit> <bUan>

<bUan> :== <UNDERBAR> <Uan>

<objref> :== <REPREF> | <REPREF> <objindx>

<objindx> :== <LSQBRAC> <index> <RSQBRAC>

| <LSQBRAC> <index> <RSQBRAC> <objindx>

<index> :== <astrele> | <posnum> | <var> | <parameter> | <objref>

| <func1> | <func4>

<func2> :== <DOM> <LBRAC> <objref> <RBRAC>

| <RAN> <LBRAC> <objref> <RBRAC>

<func3>25 :== <CARD> <LBRAC> <func3arg> <RBRAC>

<func3arg> :== <var> | <func2> | <objref>

<func4> :== <total> | <LBRAC> <total> <RBRAC>

<total> :== <mathval> <rops> <mathval> | <mathval> <rops> <total>

<rops> :== <TIMES> | <DIV> | <MOD> | <PLUS> | <MINUS>

<mathval> :== <areal> | <var> | <parameter> | <objref> | <func1> | <func3>

––––––––––––––––––––––––––––––––––––––––––
23. A real or reference to a real.

24. A string or a reference to a string.

25. A real.
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<InitRep> :== <IR> <NL> <IRdescr>

<IRdescr> :== <REPREF> <EQUAL> <IRdescr1_2>

| <REPREF> <SUCHTHAT> <pred>

IRdescr1_2 :== <IRdescr1> | <IRdescr2>

<IRdescr1> :== <LPARA> <IRpairs> <RPARA>

<IRdescr2> :== <LPARA> <RPARA>

<IRpairs> :== <apair> | <apair> <COMMA> <IRpairs>

<apair> :== <LBRAC> <name> <COMMA> <obj> <RBRAC>

<name> :== <posnum> | <astrele>

<obj> :== <IRdescr1_2> | <constant>

3.4.2 Grammar tool’s terminal symbols

Uppercase Non-
terminals

Explanations Our terminal symbols Used
in:

RPARA right parenthesis } 1,3

LPARA left parenthesis { 1,3

SUBP refer to sect 2.3.1.1 SUBP 1

REC refer to sect. 2.3.1.2 REC 1

SSET refer to sect. 2.3.1.2 SSET 1

NSET refer to sect. 2.3.1.2 NSET 1

ARRAY refer to sect. 2.3.1.2 ARRAY 1

UALPHA uppercase letters [A–Z] 1,2,3

LALPHA lowercase letters [a–z] 1,2,3

GT0DIGIT numbers excluding zero [1–9] 1,2,3

ZERO zero 0 1,2,3

UNDERBAR underbar _ 1,2,3

TD type definition title Type definition 1
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NL new line character, invisible \n, keyboard’s carriage re-
turn

1,2,3

TYPE start of a type definition type 1

NONE no type definitions None 1

REAL set descriptor, real real 1,2,3

INTEGER set descriptor, integer integer 1,2,3

NATURAL set descriptor, natural 1,2,3

STRING set descriptor, string string 1,2,3

BOOLEAN set descriptor, boolean boolean 1,2,3

SNE refer to sect. 2.3.1 SNE or sne 1

LSQBRAC left square bracket [ 2,3

RSQBRAC right square bracket ] 2,3

LBRAC left curve bracket ( 1,2,3

RBRAC right curve bracket ) 1,2,3

COMMA comma , 1,2,3

COLON colon : 1

QUOTE double quote ‘ 1,2,3

PERIOD period . 1,2,3

CROSSPRO cross product # 1

PLUS plus + 2,3

MINUS minus _ 2,3

MOD mod MOD 2,3

TIMES multiply * 2,3

DIV divide / 2,3

INTERSECT set intersection !!N 1

UNION set union !!U 1

SETDIFF set difference !!– 1

ELEMINUS remove an element \\–, keyboard’s \– 1
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ELEADD add an element \\+,  keyboard’s \+ 1

CR canonical representation title Representation 2

SUCHTHAT such that | 2,3

REP rep is defined to be rep: 2

REPREF the object rep rep 2,3

GT greater than > 2,3

GE greater than or equal >= 2,3

LT less than < 2,3

LE less than or equal <= 2,3

NEQUAL not equal != 2,3

EQUAL equal or assign = 1,2,3

SETEQUAL set equality SET= 2,3

SETNEQUAL set no–equality !SET= 2,3

STREQUAL string equality STR= 2,3

STRNEQUAL string non–equality !STR= 2,3

NOT not ! 2,3

PROPSUB proper subset PSUB 2,3

SUB subset SUB 2,3

AND and /\\, keyboard’s / and \ 2,3

OR or \\/, keyboard’s \ and / 2,3

NONMEM non–membership !MEM 2,3

MEM membership MEM 2,3

CARD cardinality CARD 2,3

DOM set domain DOM 2,3

RAN set range RAN 2,3

EXIST there exist E! 2,3

FORALL for all A! 2,3

RIMPLIES right implies ––> 2,3
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RLIMPLIES implies both ways <––> 2,3

IR initial representation Initial rep 3

Table 21. Terminal Symbols26

3.5 Grammar testing tool for the canonical representation description sec-
tion

In describing canonical representations, subtle accommodations must be made when

using the testing tool, refer to Appendix C.

––––––––––––––––––––––––––––––––––––––––––
26. The numbers in the Used in: column represents:–

1– The Type definition section
2– The Representation declaration section
3– The Initial representation section
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CHAPTER 4: A FORMAT FOR ITAM DOCUMENTS

4.1 The four sections of the ITAM module specification

There are 4 main sections to the ITAM module specification document :–

(a) The Header section

(b) The Canonical Representation section

(c) The Syntax section

(d) The Operation Table section.

The subsections of these sections are explained below.  Not all subsections are

compulsory and only those subsections that are needed must appear in a document.

4.2 The general format

The ideas for the following format grew mostly out of that presented in, [10].

4.2.1 Notable format changes from older TAMs

� The Canonical Representation does not use access program names.

� Syntax section appears after Canonical representation section.

� All auxiliary function tables and access program tables are presented as program function

tables, [25].

� Table Ids may be found in the upper left corner of auxiliary functions and/or operation

tables.

� The return values are now included in their appropriate operation table.
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� The return values can be a tuple of values and each value is properly referenced by sub-

scripting, see 2.4.3, Table 18. and examples of Appendices A and B.

� Comments can be made within the following notation, (as done in the programming lan-

guage PASCAL): 

/*  comments */

In Chapter 5, a discussion of examples of Appendices A and B will add clarity since

they follow the format presented in this chapter, for specifying a module interface.

4.2.2 Skeleton of format

The italicised phrases in the format’s outline, explains the necessary entries at the

point of their respective occurrence.  Phrases/words in standard font will appear exactly as

they are, in a specification document.  Such phrase/words will be refer to as a reserved

phrase/word.

The format’s skeleton is as follow :–

(0) HEADER SECTION

Type Implemented

module’s type or title ( module parameters )

Module parameter(optional)

a module parameter : type, ........, a module parameter : type

External type(optional)

an external module type ( parameter, ....... , parameter ) , ........ , an external module type (

parameter, ......., parameter )

(1) CANONICAL REPRESENTATION SECTION

Auxiliary Functions (optional)

Signatures and definitions of auxiliary functions to be used below

Description of Canonical Representation

Type definition

type definitions of non–predefined set descriptors
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Representation declaration 

rep :  type of canonical representation and constraints

Initial representation

rep = initial representation of rep

or rep | constraints on rep

(2) SYNTAX SECTION

Access Programs

ACCESS PROGRAMS

Program Name Arg1 ��

�

��

�

Argn Value

first access program
name

Arg1 type, if any ��

�

��

�

Argn type, if any return value type,
if any

� � ��� ��� � �

� � ��� ��� � �

last access program
name

Arg1 type, if any ��

�

��

�

Argn type, if any return value type,
if any

(3) OPERATION TABLES SECTION

Abbreviations

Abbreviations Expressions Table Id.

first abbreviation abbreviation’s expression function or operation table ident-
ifier

� � �

� � �

last abbreviation abbreviation’s expression function or operation table ident-
ifier
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Auxiliary Functions

Signatures and definitions of auxiliary functions to be used below

Operation Tables

access program name (an implicit argument [rep] or [rep,] other non–implicit arguments):

Operation table id. Condition 1 ��� Condition n

Either
object‘ =

–––––––––––––––––––––––––
or

 
new state

–––––––––––––––––

 
new state

––––––––––––––––––
or

(subscripted, argumented) ac-
cess

program name =
–––––––––––––––––––––––––

return value

–––––––––––––––––

��� return value

–––––––––––––––––
or

(subscripted, argumented) ac-
cess

program  name |

predicate predicate

� � ��� �

� � ��� �

extension class = %status% ��� %status%

4.2.3 Systematic format rules and other notable format changes

The following discussion is additional information to the ITAM format, given above

in (section 4.2.1).

4.2.3.1 Header Section

This is explicit in the format above.

� A module’s type is its title, (section 2.1.1).

� Module parameter and External type are optional in this section.
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4.2.3.2 Canonical Representation Section

This section is divided into 2 subsections, (described by (a) and (b) below):–

(a) An optional section for locally defined Auxiliary Functions.

� These functions can be used from this point onwards, in the document.

� The signature of every auxiliary function will be stated.

� Definitions can be in a linear or in a tabular format.

� An example of the tabular format for defining a function is shown below.

Function table id. Condition ��� Condition

Either
(subscripted) function  name

=
value

���
value

–––––––––––––––––––––––
or

(subscripted) function name |

––––––––––––––––
predicate

––––––––––––––––
predicate

��� ��� ��� ���

Table 22. Tabular format for a function definition

� Only functions in a tabular format can have a Table Id.

� Table Ids are generally required when abbreviations are used in defining the function.

� A subscripted function name is a variable, implying that the function is returning a tuple

of values, each value is identified by the subscript, see section 2.4.3, Table 18.

� true can be used as a predicate, see [16].

� Either or both of the rows of Table 22. may be found in an auxiliary function table.

(b) A compulsory section for describing the canonical representation.

� This subsection consists of the 3 sections shown above, (section 4.2.2).

� The types value, real, integer, natural, string, names, boolean, are predefined, see section

2.1.1.

� The reserved set descriptor, SNE is predefined, see section 2.3.1, Table 3.

� The syntax details is given in Chapters 3, (examples are discussed in 5).

4.2.3.3 Syntax Section

The table may have the 3 headings as shown.
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� All arguments will be input.

� All return values will be output.

� No suffices are required after argument types as in the old TAM (e.g. :I :O :V).

� The types value, real, integer, natural, string, names, boolean, are predefined, see section

2.1.1.

4.2.3.4 Operation Tables Section

This section may have 3 subsections, (describe by (a), (b) and (c)) :–

(a) An optional subsection for an Abbreviation Table.

� The first 2 columns are compulsory.

� For ease in reading the examples, we preferred to underline and capitalise our abbrevi-

ations.

� The list of Table Ids in a given row of an abbreviation table,are there to inform a reader

about those tables that use the corresponding abbreviation.

� Any abbreviation that is used in constructing a new abbreviation is refer to as an intermedi-

ate abbreviation

� Rows without Table Ids are definitely stating intermediate abbreviations.

(b) An optional subsection for locally defined Auxiliary Functions section, see 4.2.3.2(a)

above.

� These functions are used only in this section.

(c) Operation tables:

� The first argument of any access program call is the implicit argument, rep which will be

written as: [rep,]  or [rep] , (see Chapter 5, discussing Example 1) .

� An argumented access program name is one that requires non–implicit arguments.

� When the return value of an access program is a tuple , the variable referencing each value

will be a subscripted access program name, see the footnote for Table 18., section 2.4.3.

� A subscripted access program name (with or without arguments) implies that the return

value is a tuple of values, each identified by a subscript or a subscript composed of subscripts.

� We treat SNE as a special set descriptor, (Table 3.).

� Similarly for the operation tables, as in the auxiliary function tables, not all rows shown

above will be used.  All tables will have at least one first row (state of an object) and the last

row (extension class).
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� true can be used as a predicate, see [16].

� The notation in Table 23. , below will be used to specify an object’s state.

Notation Meaning

NC The Not Change predicate, refer to [14]

‘X State of an object X before an operation, see [14]

X‘ State of an object X after an operation, see [14]

NA (Not Applicable)
Given :– specific conditions, C; an object A, the state of

A is written as NA when the object A is not defined under
conditions C.

CA (Change Accordingly)
Given :– an operation O; specific conditions, C; an object

A; an object B;  where A is a member of B, the state
change of B is written as CA when O causes a state

change only to A and no other objects of B under condi-
tions C.

Table 23.  Other operation tables object state entries



71

CHAPTER 5: DISCUSSION OF EXAMPLES

5.1  Introduction to examples of Appendices A and B

The older figures of Parnas and Wang are re–presented in Appendix A and are the

Examples 1 to 8.  The older Figure 4, is now a version of Example 1 since it is based on a

stack.

We have also added some newer examples to demonstrate some other issues, (to be

discussed below).  Newer examples are in Appendix B.  The purpose of this chapter is to

demonstrate and discuss items that show our improvements.  Some of the same

improvements occur more than once in the examples of Appendices A and B, but we discuss

these improvements only once.  Discussion on cosmetic improvements are also included.

All examples demonstrate using ITAM’s format, presented in Chapter 4.  The

fundamentals of describing the Canonical Representation is based on set theory.  Any

designer using this newer method should follow the BNF grammar presented in Chapter 3.

In discussing the Operation Tables in this chapter, we introduce the following tags

for parts of the table using the italicised phrases given in the Operation Table skeleton,

section 4.2.2:–

� C   – access program name ( an implicit argument [rep] or 

[rep,] other non–implicit arguments )

� H1 – Operation table id. , Condition
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� H2 – object ’=, (subscripted, argumented) access program name = or 

(subscripted, argumented) access program  name | or

(subscripted, argumented) access program  name =,

extension class =

� G  – new state, return value, predicate, %status%

Predefined auxiliary relations and operations are useful in writing the examples in

the Appendices A and B, (see section 2.4).  Once these relations and operations are

understood it is more efficient for both readers and writers, to use them in ITAM

specifications.

In discussing each example, we briefly introduce the main improvements.  Then we

discuss all improvements that we think we must bring to the readers attention.  We discuss

the items of a specification from the top downwards.  Occasionally this was not adhered to

since comparisons among different versions of the same example were compulsory.

We use the terminology primary object in this section.  A primary object is an object

implemented by a module, the object is itself not part of the composition of another object.

In an ITAM specification the primary object is, ”rep”.

5.2  Examples of Appendix A

We will present at least one version of all the older figures [10].  All older module

specifications which cannot implement a finite state machine, will now have a version which

is a finite state machine.   Any object implemented by a module is a finite state machine and

a finite state machine may be a set of other finite state machines.

5.2.1  Integer stack module examples

This example documents the standard example used in demonstrating a formal

method.
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In the header section of Example 1a Module parameter and External type are not

used.  Example 1a does not specify the implementation of a finite state machine.

The main features of this discussion, is to demonstrate the use of ITAM’s format; an

explanation of how the TYPE relation should be understood, (Chapter 2); using auxiliary

predefined functions; showing an access program that is polymorphic.  We also bring some

other cosmetic issues of ITAM, to the readers attention.

5.2.1.1  Demonstrating the use of ARRAY

In the Type definitions we use ARRAY for describing the canonical representation

of the module.  The Array structure is a PSET used to represent a sequence

5.2.1.2  Argument, ”rep”

PUSH([rep,]e) and POP([rep]) demonstrates the difference of the implicit argument

mentioned in 4.2.4.3(c).  POP does not have any other arguments unlike PUSH.

In trying to relate [rep,] or [rep] to the older TAM, this implicit argument must be viewed

as the trace of an object before it is extended by an access program.  However the trace is

now reorganised and represented as a set that is a function, (PSET).

5.2.1.3  Returned values and Extension class

The return value TOP([rep]) is defined in a predicate, the predicate makes use of the

notation true and the extension class gives the status (see section 1.8).  An exception handler

can take care of this situation in some other document.

The return value is a simple 1–tuple, (section 2.1 and [16]).

The extension class for a condition (status) is the value which is a sequence of

characters between a pair of ”%”.
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5.2.1.4  Module parameter and External parameter

In 1b and 1c, Module parameter is used but not External type.

The implementation of 1b and 1c will be finite state machines.  Using the Module

parameter CAP to constrain the canonical representation ensures the finiteness of the object.

5.2.1.5  Considering the TYPE relation

For this example, in the canonical representation description section, S is a user

defined set descriptor. typeUnbounded_stack is: {S, integer, natural}.

The set of indices for the ARRAY is a subset of natural and the set of indexed items

are integers therefore valueUnbounded_stack contains values that are all natural numbers and all

sets of integer pairs.

5.2.1.6  Polymorphic PUSHCHK

In 1c the argument type as seen in the syntax table, allows the access program

PUSHCHK to handle any real.  The objects’ state is represented by compositions of integers.

Determining state changes is dependent on non–integer and integer so the predefined

predicate Tchk is used in PUSHCHK.  This version of the stack module documents an access

program that is polymorphic.

5.2.1.7  Predefined auxiliary functions

This module shows the use of predefined functions CARD, addAT, delN, delAT,

Reseq.

5.2.1.7.1  Not providing predefine auxiliary function’s arguments

The function addAT is defined with type checking but in this module type checking

in addAT is irrelevant so the second argument was ignored, (see section 2.4.5.2).
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On looking at the specification of the PUSHCHK operation table, one notices that

the second argument ”integer” does not appear in addAT.  The convention to leave out

arguments was developed for redundant writing (section 2.4.5.2).  In this operation table

Tchk appear in the operation table header already, so there was no need to provide the

”integer” argument for addAT.

5.2.2  Set of stacks, module examples

This example documents a module with named objects, [10].  We use strings to name

the objects.

Both versions of this example are modified to be more practical.  For this reason new

and modified access programs will be encountered (e.g. delete programs) and bounds

provided.

In this example we do not use the notation for an empty trace (i.e. T=_), we explain

this further below.

We use a simple n–tuple that is not a simple 1–tuple, to return values.

5.2.2.1  Where to define Auxiliary functions in ITAM’s format

In 2b, we used the auxiliary function SUMSTKS instead of using the cumbersome

mathematical notation that it defines.  SUMSTKS was used in both the canonical

representation section and the operation tables section.  This is why it is defined in the

Canonical Representation section and not in the Operation Tables section, (see section 4.2.2,

Auxiliary Functions  subsections).

5.2.2.2  SSET and cross products

In the Type definitions we demonstrate our use of cross products and SSET.  We did

not use a sequence here for our definition of the primary object.
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In the syntax table ”booltup” is a UDT which defines a tuple (using cross product).

Notice here that ”booltup” was not used in describing ”rep”, ”booltup” appears in the syntax

table, (see section 5.2.8.1 on interchanging sections.)

5.2.2.3  Using the predefined auxiliary function N_fnd

We make use of another predefined auxiliary function N_fnd in most of the operation

tables. Using N_fnd has helped us in eliminating the use of “Tn =_”  where n is any name

(see section 1.3.2).  The older module specification in [10], was not a finite state machine,

it was an unbounded module.  We used both N_fnd and the module’s parameters in

maintaining the bounds for each stack and the set of stacks,  (CAPSUMSTKS, CAPSET

respectively).  The module specification with these bounds (Example 2b) implement finite

state machines.  We may refer to 2b as a finite set of a finite set of objects.  The entire set

is viewed as a single object, (primary object).

N_fnd also helps in making sure that no 2 objects have the same name.  This ensures

that the set remains a PSET.

5.2.2.4  A return value that is not a simple 1–tuple

STKSTATE in 2a shows one way of presenting return values of simple 2–tuple, (of

”booltup” type).  STKSTATE of 2b is the equivalent, presented differently, both examples

are shown in Fig 3. and  Fig 4. below.

5.2.2.5  Notation: NC, NA, CA

The notation NC can be found in some of the tables.

CA and NA are found in PUSH and POP, their explanations are given in Table 23.
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When an object A, is an element of another object B (mentioned in the explanation of CA

in Table 23. ), we recommend that the information about A’s state appear in a row before B’s.

This creates a familiar consistency in the mind of the reader.

STKSTATE([rep,]n) :

N_fnd(‘rep,n)
�N fnd(‘ rep n)

CARD(‘rep[n])=0 CARD(‘rep[n])>0
�N_fnd(‘rep,n)

rep‘= NC NC NC

STKSTATE([rep,]n)1= true true false

STKSTATE([rep,]n)2= true false false

extension class = %emptystk% %notemptystk% %nofndstk%

Fig 3. Operation Table STKSTATE of Example 2a

STKSTATE([rep,]n) :

N_fnd(‘rep,n)
�N fnd(‘ rep n)

CARD(‘rep[n])=0 CARD(‘rep[n])>0
�N_fnd(‘rep,n)

rep‘= NC NC NC

STKSTATE([rep,]n)= (true,true) (true,false) (false,false)

extension class = %emptystk% %notemptystk% %nofndstk%

Fig 4. Operation Table STKSTATE of Example 2b

5.2.2.6  Local versus predefined auxiliary function

The additional access program, PUTCHK demonstrates a short coming of the design

of this operation table and how a locally defined auxiliary function can be clearer.

Since addA was used with an argument i, that meant that there is a required redundant check

N_fnd(’rep[n],i) within addA.  This cannot be avoided while keeping column 5.  To avoid

this redundancy and to save on writing in the design, an auxiliary function local to this
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module can be defined as :  

 LocFun : ARRAY  � integer � value

LocFun(S,i,o) �
��

 DBEF(S,i) + (i,o) � INCR(S,i) 

and a substitution of LocFun(’rep[n],i,e) in place of addA(’rep[n],i,,e) can be made.

The choice must be made by the specification writer as to whether an already learnt

(predefined function) or a newly written local function that is almost similar, should be used.

5.2.3  Integer queue module examples

This example documents the queue module, [10].  Most of it’s improvements are

already covered in Example 1.

5.2.4  Bounded integer table list module example

In the older Figure 5, the table list was not bounded.  In the design presented as

Example 4, we ensure bounds, thus an implementation is a finite state machine.  The main

feature of this example is the introduction of Abbreviation tables in the Operation Tables

Section, (see section 1.9).  We briefly discuss the significance of providing both after–states

and legality in our operation tables.

In this example it was not necessary to create a separate PARSE function as in the

older Figure 5 in [10].

5.2.4.1  Demonstrating the use of REC

In the Type definitions, we demonstrate the use of REC.  REC is used in the same

sense as the typical records provided by some programming languages, (e.g. PASCAL).

5.2.4.2  Abbreviations

All abbreviations in this example, were used in tables therefore none were

intermediate abbreviations, (see section 4.2.3.4 for intermediate).  An intermediate
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abbreviations is mentioned in a later example, sections 5.2.6.2.  Our preference to have

underlined capitals as abbreviations, must not be regarded as a standard convention.  Further

explanations on abbreviations, will be discussed below, in 5.2.7.6.

Abbreviations give an operation tables an image of being less cluttered when clutter

cannot be otherwise avoided.  Meaningful abbreviations are always a good hint for readers

to understand their purpose.

5.2.4.3  Transition from a trace of program invocations to a set of objects

Our version of this example is straight forward, CARD(rep[”list”]) – rep[”ptr”]=n,

where n is the variable found in the original canonical representation in Figure 5 of [10].

Below is a diagrammatic example of how a conversion from the old trace example

to the new, was done.  In the older canonical trace, n of GOLEFT was removed and a pointer

(i.e. an object,) was put in place in order to reference elements in the sequence of insertions

which is now represented by the ARRAY, rep[”list”].  In order to get the exact element before

n,  rep[”ptr”] must be incremented by 1.

a b c d eRAN(rep[”list”])
1 2 3 4 5

rep[”ptr”] 0 1 2 3 4 5

n 05 4 3 2 1

DOM(rep[”list”])

Fig 5.  Converting n in trace to ”ptr” in canonical representation
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5.2.4.4  Applying the New Rule of section 2.4

In the old specification when G is the length of the insert trace, this means in the new

specification that rep[”ptr”]=0, when this occurs the value of parse was ”false”, there are no

equivalences on these traces.  This is confusing to the reader since the reader may be

wondering, “what is the state of the object when parse is false”?  The answer to this may be

left to an implementor’s choice and is not explicit.  In the new documentation when this

occurs the object’s state will remain unchanged (New Rule in section 2.4) and this condition

now have several extension class status, satisfying ”false”.

5.2.4.5 Different status for different conditions

If we look at the new INSERT operation table, under different conditions we see that

objects may have the same after–states, (e.g. columns 3 and 5).  In these cases the status

provided by the extension class reflects the difference.  The status has replaced legality which

we used in the older TAM, (see section 1.3.5).

5.2.5  Unique integer producer module examples

The older figure 6 featuring a non–deterministic specification, is rewritten as 5a.

Since there no bounds on 5a, it will not implement a finite state machine.  However the newer

versions 5b and 5c, will implement a finite state machine.

This example does not use a delete or add access program.  Eventually the system

that maintains the history ensuring a production of unique integers, will reach CAP.

5.2.5.1  Demonstrating the use of SUBP

In the type definitions here, we have used SUBP, (see section 2.3.1.1) since unique

object states were a requirement in the specification.
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5.2.5.2  ITAM table organisation for return values in terms of after–state

When we document non–deterministic modules the independence that exists

between rows of operation tables is lost.  Fig 6. and Fig 7. (taken from 5b and 5c respectively)

are equivalent, the difference is in the syntax.  Fig 6. has the return value written in terms

of the object’s after–state whereas Fig 7. has the object’s after–state written in terms of the

return value.  To be systematic, if an object’s after–state is in terms of the return values, then

we prefer to let the object’s after–state row appear after the return value row.  Also, we have

adopted the convention of presenting the return values in terms of the after state as in Fig

6.  Example 5b is recommended instead of 5c.

GETINT([rep]) :

true

CARD(‘rep) < CAP CARD(‘rep) = CAP

rep‘ = ‘rep + e | Tchk(integer,e) �
e�‘rep ‘rep

GETINT([rep]) | GETINT([rep]) = rep‘–‘rep true

extension class = %successful% %caprched%

Fig 6.  Return value in terms of an object’s after–state

GETINT([rep]) :

true

CARD(‘rep) < CAP CARD(‘rep) = CAP

GETINT([rep]) | GETINT([rep]) = e | Tchk(in-
teger,e) � e�‘rep) true

rep‘ = ‘rep + GETINT([rep]) ‘rep

extension class = %successful% %caprched%

Fig 7.  An object’s after–state in terms of return value
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5.2.6  Bounded priority integer queue module examples

The versions of this example mainly demonstrate, a more complicated module with

non–deterministic properties; different methods of placing bounds on the module; reducing

H1 size.

5.2.6.1 Syntax when using SNE, +, \+, –, \–

We show how we use SNE in the type definitions, (see section 2.3.1, Table 3.).  The

set description, SNE � integer, could have been written as, integer \+ {}.  To maintain

simplicity,  our grammar allows only one way, the former.

5.2.6.2  Intermediate abbreviation, function calls in abbreviations

The Abbreviation table of 6b and 6c shows the intermediate abbreviation, HIGHQ’.

In 6b we show the use of a locally defined auxiliary function NUMELE within an

abbreviation’s expression of ILIM.  Predefined auxiliary functions, can appear in an

abbreviation’s expression, (e.g. shown by MAXI in ’HIGHQ).

5.2.6.3  Some ways of placing bounds on this module

The original module was unbounded.  All 3 versions presented in Example 6 are

bounded.  Our versions have demonstrated 2 ways in which this can be done.

It is a designer’s choice of how to place bounds on a module so that it implements

a finite state machine.  This module could have had bounds placed on it in either of several

ways as given below.  Below we give hints, (a) to (e) of possible ways of placing bounds on

the module.

The following parameters are used in the expressions below:

MINQKEY – minimum queue–key

MAXQKEY – maximum queue–key
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MAXIKEYPERQ – maximum item–key per queue 

MAXSUMIKEY – maximum sum of item–keys

MAXPERIKEY – maximum entries per item–key

MAXSUMI – maximum sum of items for module

(a) The queue key bound, defined as

(�x, x� DOM(rep[”data”]) � MINQKEY�x�MAXQKEY)

(b) The maximum number of queues allowed, defined as

CARD(rep[”data”])�CAPQ

(c) The item key bounds, defined as

(�x, x� RAN(rep[”data”]) � (�y, y�DOM(rep[”data”][x]) � MINIKEY<y<MAX-

IKEY))

(d) Either of the following can be used :–

[i] Maximum number of item keys allowed per queue, defined as

(�x, x� RAN(rep[”data”]) � (CARD(x)�MAXIKEYPERQ) or

[ii] maximum number of total item keys allowed for set of queues, defined as

�

�

�




���������		
	�			��

�	
����


�

�MAXSUMIKEY

(e) Either of the following can be used :–

[i] Maximum number of items allowed per key, defined as

(�x, x� RAN(rep[”data”]) � (�y, y�RAN(rep[”data”][x]) � 1�y�MAXPERIKEY)

or

[ii] maximum number of items allowed per queue, defined as

(�x, x� RAN(rep[”data”]) � 1��
�

�




���������		
	�			�����

��


�

�MAXIPERQ) or

[iii] maximum number of total items allowed for module, defined as

(1�( 


����������		
	�			���

� 

��������

� )�MAXSUMI )
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Examples 6a,b use a bound on items (i.e. (e) above) whereas 6c use a bound on the

summation of the sets of itemkeys (i.e. a combination, (b) and (d)[ii]) .

5.2.6.4  Comments in a specification

Sometimes there may be a dire need to make comments in an ITAM specification.

We have made use of a typical notation for commenting, (i.e. using /* and */) as shown after

the Representation declaration of ”rep” in Example 6c, (see below).

Representation declaration 

rep : S | CARD(rep[”data”])�CAPQ � Numikey(RAN(rep[”data”]))�CAPIK

/*Maximum number of queues allowed  and  Maximum number of total item keys allowed

for set of queues*/

5.2.6.5  Demonstrating how abbreviations reduce table size

Example 6b,c shows the resulting simplicity of an operation table when abbreviating

is done.  Further abbreviating could have been done to simplify H1 into a single row.  This

would have been at the cost of having a larger abbreviation table.  If the abbreviation tables

of 6b and 6c are extended to include Fig 9. as shown below, the redone H1 (given as Fig 10.)

can be used.

�EMPTY

�ILIM ILIM

1
EMPTY QMEM �QMEM QMEMEMPTY

IKMEM �IKME
M

LCNGQ GCNGQ IKMEM �IKME
M

�QMEM

Fig 8.  H1 of INSERT operation table of 6b and 6c
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AB1 �EMPTY��ILIM�QMEM�IKMEM 1

AB2 �EMPTY��ILIM�QMEM��IKMEM 1

AB3 �EMPTY��ILIM��QMEM 1

AB4 �EMPTY��ILIM��QMEM 1

AB5 �EMPTY�ILIM�QMEM�IKMEM 1

AB6 �EMPTY�ILIM�QMEM��IKMEM 1

AB7 �EMPTY�ILIM  ��QMEM 1

Fig 9.  A possible addition to the abbreviation tables of 6b and 6c

1 EMPT
Y

AB1 AB2 AB3 AB4 AB5 AB6 AB7

Fig 10.  A single row H1 for the INSERT operation table

5.2.6.6  Syntax for indexing objects

Our method of identifying an object belonging to a set of objects which  may

themselves be sets, is a simple one, and obvious to programmers, (e.g. rep[”data”][p][v] in

the INSERT operation table).  Readers can easily understand this syntax than the actual

mathematical expression it stands for.

5.2.6.7 Demonstrating the use of +, \+, –, \– in access programs

In this example the access program INSERT and REMOVE, demonstrate the use of

the notation ’+’, ’\+’, ’\–’ and ’–’.

5.2.6.8  Non–deterministic property of this module

It is the REMOVE operation that gives this module it’s non–deterministic quality.

The actual predicate shown in the column 4 below demonstrates this.
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rep[”oval”]‘ | NC true
rep[”oval”]‘�

DOM(rep[”data”][MAXI(DOM(rep[”data”]‘))]‘)
NC

Fig 11. The ”predicate of non–determinism”

5.2.7  Bounded multiple binary integer tree module examples

In the 2 versions of this example, we have now added a new access program

DELTREE and  we have replaced SETNIL and SETTREE with CREATETREE.

DELTREE was added to make a more practical design since both versions of this

module is bounded.

Any tree or a tree’s branches can be operated on.  Both versions of this example

describes a set of trees.  The objects created by this module use the access programs of

another module, PATH (Example 8), [9,23].  Some operations on objects, depend on

information obtained using objects created by the PATH module. This example shows how

extension classes, assist in reducing some operation table’s width.

5.2.7.1  External Type

This module assumes the existence of Example 8’s objects.  In the Header Section

we have included the External type PATH with PATH’s 2 parameters.  These parameters are

obtained via the tree module.

5.2.7.2  An explicit set

We demonstrate the use of an explicit set (Table 4.), in defining the set descriptor,

”lr”.

type lr = {”l”,”r”}
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5.2.7.3  A recurring syntax for dynamic structures

In this example we demonstrate our use of ”recurring” defined types as shown below.

type t1 = SNE � tree

type tree = REC (”anint”, :integer), (”left”, :t1), (”right”, :t1)

The set descriptor ”tree” occurs in t1’s definition, and ”t1” occurs in tree’s definition.  For

those readers familiar with the programming language, Pascal, the equivalent semantics is

written as:

type t1 = � tree;

type tree = record anint : integer; left : t1; right : t1 end;

5.2.7.4  Tcard, Int, Gtr functions

All trees are bounded and the set of trees that will be implemented by this module,

is also bounded thus ensuring a finite state machine.

We introduced a new auxiliary function Tcard to be used as a term in a predicate

which checks on the bounds of this module.  Tcard is used in some access programs of this

specification.  Tcard evaluates the cardinality of a tree.

We also introduced some other auxiliary functions that were not present in the older

Figure 8, so as to assist in simplifying our design, (i.e. Int and Gtr).

5.2.7.5  Demonstrating how status reduce table size

We successfully reduced the width of operation table, CREATETREE of 8a, by

combining all

extension class = %willrchct%

and produce CREATETREE of 8b.  We produced one column with the H1 entry being

WARNCT,, (see section 1.8).
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We might have tried to simplify H1 of the operation table to be one dimensional (as

suggested in 5.2.6 above).  However the abbreviation table would be longer and the

expressions would have been more intricate for readers to understand.  Therefore we decided

to leave the table this way.

WARNCT is an abbreviation, mostly made up of intermediate abbreviations and is a good

example of how intricate an abbreviation’s expression can be.

5.2.7.6  Abbreviations, cost of reducing operation tables and output tuples

By comparing both versions, it is obvious how much larger the Abbreviation tables

will get when we try to simplify the operation tables.  8a’s Abbreviation table is much smaller

that 8b’s.

We were able to reduce the specification size further when we combined the auxiliary

functions and present the return value of a function as a 5–tuple, as shown in 8b.

The GETVAL abbreviation of Fig 12. demonstrates how tuples can be abbreviated,

the underlined portion of the expression is itself an abbreviation but it also denotes an

element of a tuple.

VP VP(p,‘rep[r],d,b) f2

GETVAL VP3[”anint”] 4

Fig 12.  An abbreviated tuple’s element

5.2.8  Bounded path holder module example

The access programs of Example 7 will use access programs of this module.  The

main features of this module are : the addition of a delete program; combining access

programs in order to reduce the size of a specification document.

The newer version of the older Figure 9 (i.e. this example).  We have added a

DELPATH access program to make the design more practical.
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5.2.8.1  Interchanging the Syntax and Canonical Representation sections

In the Syntax Section of a module specification, set descriptors of UDTs may also

be used in the argument and value columns of the syntax table.  Because of this reason, not

all set descriptors found in the canonical representation description section, are used solely

for describing Canonical Representations.

In this example we show how the UDT, ”lr” is used both in describing the canonical

representation and as a subset of a type that is used in returning the value of PATHSTAT.

As a convenience to readers, we put the SYNTAX SECTION after the CANONICAL

REPRESENTATION SECTION in ITAM’s format.  PATHSTAT was created as a

replacement when we combined the access programs: EMPTYPATH, GOLEFT and

GORIGHT.

5.3 Examples of Appendix B

All examples of Appendix B, are bounded.

5.3.1  A nondeterministic single object, room module example

We demonstrate the use of string elements, to document a simple but practical

example.  Each string uniquely represents an object,  thus there is no naming of objects.

Strings make more meaningful names than natural numbers, and increases legibility.

In access program TAKE, we demonstrate the use of the predefined relation ANYLS.

The use of this relation, has given the module it’s non–deterministic property.

5.3.1.1  Explicit sets and their effect on parameters

This example shows the usefulness of a module’s parameters which are used as

bounds.  One should realize that in this module, a practical value for the Module parameter
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must be a value less than 6.  When the canonical representation is defined by an explicit set,

and the value of the module parameter is equal to or larger than the cardinality of the explicit

set, we can disregard the parameter’s value.

5.3.1.2  Demonstrating set union syntax

This example demonstrates the syntax when we use set union.  Only set descriptors

appear in the syntax of the definition, when we describe the canonical representation.  The

same applies to set intersection and set difference.

5.3.2  A polymorphic, two–rooms module example

The main features of this example is to show how polymorphism and run–time type

checking are documented.

All 4 access programs are polymorphic.

The arguments of PUTON and GETOPUTN are specified for only strings that are

’ct’  or not ’ct’ types.  It is assumed that otherwise (i.e. not a string), must be taken care of

elsewhere, most likely by a compiler.

However the access programs PUT and SGETOPUTN has taken it to the extreme.

Both access programs allow any type of arguments (as specified in the syntax table).  Because

of this the interpretation of their requirements means that all type checking of their

arguments must be done at run–time.

5.3.3  A non–deterministic polymorphic, two–rooms module example

This Example demonstrates that it is possible to combine many features, previously

discussed in this chapter, without fear of clashes in the documentation process.  This includes

non–determinism and polymorphism.  We also show how we handle an irrelevant row in an

operation table.
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5.3.3.1  Eliminating rows of an operation table

In the access program PUTO an object is composed of 2 other objects.  An invocation

of PUTO changes only one of the latter 2 objects so we only document the changed object

and the object it belongs to.

In documenting Example 11, we eliminated the second row after H1 of Fig 13. below

since there were no changes to the state of the object, rep[”new”].   Eliminating rows, reduces

the size of an operation table.

PUTO([rep,]e) :

e�‘rep[”old”]

CARD(‘rep[”old”])
< CAPO

CARD(‘rep[”old”])
= CAPO

e�‘rep[”old”]

rep[”old”]‘= ‘rep[”old”] \+ e NC NC

rep[”new”]‘= NC NC NC

rep‘= CA NC NC

extension class = %successful% %oldfull% %dupobj%

Fig 13.  Another representation of PUTO of Example 11

5.3.4  A bounded polymorphic multi–object, non–empty room module
example

The example documents a module that has an initial state which is not “{}”.

The purpose of this example is to demonstrate the development of a module

specification whose primary object’s initial state, is not given by the empty set.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

In our work we accomplished the following goals :–

(a) Allow specification method writers to represent the state of an object, using sets.

(b) View a collection of objects implemented by one module, as a single object composed

of objects.

(c) Presents objects’ state representation semantics and a syntax that is more in tune with pro-

grammers’ perceptions.  The syntax includes the recursive kind which defines dynamic data

type, (e.g. linked lists in PASCAL).

(d) Provide a tool that checks the syntax describing the canonical representation of an objects

state.  (See Appendix C and Chapter 4 for details.)

(e) Provide commonly used predefined auxiliary functions to simplify mathematical nota-

tion.

(f) Provide predefined auxiliary functions to be used when it is necessary to ”check type”

and ”check availability” of an object, before performing operations on an object.

(g) Provide a method of abbreviating, long and duplicate, mathematical expressions.

(h) Provide a better format that can be checked for completeness and consistency of access

programs (operation tables) descriptions.

(i) Show that it is possible for ITAM to document polymorphic and non–deterministic mod-

ule specifications.
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(j) Provide a common, compact and systematic document format for ITAM’s module inter-

face specifications.

The examples presented in Appendices A and B are evident.

6.2 Future work

This work may be used to document some software modules.  In retrospect we have

shown that some examples when compared to those presented in [10], have turned out to be

shorter in text volume while others have turned out to be the opposite.  This may be due to

our more practical considerations.  For example: we wanted every implemented module’s

specification to be a finite state machine; occasionally when a user needed to access an object

of a module, object availability checks were done.  Such considerations increased the volume

of text.  Less details, produce smaller volume of text.

The proof of our success with these improvements, should not be assessed on volume

of text but how acceptable our method is to a developer.  One suggestion would be to take

a survey.

This work is limited to the examples we investigated.  Therefore we recommend

more extensive use of our method, to document software modules in other areas of work (e.g.

other engineering disciplines).  We need to know what further improvements are necessary.

This can only be achieved by putting ITAM to a practical test (e.g. using ITAM to document

the TTS module [25]).

6.2.1 Possible extensions to this work in the context of reverse engineering

Many systems contain somewhat similar kinds of software work assignments, where

one work assignment may be just like another but have a few extra programs.  When reverse

engineering is an issue, we will need to investigate and if necessary, provide solutions (an

even newer ITAM) that yields systems with minimal redundancy in such cases.
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Furthermore, we need to investigate and adjust ITAM to accomodate the

inadequacies of some (badly) written programs.  We need to consider the case of how we

should treat global variables affected by programs of work assignments, where these work

assignments produced systems which do not follow a proper ”uses” structure.

6.2.2 Automatically checking a module specification

It would be a worthwhile endeavour to guide a specification writer towards writing

understandable module specifications.  We would recommend that the module interface

specification format presented in this thesis, be further investigated and further simplified

for programmers.

A fully automated process can be developed to guide specification writers.  Current

existing TTS tools may be useful here, [25].

6.2.2.1 Format checking tools

For ITAM specifications we would like to suggest the need for basic format checking

tools for the following areas :–

(a) the header section

(b) for auxiliary functions

(c) the syntax section

(d) the operation tables

(e) abbreviation tables

Some extra syntactic rules not covered in this work will be required.  After this

ground work is laid, then smarter additions can be made to the format checkers to make them

more informative to specification writers.
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6.2.2.2 Completeness and consistency checks

Automated completeness and consistency checks for the operation tables are always

a welcome thought to designers.  In the case where current tools may need the header of

operation tables to be specified as single dimensional, further work may be needed.

6.2.3  Canonical Representation sets, Abbreviations, Aliases and Macros

In describing canonical representations, our examples only used the SP sets and

PSETs that we provided.  By using ITAM more extensively, we will be able to find out what

new sets (if any) must be added to what we currently provide.

We have made use of abbreviations and macros (auxiliary functions) in some

examples of Appendices A and B, (refer to section 5.2.6 and shown by Fig 10. for

abbreviations).  So far we did not use aliases27.  However there may be a need as more

examples with complicated mathematical expressions are encountered.  This needs further

investigation.

6.2.4  A trace simulator for deterministic and non–deterministic ITAM
modules

Presently, there are trace simulators for deterministic modules based on the older

TAMs, [27, 35, 38].  There is a need to construct one for ITAM, which may handle some

non–determinism.

Both Norvell [28] and Janicki [30] have suggested the importance of a fundamental

change in the domain of extension functions.  They have demonstrated the importance of

––––––––––––––––––––––––––––––––––––––––––
27. Aliases are always names for a variable of a set of variables.  They cannot be used for expressions
that do not denote variables.  Aliases are evaluated before each individual expression evaluation, not
during expression evaluation as with functions, or before all evaluations as with abbreviations.  Evaluat-
ing the alias identifies the variables that will be involved when the expression is evaluated.  It is pos-
sible that every evaluation of an expression that contain aliases will use different variables.

Example: Suppose that P is an array that always contains a permutation of the numbers from 1 to 10.
Suppose that FIVE is an alias for P[i] such that P[i] = 5. and SIX is an alias for P[i] such that P[i] = 6.
FIVE plus SIX is always 11, no matter what permutation is stored in the array P.  
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considering the ”removed values” from an object’s state representation, in order to determine

the present state of a module for some cases of non–deterministic behaviour.

In ITAM, we represent the state of an object by a set of values.  New states of an object

is given by a set operated on by a program invocation and possible input arguments.  With

ITAM’s current notation for describing a canonical representation (a set), it will be easy to

introduce another new element which is an object into the primary object, ”rep”.   Here we

will refer to this object as, O.  The purpose of O is to maintain the history of the values that

caused a ”reduced” state change.  For ITAM we say an object’s state change is reduced if the

elements representing the before–state is more than that of the after–state.

Considering the drunken stack example in [30], we state that all before–states of the

object were once an after–state (the initial state is debatable but not significant for this

discussion).  We let O maintain the history of only the values of the last POP invocation.

We then use O to determine the exact after–state from a set of after states.  This after–state

becomes the new before–state, to be extended by another program invocation.   Before a

proper simulator can be constructed, further discussion of this topic is required.

Future work on ITAM should include a simulation on ITAM’s specification of a

non–deterministic module.  However there is difficulty in building a simulator to

accomodate non–deterministic modules.  Some non–deterministic modules can have a very

large set of possible choices to test.  Simulating a finite but very large set of possibilities is

not an easy task.  The effect can be somewhat reduced by simultating duplicate or equivalent

states just once.  A mechanism would have to be developed to identify such states.  Another

mechanism can also be developed to determine what possibilities are ”never used” then

ignore the simulations on these.
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APPENDIX A:  OLDER EXAMPLES

Example 1a: Unbounded integer stack module. (Figure 1)

(0) HEADER SECTION

Type Implemented 

Unbounded_stack

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type S = ARRAY integer

Representation declaration 

rep : S

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

PUSH integer

POP

TOP integer

3) OPERATION TABLES SECTION

Operation Tables

PUSH([rep,]e) :

true

rep‘= addAT(‘rep,,e)

extension class = %successful%
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POP([rep)] :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘ = ‘rep delAT(‘rep)

extension class = %empty% %successful%

TOP([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘ = ‘rep ‘rep

TOP([rep]) | true TOP([rep])=‘rep[CARD(‘rep)]

extension class = %empty% %successful%
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Example 1b: Overflow integer stack module. (Figure 4)

(0) HEADER SECTION

Type Implemented 

Overflow_stack(CAP)

Module parameter

CAP : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type S = ARRAY integer

Representation declaration 

rep : S | (CARD(rep) � CAP)

Initial representation

rep = {}



101

(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

PUSH integer

POP

TOP integer

3) OPERATION TABLES SECTION

Operation Tables

PUSH([rep,]e) :

CARD(‘rep) < CAP CARD(‘rep) = CAP

rep‘= addAT(‘rep,,e) addAT(Reseq(del_N(‘rep,1)),,e)

extension class = %successful% %full%
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POP([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘= ‘rep delAT(‘rep)

extension class = %empty% %successful%

TOP([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘ = ‘rep ‘rep

TOP([rep]) | true TOP([rep])=‘rep[CARD(‘rep)] mod 255

extension class = %empty% %successful%



103

Example 1c: Overflow integer stack module with push check.

(0) HEADER SECTION

Type Implemented 

Overflow_stack_pushchk(CAP)

Module parameter

CAP : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type S = ARRAY :integer

Representation declaration 

rep : S | (CARD(rep) � CAP)

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

PUSHCHK real

POP

TOP integer

3) OPERATION TABLES SECTION

Operation Tables

PUSHCHK([rep,]e) :

CARD(‘rep) < CAP
CARD(‘ rep) = CAP

Tchk(integer,e) �Tchk(integer,e)
CARD(‘rep) = CAP

rep‘= addAT(‘rep,,e) ‘rep addAT(Reseq(del_N(‘rep,1)),,e)

extension class = %successful% %badtype% %full%
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POP([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘= ‘rep delAT(‘rep)

extension class = %empty% %successful%

TOP([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘ = ‘rep ‘rep

TOP([rep]) | true TOP([rep])=‘rep[CARD(‘rep)] mod 255

extension class = %empty% %successful%
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Example 2a: An unbounded set of unbounded stacks. (Figure 2)

(0) HEADER SECTION

Type Implemented 

Unbounded_stackset

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type booltup = boolean � boolean

type Stk = ARRAY integer

type Grp = SSET Stk

Representation declaration 

rep : Grp

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access programs

Program Name Arg1 Arg2 Value

CREATESTK string

STKSTATE string booltup

DELASTK string

DELALLSTKS

PUSH string integer

POP string

TOP string integer

PUSHCHK string real
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(3) OPERATION TABLES SECTION

Operation Tables

CREATESTK([rep,]n) :

N_fnd(‘rep,n) �N_fnd(‘rep,n)

rep‘= sub_O(‘rep,n,,{}) add(‘rep,,n,,{})

extension class = %reinitstk% %addstk%

STKSTATE([rep,]n) :

N_fnd(‘rep,n)
�N fnd(‘ rep n)

CARD(‘rep[n])=0 CARD(‘rep[n])>0
�N_fnd(‘rep,n)

rep‘= NC NC NC

STKSTATE([rep,]n)1= true true false

STKSTATE([rep,]n)2= true false false

extension class = %emptystk% %notemptystk% %nofndstk%
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DELASTK([rep,]n) :

N_fnd(‘rep,n) �N_fnd(‘rep,n)

rep‘= del_N(‘rep,n) ‘rep

extension class = %successful% %nofndstk%

DELALLSTKS[rep] :

true

rep‘= {}

extension class = %successful%

PUSH([rep,]n,e) :

N_fnd(‘rep,n) �N_fnd(‘rep,n)

rep[n]‘= addAT(‘rep[n],,e) NA

rep‘ = CA or sub_O(‘rep,n,Stk,rep[n]‘) ‘rep

extension class = %successful% %nofndstk%



110

POP([rep,]n) :

N_fnd(‘rep,n)
�N fnd(‘ rep n)

CARD(‘rep[n]) = 0 CARD(‘rep[n]) > 0
�N_fnd(‘rep,n)

rep[n]‘= {} delAT(‘rep[n]) NA

rep‘ = ‘rep CA ‘rep

extension class = %emptystk% %successful% %nofndstk%

TOP([rep,]n) :

N_fnd(‘rep,n)
�N fnd(‘ rep n)

CARD(‘rep[n]) = 0 CARD(‘rep[n]) > 0
�N_fnd(‘rep,n)

rep[n]‘= {} ‘rep[n] NA

rep‘ = ‘rep ‘rep ‘rep

TOP([rep,]n) | true TOP([rep,]n) = ‘rep[n][CARD(‘rep[n])] true

extension class = %emptystk% %successful% %nofndstk%
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PUSHCHK([rep,]n,e) :

Tchk(string,n)

N_fnd(‘rep,n)
�N fnd(‘ rep n)

�Tchk(string,n)

Tchk(integer,e) �Tchk(integer,e)
�N_fnd(‘rep,n)

rep[n]‘= addAT(‘rep[n],,e) ‘rep[n] NA NA

rep‘ = CA ‘rep ‘rep ‘rep

extension class = %successful% %badstkeletyp% %nofndstk% %badstktyp%
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Example 2b: A bounded set of bounded stacks.

(0) HEADER SECTION

Type Implemented 

Bounded_stackgrp(CAPSET, CAPSUMSTKS)

Module parameter

CAPSET : integer

CAPSUMSTKS : integer

(1) CANONICAL REPRESENTATION SECTION

Auxilliary Functions

SUMSTKS: Grp � integer

SUMSTKS(x)�
��
�

���

�������

Description of Canonical Representation

Type definition

type booltup = boolean � boolean

type Stk = ARRAY integer

type Grp = SSET Stk
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Representation declaration 

rep : Grp | ((CARD(rep)�CAPSET) � (SUMSTKS(rep)�CAPSUMSTKS))

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Arg2 Arg3 Value

CREATESTK string

STKSTATE string booltup

DELASTK string

DELALLSTKS

PUSH string integer

POP string

TOP string integer

PUSHCHK string real

PUTCHK string integer real
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(3) OPERATION TABLES SECTION

Operation Tables

CREATESTK([rep,]n) :

N fnd(‘ rep n)
�N_fnd(‘rep,n)

N_fnd(‘rep,n)
CARD(‘rep) < CAPSET CARD(‘rep) = CAPSET

rep‘= sub_O(‘rep,n,,{}) add(‘rep,,n,,{}) ‘rep

extension class = %reinitstk% %addstk% %fullset%

STKSTATE([rep,]n) :

N_fnd(‘rep,n)
�N fnd(‘ rep n)

CARD(‘rep[n])=0 CARD(‘rep[n])>0
�N_fnd(‘rep,n)

rep‘= NC NC NC

STKSTATE([rep,]n)= (true,true) (true,false) (false,false)

extension class = %emptystk% %notemptystk% %nofndstk%
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DELASTK([rep,]n) :

N_fnd(‘rep,n) �N_fnd(‘rep,n)

rep‘= del_N(‘rep,n) ‘rep

extension class = %successful% %nofndstk%

DELALLSTKS[rep] :

true

rep‘= {}

extension class = %successful%

PUSH([rep,]n,e) :

N_fnd(‘rep,n)
�N fnd(‘ rep n)

SUMSTKS(‘rep)=CAPSUMSTKS SUMSTKS(‘rep)<CAPSUMSTKS
�N_fnd(‘rep,n)

rep[n]‘= ‘rep[n] addAT(‘rep[n],,e) NA

rep‘ = ‘rep CA ‘rep

extension class = %stkscaprched% %successful% %nofndstk%
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POP([rep,]n) :

N_fnd(‘rep,n)
�N fnd(‘ rep n)

CARD(‘rep[n]) = 0 CARD(‘rep[n]) > 0
�N_fnd(‘rep,n)

rep[n]‘= {} delAT(‘rep[n]) NA

rep‘ = ‘rep CA ‘rep

extension class = %emptystk% %successful% %nofndstk%

TOP([rep,]n) :

N_fnd(‘rep,n)
�N fnd(‘ rep n)

CARD(‘rep[n]) = 0 CARD(‘rep[n]) > 0
�N_fnd(‘rep,n)

rep[n]‘= {} ‘rep[n] NA

rep‘ = ‘rep ‘rep ‘rep

TOP([rep,]n) | true TOP([rep,]n) = ‘rep[n][CARD(‘rep[n])] true

extension class = %emptystk% %successful% %nofndstk%
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PUSHCHK([rep,]n,e) :

Tchk(string,n)

N_fnd(‘rep,n)

Tchk(integer,e)
�N fnd(‘ rep,n)

�Tchk(string,n)

SUMSTKS(‘rep)<
CAPSUMSTKS

SUMSTKS(‘rep)=
CAPSUMSTKS

�Tchk(integer,e)
�N_fnd( rep,n)

rep[n]‘= addAT(‘rep[n],,e) ‘rep[n] ‘rep[n] NA NA

rep‘ = CA ‘rep ‘rep ‘rep ‘rep

extension class = %successful% %stkscaprched% %badstkeletyp% %nofndstk% %badstktyp%
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PUTCHK([rep,]n,i,e) :

Tchk(string,n)

N_fnd(‘rep,n)

N_fnd(‘rep[n],i)
�Tchk(string,n)

Tchk(integer,e)
�Tchk

�N_fnd
(‘ [ ] i)

�N_fnd(‘rep,n)
�Tchk(string,n)

SUMSTKS(‘rep)<
CAPSUMSTKS

SUMSTKS(‘rep)=
CAPSUMSTKS

�Tchk
(integer,e)

(‘rep[n],i)

rep[n]‘= addA
(‘rep[n],i,,e) ‘rep[n] ‘rep[n] ‘rep[n] NA NA

rep‘ = CA ‘rep ‘rep ‘rep ‘rep ‘rep

extension class
= %successful% %stkscaprched% %badstkeletyp% %indxoutrang% %nofndstk% %badstktyp%
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Example 3a: Unbounded integer queue module. (Figure 3)

(0) HEADER SECTION

Type Implemented 

Unbounded_queue

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type Q = ARRAY integer

Representation declaration 

rep : Q

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

INSERT integer

REMOVE

FRONT integer

(3) OPERATION TABLES SECTION

Operation Tables

INSERT([rep,]e) :

true

rep‘= addAT(‘rep,,e)

extension class = %successful%
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REMOVE([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘ = ‘rep del_N(‘rep,1)

extension class = %empty% %successful%

FRONT([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘ = ‘rep ‘rep

FRONT([rep]) | true FRONT([rep]) = ‘rep[1]

extension class = %empty% %successful%
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Example 3b: Overflow integer queue module.

(0) HEADER SECTION

Type Implemented 

Overflow_queue(CAP)

Module parameter

CAP : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type Q = ARRAY integer

Representation declaration 

rep : Q | (CARD(rep) � CAP)

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

INSERT integer

REMOVE

FRONT integer

(3) OPERATION TABLES SECTION

Operation Tables

INSERT([rep,]e) :

CARD(‘rep) < CAP CARD(‘rep) = CAP

rep‘= addAT(‘rep,,e) addAT(Reseq(del_N(‘rep,1)),,e)

extension class = %successful% %full%
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REMOVE([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘= ‘rep del_N(‘rep,1)

extension class = %empty% %successful%

FRONT([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘ = ‘rep ‘rep

FRONT([rep]) | true FRONT([rep])=‘rep[1]

extension class = %empty% %successful%
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Example 3c: Overflow integer queue module with insert check.

(0) HEADER SECTION

Type Implemented 

Overflow_queue_inserTchk(CAP)

Module parameter

CAP : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type Q = ARRAY integer

Representation declaration 

rep : Q | (CARD(rep) � CAP)

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

INSERTchk integer

REMOVE

FRONT integer

(3) OPERATION TABLES SECTION

Operation Tables

INSERTchk([rep,]e) :

CARD(‘rep) < CAP
CARD(‘ rep) = CAP

Tchk(integer,e) �Tchk(integer,e)
CARD(‘rep) = CAP

rep‘= addAT(‘rep,,e) ‘rep addAT(Reseq(del_N(‘rep,1)),,e)

extension class = %successful% %badtype% %full%
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REMOVE([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘ ‘rep del_N(‘rep,1)

extension class = %empty% %successful%

FRONT[rep] :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘ = ‘rep ‘rep

FRONT([rep]) | true FRONT([rep]) = ‘rep[1]

extension class = %empty% %successful%
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Example 4: Bounded integer table list module. (Figure 5)

(0) HEADER SECTION

Type Implemented

 T/L(CAPL)

Module paramete

CAPL : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type t1 = ARRAY integer

type S = REC (”list”, :t1) , (”ptr”, :integer)

Representation declaration 

rep : S | (0 � rep[”ptr”] � CARD(rep[”list”]) � CAPL)

Initial representation

rep = {(”list”,{}),(”ptr”,0)}
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(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

INSERT integer

ALTER integer

DELETE

EXLEFT boolean

EXRIGHT boolean

OUT boolean

GOLEFT

GORIGHT

CURRENT integer
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3) OPERATION TABLES SECTION

Abbreviations

Abbreviations Expressions Table Id.

CURPTR ‘rep[”ptr”]+1 1,2,3,9

EMPTY CARD(‘rep[”list”])  = 0 1

LLIM CARD(‘rep[”list”]) � CAPL 1

Operation Tables

INSERT([rep],e) :

�EMPTY

1 EMPTY �LLIM
LLIM

rep[”ptr”]=0 rep[”ptr”]>0
LLIM

rep[”list”]‘= {e} NC addA(‘rep[”list”],CURPTR,,e) NC

rep[”ptr”]‘= 1 NC NC NC

rep‘ = CA NC CA NC

extension class = %emptyIns% %badptrins% %ptrins% %full%
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ALTER([rep],e) :

2 rep[”ptr”]=0 rep[”ptr”]�0

rep[”list”]‘= NC Sub_O(‘rep[”list”],CURPTR,,e)

rep[”ptr”]‘= NC NC

rep‘ = NC CA

extension class = %nocurrent% %altered%

DELETE([rep]) :

3 rep[”ptr”]=0 rep[”ptr”]�0

rep[”list”]‘= NC delA_N(‘rep[”list”],CURPTR)

rep[”ptr”]‘= NC NC

rep‘ = NC CA

extension class = %nocurrent% %deleted%
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EXLEFT([rep]) :

4 rep[”ptr”]�1 rep[”ptr”]>1

rep[”list”]‘= NC NC

rep[”ptr”]‘= NC NC

rep‘ = NC NC

EXLEFT([rep]) = false true

extension class = %noleftele% %leftele%

EXRIGHT([rep]) :

5 rep[”ptr”]=CARD(rep[”list”]) rep[”ptr”]<CARD(rep[”list”])

rep[”list”]‘= NC NC

rep[”ptr”]‘= NC NC

rep‘ = NC NC

EXRIGHT([rep]) = false true

extension class = %norightele% %rightele%
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OUT([rep]) :

6 rep[”ptr”]=0 rep[”ptr”]�0

rep[”list”]‘= NC NC

rep[”ptr”]‘= NC NC

rep‘ = NC NC

OUT([rep]) = true false

extension class = %out% %notout%

GOLEFT([rep]) :

7 rep[”ptr”]=0 rep[”ptr”]�0

rep[”list”]‘= NC NC

rep[”ptr”]‘= NC ‘rep[”ptr”]–1

rep‘ = NC CA

extension class = %noleft% %goleft%
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GORIGHT([rep]) :

8 rep[”ptr”]=CARD(rep[”list”]) rep[”ptr”]<CARD(rep[”list”])

rep[”list”]‘= NC NC

rep[”ptr”]‘= NC ‘rep[”ptr”]+1

rep‘ = NC CA

extension class = %noright% %goright%

CURRENT([rep]) :

9 rep[”ptr”]=0 rep[”ptr”]�0

rep[”list”]‘= NC NC

rep[”ptr”]‘= NC NC

rep‘ = NC NC

CURRENT([rep]) | true CURRENT([rep]) = ‘rep[”list”][CURPTR]

extension class = %undefined% %currentele%
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Example 5a: Unbounded unique integer producer module. (Figure 6)

(0) HEADER SECTION

Type Implemented 

Unbounded_UIP

Module parameter

None

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type P = SUBP integer

Representation declaration 

rep : P

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Value

GETINT integer

(3) OPERATION TABLES SECTION

Operation Tables

GETINT([rep]) :

true

rep‘ = ‘rep \+ e | Tchk(integer,e) � e�‘rep

GETINT([rep])= rep‘–‘rep

extension class = %successful%
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Example 5b: Bounded unique integer producer module.

(0) HEADER SECTION

Type Implemented 

Bounded_UIP(CAP)

Module parameter

CAP : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type P = SUBP integer

Representation declaration 

rep : P | (CARD(rep) � CAP)

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Value

GETINT integer

(3) OPERATION TABLES SECTION

Operation Tables

GETINT([rep]) :

true

CARD(‘rep) < CAP CARD(‘rep) = CAP

rep‘ = ‘rep \+ e | Tchk(integer,e) � e�‘rep ‘rep

GETINT([rep]) | GETINT([rep]) = rep‘–‘rep true

extension class = %successful% %caprched%
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Example 5c: Bounded unique integer producer module.

(0) HEADER SECTION

Type Implemented 

Bounded_UIP(CAP)

Module parameter

CAP : Integer

(2) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type P = SUBP integer

Representation declaration

rep : P | (CARD(rep) � CAP)

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Value

GETINT integer

(3) OPERATION TABLES SECTION

Operation Tables

GETINT([rep]) :

true

CARD(‘rep) < CAP CARD(‘rep) = CAP

GETINT([rep]) | GETINT([rep]) = e | Tchk(integer,e) � e�‘rep) true

rep‘ = ‘rep \+ GETINT([rep]) ‘rep

extension class = %successful% %caprched%
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Example 6a : Bounded priority integer queue module. (Figure 7)

(0) HEADER SECTION

Type Implemented 

pqueue(CAPI)

Module parameter

CAPI : Integer

(1) CANONICAL REPRESENTATION SECTION

Auxiliary Functions

Numele: t2 � integer

Numele(x) �
��
�

��������

	 �
��������

�

Description of Canonical Representation

Type definition

type t1 = NSET integer

type t2 = NSET t1

type t3 = SNE  �  integer

type S = REC (”oval”, :t3) , (”data”, :t2)
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Representation declaration 

rep : S | (Numele(rep)�CAPI)

Initial representation

rep = {(”oval”, {}), (”data”,{})}

(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Arg2 Value

INSERT integer integer

REMOVE integer

FRONT integer
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3) OPERATION TABLES SECTION

Operation Tables

INSERT([rep, ] p, v) �

‘rep[”data”] � { }

Numele(‘rep[”data”]) < CAP Numele(‘rep[”data”]) = CAP

‘rep[”data”]
= {}

p�DOM(‘rep[”data”]) p�DOM(‘rep[”data”]) p�DOM(‘rep[”data”])
= {}

v�DOM
(‘rep[”data”]

[p])

v�DOM(‘rep
[”data”][p])

p<Maxi
(DOM(‘rep
[”data”]))

p>Maxi
(DOM
(‘rep

[”data”]))

v�DOM
(‘rep[”data”]

[p])

v�DOM
(‘rep[”data”]

[p])

p�DOM
(‘rep

[”data”])

rep[”data”]
[p][v]‘=

NA ’rep[”data”]
[p][v] + 1

NA NA NA NC NA NA

rep[”data”][p]‘= NA CA ‘rep[”data”][p]
\+ (v,1)

NA NA NC NC NA

rep[”data”]‘ = {(p,{(v,1)})} CA CA ‘rep[”data”] \+ (p,{(v,1)}) NC NC NC

rep[”oval”]‘ = v NC NC NC v NC NC NC

rep‘ = CA CA CA CA CA NC NC NC

extension class= %1stIns% %InsDup% %InsIK% %InsQIK% %Ins-
QIKV%

%FullI% %FullInIK% %FullInQ%
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REMOVE([rep,]) :

‘rep[”data”]�{ }

rep[”data”][Maxi(DOM(‘rep[”data”]))][‘rep[”oval”]]=1

‘rep[”data”]={} CARD(‘rep[”data”][Maxi(DOM
(‘rep[”data”]))]) = 1

CARD(
‘rep[”data”][Maxi

(DOM(‘ rep[”data” ]))])

‘rep[”data”][Maxi
(DOM(‘rep[”data”]))]

[‘ rep[”oval” ]]>1
CARD(‘rep[”data”])=1 CARD(‘rep[”data”])>1

(DOM(‘ rep[”data” ]))])
> 1

[ rep[ oval ]]>1

rep[”data”]
[Maxi(DOM

(‘rep[”data”]))]
[‘rep[”oval”]]‘ =

NA NA NA NA
‘rep[”data”][Maxi

(DOM(‘rep[”data”]))]
[”oval”] –1

rep[”data”]
[Maxi(DOM

(‘rep[”data]))]‘=
NA NA NA

‘rep[”data”][Maxi
(DOM(‘rep[”data”]))]

\– (”oval”,1)
CA

rep[”data”]‘ = NC {}

‘rep[”data”] \–
(Maxi(DOM(‘rep
[”data”])),{(‘rep

[”oval”],1)})

CA CA

rep[”oval”]‘ | NC true
rep[”oval”]‘�DOM

(rep[”data”][Maxi(DOM(rep[”data”]‘))]‘)
NC

rep‘= ‘rep CA CA CA CA

extension class = %Empty% %ReEmpty% %Changepri% %Remkey% %Remdup%
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FRONT([rep,]a) :

‘rep[”data”]={} ‘rep[”data”]�{}

rep‘ = NC NC

FRONT([rep,]a) = ‘rep[”oval”] ‘rep[”oval”]

extension class = %Empty% %Front%
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Example 6b : Bounded priority integer queue module.

(0) HEADER SECTION

Type Implemented

pqueue(CAPI)

Module parameter 

CAPI : Integer

(1) CANONICAL REPRESENTATION SECTION

Auxiliary Functions

Numele: t2 � integer

Numele(x) �
��
�

��������

	 �
��������

�

Description of Canonical Representation

Type definition

type t1 = NSET integer

type t2 = NSET t1

type t3 = SNE � integer

type S = REC (”oval”, :t3) , (”data”, :t2)
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Representation declaration 

rep : S | (Numele(rep)�CAPI)

Initial representation

rep = {(”oval”, {}), (”data”,{})}

(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Arg2 Value

INSERT integer integer

REMOVE integer

FRONT integer
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3) OPERATION TABLES SECTION

Abbreviations

Abbreviations Expressions Table No.

EMPTY (‘rep[”data”]  = { }) 1,2,3

ILIM (Numele(‘rep[”data”]) � CAP) 1

QMEM (p�DOM(‘rep[”data”])) 1

IKMEM (v�DOM(‘rep[”data”][p])) 1

GCNGQ p>‘HIGHQ 1

LCNGQ p<‘HIGHQ 1

REPHQ‘ rep[”data”][HIGHQ‘]‘ 2,3

‘HIGHQ Maxi(DOM(‘rep[”data”])) 2

HIGHQ‘ Maxi(DOM(rep[”data”]‘))

‘REPHQ ‘rep[”data”][‘HIGHQ] 2

‘OVAL ‘rep[”oval”] 2
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OPERATION TABLES SECTION

Operation Tables

INSERT([rep, ] p, v) �

�EMPTY

1
�ILIM ILIM

1
EMPTY QMEM �QMEM QMEM

�QMEM
IKMEM �IKMEM LCNGQ GCNGQ IKMEM �IKMEM

�QMEM

rep[”data”]
[p][v]‘=

NA ’rep[”data”]
[p][v] +1

NA NA NA NC NA NA

rep[”data”][p]‘= NA CA ‘rep[”data”][p]
\+ (v,1)

NA NA NC NC NA

rep[”data”]‘ = {(p,{(v,1)})} CA CA ‘rep[”data”] \+ (p,{(v,1)}) NC NC NC

rep[”oval”]‘ = v NC NC NC v NC NC NC

rep‘ = CA CA CA CA CA NC NC NC

extension class= %1stIns% %InsDup% %InsIK% %InsQIK% %Ins-
QIKV%

%FullI% %FullInIK% %FullInQ%
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REMOVE([rep,]) :

�EMPTY

2 EMPTY
rep[”data”][‘HIGHQ][‘OVAL ]=1

2 EMPTY
CARD(‘REPHQ) = 1

CARD(‘REPHQ)> 1
‘REPHQ[‘OVAL]>1

CARD(‘rep[”data”])=1 CARD(‘rep[”data”])>1
CARD(‘REPHQ)> 1

rep[”data”][‘HIGHQ]
[‘OVAL ]‘ =

NA NA NA NA ‘REPHQ[‘OVAL ] –1

rep[”data”][‘HIGHQ]‘= NA NA NA ‘REPHQ \– (‘OVAL,1) CA

rep[”data”]‘ = NC {}
‘rep[”data”] \–

(‘HIGHQ,{(‘OVAL ,1)})
CA CA

rep[”oval”]‘ | NC true rep[”oval”]‘� DOM(REPHQ‘) NC

rep‘= NC CA CA CA CA

extension class = %Empty% %ReEmpty% %Changepri% %Remkey% %Remdup%
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FRONT([rep,]a) :

3 EMPTY �EMPTY

rep‘ = NC NC

FRONT([rep,]a) = ‘OVAL ‘OVAL

extension class = %Empty% %Front%
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Example 6c :  Bounded priority integer queue module.

(0) HEADER SECTION

Type Implemented

pqueue(CAPQ, CAPIK)

Module parameter

CAPQ, CAPIK : Integer

(1) CANONICAL REPRESENTATION SECTION

Auxiliary Functions

Numikey : t2 � integer

Numikey(x) �
��

 �

�����	�

�����
�

Description of Canonical Representation

Type definition

type t1 = NSET integer

type t2 = NSET t1

type t3 = SNE � integer

type S = REC (”oval”, :t3) , (“data”, :t2)
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Representation declaration 

rep : S | ((CARD(rep[”data”])�CAPQ) � (Numikey(RAN(rep[”data”]))�CAPIK))

/*Maximum number of queues allowed  and  Maximum number of total item keys allowed for set of queues*/

Initial representation

rep = {(”oval”, {}), (”data”,{})}

(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Arg2 Value

INSERT integer integer

REMOVE integer

FRONT integer
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3) OPERATION TABLES SECTION

Abbreviations

Abbreviations Expressions Table No.

EMPTY (‘rep[”data”]  = { }) 1,2,3

QLIM (CARD(‘rep[”data”])  � CAPQ) 1

IKLIM (Numikey(‘rep[”data”]) � CAPIK) 1

QMEM (p�DOM(‘rep[”data”])) 1

IKMEM (v�DOM(‘rep[”data”][p])) 1

GCNGQ p>‘HIGHQ 1

LCNGQ p<‘HIGHQ 1

‘OVAL ‘rep[”oval”] 2,3

‘HIGHQ Maxi(DOM(‘rep[”data”])) 2

HIGHQ‘ Maxi(DOM(rep[”data”]‘))

‘REPHQ ‘rep[”data”][‘HIGHQ] 2

REPHQ‘ rep[”data”][HIGHQ‘]‘ 2
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Operation Tables

INSERT([rep, ] p, v) �

�EMPTY

QMEM �QMEM

1 EMPTY �IKMEM QLIM �QLIM

IKMEM
�IKLIM IKLIM �IKLIM IKLIM IKLIM

�IKLIM
�IKLIM IKLIM �IKLIM IKLIM IKLIM

GCNGQ LCNGQ

rep[”data”]
[p][v]‘=

NA ’rep[”data”]
[p][v] +1

NA NA NA NA NA NA NA

rep[”data”]
[p]‘=

NA CA ‘rep[”data”]
[p] \+ (v,1)

NC NA NA NC NA NA

rep[”data”]‘
=

{(p,{(v,1)})} CA CA NC NC NC NC ‘rep[”data”] \+ (p,{(v,1)})

rep[”oval”]‘
=

v NC NC NC NC NC NC v NC

rep‘ = CA CA CA NC NC NC NC CA CA

extension
class=

%1stIns% %InsDup% %InsIK% %Full-
IK%

%Full-
QnIK%

%Full-
QIK%

%Full-
IKnQ%

%OInsQIK% %InsQIK%
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REMOVE([rep,]) :

�EMPTY

2 EMPTY
rep[”data”][‘HIGHQ][‘OVAL ]=1

2 EMPTY
CARD(‘REPHQ) = 1

CARD(‘REPHQ)> 1
‘REPHQ[‘OVAL]>1

CARD(‘rep[”data”])=1 CARD(‘rep[”data”])>1
CARD(‘REPHQ)> 1

rep[”data”][‘HIGHQ]
[‘OVAL ]‘ =

NA NA NA NA ‘REPHQ[‘OVAL ] –1

rep[”data”][‘HIGHQ]‘= NA NA NA ‘REPHQ \– (‘OVAL,1) CA

rep[”data”]‘ = NC { }
‘rep[”data”] \–

(‘HIGHQ,{(‘OVAL ,1)})
CA CA

rep[”oval”]‘ | NC true rep[”oval”]‘� DOM(REPHQ‘) NC

rep‘= NC CA CA CA CA

extension class = %Empty% %ReEmpty% %Changepri% %Remkey% %Remdup%
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FRONT([rep,]a) :

3 EMPTY �EMPTY

rep‘ = NC NC

FRONT([rep,]a) = ‘OVAL ‘OVAL

extension class = %Empty% %Front%
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Example 7a: Bounded multiple binary integer tree module. (Figure 8)

(0) HEADER SECTION

Type Implemented

Tree (CAPN, CAPT, C1, C2)

Module parameter

CAPN, CAPT : Integer

External module

PATH(C1, C2)

(1) CANONICAL REPRESENTATION SECTION

Auxiliary Functions

Tcard : tree � integer

Tcard(t) �
��

f1 t[”left”]={} t[”left”] � {}

t[”right”] = {} 1 1 + Tcard(t[”left”])

t[”right”] � {} 1 + Tcard(t[”right”]) 1 + Tcard(t[”left”]) + Tcard(t[”right”])
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Description of Canonical Representation

Type definition

type lr = {”l”,”r”}

type t1 = SNE � tree

type tree = REC (”anint”, :integer),  (”left”, :t1), (”right”, :t1)

type S = SSET t1

Representation declaration 

rep : S | ((CARD(rep) � CAPN) � (CAPT �1) � (�t, (t�DOM(rep)) � (Tcard(rep[t]) � CAPT)))

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Arg2 Arg3 Arg4 Arg5 Value

CREATETREE string integer string string

ALTERTREE string string string tree string

ALTERNODE string string integer

GETNODE string string integer

DELTREE string

(3) OPERATION TABLES SECTION

Abbreviations

Abbreviations Expressions Table Id.

LVP Vp(SUBPATH(p),t[”left”]) f2

RVP Vp(SUBPATH(p),t[”right”]) f2

LUPDBX Upd(SUBPATH(p),t[”left”],”left”,t,x) f3

RUPDBX Upd(SUBPATH(p),t[”right”],”right”,t,x) f3
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LINT Int(SUBPATH(p),t[”left”]) f4

RINT Int(SUBPATH(p),t[”right”]) f4

LCNG Cng(SUBPATH(p),t[”left”],i) f5

RCNG Cng(SUBPATH(p),t[”right”],i) f5

LGVL Gvl(SUBPATH(p),t[”left”]) f6

RGVL Gvl(SUBPATH(p),t[”right”]) f6

LGTR Gtr(SUBPATH(p),t[”left”]) f7

RGTR GTtr(SUBPATH(p),t[”right”]) f7

CT (Tcard(‘rep[u]) + Tcard(‘rep[v]) +1 < CAPT) 1

CU (Tcard(‘rep[u]) +1 < CAPT) 1

CV (Tcard(‘rep[v]) +1 < CAPT) 1

CN (CARD(‘rep) < CAPN) 1

RUV N_fnd(‘rep,r)�N_fnd(‘rep,u)�N_fnd(‘rep,v) 1

R N_fnd(‘rep,r)��N_fnd(‘rep,u)��N_fnd(‘rep,v) 1

RU N_fnd(‘rep,r)�N_fnd(‘rep,u)��N_fnd(‘rep,v) 1

RV N_fnd(‘rep,r)��N_fnd(‘rep,u)�N_fnd(‘rep,v) 1

UV �N_fnd(‘rep,r)�N_fnd(‘rep,u)�N_fnd(‘rep,v) 1

U �N_fnd(‘rep,r)�N_fnd(‘rep,u)��N_fnd(‘rep,v) 1



163

V �N_fnd(‘rep,r)��N_fnd(‘rep,u)�N_fnd(‘rep,v) 1

NRUV �N_fnd(‘rep,r)��N_fnd(‘rep,u)��N_fnd(‘rep,v) 1

N �N_fnd(‘rep,r)��N_fnd(‘rep,u)��N_fnd(‘rep,v) 1

SUBT sub_O(‘rep,r,,{(”anint”,i),(”left”,‘rep[u]),(”right”,‘rep[v])}) 1

SUBU sub_O(‘rep,r,,{(”anint”,i),(”left”,‘rep[u]),(”right”,{})}) 1

SUBV sub_O(‘rep,r,,{(”anint”,i),(”left”,{}),(”right”,‘rep[v])}) 1

SUBR sub_O(‘rep,r,,{(”anint”,i),(”left”,{}),(”right”,{})}) 1

ADDU add(‘rep,,r,,{(”anint”,i),(”left”,‘rep[u]),(”right”,{})}) 1

ADDV add(‘rep,,r,,{(”anint”,i),(”left”,{}),(”right”,‘rep[v])}) 1

ADDT add(‘rep,,r,,{(”anint”,i),(”left”,‘rep[u]),(”right”,‘rep[v])}) 1

ADDR add(‘rep,,r,,{(”anint”,i),(”left”,{}),(”right”,{})}) 1

VALIDPATH Vp(p,‘rep[r]) 2,3,4
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UPDATEOK (Tcard(‘rep[r]) – Tcard(Gtr(p,t)) + Tcard(‘rep[x]) � CAPT) 2

REPLANT sub_O(‘rep,r,,‘rep[x]) 2

UPDATE Upd(p,‘rep[r],d,b,‘rep[x]) 2

VALIDINTNODE Int(p,‘rep[r]) 3,4

CHANGE Cng(p,‘rep[r],i) 3

GETVAL Gvl(p,‘rep[r]) 4

Auxiliary Functions

Vp : string � tree � boolean

Vp(p,t) �
��

Tchk(lr,PATHSTAT([rep,]p))

f2 PATHSTAT([rep,]p)=”e” t�{}
t={}

PATHSTAT([rep,]p)=”l” PATHSTAT([rep,]p)=”r”
t={}

Vp(p,t)= true LVP RVP false
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Upd : string � tree � string � tree � tree � tree

Upd(p,t,d,b,x) �
��

Vp(p,t)

f3
PATHSTAT([rep ]p)=”e”

Tchk(lr,PATHSTAT([rep,]p))
PATHSTAT([rep,]p)=”e”

PATHSTAT([rep,]p)=”l” PATHSTAT([rep,]p)=”r”

Upd(p,t,x,d,b)= Sub_O(b,d,,x) LUPDBX RUPDBX

Int : string � tree � boolean

Int(p,t) �
��

Vp(p,t)

f4 PATHSTAT([rep,]p)=”e” Tchk(lr,PATHSTAT([rep,]p))

t�{} t={} PATHSTAT([rep,]p)=’l’ PATHSTAT([rep,]p)=’r’

Int(p,t)= true false LINT RINT
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Cng : string � tree � integer � tree

Cng(p,t,i) �
��

Vp(p,t)

f5
PATHSTAT([rep ]p)=”e”

Tchk(lr,PATHSTAT([rep,]p))
PATHSTAT([rep,]p)=”e”

PATHSTAT([rep,]p)=”l” PATHSTAT([rep,]p)=”r”

Cng(p,t)= Sub_O(t,”anint”,,i) LCNG RCNG

Gvl : string � tree � integer

Gvl(p,t) �
��

Vp(p,t)

f6
PATHSTAT([rep ]p)=”e”

Tchk(lr,PATHSTAT([rep,]p))
PATHSTAT([rep,]p)=”e”

PATHSTAT([rep,]p)=”l” PATHSTAT([rep,]p)=”r”

Gvl(p,t)= t[”anint”] LGVL RGVL



167

Gtr : string � tree � tree

Gtr(p,t) �
��

Vp(p,t)

f7
PATHSTAT([rep ]p)=”e”

Tchk(lr,PATHSTAT([rep,]p))
PATHSTAT([rep,]p)=”e”

PATHSTAT([rep,]p)=”r” PATHSTAT([rep,]p)=”l”

Gtr(p,t)= t LGTR RGTR
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Operation Tables

 CREATETREE([rep,]r,i,u,v) :

�(r=u�r=v)

1

RUV r�u � r�v

(r=u�r
�v)�
(r�u
�r=v) (r=u�r

=v)
1

RU RV
CN

=v)

CT �CT
RU RV

R UV U V
N

�CN N

CU �CU CV �CV CT �CT CU �CU CV �CV
N

rep‘= SUBT NC SUBU NC SUBV NC SUBR ADDT NC ADDU NC ADDV NC ADDR NC NC NC

exten-
sion

class=
%ok% %willrc

hct%
%okno

v%
%willrc
hct%

%okno
u%

%willrc
hct%

%okno
uv%

%crtr% %willrc
hct%

%crtrn
ov%

%willrc
hct%

%crtrn
ou%

%willrc
hct%

%crtrn
ouv%

%willrc
hcn%

%mis-
tree%

%same-
name%
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ALTERTREE([rep,]r,p,d,b,x) :

r�x

N_fnd(rep,r) � N_fnd(rep,x) � PATHSTAT([rep,]p)�”i”

2 VALIDPATH �(N_fnd(rep,r)�
N fnd(rep x))�

r=x

PATHSTAT([rep,]p)�”e”
PATHSTAT �VALIDPATH

N_fnd(rep,x))�
PATHSTAT([rep,]p)=”i”

UPDATEOK �UPDATEOK
PATHSTAT
([rep,]p)=”e”

([ p,]p)

rep[r]‘= UPDATE NC REPLANT NC NC NC

rep‘= CA NC CA NC NC NC

extension class= %altertree% %willrchcapt% %replant% %invaliddir% %invpath/tree% %samename%

ALTERNODE([rep,]r,p,i) :

N_fnd(rep,r) � PATHSTAT([rep,]p)�”i”

3
VALIDINTNODE

�VALIDINTNODE �N_fnd(rep,r)�
PATHSTAT([rep,]p)=”i”VALIDINTNODE

VALIDPATH �VALIDPATH
PATHSTAT([rep,]p)= i

rep[r]‘= CHANGE NC NC NC

rep‘= CA NC true NC

extension class= %alterintnode% %notintnode% %invaliddir% %invpath/tree%
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GETNODE([rep,]r,p) :

N_fnd(rep,r) � PATHSTAT([rep,]p)�”i”

4
VALIDINTNODE

�VALIDINTNODE �N_fnd(rep,r)�
PATHSTAT([rep,]p)=”i”VALIDINTNODE

VALIDPATH �VALIDPATH
PATHSTAT([rep,]p)= i

rep‘= NC NC NC NC

GOLEFT([rep,]r,p) | GOLEFT([rep,]r,p)=GETVAL true true true

extension class= %getval% %notintnode% %invaliddir% %invpath/tree%

DELTREE([rep,]r) :

5 N_fnd(‘rep,r) �N_fnd(‘rep,r)

rep‘= del_N(‘rep,r) NC

extension class = %deltree% %invalidtree%
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Example 7b: Bounded multiple binary integer tree module.

(0) HEADER SECTION

Type Implemented

Tree (CAPN, CAPT, C1,C2)

Module parameter

CAPN, CAPT : Integer

External type

PATH(C1,C2)

(1) CANONICAL REPRESENTATION SECTION

Auxiliary Functions

Tcard : tree � integer

Tcard(t) �
��

f1 t[”left”]={} t[”left”] � {}

t[”right”] = {} 1 1 + Tcard(t[”left”])

t[”right”] � {} 1 + Tcard(t[”right”]) 1 + Tcard(t[”left”]) + Tcard(t[”right”])
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Description of Canonical Representation

Type definition

type lr = {”l”,”r”}

type t1 = SNE � tree

type tree = REC (”anint”, :integer),  (”left”, :t1), (”right”, :t1)

type S = SSET t1

Representation declaration 

rep : S | ((CARD(rep) � CAPN) � (CAPT �1) � (�t, (t�DOM(rep)) � (Tcard(rep[t]) � CAPT)))

Initial representation

rep = {}
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(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Arg2 Arg3 Arg4 Arg5 Value

CREATETREE string integer string string

ALTERTREE string string string tree string

ALTERNODE string string integer

GETNODE string string integer

DELTREE string

(3) OPERATION TABLES SECTION

Abbreviations

Abbreviations Expressions Table Id.

VP Vp(p,‘rep[r],d,b) f2

LVPDBX Vp(SUBPATH(p),t[”left”],”left”,t) f2

RVPDBX Vp(SUBPATH(p),t[”right”],”right”,t) f2

CT (Tcard(‘rep[u]) + Tcard(‘rep[v]) +1 < CAPT) 1
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CU (Tcard(‘rep[u]) +1 < CAPT) 1

CV (Tcard(‘rep[v]) +1 < CAPT) 1

CN (CARD(‘rep) < CAPN) 1

RUV N_fnd(‘rep,r)�N_fnd(‘rep,u)�N_fnd(‘rep,v) 1

R N_fnd(‘rep,r)��N_fnd(‘rep,u)��N_fnd(‘rep,v) 1

RU N_fnd(‘rep,r)�N_fnd(‘rep,u)��N_fnd(‘rep,v) 1

RV N_fnd(‘rep,r)��N_fnd(‘rep,u)�N_fnd(‘rep,v) 1

UV �N_fnd(‘rep,r)�N_fnd(‘rep,u)�N_fnd(‘rep,v) 1

U �N_fnd(‘rep,r)�N_fnd(‘rep,u)��N_fnd(‘rep,v) 1

V �N_fnd(‘rep,r)��N_fnd(‘rep,u)�N_fnd(‘rep,v) 1

NRUV �N_fnd(‘rep,r)��N_fnd(‘rep,u)��N_fnd(‘rep,v) 1

N �N_fnd(‘rep,r)��N_fnd(‘rep,u)��N_fnd(‘rep,v) 1

SUBT sub_O(‘rep,r,{(”anint”,i),(”left”,‘rep[u]),(”right”,‘rep[v])}) 1

SUBU sub_O(‘rep,r,,{(”anint”,i),(”left”,‘rep[u]),(”right”,{})}) 1

SUBV sub_O(‘rep,r,,{(”anint”,i),(”left”,{}),(”right”,‘rep[v])}) 1

SUBR sub_O(‘rep,r,,{(”anint”,i),(”left”,{}),(”right”,{})}) 1

ADDU add(‘rep,r,,{(”anint”,i),(”left”,‘rep[u]),(”right”,{})}) 1

ADDV add(‘rep,,r,,{(”anint”,i),(”left”,{}),(”right”,‘rep[v])}) 1
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ADDT add(‘rep,,r,,{(”anint”,i),(”left”,‘rep[u]),(”right”,‘rep[v])}) 1

ADDR add(‘rep,,r,,{(”anint”,i),(”left”,{}),(”right”,{})}) 1

VALIDPATH (Vp1=true) 2,3,4

REPLANT sub_O(‘rep,r,,‘rep[x]) 2

UPDATEOK (Tcard(‘rep[r]) – Tcard(Vp3) + Tcard(‘rep[x]) � CAPT) 2

UPDATE sub_O(Vp5,Vp4,,‘rep[x]) 2

VALIDINTNODE (Vp2=true) 3,4

CHANGE sub_O(Vp3,”anint”,,i ) 3

GETVAL Vp3[”anint”] 4

WARNCT �(r=u�r=v) � ( (RUV��CT)  � ((r�u � r�v) �((RU��CU) �(RV��CV) � (CN-
�((UV��CT)�(U��CU)�(V��CV))   )  )  )  )

1
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Auxiliary Functions

Vp : string � tree  � string � tree � boolean � boolean � tree � string � tree

Vp(p,t,d,b) �
��

PATHSTAT PATHSTAT Tchk(lr,PATHSTAT([rep,]p)) � t�{} Tchk(lr,PATH-
f2

PATHSTAT
([rep,]p)=”e”
� t�{}

PATHSTAT
([rep,]p)=”e”
� t={}

PATHSTAT
([rep,]p)=”l”

PATHSTAT
([rep,]p)=”r”

Tchk(lr,PATH
STAT([rep,]p))�

t={}

Vp1= true true LVPDBX1 RVPDBX1 false

Vp2= true false LVPDBX2 RVPDBX2 false

Vp3 | Vp3 = t Vp3 = t Vp3 = LVPDBX3 Vp3 = RVPDBX3 true

Vp4 | Vp4 = d Vp4 = d Vp4 = LVPDBX4 Vp4 = RVPDBX4 true

Vp5 | Vp5 = b Vp5 = b Vp5 = LVPDBX5 Vp5 = RVPDBX5 true
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Operation Tables

CREATETREE([rep,]r,i,u,v) :

�(r=u�r=v)

1

r�u � r�v (r=u�r�v
)� (r u�r v)1 RUV

�CT
RU�CU RV�CV R

CN
�CN

WARNCT
)�

(r�u�r=v
)

(r=u�r=v)

CT
RU�CU RV�CV R

UV�CT U�CU V�CV N
�CN )

�NUV�CT U�CU V�CV N �N

rep‘= SUBT SUBU SUBV SUBR ADDT ADDU ADDV ADDR NC NC NC NC

extension
class=

%ok% %oknov% %oknou% %oknouv
%

%crtr% %crtrnov% %crtrnou% %crtrnouv
%

%willrchcn
%

%willrchct
%

%mistree% %same-
name%
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ALTERTREE([rep,]r,p,d,b,x) :

r�x

N_fnd(rep,r) � N_fnd(rep,x) � PATHSTAT([rep,]p)�”i”

(N f d( )
2 VALIDPATH �(N_fnd(rep,r)

�N_fnd(rep,x)) r=x

PATHSTAT([rep,]p)�”e”
PATHSTAT �VALIDPATH

�N_fnd(rep,x))
�PATH-

STAT([rep ]p)=” i”
UPDATEOK �UPDATEOK

PATHSTAT
([rep,]p)=”e”

STAT([rep,]p)=”i”

rep[r]‘= UPDATE NC REPLANT NC NC NC

rep‘= CA NC CA NC NC NC

extension class= %altertree% %willrchcapt% %replant% %invalidpath% %invpath/tree% %samename%

ALTERTNODE([rep,]r,p,i) :

N_fnd(rep,r) � PATHSTAT([rep,]p)�”i”

3
VALIDINTNODE

�VALIDINTNODE �N_fnd(rep,r)�
PATHSTAT([rep,]p)=”i”VALIDINTNODE

VALIDPATH �VALIDPATH
PATHSTAT([rep,]p)= i

rep[r]‘= CHANGE NC NC NC

rep‘= CA NC true NC

extension class= %alterintnode% %notintnode% %invalidpath% %invpath/tree%
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GETNODE([rep,]r,p) :

N_fnd(rep,r) � PATHSTAT([rep,]p)�”i”

4
VALIDINTNODE

�VALIDINTNODE �N_fnd(rep,r)�PATH-
STAT([rep,]p)=”i”VALIDINTNODE

VALIDPATH �VALIDPATH
STAT([rep,]p)= i

rep‘= NC NC NC NC

GOLEFT([rep,]r,p) | GOLEFT([rep,]r,p)=GETVAL true true true

extension class= %getval% %notintnode% %invalidpath% %invpath/tree%

DELTREE([rep,]r) :

5 N_fnd(‘rep,r) �N_fnd(‘rep,r)

rep‘= del(‘rep,r) NC

extension class = %deltree% %invalidtree%
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Example 8: Bounded path holder module. (Figure 9)

(0) HEADER SECTION

Type Implemented:

Path(CAPN, CAPP)

Module parameter:

CAPN, CAPP : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type lr = {”l”, ”r”}

type ei = {”e”,”i”}

type retcode = lr � ei

type t1 = ARRAY lr

type S = SSET t1

Representation declaration 

rep : S | ((CARD(rep) � CAPN) � (�t,(t�rep) � (CARD(t) � CAPP)))
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Initial representation

rep = {}

(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

MAKEPATH string

DELPATH string

PATHSTAT string retcode

ADDPATH string

SUBPATH string
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(3) OPERATION TABLES SECTION

Operation Tables

MAKEPATH([rep,]p) :

N fnd(‘ rep p)
�N_fnd(‘rep,p)

N_fnd(‘rep,p)
CARD(‘rep) < CAPN CARD(‘rep)=CAPN

rep‘= sub_O(‘rep,p,,{}) add(‘rep,,p,,{}) NC

extension class = %reinitpath% %newpath% %fullset%

DELPATH([rep,]p) :

N_fnd(‘rep,p) �N_fnd(‘rep,p)

rep‘= del_N(‘rep,p) NC

extension class = %delpath% %invalidpath%
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PATHSTAT([rep,]p) :

N_fnd(‘rep,p)

CARD(‘ rep[p])=0
CARD(‘rep[p])>0 �N_fnd(‘rep,p)

CARD(‘rep[p])=0
‘rep[p][1]=”l” ‘rep[p][1]=”r”

rep‘= NC NC NC NC

PATHSTAT([rep,]p)= ”e” ”l” ”r” ”i”

extension class = %emptypath% %left% %right% %invalidpath%

ADDPATH([rep,]p,c) :

N_fnd(‘rep,p)�Tchk(lr,c)
�N_fnd(‘rep,p)� N_fnd(‘rep,p)� �N_fnd(‘rep,p)�

CARD(‘rep[p])<CAPP CARD(‘rep[p])=CAPP
N_fnd( rep,p)�

Tchk(lr,c)
N_fnd( rep,p)�
�Tchk(lr,c)

N_fnd( rep,p)�
�Tchk(lr,c)

rep[p]‘= add_AT(‘rep[p],c) NC NA NC NA

rep‘= CA NC NC NC NC

extension class = %addir% %fullpath% %invalidpath% %wrongdir% %inv&wron%
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SUBPATH([rep,]p) :

N_fnd(‘rep,p)
�N fnd(‘ rep p)

CARD(‘rep[p])>0 CARD(‘rep[p])=0
�N_fnd(‘rep,p)

rep[p]‘= delA_N(‘rep[p],1) NC NA

rep‘= CA NC NC

extension class = %subpath% %emptypath% %invalidpath%
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APPENDIX B:  ADDITIONAL EXAMPLES

Example 9: A nondeterministic single object, room module.

(0) HEADER SECTION

Type Implemented

Room(CAP)

Module parameter

CAP : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type chairs = {”ch1”, “ch2”, “ch3”, “ch4”}

type tables = {”tb2”, “tb4”}

type ct = chairs � tables

Representation declaration 

rep : ct | (CARD(rep) � CAP)
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Initial representation

rep = {}

(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

PUT ct

TAKE ct

(3) OPERATION TABLES SECTION

Operation Tables

PUT([rep,]e)

e�‘rep
e�‘ rep

CARD(‘rep) < CAP CARD(‘rep) = CAP
e�‘ rep

rep‘= ‘rep \+ e NC NC

extension class = %successful% %full% %dupobj%
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TAKE([rep]) :

CARD(‘rep) = 0 CARD(‘rep) > 0

rep‘ = NC Any_Ls(‘rep,1)

TAKE([rep]) | true TAKE([rep]) = ‘rep – rep‘

extension class = %empty% %successful%
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Example 10: A polymorphic, two–rooms module.

(0) HEADER SECTION

Type Implemented 

Room(CAPO,CAPN)

Module parameter

CAPO, CAPN : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type chairs = {”ch1”, “ch2”, “ch3”, “ch4”}

type tables = {”tb2”, “tb4”}

type ct = chairs � tables

type S = REC (”old”, :ct) , (”new”, :string)

type objon1 = {”old”,”new”}

type objon2 = objon1 \+ ”other”

type tup1 = objon1  � boolean  � boolean

type tup2 = objon2  � boolean  � boolean
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Representation declaration 

rep : S | ((CARD(rep[”old”]) � CAPO) � (CARD(rep[”new”]) � CAPN))

Initial representation

rep = {}

(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

PUT value

PUTON string

GETOPUTN string tup1

SGETOPUTN value tup2
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(3) OPERATION TABLES SECTION

Operation Tables

PUT([rep,]e) :

Tchk(string,e)

Tchk(ct,e) �Tchk(ct,e)
�Tchk

e�‘rep[”old”] CARD CARD
�Tchk

(string,e)

CARD(‘rep
[”old”]) <CAPO

CARD(‘rep
[”old”]) =CAPO

e�‘rep[”old”]
CARD

(‘rep[”new”])
<CAPN

CARD
(‘rep[”new”])

=CAPN

( g, )

rep[”old”]‘= ‘rep[”old”] \+ e NC NC NC NC NC

rep[”new”]‘= NC NC NC rep[”new”] \+ e NC NC

rep‘= CA NC NC CA NC NC

extension class = %successold% %oldfull% %dupobj% %successnew% %newfull% %badtype%
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PUTON([rep,]e) :

Tchk(ct,e) �Tchk(ct,e)

e�‘rep[”old”]
CARD(‘ rep[”new”]) CARD(‘ rep[”new”])

CARD(‘rep[”old”])
< CAPO

CARD(‘rep[”old”])
= CAPO

e�‘rep[”old”]
CARD(‘rep[” new”])

< CAPN
CARD(‘rep[” new”])

= CAPN

rep[”old”]‘= ‘rep[”old”] \+ e NC NC NC NC

rep[”new”]‘= NC NC NC rep[”new”] \+ e NC

rep‘= CA NC NC CA NC

extension class = %successold% %oldfull% %dupobj% %successnew% %newfull%
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GETOPUTN([rep,]e) :

Tchk(ct,e) �Tchk(ct,e)

CARD(‘rep[”old”]) > 0
CA (‘ ” ld

e�‘rep[”new”]
CARD(‘ rep[”old

e� rep[ new ]

‘ ” ”
e�‘rep[”old”] e�‘rep[”old”]

CARD( rep[ old
”]) = 0 CARD(‘rep[”ne

w”]) < CAPN
CARD(‘rep[”ne
w”]) = CAPN

e�‘rep[”new”]

rep[”old”]‘= ‘rep[”old”] \– e NC NC NC NC NC

rep[”new”]‘= NC NC NC ’rep[”new”] \+ e NC NC

rep‘= CA NC NC CA NC NC

GETOPUTN
([rep],e) = (”old”,true,true) (”old”,true,

false)
(”old”,false,

false)
(”new”,true,

true)
(”new”,true,

false)
(”new”,false,

false)

extension class = %successold% %notfound% %oldempty% %successnew% %newfull% %dupobj%
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SGETOPUTN([rep,]e) :

Tchk(string,e)

Tchk(ct,e) �Tchk(ct,e)

CARD(‘rep[”old”]) > 0 e�‘rep[”new”] �Tchk
( t i )

CA (‘

e� rep[ new ]

‘
(string,e)

e�‘rep[”old”] e�‘rep[”old”]

CARD(‘rep
[”old”]) = 0

CARD(‘rep
[”new”])<

CAPN

CARD(‘rep
[”new”])=

CAPN

e�‘
rep[”new”]

(string,e)

rep[”old”]‘= ‘rep[”old”] \–
e NC NC NC NC NC NC

rep[”new”]‘= NC NC NC ’rep[”new”] \+ e NC NC NC

rep‘= CA NC NC CA NC NC NC

SGETOPUTN
([rep],e)1 =

”old” ”old” ”old” ”new” ”new” ”new” ”other”

SGETOPUTN
([rep],e)2 |

SGETOPUTN
([rep],e)2=true

SGETOPUTN
([rep],e)2=false

SGETOPUTN
([rep],e)2=false

SGETOPUTN
([rep],e)2=true

SGETOPUTN
([rep],e)2=false

SGETOPUTN
([rep],e)2=false true

SGETOPUTN
([rep],e)3 |

SGETOPUTN
([rep],e)3=true

SGETOPUTN
([rep],e)3=true

SGETOPUTN
([rep],e)3=false

SGETOPUTN
([rep],e)3=true

SGETOPUTN
([rep],e)3=true

SGETOPUTN
([rep],e)3=false true

extension
class = %successold% %notfound% %oldempty% %successnew% %newfull% %dupobj% %badtyp%
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Example 11: A non–deterministic polymorphic, two–rooms module.

(0) HEADER SECTION

Type Implemented

Room(CAPO,CAPN)

Module parameter

CAPO, CAPN : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type chairs = {”ch1”, “ch2”, “ch3”, “ch4”}

type tables = {”tb2”, “tb4”}

type ct = chairs � tables

type S = REC (”old”, :ct) , (“new”, :string)

type objon1 = {”old”,”new”}

type objon2 = {”old”,”new”,”other”}

type booltup = boolean � boolean

type tup1 = boolean � objon1 � string

type tup2 = boolean � objon2 � string
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Representation declaration 

rep : S | ((CARD(rep[”old”]) � CAPO) � (CARD(rep[”new”]) � CAPN))

Initial representation

rep = {}

(2) SYNTAX SECTION

Access Programs

Program Name Arg1 Value

PUT value

PUTO ct

PUTON string

TAKEO ct

TAKEN string

GETO ct booltup

GETOANYN string tup1

SGETOANYN value tup2
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(3) OPERATION TABLES SECTION

Operation Tables

PUT([rep,]e) :

Tchk(string,e)

Tchk(ct,e) �Tchk(ct,e)
�Tchk

e�‘rep[”old”]
CARD(‘ rep CARD(‘ rep

�Tchk
(string,e)

CARD(‘rep
[”old”]) <CAPO

CARD(‘rep
[”old”]) =CAPO

e�‘rep[”old”]
CARD(‘rep

[”new”])<CAPN
CARD(‘rep

[”new”])=CAPN

( g, )

rep[”old”]‘= ‘rep[”old”] \+ e NC NC NC NC NC

rep[”new”]‘= NC NC NC rep[”new”] \+ e NC NC

rep‘= CA NC NC CA NC NC

extension class = %successold% %oldfull% %dupobj% %successnew% %newfull% %badtype%
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PUTO([rep,]e) :

e�‘rep[”old”]
e�‘ rep[”old” ]

CARD(‘rep[”old”]) < CAPO CARD(‘rep[”old”]) = CAPO
e�‘ rep[” old”]

rep[”old”]‘= ‘rep[”old”] \+ e NC NC

rep‘= CA NC NC

extension class = %successful% %oldfull% %dupobj%

PUTON([rep,]e) :

Tchk(ct,e) �Tchk(ct,e)

e�‘rep[”old”]
CARD(‘ rep[”new”]) CARD(‘ rep[”new”])

CARD(‘rep[”old”])
< CAPO

CARD(‘rep[”old”])
= CAPO

e�‘rep[”old”]
CARD(‘rep[” new”])

< CAPN
CARD(‘rep[” new”])

= CAPN

rep[”old”]‘= ‘rep[”old”] \+ e NC NC NC NC

rep[”new”]‘= NC NC NC rep[”new”] \+ e NC

rep‘= CA NC NC CA NC

extension class = %successful% %oldfull% %dupobj% %successnew% %newfull%
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TAKEO([rep]) :

CARD(‘rep[”old”]) = 0 CARD(‘rep[”old”]) > 0

rep[”old”]‘ = NC Any_Ls(’rep[”old”],1)

rep‘ = NC CA

TAKEO([rep]) | true TAKEO([rep])=‘rep[”old”] – rep[”old”]‘

extension class = %empty% %successful%

 TAKEN([rep]) :

CARD(‘rep[”new”]) = 0 CARD(‘rep[”new”]) > 0

rep[”new”]‘ = NC Any_Ls(’rep[”new”],1)

rep‘ = NC sub_O(‘rep,new,,rep[new]‘)

TAKEN([rep]) | true TAKEN([rep])=‘rep[”new”] – rep[”new”]‘

extension class = %empty% %successful%
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GETO([rep,]e) :

CARD(‘rep[”old”]) > 0
CARD(‘ rep[”old” ]) = 0

e�‘rep[”old”] e�‘rep[”old”]
CARD(‘rep[” old”])  = 0

rep[”old”]‘= ‘rep[”old”] \– e NC NC

rep‘= CA NC NC

GETO([rep,]e)1= true false true

GETO([rep,]e)2| GETO([rep,]e)2=true GETO([rep,]e)2=false true

extension class= %successful% %notfound% %empty%
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GETOANYN([rep,]e) :

Tchk(ct,e) �Tchk(ct,e)

CARD(‘rep[”old”]) > 0 CARD
CARD(‘ rep[”new”]) > 0

CARD
e�‘rep[”old”] e�‘rep[”old”]

CARD
(‘rep[”old”])= 0 CARD(‘rep[” new”])  > 0

CARD
(‘rep[”new”]) = 0

rep[”old”]‘= ‘rep[”old”] \– e NC NC NC NC

rep[”new”]‘= NC NC NC Any_Ls(’rep[”new”],1) NC

rep‘= CA NC NC sub_O(‘rep,new,,
rep[new]‘) NC

GETOANYN
([rep],e)1=

”old” ”old” ”old” ”new” ”new”

GETOANYN
([rep],e)2=

true true false true false

GETON([rep],e)3| true true true
GETOANYN([rep],e)3

=‘rep[”new”]–rep[”new”]‘ true

extension class = %successold% %notfound% %oldempty% %successnew% %newempty%
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SGETOANYN([rep,]e) :

Tchk(string,e)

Tchk(ct,e) �Tchk(ct,e)
�Tchk

CARD(‘rep[”old”]) > 0 CARD(‘rep CARD(‘rep CARD(‘rep

Tchk
(string,e)

e�‘rep[”old”] e�‘rep[”old”]
CARD( rep
[”old”]) = 0

CARD( rep
[”new”]) > 0

CARD( rep
[”new”]) = 0

rep[”old”]‘= ‘rep[”old”] \– e NC NC NC NC NC

rep[”new”]‘= NC NC NC Any_Ls
(’rep[”new”],1) NC NC

rep‘= CA NC NC sub_O(‘rep,
new,,rep[new]‘) NC NC

SGETOANYN
([rep],e)1 =

”old” ”old” ”old” ”new” ”new” ”other”

SGETOANYN
([rep],e)2 =

SGETOANYN
([rep],e)2 =true

SGETOANYN
([rep],e)2 =true

SGETOANYN
([rep],e)2 =false

SGETOANYN
([rep],e)2 =true

SGETOANYN
([rep],e)2 =false true

SGETOANYN
([rep],e)3 |

true true true
SGETOANYN

([rep],e)3
=rep[”new”]‘

true true

extension class = %successold% %notfound% %oldempty% %successnew% %newempty% %badtyp%
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Example 12: A bounded polymorphic multi–object, non–empty room module.

(0) HEADER SECTION

Type Implemented

Room(CAP)

Module parameter

CAP : Integer

(1) CANONICAL REPRESENTATION SECTION

Description of Canonical Representation

Type definition

type seat =  {”rnd”, ”sqr”, ”tri”, ”obl”}

type chrstr = REC (”bk”, :back), (”lg”, :leg), (”st”, :seat)

type cs = seat � chrstr

type back = {”rnd”, ”sqr”, ”cor”}

type leg = {”3legs”, ”4legs”, ”6legs”}

type tabshp = {”rtab”, “stab”, “otab”}

type stlstr = REC (”lg”, :leg), (”st”, :seat)

type blstcs = cs � back  � leg � tabshp  � stlstr
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type stpart = ARRAY seat

type stool = SSET stlstr

type chair = ARRAY chrstr

type table = SSET tabshp

type room =  REC (”obj1”, :chair), (”obj2”, :table), (”obj3”, :stool), (“obj4”, :stpart)

Representation declaration 

rep: room | ((CARD(rep[”obj1”]) + CARD(rep[”obj2”] + CARD(rep[”obj3”] + CARD(rep[”obj4”])) � CAP)

Initial representation

rep | ((CARD(rep[”obj1”])=0) � (CARD(rep[”obj2”])>0) � (CARD(rep[”obj3”])>0) � (CARD(rep[”obj4”])=0) �

((CARD(rep[”obj2”]) + CARD(rep[”obj3”]))< CAP))

(2) SYNTAX SECTION

Access Programs

Program Name Arg1

SEL5PUT blstcs

SEL2PUT cs
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(3) OPERATION TABLES SECTION

Abbreviations

Abbreviations Expansions Table Id.

SUMOBJ1 CARD(rep[”obj1”]) 1,2

SUMOBJ2 CARD(rep[”obj2”])

SUMOBJ3 CARD(rep[”obj3”])

SUMOBJ4 CARD(rep[”obj4“]) 1,2

SUMOBJS SUMOBJ1 + SUMOBJ2 + SUMOBJ3 + SUMOBJ4 1,2
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Operation Tables

SEL2PUT([rep,]e) :

SUMOBJS<CAP

1
Tchk(chrstr,e) Tchk(seat,e) SUMOBJS

CAP1
N_fnd

(‘rep[”obj1”],e)
�N_fnd

(‘rep[”obj1”],e)
�N_fnd

(‘rep[”obj4”],e)
�N_fnd

(‘rep[”obj4”],e)

=CAP

rep[”obj1”]‘= NC add(‘rep[”obj1”],,
(SUMOBJ1+1),,e) NC NC NC

rep[”obj4”]‘= NC NC add(‘rep[”obj4”],,
(SUMOBJ4+1),,e) NC NC

rep’= NC CA CA NC NC

extension class= %dupchrstr% %putchair% %putseat% %dupseat% %full%
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SEL5PUT([rep,]e) :

SUMOBJS< CAP
SUMOBJS=

2
Tchk[chrstr,e] Tchk[seat,e]

�(Tchk[chrstr,e]�
Tchk[seat,e])

SUMOBJS=
CAP

rep[obj1]‘= ‘rep[”obj1”] \+
((SUMOBJ1 + 1),e) NC NC NC

rep[obj4]‘= NC ‘rep[”obj4”] \+
((SUMOBJ4 + 1),e) NC NC

rep’= CA CA NC NC

extension class = %putchair% %putseat% %blsttype% %full%
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APPENDIX C:  USING THE CANONICAL REP. GRAMMAR
TOOL

Explaining the general grammar

The grammar for describing ITAM canonical representations is given in chapter 4.

The grammar is presented in 2 parts.  The first part (section 3.4.1) is the general BNF, and

includes all nonterminals which will map to terminal symbols used in writing a canonical

representation description.  In the first part of the grammar we use uppercase lettering to

distinguish nonterminals that will be mapped to terminal symbols.  In the first part of the

grammar we do not map any uppercase nonterminals to terminal symbols.  We give the

second part of the grammar as these mappings, (in the table of section 3.4.2).

 There are reasons for separating the uppercase nonterminal mappings.  Firstly, a

person can choose which tool will be used to test the grammar.  Secondly, depending on the

chosen tool and the system that the tests will be done on, it may be necessary to map

uppercase nonterminals to a different (from the table in section 3.4.2) set of terminal

symbols.  We used LEXX and YACC, and on the system that we used to test the grammar,

the symbol, � was unavailable so instead we used A!.  Table 24. gives those nonterminals

that we had to remap because of the unavailability of some terminal symbols found in 3.4.2.

(An example of a canonical representation description is given at the end of this Appendix,

with set union written as !!U.)

Any user of a canonical representation syntax checking tool should at least be

familiar with all nonterminal–to–terminal symbol mappings, for his/her system.  These are

the terminal symbols the user will need to write a description of the canonical representation

on his/her system.  Terminal symbols must be recognised by the tool being used for testing

a presented grammar.
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The grammar checking tool for our system

One should understand the grammatical rules given in section 3.4 before writing an

ITAM canonical representation description.  The tool is just a guide that helps you to do this,

it stops at the first part of a canonical representation description that does not confirm to the

rules laid out in section 3.4.1 and 3.4.2 (3.4.2 with any remappings).  It is designed to test

a file with the portion of an ITAM document describing the canonical representation of a

module.  The <filename> must be given, (see below for the commands to build and test).

When a description that confirms to the grammatical rules, is tested, the tool gives an

informative successful message,  (i.e. currently, YES!!).

The grammar does not allow leading zeros except when a real is less than 1.  For

example, a writer can quickly recognize that the set with {002, 2, 3} should be written as

{2,3}.

LEXX and YACC is right recursive.  The LEXX file was composed of terminal

symbols presented in section 3.4.2 and the YACC file from the grammar presented in 3.4.1.

When constructing this grammer using LEXX and YACC, one must make sure that

most function names are not written in all uppercase.  The only exceptions to this ”all

uppercase– rule”, are for CARD, DOM and RAN, (Table 18.)

Another precaution to be taken is to ensure that infix predicates following the

quantifiers, should be in parentheses.

In presenting the examples of Appendix A and B some regular symbols were

available otherwise we had to create our own.  We use the following ”one–to–one”

translation when we test the text describing canonical representations.
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Uppercase Nonterminals Our terminal symbols Our examples’ terminals

QUOTE ‘ ”

CROSSPRO # �

INTERSECT !!N �

UNION !!U �

SETDIFF !!– –

CR Representation Representation declaration

GE >= �

LE <= �

NEQUAL != �

SETEQUAL SET= =

SETNEQUAL !SET= �

STREQUAL STR= =

STRNEQUAL !STR= �

NOT ! 	

PROPSUB PSUB 


SUB SUB �

AND /\\, keyboard’s / and \ �

OR \\/, keyboard’s \ and / �

NONMEM !MEM 

MEM MEM �

EXIST E! �

FORALL A! �

RIMPLIES ––> �

RLIMPLIES <––> �

IR Initial rep Initial representation

Table 24. Translation of familiar symbols for text testing
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An Example:

Type definition

type S_1 = {1,2}

type S2 = {‘a‘,‘b‘}

type S3 = SX !!U S_T

type S = SUBP S4

Representation

rep: S | CARD(rep)< CAP

Initial rep

rep | (CARD(rep)=1 /\ (rep = 1 \/ rep STR=‘a‘))

Commands for building and testing our grammar checking tool at the DEC OSF unix prompt

using LEXX and YACC:

flex fun.l

yacc –d fun.y

gcc lex.yy.c y.tab.c cat

cat <filename> | a.out
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