
A Domain-Specific Language for the Generation

of Optimized SIMD-Parallel Assembly Code

Christopher Kumar Anand∗

anandc@mcmaster.ca

Wolfram Kahl∗

kahl@cas.mcmaster.ca

Software Quality Research Laboratory

Department of Computing and Software, McMaster University

Hamilton, Ontario, Canada L8S 4K1

May 2007

Abstract

We present a domain-specific language (DSL) embedded into Haskell that allows mathematicians to
formulate novel high-performance SIMD-parallel algorithms for the evaluation of special functions.

Developing such functions involves explorations both of mathematical properties of the functions
which lead to effective (rational) polynomial approximations, and of specific properties of the binary
representation of floating point numbers.

Our framework includes support for estimating the effectiveness of different approximation
schemes in Maple. Once a scheme is chosen, the Maple-generated component is integrated into
the code generation setup. Numerical experimentation can then be performed interactively, with
support functions for running standard tests and tabulating results. Once a satisfactory formulation
is achieved, a code graph representation of the algorithm can be passed to other components which
produce C function bodies, or to a state-of-the-art scheduler which produces optimal or near-optimal
schedules, currently targeting the “Cell Broadband Engine” processor.

Encapsulating a considerable amount of knowledge about specific “tricks” in DSL constructs
allows us to produce algorithm specifications that are precise, readable, and compile to optimal-
quality assembly code, while formulations of the equivalent algorithms in C would be almost im-
possible to understand and maintain.

Keywords: Domain-specific languages, code generation for SIMD-parallelism, high-performance
floating-point function evaluation, special functions.

McMaster University

SQRL Report No. 43

∗The authors thank CFI, OIT, NSERC and IBM Canada for financial support.



2 CONTENTS

Contents

1 Introduction 3

1.1 Embedding into Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview of SIMD and the SPU ISA 4

2.1 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Storage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Motivating Example: Hyperbolic Tangent 6

3.1 Polynomial Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Calculation of the Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Using an In-Register Lookup Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Using this Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Language Organization 11

4.1 Domain-Specific Sub-Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Pseudo-Overloading of Function Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Selected Code Patterns 14

5.1 Horner Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Mantissa Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.3 Exponent Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.4 Calculating a Bit-Shifted Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.5 Mixed log/linear intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.5.1 Register Lookup in 8-Word Tables . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.5.2 Lookup in 16-Word Table — Lazy Higher-Order Code Generation . . . . . . . 19

6 Another Example: Cube Root 20

7 Other Features 22

7.1 Iteration Patterns: “Tickers” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.2 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Conclusion and Outlook 25

References 25



3

1 Introduction

In this paper we describe the interface to a development environment for high performance scien-
tific kernels with rich support for SIMD parallelism. The development environment called Coconut
(COde CONstructing User Tool) is a platform for experimenting with novel ideas in reliable and high
performance code generation.

The aim of the present work is to provide an interface for experts in high performance numerical
software to provide processor-specific implementations of mathematical functions, with the following
goals:

1. The language supports safety, and is familiar to mathematicians.

2. Common code construction tasks are simplified.

3. The user is insulated from details of the target intermediate language not relevant to their task.

4. The environment supports exploration and rapid prototyping.

5. Alternatives for instruction selection can be provided by the user.

As a practical goal, we also wanted new students working on Coconut to be able to quickly learn how
to leverage SIMD parallelism for whatever instruction set architecture (ISA) we choose to target.

We have met these goals, to the point that undergraduate mathematics students were able to con-
tribute meaningfully to a production-quality library of twenty-six special functions, which outperform
conventional implementations by a wide margin as a direct result of patterns encapsulated in our
domain-specific language.

1.1 Embedding into Haskell

The main vehicle of interaction with the Coconut development environment is a domain-specific lan-
guage (DSL) for program development with full control over assembly code generation. This DSL
provides controlled access to both syntactic machine instruction constructs, and to their semantics.
The sets of machine instructions are complemented with a rich, extensible vocabulary at a higher level
of abstraction.

For domain experts to be productive, the DSL should “feel natural”, i.e., conform to informal func-
tion/variable semantics. This entails constraints both on syntax and on semantics. It also implies a
strong requirement for abstraction capabilities, that is most easily met by embedding our DSL into
the purely functional general-purpose programming language Haskell [Peyton Jones+ 2003]. As ex-
tensively discussed in the literature [Hudak 1996; Hudak 1998], Haskell is a particularly good host
language for embedded DSLs because of its semantic purity and rich abstraction capabilities. Its
strong “mathematical flavour” makes it easy for mathematicians to learn.

At the core of the structured vocabularies of our DSL are the pure data flow machine instructions to
which we add instructions which involve, on the one hand, more complicated state and control flow,
and on the other hand, higher-level patterns. By implementing the semantics of the core assembly
language, we allow the developer to perform rapid exploration and development inside a Haskell
interpreter. This also makes it easy to turn exploratory tests into compile-time assertions executed
in the interpretive component of our system. The intermediate language we use for code generation
is based in code graphs, a kind of hypergraphs that at the data-flow level include the possibility of
expressing explicit alternatives [Kahl, Anand+ 2006]. Alternatives can be used for instruction selection
by the back end.

By encapsulating common patterns into the DSL, the resulting implementations are short, which
improves readability, while taking advantage of optimization within the patterns to achieve peak
performance.



4 2 OVERVIEW OF SIMD AND THE SPU ISA

We designed our DSL to preserve the declarative flavour of programming in Haskell, and we exclusively
use the literate programming [Knuth 1984; Knuth 1992] style with LATEX embedding that is supported
by the Haskell standard; this also improves readability and hence quality.

1.2 Related Work

There is a lot of work using generative techniques to capture high-level patterns in high-performance
computing, whether they are called generative programming, template programming or simply use
generative ideas prior to their widespread recognition. Our DSL could be used in conjunction with
such systems as a specification language for low-level constructs which are targets for transformations
in the higher-level generative system. SAC is a good example of such a high-level system [Grelck,
Scholz 2006].

CorePy is another tool/research project which makes access to hardware instructions a central feature
[Mueller, Lumsdaine 2006a; Mueller, Lumsdaine 2006b]. CorePy also targets VMX/Altivec and the
SPU ISA. They embed their environment in Python, which gives them some of the benefits we derive
from Haskell (sparse syntax, interpreted environment).

Research on the applicability of SIMD parallelism is quite advanced, as evidenced by support in
commercial compilers. In the direction of elementary function evaluation, [Bandera, Gonzalez+ 2004]

use ideas from [Merrheim, Muller+ 1993] to evaluate single polynomials both with existing SIMD
operations, and using two proposed instructions. Interestingly, one of those instructions (variable
bit shift) is now available in the SPU ISA, and we do make extensive use of it, although not in the
way proposed, because we are interested in evaluating elementary functions multiple times in parallel,
whereas they used parallelism to accelerate the evaluation of a single polynomial.

Using permute instructions to do lookups has been discovered a few times, for example, [Dubey,
Kaplan+ 2001; Shi, Lee 2000; Sazegari 2002], but there is no record of its use in piecewise polynomial
evaluation.

1.3 Overview

We start with a motivating example: literate code for hyperbolic tangent, in which we explain the
issues in developing efficient SIMD implementations of special functions, the interactive nature of
the development using both Haskell support functions and Maple. In Sect. 2 we present the most
important details of SIMD parallelism in general, and the specific features which play a role in our
work. We follow this with a description of the syntax of the DSL and general features in Sect. 4, and in
Sect. 5 we present some of the patterns we abstracted from the development. Then in Sect. 6 we apply
these patterns to another example, cube root, which incorporates a known dangerous optimization, for
whose validity we include a compile-time assertion. The next section is a report on related applications
of the DSL. Finally, we relate our positive experience with both expert and novice users, and in Sect. 8
we explain some of the advantages of this generative approach and things we hope to do in the future
which would be impossible without it.

2 Overview of SIMD and the SPU ISA

Single Instruction Multiple Data (SIMD) instructions operate on more than one data element in
parallel. The first common SIMD architectures were vector processors performing operations common
in linear algebra on arrays of floating point numbers. Not surprisingly, they were good at large
dense linear algebra, but difficult to use for other applications. The second generation of SIMD



2.1 Data Flow 5

architectures was aimed at so-called multi-media operations, operations on pixel arrays, and three-
dimensional vectors in computer graphics. These instruction set architectures (ISAs) are more diverse,
with VMX/Altivec [IBM 2005] on Power and SSE [Ramanathan 2006] on x87 being the best-known.

2.1 Data Flow

The SPU ISA [IBM 2006] uses 128-bit operands, in common with VMX and SSE. It contains a rich
set of operations formed by dividing the 128-bit operands into 8-, 16-, 32- or 64-bit quantities and
performing the usual scalar operations independently on each. See Fig. 1 for an example 32-bit add
instruction operating on four elements. This results in a useful level of parallelism, but introduces

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

+ + + +

Figure 1: fma, a 32-bit add operating on two 128-bit wide operands.

alignment issues in data. To be able to handle arbitrarily-structured data (necessary if you want to be
able to insert SIMD-optimized functions into existing applications) all SIMD instructions have some
instructions to rearrange data. Two approaches are possible, a large set of instructions with specific
functions (e.g. unpacking pixel data into vectors by component), or a small set of software-controllable
instructions. All ISAs follow a middle path, with VMX/SPU ISA being more generic. The instructions
of most use in synthesizing loop overhead are the byte permute instruction shufb (analogous to VMX’s
vperm), shown in Fig. 2, and quadword rotate instructions, including rotqby shown in Fig. 3. As
shown in the figures, SPU byte permutation can be used to move 32-bit components from one slot to
another one (useful for transposing single-precision floating point matrices, for example), or duplicate
bytes. It can rotate bytes through cycles, which can be used to count through loop induction variables

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

a

1

b

1

c

1

d

1

e

1

f

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

a

0

b

0

c

0

d

0

e

0

f

0
0

0
1

0
2

0
3

1
5

1
6

1
7

1
8

1
9

1
4

0
3

0
0
4

0
5

0
6

0
7

0 1 2 3 4 5 6 7 8 9 a b c d e f

Figure 2: shufb byte permutation taking two source
operands (coloured) and an operand of byte indices.

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
a

0
b

0
c

0
d

0
e

0
f

3

rotate bytes

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
a

0
b

0
c

0
d

0
e

0
f

Figure 3: rotqby, a quadword byte rotate, using a
run-time value from a second operand.

when the loop sizes are known at compile time. Unlike the vperm instruction of VMX, shufb can
also insert three special byte values (zero, minus one, and high-bit set) if it encounters special byte



6 3 MOTIVATING EXAMPLE: HYPERBOLIC TANGENT

values in the index quadword, see byte b in the figure. Byte and bit rotate instructions (like rotqby

in Fig. 3) take both immediate counts and counts from operand registers.

2.2 Storage Model

There are different ways designers have adapted to increasing memory access latencies. Cache memory
is used in all desktop and server computing. Cache memory may include software-directed or hardware-
predictive streaming, in which regularly strided patterns of memory access are used to fetch data from
main memory into cache before it is requested. Such prefetching is a type of stream processing, which
is also central to the way in which graphics processors efficiently access memory.

Distributed computation, on the other hand, involves separate memory spaces with explicit data trans-
fer operations to access non-local memory. In the case of GPUs and accelerator cards, this could be
accomplished with direct memory access (DMA) engines, running asynchronously with computation,
but with latency similar to cached memory access.

As we move to higher levels of parallelism on a chip, which Cell is pioneering, the overhead associated
with a shared memory space (page tables, cache coherency, . . .) will increase superlinearly. To avoid
this, the Cell processor’s SPU compute engines have their own local stores (LSs), and use DMA to
transfer data to and from system memory. This has the positive effect that access to local memory
can be as predictable as accesses on a normal processor which hit in L1 cache. This introduces a
difference between local and non-local memory access which is reflected in the structuring of our DSL.

2.3 Control Flow

Instructions for computation and local data movement, which exist in various permutations in all SIMD
ISAs, effect register values, and hence data flow. The SPU ISA also contains interesting control-flow
instructions which effect state, including signaling, messaging and atomic read/write instructions, and
branch hinting instructions required for efficient loop implementations.

We group these instructions separately in the DSL in a way that prevents them to be accidentally
mixed into pure data-flow calculations, because for most users they will only be used via the higher-
level patterns which contain them.

2.4 Instruction Summary

To make the paper self-contained, we include in Table 1 a description of all the machine instructions
we use in the paper. Machine instructions are set in bold. They operate on 128-bit vectors, and all of
the instructions in the examples can be interpreted to be operating on four 32-bit values in parallel.
Functions which translate between Haskell values and DSL register values are set in italics, and words
from the DSL vocabulary are underlined.

3 Motivating Example: Hyperbolic Tangent

Before going into the details of the DSL, we present an example of how our system insulates the domain
expert from many of the more difficult aspects of writing assembly code, and provides necessary input
to exploration of different approximation strategies in Maple.

We develop the code for hyperbolic tangent as an example of the workflow we are facilitating with
our DSL. This includes (1) the definition of the intervals used in the piecewise polynomial, (2) the
Maple code which calculates the piecewise polynomials, and (3) the declarative assembly code, which



3.1 Polynomial Approximation 7

Instruction Description

selb bits in third argument select corresponding bits in first or second argument

shufb bytes in third argument index bytes to collect from first two arguments

fma, fs 32-bit floating point fused multiply-add, subtract

andc and first argument with complement of the second argument

mpya, mpy 16-bit integer multiply fused with 32-bit add, just multiply

mpyui, mpyi integer multiply with immediate arguments

roti rotate each 32-bit word by an immediate constant number of bits

rotqbii rotate whole quadword up to 7 bits left, number given by immediate

shli shift each 32-bit word left by an immediate constant number of bits

ceqi set each output word to 1 if input word matches immediate constant, to 0
otherwise

Table 1: Summary of SPU instructions used in this paper.

for ftanh is eight lines of Haskell, which generate 48 machine instructions and 34 128-bit constants,
which is about half as many machine instructions as required by a standard approach.

3.1 Polynomial Approximation

Hyperbolic tangent, see figure 4, is defined by

tanh(x) =
ex − e−x

ex + e−x
, (1)

but using this definition for computation would be difficult because we would run into problems with
subtraction of similar numbers, and division of similar large and small numbers, all of which introduce
additional error. Fortunately, hyperbolic tangent rises very quickly to 1.1

tanhSaturate :: Double

tanhSaturate = roundToRepresentable (atanh (1− 2 ∗∗ (−25))) -- = 8.664339742098155

Therefore, any number larger than tanhSaturate in magnitude should round to ±1.

The standard Remez Exchange algorithm [Golub, Smith 1971] can find best approximating polyno-
mials to a differentiable function on an interval, but in this case a single approximating polynomial
will either have very high degree or be very inaccurate. A standard approach is to look for a piece-
wise polynomial approximation, and we have standard tools to help in the search. Unfortunately,
the search space is large, and some domain knowledge is required to narrow the search. We use a
Maple library function to perform the search for a given polynomial. The Maple procedure can fail
for several reasons, including ill conditioning within the algorithm. Even if the search succeeds, the
reported quality (maximum error) of the solution may not meet the requirements for a particular
function. Increasing precision requires either higher-order polynomial approximations, or a different
strategy for assigning intervals. This has to be decided by the domain expert on a case-by-case basis,
after a lot of experimentation.

Another problem is that the Maple function will report the error assuming infinite precision arithmetic,
so allowances have to be made for the actual precision. An expert will recognize polynomials which are

11 − 2−25 is the smallest number which when rounded to a representable number is 1.



8 3 MOTIVATING EXAMPLE: HYPERBOLIC TANGENT

likely to introduce unacceptable rounding errors (e.g. the coefficients grow quickly relative to the size
of the domain of the polynomial). Finally, the reported error is an absolute error. Since floating point
numbers, by definition, have a level of precision inversely proportional to the number represented,
this is usually not an acceptable measure. So weighting of the approximation process may need to be
added by hand. Even this, however, will not lead to satisfactory answers where the function being
approximated crosses zero, or has a singularity or asymptote. In such cases, the domain expert will use
different strategies to identify appropriate piecewise polynomial approximations fitting into interval
organizations that allow efficient coding.

Our example has no singularities or vertical asymptotes, but it does have a zero, and this affects the
quality of polynomial approximations of a given order. We can get around this by varying the size
of the intervals. In general, this will greatly increase the complexity of the interval identification, but
we have identified one pattern which is very efficient: logarithmically stepped intervals, as shown by
alternating colours in figure 4.

Figure 4: Sixteen approximating polynomial segments for tanh, left, and the corresponding error in bits, right.

3.2 Calculation of the Intervals

The efficient implementation of this approach relies on the fact that such logarithmically stepped
interval patterns can be specified by using combinations of bits from both mantissa and exponent of
the floating-point representation as interval identifiers; different such combinations are possible, and
to specify such an interval pattern we furthermore need the length of the range to be covered by all
intervals (rangeEnd), and we found cases where it is beneficial to skip some of the smallest intervals
(skipIntervals) and add an equal number of large intervals at the end. For tanh, we choose the following
interval pattern specification:

tanhLookup = RegLookupSpec

{mantissaBits = 2
, exponentBits = 2
, skipIntervals = 3
, rangeEnd = tanhSaturate

}

With this definition, evaluating

lookupBreaks tanhLookup

calculates the intervals in a form that can easily be transferred to Maple.



3.3 Using an In-Register Lookup Table 9

In Maple, we used the following code to find approximations, with the interval break points stored in
the array breaks:

i:=0; # line 1

ax:=numapprox[minimax] # 2

(x->limit((tanh(y)/y-1)/y, y=x) # 3

,(breaks[i+1]) .. (breaks[i+2]) # 4

,[polyOrd-2,0] # 5

,x->x # 6

,’da[i]’); # 7

aa[0]:=x->x*(1+x*ax(x)); # 8

for i from 1 to 15 do # 9

aa[i]:=numapprox[minimax] # 10

(x->tanh(x) # 11

,(breaks[i+1]) .. (breaks[i+2]) # 12

,[polyOrd,0] # 13

,x->x # 14

,’da[i]’); # 15

od;

The first polynomial is calculated in lines 2–7 separately from the rest (lines 9–15) because it contains
a zero crossing. The arguments to the approximation generation function are the function to be
approximated (line 3), the domain interval of the approximation (line 4), the order of the rational
polynomial (numerator,denominator) (line 5), the weighting (identity) (line 6) and the variable in
which to store the estimate for the maximum error (line 7).

Building on our accumulating experience with variations on these Maple patterns we are considering
automatic generation of such Maple code blocks, but up to now have not yet seen a real need for this.

3.3 Using an In-Register Lookup Table

Implementing tanh with the above interval pattern, which uses four-bit interval identifiers, requires
lookup in 16-element arrays; with the large register file of the SPU, we can easily afford to store these
6 ∗ 16 floating-point numbers in 24 registers.

This 16-way register lookup can be performed for two keys at a time without performance loss, so
we use a two-way parallel “unrolling” of the tanh function. The lookup implementation relies on the
specification tanhLookup shown above, and uses the coefficient array tanhC produced using Maple.

ftanh = use16X2lookup tanhLookup tanhC tanhKeyResult

The higher-order function use16X2lookup, see Sect. 5.5.2, implements this pattern, generates vector
constants containing byte-scrambled versions of the binary representation of the Maple-generated floats
tanhC arranged to ease the lookup, constructs the 16-way lookup, and connects it with two instances
of tanhKeyResult, a function that accepts as arguments an original argument v (one of the two parallel
arguments) and the coefficients coeffs resulting from the lookup, and produces as its results a key to
be used for the lookup and the final result of the calculation. This kind of “tying the knot” is only
possible in non-strict (lazy) programming languages — the key of course must not depend on the
coeffs.



10 3 MOTIVATING EXAMPLE: HYPERBOLIC TANGENT

tanhKeyResult coeffs v = (key, result)
where

We will use the absolute value to create the lookup key and as starting point for the remaining
computations, and obtain it by masking out the bit pattern signBit covering exactly the sign bit (of
each vector element):

key = andc v signBit

This key is used by use16X2lookup to look-up coeffs, and also together with these coefficients to
evaluate the resulting polynomials using Horner’s rule:

polyVal = hornerV coeffs key

We also compare (using the floating-point “greater-than” comparison instruction fcmgt) the key to
arctanh(1 − 2−24), because this is the smallest number which rounds to 1 at 24-bit precision — all
higher numbers round to 1. This comparison produces a select mask:

isBig = fcmgt key (unfloats4 tanhSaturate)

This mask can be used by the bit-select instruction selb; we apply this to the result of polynomial
evaluation, to force evaluations at large numbers to 1.

resultOrOne = selb polyVal (unfloats4 1) isBig

Finally, we obtain the result by restoring the sign bit from the argument v:

result = selb resultOrOne v signBit

3.4 Using this Definition

As we will explain in Sect. 4, we can now use ftanh to calculate the application of tanh to each
floating-point number in two four-tuples; we use lists at the interface, need to make the desired type
explicit, and need to pack and unpack between Float lists and vectors:

(floats ‘prod‘ floats) (ftanh (unfloats [0.1, 0.2, 0.3, 0.4], unfloats [1 . . 4] :: SpuSimValue REG))

This capability is extremely convenient for testing the numeric properties of a function definition like
that of ftanh; for the direct test above, one would compare the resulting numbers with

map tanh ([0.1, 0.2, 0.3, 0.4] ++ [1 . . 4 :: Float ])

We also have special testing wrappers for such functions which eliminate the explicit interaction with
the type system at the interface, and are therefore the preferred means to conduct such testing.

For SPU assembly code generation, at type SpuMNode REG instead of SpuSimValue REG, or function
ftanh generates a code graph in the sense of [Kahl, Anand+ 2006], which is then wrapped into additional
loop overhead (see Sect. 7). An automatically-generated rendering of the resulting code graph, is shown
in Fig. 5.

This code graph is then split for software pipelining [Thaller 2006] and scheduled to produce a very
efficient tanh kernel.



11

1:REG

a
0

rotqbyi 8

2:REG

lqd 16
1

lqd 0
1

3:<>

hbr jump

0
4:REG

1

rotqbii 0

5:<>
0

6:<>

stqd 0
0

stqd 16

0

7:REG

rotqby

0

8:REG

1

9:REG

1: -1 rotqbii 2

2 2

10:REG

2: -3

11:<>

3: -1

12:REG

1

13:REG

4: -1

14:<>

0

15:REG

andc

0

selb 1

16:<>

5: -1

17:REG

andc

0

selb

1

18:REG

1
1

2 2

19:REG

fma0

fma0

fma

0

fma

0

fma

0

fma
0

fcmgt
0

20:REG

shufb
0

21:REG

1

22:REG

selb

0

23:REG
1

fma
1

24:REG

2
2

25:REG

roti 4

26:REG

shufb
0

27:REG

0

fma 0

fma 0

fma 0

fma 0

fma 0

fcmgt
0

28:REG

roti 4

29:REG
1

30:REG

2

31:REG

1

32:REG

2

33:REG

2

shufb

2

shufb
2

shufb
2

shufb

2

shufb

2

shufb
2

shufb

2

shufb

2

shufb

2

shufb

2

shufb

2

34:REG

shufb
0

shufb

0

35:REG

0

36:REG

1

37:REG
1 1

38:REG

2

shufb 2 shufb
2

shufb 2 shufb
2

shufb
2

39:REG

1

40:REG

0

41:REG

1

42:REG
0

shufb
0

43:REG

0

44:REG

1

45:REG

1 1

46:REG

2

47:REG
1

48:REG

0

49:REG

1

50:REG
0

shufb
0

51:REG

0

52:REG

1

53:REG

1 1

54:REG

2

55:REG

1

56:REG

0

57:REG

1

58:REG

0

shufb
0

59:REG

0

60:REG

1

61:REG

1
1

62:REG

2

63:REG
1

64:REG

0

65:REG

1

66:REG

0 shufb
0

67:REG

0

68:REG

1

69:REG

1
1

70:REG

2

71:REG
1

72:REG

0

73:REG

1

74:REG

0
shufb

0

75:REG

0

76:REG

1

77:REG

1 1

78:REG

2

79:REG

selb
0

80:REG

1 selb
1

81:REG

1

1

82:REG

2

83:REG

0

84:REG

1

85:<>

2

0

86:REG

2

2
2

2
22

87:REG
1

88:REG

2

89:REG
1

90:REG

2

91:REG
1

92:REG

2

93:REG

1

94:REG
2

95:REG
1

96:REG

2

97:REG

0

98:REG

2

99:REG

0

100:REG

1

101:<>

1

102:<>

6: -1

103:REG

7

1: -1

2: -3 3: -14: -15: -1

6: -1

7

u32
00000020
FFFFFFF8
00000020
00000020

0
1

0
1

u32Splat 80000000

u16
3752
3570
3389
3E07
3DD2
3D18
BCD2
BD72

u16
BD62
BCA7
B990
3B98
3B59
3A92
39A5
38B3

u16Splat 0001

f32Splat 6.059277041687825 f32Splat 3.5

u8
00 00
04 04
08 08
0C 0C
10 10
14 14
18 18
1C 1C

u8Splat 1E

u16
1EF1
9D4E
89FE
0812
7284
3453
89AA
364C

u16
9D59
190D
1906
72A9
CB43
68D1
B0BB
C7D2

u8
00 01
10 11
02 03
12 13
04 05
14 15
06 07
16 17

u16
B9C0
B807
B636
390F
3C87
3DCC
3E69
3EA5

u16
3E9B
3DEC
BCBC
BD84
BD4B
BCA3
BBDA
BB09

u16
CF60
2F71
E6EE
85F5
7216
3B8C
E7DD
4875

u16
312E
877D
C81A
02AE
1D79
A28C
935C
027E

u16
3B8E
39F4
3843

BEAA
BEAC
BEC2
BEF9
BF18

u16
BF0E
BE1A
3E6D
3EBE
3E9C
3E15
3D69
3CA8

u16
6345
03E5
22BD
AB3B
AF17
C9F1
3EAC
0836

u16
3990
0550
D02E
4C9F
3F31
27AB
CCFA
BF32

u16
BCD3
BB5D
B9D0
3329
39FF
3C43
3D66
3DF0

u16
3DA6
BEB7
BF63
BF8F
BF79
BF0B
BE7E
BDD2

u16
CBD2
3E73
DC09
4798
F8C4
6681
7B32
282A

u16
D2F0
6491
6536

CA8B
85BA
2F85
2860
4ED7

u16
3D9E
3C49
3AE0
3F80
3F7F
3F7F
3F7D
3F78

u16
3F7C
3F9D
3FCC
3FE5
3FD0
3F85
3F0C
3E84

u16
D8DA
AAE4
5E0A
0000
FE00
98E7
35CF
BE0A

u16
EA37
2384
47BE
B0EE
6E1C
A64E
D9F5
E654

u16
3F67
3F7B
3F7F
0000
354D
38B2
3A65
3B3C

u16
B7F7
BD57
BE1E
BE63
BE17
3E2D
3F00
3F3B

u16
EF26
6043
3E62
0000
CC79
BA88
A69C
EBA4

u16
9DD4
3D12
F3A3
BA8F
BEBA
B2CC
282A
B031

f32Splat 1.0

f32Splat 8.66433974209816

u8
08 09
18 19
0A 0B
1A 1B
0C 0D
1C 1D
0E 0F
1E 1F

Figure 5: Assembly code graph for tanh

4 Language Organization

The embedded domain-specific language we used above for the creation of a high-performance imple-
mentation of tanh consists of several sub-languages, which we summarize now, before we turn to the
technically non-trivial aspect of how to provide, in the Haskell embedding, an interface that treats
symbolic entities “naturally” as functions. This is a major usability criterion for domain experts in
this field, since they typically have a mathematical background.



12 4 LANGUAGE ORGANIZATION

4.1 Domain-Specific Sub-Languages

Single-instruction register computations are conceptually the simplest and form the core sub-language.
For some purposes it makes sense to sub-divide these further into, “true SIMD” instructions like fma

that perform a single operation multiple times in parallel, and vector-spanning operations like shufb

that affect the whole width of the vector in a more complex way.

The former are conceptually close to the corresponding mathematical operations, which influences
the style in which program authors think about them — this is visible in the implementation of
tanhKeyResult above, which relied exclusively on such instructions; it is probably even more obvious in
the cube root example in Sect. 6 below. This style of “mathematician-friendly” code documentation
allows mathematicians to produce code using such instructions with high confidence, even if they are
not familiar with all the details of the underlying assembly language.

As we have seen above in the tanh example, “tricky” uses of shufb instructions crossing the SIMD
borders can be entirely encapsulated in “pattern” combinators like use16X2lookup, which combine
several such instructions in a way that provides useful services to pure SIMD programs.

Interaction with memory, i.e., load and store, is worth treating separately, mainly because different
patterns of reasoning are necessary to establish the necessary independence and dependency relations
between different occurrences of these instructions.

Fig. 6 sketches the relations between these and the other main sub-vocabularies of our DSL; control
and synchronization instructions require yet more complicated reasoning tools to be able to justify
the convoluted usage patterns necessary for high-performance computation.

simple 
patterns

single 
instruction 

computations

complex 
patterns

local load/
store

control 
instructions

control 
patterns

distributed 
control 

patterns

synchronization 
instructions

Figure 6: Inclusion relation for language elements.

On top of these basic instruction languages, we offer “pattern” vocabularies, including under “simple
patterns” the functions use16X2lookup and lookupBreaks we used in our tanh implementation.

4.2 Pseudo-Overloading of Function Types

For mathematicians, it is perfectly natural to think of instructions like fm (component-wise floating-
point multiply of four-element vectors) as “perhaps somewhat distorted” cousins of familiar operations
like real-number multiplication, but definitely as functions.

In the context of embedding these instructions into Haskell, a programming language that mathemati-
cians typically relate to with relative ease, this means that the Haskell incarnation of fm is expected
to be a proper Haskell function again, to be applied to its arguments via normal function application.



4.2 Pseudo-Overloading of Function Types 13

If such a Haskell incarnation is expected only to embody the semantics of fm, then there are no
problems with this — fm would then map an operation quite similar to Haskell Float multiplication
over quadruples of Floats.

However, for code generation we need fm to embody a syntactic representation of the corresponding
assembly instruction, and this is not easily cast into the shape of a pure Haskell function.

The problem is that sharing needs to be preserved; consider the following code for calculating eighth
powers:

pow8 x = let
x2 = fm x x

x4 = fm x2 x2

in fm x4 x4

If x is a register reference, then, according to the Haskell semantics of function application, the equality

pow8 x = fm (fm (fm x x) (fm x x)) (fm (fm x x) (fm x x))

has to hold, and in näıve implementations of fm as instruction representation generator this would
produce seven multiplication instructions, instead of the expected three.

For the seasoned Haskell programmer, the obvious solution would be to change the interface, and
make fm a monadic action in some code generation monad.2Then, one would have to write:

pow8 x = do
x2← fm x x

x4← fm x2 x2

fm x4 x4

and only three instructions would be generated.

However, with the monadic set-up, straight-forward substitution does not work — instead of writing
fm (fm x y) z with fm as a normal function, in the monadic variant one would have to write something
like fm x y >>= (‘fm‘z), or use the do-notation again:

do u← fm x y

fm u z

We found the necessary syntactic overhead for making functions like fm monadically typed is a serious
impediment to using the language as a “natural medium of expression” for a domain expert in this
field.

Therefore, fm needs to be a proper function, and will have the type signature

fm :: SpuType f⇒ f→ f→ f

of a binary operation on any type f that can be considered as somehow standing for a vector of SPU
float values.

This leaves only the type f that fm operates on open for adaptation.

2See, e.g., http://haskell.org/haskellwiki/Monad for links to introductory material about the use of monads to
structure computation in Haskell; this was originally inspired by Moggi’s use of monads to structure denotational seman-
tics of imperative programming languages [Moggi 1991b; Moggi 1991a] and popularized in the functional programming
community by Wadler [Wadler 1990; Wadler 1992].

http://haskell.org/haskellwiki/Monad


14 5 SELECTED CODE PATTERNS

The option to use fm on the semantic level is attractive, useful for rapid prototyping, and occasionally
also useful for compile-time decisions, so needs to be made available.

The Haskell type class system provides the necessary overloading to have the “semantic implementa-
tion”, i.e., interpretation, as one instance, and a syntactic representation as a different instance. The
problem is only the desired sharing, and we note that in our context, actually all possible sharing is
desired, implementing the common compiler technique of common sub-expression elimination.

This allows us to provide as operand type “monadic nodes”, MNodes, defined as monadic actions that
construct code graph nodes in a state monad with a code graph as state, with the twist that new nodes
are only constructed when necessary, and re-usable nodes are located using a dictionary also kept in
the state. These monadic nodes achieve convenience of expression at the expense of significantly higher
cost of construction of the syntactic representation, but we do not foresee this to become a bottleneck
soon.

5 Selected Code Patterns

We now present a selection of code patterns incorporated into our DSL vocabulary, several of which
were used in Sect. 3 to implement tanh.

5.1 Horner Evaluation

Horner’s rule:
n

∑

i=0

aix = a0 + x (a1 + x (a2 + ...xan) ...)

can be used to evaluate a polynomial in n fused multiply-adds. With SIMD instructions one can
compute four single-precision values in parallel using a series of fmas. The function hornerV does
this, and works for any order polynomial. The order of the polynomial is one minus the length of the
list of coefficients. This is the highest-throughput way of evaluating polynomials. Other methods can
reduce latency by increasing parallelism, but this is wasteful for deeply software-pipelined loops.

hornerV :: SPUType val⇒ [val]→ val→ val

hornerV (a1 : a2 : as) v = fma v (hornerV (a2 : as) v) a1

hornerV [a1 ] = a1

hornerV [ ] = error "hornerV: need a coeff"

5.2 Mantissa Extraction.

An IEEE floating point number is stored as packed bit fields: 1 sign bit, 8 exponent bits and 23
mantissa bits (for single precision). The SPU ISA uses the same format, although exceptional values
are not recognized. So on the SPU all values of the exponent and mantissa bit fields represent the
floating point number

x = (−1)sign2exponent−1271.mantissa. (2)

Common patterns in special function evaluation include extraction of the exponent and mantissa fields.
Since the exponent bits are often used in different bit positions, we have higher-level patterns which
construct declarative assembly and the various constants required to put the exponential bits into any
position in the word.



5.3 Exponent Extraction 15

The fractional part represented by the mantissa is most often used as a floating point number, so
we have a pattern to form the number 1.mantissa∈ [1, 2), by merging the mantissa bits with the bit
pattern for 1.0.

onePlusMant :: SPUType val⇒ val→ val

onePlusMant v = selb floatOne v mantissaBits

where
floatOne = unwrds4 0 x3f800000

mantissaBits = unwrds4 0 x007fffff

5.3 Exponent Extraction

Depending on the use, extracting the exponent can be combined with other operations, but we provide
an odd-pipeline method of putting the exponent byte into any aligned byte surrounded by zeros. This
works by rotating the whole quadword left one bit, to rotate out the mantissa’s sign bit and put the
exponent byte into the first byte slot of each word. Then use shufb to insert that byte into the desired
position slot of the word which is otherwise filled with zeros.

extractExp :: SPUType val⇒ Integer→ val→ val

extractExp destSlot v = shufb vShifted vShifted $ unbytes $ mapWord destSlot =<< [0 . . 3]
where

vShifted = rotqbii v 1

mapWord 0 i = [0 + 4 ∗ i, shufb0x00, shufb0x00, shufb0x00]
mapWord 1 i = [shufb0x00, 0 + 4 ∗ i, shufb0x00, shufb0x00]
mapWord 2 i = [shufb0x00, shufb0x00, 0 + 4 ∗ i, shufb0x00]
mapWord 3 i = [shufb0x00, shufb0x00, shufb0x00, 0 + 4 ∗ i ]
mapWord = error "extractExp:mapWord not a slot"

5.4 Calculating a Bit-Shifted Division

In integer arithmetic, we can save considerable numbers of instructions by using approximate inverses
instead of converting numbers to floating point, doing expensive arithmetic, and converting back.

Some of the most common uses are captured by a pattern that approximates the calculation of the
result of the division by q of the integer-coefficient linear form p · x + s in such a way that the integral
part of the quotient p·x+s

q is returned in the left (32 − n) bits, and the fractional part in the right n
bits.

Given a precision n, this calculates for each word element vi of the vector v, the approximate linear
function

pvi + s

q
≈fixed point(n)

⌊

2n

(

p

q
· vi +

s

q

)⌋

.

Since p, q, and s are compile-time integer constants, we can approximate this using a linear form
with coefficients calculated at compile-time. As a result of this approach, the result has only up to
16 correct digits corresponding to the integer part (starting at the 2n bit) and a number of correct
fractional digits to the right of this point. The number of correct digits decreases with the size of the
inputs.

If fractional digits are needed, it is easier to enumerate all possible inputs than to formally reason
about the achieved precision; we show an example of this in our cube root implementation in Sect. 6.



16 5 SELECTED CODE PATTERNS

In the implementation, we have to check to see whether a nonzero offset is required. If it is, we need
to use a fused multiply add, mpya, and two register constants; if not, we can use the immediate form
if the multiplicand is in the limited range for signed or unsigned immediates, otherwise we use the
register form with a single register constant.

divShiftMA :: SPUType val⇒ Integer→ Integer→ Integer→ Integer→ val→ val

divShiftMA p q s n v

| s 6≡ 0 = mpya m v b

| m’ < 2 ↑ 10 ∧ m’ > 0 = mpyui v m’

| m’ < 2 ↑ 9 ∧ m’ > (−2 ↑ 9) = mpyi v m’

| otherwise = mpy v m

where
m’ = (p ∗ 2 ↑ n + (q− 1)) ‘div ‘ q -- integer exponent and division
m = unwrds4 m’

b = unwrds4 $ (s ∗ 2 ↑ n) ‘div ‘ q

By encapsulating all these relatively tricky details into a DSL function, we free the domain expert
from doing all this low-level arithmetic and allow them to work on a higher level of abstraction, as we
will show in Sect. 6.

5.5 Mixed log/linear intervals

We can do lookups based on intervals which mix logarithmic and linear scales by forming an index
from a combination of bits from the exponent field and from the mantissa. This is an efficient way to
construct lookup keys corresponding to a contiguous set of intervals, with either equal-sized intervals
or intervals whose size doubles regularly from one end to the other. Varying the size of the intervals
may result in an approximation with lower order but the same maximum error, especially for functions
with singularities or zero crossings.

However we choose the interval domains of the polynomial approximations, we have to look up the
correct set of coefficients at run time. On SIMD architectures with byte permutation, like VMX and
the SPU ISA, this can be done efficiently for some sizes of tables entirely in registers without accessing
memory.

We now present two patterns for lookup. In the first case, we start with a field of bits and look up
based on that, without making any assumptions about the meaning of the bits. In some functions, the
bit keys are constructed by concatenating bits containing heterogeneous information, e.g. in difficult
cases where polynomial approximation works in one part of the domain but not in another.

In the second case, log-linear intervals, we have a pattern integrating key construction and lookup,
because correctly constructing keys to match log-linear intervals is error-prone.

5.5.1 Register Lookup in 8-Word Tables

In this section we look at patterns for lookups in tables of 8 words. In most applications, the words are
32-bit floating-point polynomial coefficients, but not always; for example we also have one application
where the lookup retrieves bit masks. Therefore we strive to keep the exposed components of our tool
set for this kind of pattern as general and modular as possible, to allow the domain expert to replace
components of our high-level patterns, or modify components when inter-component optimizations
are possible.

For 8-way lookup, the pattern has two main parts: (1) constructing keys (maps of byte indices) and
instructions to perform the lookup, and (2) constructing the lookup tables, which are lists of register



5.5 Mixed log/linear intervals 17

constants packed with single-precision floating point values.

In the current pattern, a table contains eight words, and a single lookup selects one of these. Since
on the SPU, the main instruction supporting such lookups, shufb, does selection of Bytes, not words,
our lookup needs to locate four out of 32 bytes to assemble one word, and a single shufb instruction
allows exactly selection out of the 32 bytes contained in its first two register arguments.

Therefore we need 5 bits for lookup keys for the the individual byte, and three of these, “kkk” will be
the high-level key for selection of one of the eight original alternative words.

Since application may produce these three-bit word-keys in many different ways, we must not make
any assumptions about their original alignment. If the original alignment of the three key bits falls
within the five bits used by shufb, i.e., in one of the three byte patterns ***kkk**, ****kkk*, and
*****kkk, then we can directly use that key alignment; otherwise we have to rotate the word-key into
one of these three positions, and we choose the last.

For the byte lookups, the word-key “kkk” needs to be replicated four times, and for each of the three
possible word-key positions, it is completed in a different way to four different five-bit byte-keys (i.e.,
keys for byte selection), resulting in shufb argument vectors of the following shape:

***kkk00 ***kkk01 ***kkk10 ***kkk11 or
***0kkk0 ***0kkk1 ***1kkk0 ***1kkk1 or
***00kkk ***01kkk ***10kkk ***11kkk .

The function key8Word generates these shufb maps from keys in different bit positions. The bit
positions are given as log2 of the positional value, i.e., little-endian bit number, with the right-most
bit of the 32-bit word being considered as at position 0.

Most of the complication arises from generating a joined code graph with two paths, each using
instructions in different pipelines, so the scheduler can make the choice; this increases superscalar
dispatch.

In detail, one alternative does rotation within the word, roti, while the other does it within the
quadword, rotqbii. The second instruction only supports rotations of less than eight bits, so the
relevant bits may leave the component word in the second case. As a result, the modulo arithmetic
has to be done differently in the two cases.

Since we can only join register values which will become nodes in the code graph, and not arbitrary
Haskell data types, we have to encapsulate the variation within an auxiliary function (splat).

In the final step, the “select bytes” instruction selb uses the constant mask for selecting the key bits
kkk and the constant c0123 for inserting the 00, 01, 10, 11 around the key to generate a 5-bit lookup
index to be used by the shufb in lookup8Word below for look-up into 32-byte tables (in the two
registers addressable by a single shufb).

key8Word :: forall val ◦ (SPUType val, HasJoin val)⇒ Integer→ val→ val

key8Word low v = selb c0123 look2 mask

where

To provide a simpler interface to the domain expert, we use the bit position of the 3-bit key (passed
in as the exponent of the place value of the low bit) to determine the minimum number of instructions
to generate the key. If the key bits are within the five low-order bits of any byte, we do not need a
rotate. In all cases we need to know the byte position of the bits (after rotation) so that byte can be
replicated to all four bytes corresponding to each word being looked up.

byte, bit :: Integer

look2 :: val



18 5 SELECTED CODE PATTERNS

((byte, bit), look2) = if lowBit ∈ [0, 1, 2]
then (low8, splat 16 v) -- no rotation needed
else ((1 + lowByte, 0), join [splat 4 $ roti v distance, splat 16 $ rotqbii v distance]

)

From the bit position, we look up the correct mask to use to insert the appropriate additional bits
c0123.

c0123, mask :: val

(c0123, mask) = case bit of
0→ (unwrds4 0 x00081018, unwrds4 0 x07070707)
1→ (unwrds4 0 x00011011, unwrds4 0 x0e0e0e0e)
2→ (unwrds4 0 x00010203, unwrds4 0 x1c1c1c1c)
→ error "key8Word: impossible"

These masks depend on the (rotated) bit index of the lowest bit of the kkk key as it is located within
the five-bit keys; the basis for this is the position low of the key in the function argument v, for which
we calculate the byte-coordinates, and the number of bits we would have to rotate left to get low

aligned on the lowest bit of a byte:

low8@(lowByte, lowBit) = low ‘divMod‘ 8
distance = (8− lowBit) ‘mod ‘ 8

The auxiliary function splat has as its main task to produce a shufb instruction that achieves repli-
cation of the three key bits “kkk” over all four bytes of the respective word; the replication indices
are calculated taking into account the possibility that rotqbii might have shifted the key over a word
boundary, and around the quadword boundary (16 bytes). For roti, the shufb-index needs to point
within the same word, so rotWidth is instantiated to 4 in that case. (The generated indices all refer
to the first argument of the shufb instruction, so the second argument is arbitrary.)

splat :: Integer→ val→ val

splat rotWidth x = shufb x x $ unbytes $ map (‘mod ‘16)
$ map (((3− byte) ‘mod ‘ rotWidth)+) $ replicate 4 =<< [0, 4, 8, 12]

Corresponding to different positions for the index bits, kkk, are three different ways of arranging the
bytes in the 16-byte constants:

mk8WordTbl :: (SPUType val)⇒ Integer→ [ [Double ] ]→ [(val, val)]
mk8WordTbl low xs = map (mk8WordPair low) xs

mk8WordPair :: SPUType val⇒ Integer→ [Double ]→ (val, val)
mk8WordPair low xs = unbytes ‘prod‘ unbytes $ splitAt 16 abnormalBytes

where
(x1s, x2s) = splitAt 4 xs

normalBytes = concatMap (bytes ◦ idSim ◦ unfloats) [x1s, x2s ]

abnormalBytes = map snd $ List.sort $ zip lexOrd normalBytes

lexOrd = case (low ‘mod ‘ 8) of
1 → [(i, j, k) | j← [0 . . 7], i← [0 . . 1], k← [0 . . 1]]
2 → [(j, i, 0) | j← [0 . . 7], i← [0 . . 3]]
→ [(i, j, 0) | j← [0 . . 7], i← [0 . . 3]]

To insure that the lookup key is compatible with the format of the lookup table, we encapsulate both
parts in one pattern:



5.5 Mixed log/linear intervals 19

lookup8Word :: (SPUType val, HasJoin val)⇒ (Integer, Integer)→ [ [Double ] ]→ val→ [val]

lookup8Word (high, low) tbl v = bitWidthErr "lookup8Word" high low $ map index regTbl

where
regTbl = mk8WordTbl low tbl

index (v1, v2) = shufb v1 v2 $ key8Word low v

This pattern is typical in that a small number of instructions are generated following a lot of case
checking to test different preconditions for different combinations of instructions. Many possible illegal
parameters are filtered out, and we try to return meaningful errors to the domain expert rather than
letting the Haskell run-time system trap an irrefutable pattern.

5.5.2 Lookup in 16-Word Table — Lazy Higher-Order Code Generation

Similar to the 8-way lookup in Sect. 5.5.1, we now provide functions to allocate lists of floating-point
numbers into registers for 16-way lookups. The function mk16WordTbl maps this over a list of such
lists; this is used when looking up coefficients for a list of 16 polynomial segments.

The lookup of 16 values requires 3 shufbs to look up four words or 4 shufbs to look up 8: two to look
up the high- and low-order halfwords, and two to separate the first and second sets of four halfwords,
and interleave the high- and low-order parts.

We look up values in such tables from single keys with the bit patterns 000kkkk0 000kkkk1 where
kkkk is the 16-way lookup bit pattern, and this halfword pattern is repeated for 16 keys. This involves
four instructions and requires two auxiliary lookup constants:

(fstInterleave, sndInterleave) = unbytes ‘prod‘ unbytes $ splitAt bytes $ concat

$ zipWith (++) (chunks 2 [0 . . bytes]) (chunks 2 [bytes + 1 . .])
where bytes = 16

Keys can be constructed in different ways depending on the application, but some constructions would
be hard to get right without language support.

The calculated break points are used both to construct the approximations (using Maple in our case),
and to generate the code to construct the lookup key at run-time, in a function that accepts, besides
the lookup specification and the list of coefficient lists, a pair of two arguments for which the lookup
is performed in parallel, returning a pair of retrieved lists of coefficients:

lookup16X2Coeffs :: (SPUType val)⇒ LookupSpec→ [ [Double ] ]→ (val, val)→ ([val], [val])

We do not go into further detail concerning the construction of these lookup tables and of the machine
instructions for performing the lookup, since these are similar in spirit to those of Sect. 5.5.1. Instead,
we explain in more detail a non-trivial application of characteristics of the host programming language
Haskell.

Since lookup16X2Coeffs allows parallel lookup of two keys, we offer a wrapper function (which we used
in Sect. 3) that “unrolls” an argument function twice to make use of this.

use16X2lookup :: (SPUType val)⇒
RegLookupSpec→ [ [Double ] ]→ ([val]→ arg→ (val, result))→ (arg, arg)→ (result, result)

The implementation of this function “ties the knot” by creating the kind of apparently recursive data
dependencies that can only be resolved in a non-strict programming language like Haskell, when an
appropriately non-strict argument function mkKeyResult is supplied for which the key result does not
depend on the coeffs argument.



20 6 ANOTHER EXAMPLE: CUBE ROOT

use16X2lookup spec rawCoeffs mkKeyResult (v1, v2) = let
(coeffs1, coeffs2) = lookup16X2Coeffs (lookupMemo spec) rawCoeffs (key1, key2)
(key1, result1) = mkKeyResult coeffs1 v1

(key2, result2) = mkKeyResult coeffs2 v2

in (result1, result2)

In Fig. 7, we show a direct code graph representation of this function: For each of the two calls to
mkKeyResult, wich are drawn with arrow from argument nodes to the mkKeyResult hyperedge, and
arrows from the hyperedge to its results, there appears to be a cycle around key and coeffs.

v1

mkKeyResult

1

v2

mkKeyResult
1

coeffs1

0

coeffs2

0

key1

lookup16X2Coeffs

0
result1

1

key2

1

result2

2

1

2

0 1

01

0 1

Figure 7: use16X2lookup definition

v

pre

mkResult
0

coeffs
2

w

mkKey
1

key

1

result

2

1

2

Figure 8: mkKeyResult example

v1

pre

mkResult

0

v2

pre

mkResult
0

coeffs1

2

coeffs2
2

w1

mkKey

1

key1

lookup16X2Coeffs

0

result1

1

w2

mkKey

1

key2
1

result2

2

1 2

0
1

Figure 9: use16X2lookup application

We can make it explicit that key does not depend on coeffs, for example by specialising for mkKeyResult

functions of the following shape:

mkKeyResult coeffs v = let w = pre v in (mkKey w, mkResult v w coeffs)

This definition is depicted in Fig. 8; since there is no path in this from the coeffs input to the key

output, application of use16X2lookup to a function of this shape, depicted in Fig. 9, is cycle-free,
and therefore can be used for code generation. Since our ftanh function from Sect. 3 is built using
use16X2lookup1, it is no pure coincidence that the resulting code graph in Fig. 5 exhibits the same
symmetries as Fig. 9.

Although this pattern may at first sight appear to be somewhat convoluted, it has the advantage
that is guarantees that the argument function mkKeyResult can use only one lookup; the two lookups
required by the two calls to mkKeyResult are then parallelised in lookup16X2Coeffs. The “obvious”
reformulation with a second-order function of type ((val → [val]) → arg → result) as third argument
fails to establish this guarantee, and therefore would not enable this parallelisation.

6 Another Example: Cube Root

Cube Root is defined to be the unique real cube root with the same sign as the input. We calculate
it using

(−1)sign 2e (1 + frac) 7→ (−1)sign 2q 2r/3 f(1 + frac) (3)



21

where q and r are integers such that

e = 3 ∗ q + r, 0 ≤ r < 3, (4)

and f(x) is a piecewise order-three polynomial minimax approximation of (x)1/3 on the interval [1, 2).

As mentioned in Sect. 5.4, given the small possible number of inputs to the divShiftMA call below, the
easiest way to verify correctness of the bit manipulations involved in the calculation of the fractional
digits is performing an exhaustive test; we embody this in an assertion cbrtAssert defined at the end
of this section.

cbrt v = assert cbrtAssert "cbrt" result

where

Since we process the input in components, we cannot rely on hardware to round denormals to zero,
and must detect it ourselves by comparing the biased exponent with zero:

denormal = ceqi exponent 0

and returning zero in that case

result = selb unsigned (unwrds4 0) denormal

We calculate the exponent and polynomial parts separately, and combine them using floating-point
multiplication,

unsigned = fm signCbrtExp evalPoly

Insert the exponent divided by three into the sign and mantissa of the cube root of the remainder of
the exponent division.

signCbrtExp = selb signMant (join $ map ($expDiv3shift16 7) [shli, rotqbii ])
(unwrds4 $ 2 ↑ 31− 2 ↑ 23)

We use the function extractExp from Sect. 5.3 to extract the exponent bits, dropping the sign bit,
into the third byte:

exponent = extractExp 3 v

expDiv3shift16 = approxDiv3 exponent

Put the high two bits of the remainder, which are accurate into the low-order byte of each word, and
set all other bytes to zero.

remainder = shufb expDiv3shift16 expDiv3shift16

$ unbytes $ (padLeftTo 4 shufb0x00 ◦ (:[ ])) =<< [2, 6 . .]

By comparing remainder with 0 · 64, 1 · 64, 2 · 64 we can form masks and use them to select 2r from
pre-calculated values 20, 21/3, 22/3.

oneOrCbrt2 = selb (unfloats4 1)
(unfloats4 $ (1 + 2 ∗∗ (−24)) ∗ 2 ∗∗ (1 / 3))
(cgti remainder (2 ↑ 6))

cbrtRem = selb oneOrCbrt2



22 7 OTHER FEATURES

(unfloats4 $ (1 + 2 ∗∗ (−24)) ∗ 2 ∗∗ (2 / 3))
(cgti remainder (2 ↑ 7))

Combine the byte with the sign bit with the bytes with the mantissa of 1, 21/3, 22/3.

signMant = shufb v cbrtRem $ unbytes
[0, 17, 18, 19, 4, 21, 22, 23, 8, 25, 26, 27, 12, 29, 30, 31]

Merge the mantissa bits with a constant 1.0 to form 1.mantissa.

frac = onePlusMant v

Using either the argument or the fractional bits which have been extracted, take the bits with values
222, 221, 220 and form a lookup key, then use it to look up length expCoeffs24bits coefficients from
register values constructed using the polynomial coefficients expCoeffs24bits.

coeffs = lookup8Word (22, 20) expCoeffs24bits $ join [v, frac]

Evaluate the polynomial on the fractional part.

evalPoly = hornerV coeffs frac

One of the patterns we use is only calculates an accurate value under a complicated set of preconditions,
so we define the function at the top level

expBias = 127
approxDiv3 = divShiftMA 1 3 (2 ∗ expBias) 16

and test that for all input values we are going to use, the precondition (that the first two fractional
bits in the approximate division by three are correct).

cbrtAssert = List.and [(divMod i 3) ≡ (extractDivMod $ approxDiv3 $ (unwrds4 $ i + expBias :: Val))
| i← [expBias− 255 . . expBias] ]

where
extractDivMod w = case bytes w of

: v1 : v2 : → (v1− expBias, div v2 64)
→ error "impossible"

7 Other Features

In addition to special function support, we exploit code generation in several other aspects of this
project: support for iteration, support for linear algebra, and support for interpolation. We now
describe the first two informally in the remainder of this section; the technical details are outside the
scope of the current report.

7.1 Iteration Patterns: “Tickers”

We separate control flow and data flow into a nested code graph representation called MultiLoop, since
generated code will typically be structured as a loop with versioned loop bodies. We allow constraint
annotations for software pipelining; and allow users or high-level code generators to supply declarative
code which makes one step in the iteration through the list of addresses of scheduled versions.



7.1 Iteration Patterns: “Tickers” 23

To specify correct iterator code, it is necessary to understand software pipelining of the MultiLoop
and keep track of several details. To insulate the domain expert from these intricacies, several code
generators, called tickers, generate the required instructions for common cases.

Since computation (integer, logical and floating-point) dominates most of the code bodies we have
considered, the design goal of most tickers is to replace as much of the loop overhead with data
movement instructions. In all implemented cases, we are able to limit the number of arithmetic
instructions to one add. This is possible where at most seven pointers and one counter need to be
updated, and sixteen-bit integers are sufficient. Because the Cell SPUs have limited addressable local
memory, this is a reasonable assumption.

By their nature, ticker generators are not very portable, because their efficiency derives from taking
advantage of many architecture and implementation details at the same time.

At the present, ticker generators exist for

• so-called vector math functions, (compositions of map, fold, zip and unzip over linear arrays),

• the pattern for fixed-size matrix-matrix (block) multiplication,

• fixed-size three-dimensional (partial) separable transformations (Fourier, wavelet, etc..).

The type of code generation varies a lot from one pattern to the next. In the simple map pattern,
the complication comes from the need to both unroll and break a loop body into software staging.
As a result, initial loads and final stores have pointer movement which is out of synchronization,
depending on the number of stages in the scheduled loop. The map ticker pattern takes care of
these computations, and packages the result plus the function body and load/store into a schedulable
MultiLoop specification.

Operations which are essentially linear algebra have different requirements. Instead of simple unrolling,
different types of blocking of operations takes place at a higher level. The resulting code graphs to
be iteratively applied are larger and easier to schedule and the numbers of iterations are known at
compile time, but the pointer arithmetic is more complicated.

As a result, these tickers are relatively simple compositions of basic code blocks (e.g., load/store
and matrix multiplication for a specific storage pattern) and iterators generated through a compile-
time enumeration of the lifetime of the loop (counters and pointer) and a combinatorial optimization
problem the aim of which is to efficiently implement a representation of an Abelian group on the byte
values in a set of quadwords using machine instructions.

For example, the helper function

buildRots :: SPUType val⇒ [(Int, Int, [Integer])]→ ([val]→ [val], [val])

takes a list of tuples, each consisting of:

• the active position of the byte,

• the length of the cycle acting on this byte value, and

• the byte values which cycle through this position,

and generates a function composed of machine instructions that modify a set of register values, and
a list of initial values for those registers. Each application of the function acts as the generator of the
group, as shown in figure 10.

Other tickers are built with rotation instructions, and nested loops require that some of these structures
index each other, giving the group the structure of a direct product.

In summary, a domain expert modifies control flow by modifying the iterator element, which corre-
sponds to modifying the statements in a C for loop header. In this case, however, the iterator is
written declaratively, using only data flow instructions, and our typing setup ensures that side effects



24 7 OTHER FEATURES

02

05

10

11

12

13

14

15

20

21

22

23

24

25

00

01

03

04

02

05

10

11

12

13

14

15

20

21

22

23

24

25

00

01

03

04

Figure 10: Simplified six-byte SIMD version of the generator of the Abelian group generated by buildRots.
Byte values from each set cycle through the set of byte positions marked by colors. The positions of the active
bytes have double outlines, and the three permute instructions required for the group generator are indicated
by solid/dashed/dotted arrows.

are not possible. The efficiency of the iterators is entirely in the hands of the domain expert. Our
experience is that coupled with a good scheduling algorithm [Thaller 2006], this approach results in
near optimal code, so there is no performance advantage in directly writing assembly code.

7.2 Linear Algebra

In the linear algebra functions we have currently implemented, special-purpose code generators perform
two types of functions: aggregation (i.e., operations implemented using multi-level blocking), and
providing optimized code for byte shuffling for operations like transpose, interleaving of real/imaginary
parts, etc..

Aggregation is almost equivalent to macro expansion, with simple tests to choose between multiplica-
tions and fused multiply-adds.

Optimization is more varied. For example, we have a specific pattern for an optimized outer product
which, at code generation time, extracts results for part of the generated code from a symbolic compu-
tation in the “interpreted instance” of the DSL, and uses these results to guide the final arrangement
of the generated code.

This interpretation at compile time could be called “way before interpretation”, in analogy to “just-
in-time compilation”.

Additional computation is required in such cases where the required result is not the kind of simple
map over parallel inputs shortly described in Sect. 7.1.

Currently, patterns for linear algebra generate code and make decisions about instruction selection
and the number of some auxiliary register values, but they do not yet make high-level decisions about
block size, etc..



25

8 Conclusion and Outlook

We have used this DSL to construct twenty-six elementary math functions commonly found in op-
timized math libraries. Our single-precision implementations are significantly faster than the best
alternatives. We attribute this to the support we have for patterns which are difficult to write by
hand. Some of the work was carried out by undergraduate mathematics students who had little ex-
perience writing assembly language, but had seen functional programming before. They were able to
be productive after very little instruction and able to use our DSL inside the Haskell interpreter GHCi
to explore new ideas. Our DSL shifted the bottleneck from being productive using SIMD parallelism
to being able to come up with efficient approximation schemes.

In the next phase, we will implement the same library in double precision. The parallelism issues are
different in double precision, and the required accuracy is higher. We anticipate a smaller number of
parameterized patterns to be efficient for double precision. Knowing this, and having the experience
with single precision, we expect to get an even bigger boost in productivity from our DSL.

In parallel, we will work out details of higher level patterns to encapsulate inter-SPU synchronization.

References

[Bandera, Gonzalez+ 2004] G. Bandera, M. Gonzalez, J. Villalba, J. Hormigo, E. L. Zap-

ata. Evaluation of elementary functions using multimedia features. In: Proceedings of the 18th
International Parallel and Distributed Processing Symposium (IPDPS’04), 2004.

[Dubey, Kaplan+ 2001] P. K. Dubey, M. A. Kaplan, S. M. Joshi. Efficient CRC generation
utilizing parallel table lookup operations. US Patent 6223320 , 2001.

[Golub, Smith 1971] G. H. Golub, L. B. Smith. Algorithm 414: Chebyshev approximation of con-
tinuous functions by a Chebyshev system of functions. Commun. ACM 14 737–746, 1971.

[Grelck, Scholz 2006] C. Grelck, S.-B. Scholz. SAC: a functional array language for efficient
multi-threaded execution. Int. J. Parallel Program. 34 383–427, 2006.

[Hudak 1996] P. Hudak. Building domain-specific embedded languages. ACM Computing Surveys
28 196–196, 1996.

[Hudak 1998] P. Hudak. Modular Domain Specific Languages and Tools. In P. Devanbu, J. Poulin,
eds., Proceedings: Fifth International Conference on Software Reuse, pp. 134–142. IEEE Computer
Society Press, 1998.

[IBM 2005] IBM. PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology
Programming Environments Manual. IBM Systems and Technology Group, Hopewell Junction, NY,
2005.

[IBM 2006] IBM. Synergistic Processor Unit Instruction Set Architecture. IBM Systems and Tech-
nology Group, Hopewell Junction, NY, 2006.

[Kahl, Anand+ 2006] W. Kahl, C. K. Anand, J. Carette. Control-Flow Semantics for Assembly-
Level Data-Flow Graphs. In W. McCaull et al., eds., 8th Intl. Seminar on Relational Methods in
Computer Science, RelMiCS 2005, LNCS 3929, pp. 147–160. Springer, 2006.

[Knuth 1984] D. E. Knuth. Literate Programming. The Computer Journal 27 97–111, 1984.

[Knuth 1992] D. E. Knuth. Literate Programming, CSLI Lecture Notes 27. Center for the Study of
Language and Information, 1992.

[Merrheim, Muller+ 1993] X. Merrheim, J.-M. Muller, H.-J. Yeh. Fast evaluation of polynomials
and inverses of polynomials. In: Proc. 11th Symp. Computer Arithmetic, 1993.

[Moggi 1991a] E. Moggi. A Modular Approach to Denotational Semantics. In D. H. Pitt et al.,
eds., Category Theory and Computer Science, LNCS 530, pp. 138–139. Springer, 1991.



26 REFERENCES

[Moggi 1991b] E. Moggi. Notions of Computation and Monads. Information and Computation 93

55–92, 1991.

[Mueller, Lumsdaine 2006a] C. Mueller, A. Lumsdaine. Expression and Loop Libraries for High-
Performance Code Synthesis. In: Proceedings of the 19th International Workshop on Languages
and Compilers for Parallel Computing, 2006.

[Mueller, Lumsdaine 2006b] C. Mueller, A. Lumsdaine. Runtime synthesis of high-performance
code from scripting languages. In: OOPSLA ’06: Companion to the 21st ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications, pp. 954–963, New York, NY,
USA, 2006. ACM Press.

[Peyton Jones+ 2003] S. Peyton Jones et al. The Revised Haskell 98 Report. Cambridge University
Press, 2003. Also on http://haskell.org/.

[Ramanathan 2006] R. Ramanathan. Extending the World’s Most Popular Processor Architecture,
New innovations that improve the performance and energy efficiency of Intel architecture. Intel
Corporation, 2006.

[Sazegari 2002] A. Sazegari. Vectorized Table Lookup. US Patent 20020184480 , 2002.

[Shi, Lee 2000] Z. Shi, R. B. Lee. Bit Permutation Instructions for Accelerating Software Cryptog-
raphy. asap 00 138, 2000.

[Thaller 2006] W. Thaller. Explicitly Staged Software Pipelining. Master’s thesis, Mc-
Master University, Department of Computing and Software, 2006. http://sqrl.mcmaster.ca/
˜anand/papers/ThallerMScExSSP.pdf.

[Wadler 1990] P. Wadler. Comprehending Monads. In: Proc. 1990 ACM Conference on Lisp and
Functional Programming, 1990.

[Wadler 1992] P. Wadler. The Essence of Functional Programming. In: 19th POPL, pp. 1–14,
Albuquerque, New Mexico, 1992. acm press. invited talk.

http://haskell.org/

