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Abstract

Earley’s parsing algorithm is an O(n3) algorithm for parsing according to any context-

free grammar. Its theoretical importance stems from the fact that it was one of the

first algorithms to achieve this time bound, but it has also seen success in compiler-

compilers, theorem provers and natural language processing. It has an elegant struc-

ture, and its time complexity on restricted classes of grammars is often as good as

specialized algorithms. Grammars with ε-productions, however, require special con-

sideration, and have historically lead to inefficient and inelegant implementations.

In this thesis, we develop the algorithm from specification using the B-Method.

Through refinement steps, we arrive at a list-processing formulation, in which the

problems with ε-productions emerge and can be understood. The development high-

lights the essential properties of the algorithm, and has also lead to the discovery of

an implementation optimization. We end by giving a concept-test of the algorithm

as a literate Pascal program.
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Chapter 1

Introduction

In 1968, Earley [4] developed a general context-free parsing algorithm. It has the

property that it can determine, in O(n3) time, whether or not a sentence belonged

to a given grammar, and produce the parse trees that realized the recognition. In

terms of time bounds, this was nothing new, as previous work had already attained

the O(n3) milestone. In fact, there are context-free parsers which run in O(n2.55)

time [9], so Earley’s algorithm is not even the asymptotically fastest algorithm any-

more. Additionally, linear-time parsers for large subsets of context-free grammars had

already been developed and were widely used in compilers and compiler-compilers.

Despite this, there are two compelling reasons why Earley’s algorithm is, in fact,

of great theoretical and practical interest. The first is that no preprocessing of the

context-free grammar is necessary. In previousO(n3) algorithms, conversion to Chom-

sky Normal Form (or some other normal form) is required prior to execution. With

Earley’s algorithm, this step is unnecessary — we can operate directly on the given

grammar. Second, Earley’s algorithm can be seen as a unification of the general O(n3)

techniques and the restricted linear parsing techniques. Specifically, when a linear

parsing algorithm is applicable to a given grammar, Earley’s algorithm also runs in

O(n) time on that grammar. In a practical sense, we have the best of both worlds —

general context-free parsing when required, and linear parsing when other algorithms

would have given us linear parsing.

The bête noire of an otherwise elegant algorithm, grammars with ε-productions

necessitated Earley to augment his implementations with additional, dynamically-

maintained data structures. Other approaches were suggested, but all obscured the

simple pattern that the algorithm exhibited. In 2002, Aycock and Horspool solved

1



2 1. Introduction

the problem in a very unobtrusive way, preserving the structure that Earley had in

mind.

While Earley provided a proof of correctness in his Ph.D thesis, it was somewhat

informal and did not precisely correspond with an implementation — only an abstract

description — of the algorithm. Our first contribution, then, is to employ invariants

within the B-method to study the algorithm, which gives another argument for its

correctness and clarifies Earley’s original proof. Additionally, the invariants give rise

to some insight into the problems caused by ε-productions. We therefore investi-

gate the Aycock-Horspool algorithm and reason about it through invariants as well.

Finally, we present a literate, Pascal implementation of this algorithm.

The rest of this thesis is organized as follows. We begin in Chapter 2 with relevant

terminology, a systematic rundown of various parsing techniques for comparison pur-

poses, and an overview of the B notation and weakest preconditions that will be used

later. Previous work in proving correctness of parsing algorithms in general — and

Earley’s in particular — is given in Chapter 3. In Chapter 4 we develop the frame-

work necessary to arrive at a specification of the algorithm in B. To move towards an

implementation, Chapter 5 considers a list-processing refinement. Chapter 6 contains

a literate development of our version of Earley’s algorithm. In Chapter 7 we offer

some conclusions and expound on future work.



Chapter 2

Formalities and Background

2.1 Parsing Terminology

Our presentation relies on (mostly) standard terminology surrounding parsing al-

gorithms and context-free grammars. Figure 2.1 below will be used to outline our

definitions.

The figure depicts a context-free grammar (CFG), in the format used throughout

the paper. There is one production per line, except on the last line where multiple

production right-hand-sides are separated by | . The single symbols on the left of the

arrows are nonterminals and the symbols on the right are terminals or nonterminals.

For example, T in the above grammar is a nonterminal, and a is a terminal. We

use uppercase letters for nonterminals, lowercase letters for terminals, and Greek

lowercase letters for arbitrary strings of terminals and nonterminals. A CFG G is a

quadruple (T,N, P, S). We have that T is the finite set of terminal symbols, N is

the finite set of nonterminal symbols, P is the finite set of productions, and S is a

nonterminal designated as the start symbol. We assume that T and N are disjoint.

We make the restriction that the start symbol, S ′ in the grammar above, is the left-

S ′ → E
E → T
E → E + T
T → F
T → T ∗ F
F → a | b | c

Figure 2.1: Sample context-free grammar.

3



4 2. Formalities and Background

hand-side of only one production in the grammar, a simplifying assumption made by

Earley as well [4].

Definition 2.1. We say that sequence χ is directly derivable from π, written π ⇒ χ,

if we can replace an occurrence of the left-hand side of some production P in π with

the corresponding right-side of production P , and arrive at χ. That is, if π = µσν,

and χ = µτν, σ → τ is a production, and σ, τ, µ, ν are all sequences, then π ⇒ χ.

As an example, in the grammar above we have that aFc⇒ abc.

Definition 2.2. For χ to be derivable in zero or more steps from π, written π ⇒∗ χ,

we require sequences α0, α1, . . . , αk(k ≥ 0), such that π = α0 ⇒ α1 ⇒ . . .⇒ αk.

The string a+ b is derivable from S ′ in the example grammar above.

A production of the form A → ε is called an ε-production; it signifies that the

nonterminal A can derive the empty string.

A sentential form is a string which is derivable from the start (or root) symbol of

the grammar. Since nonterminals are only present to properly construct a grammar,

we are usually interested in sentential forms which are composed of only terminal

symbols. These are called sentences, and the language of a CFG is the set of its

sentences.

Parsers and recognizers take, as input, a CFG and a string of terminals. Recog-

nizers determine if the string is a sentence of the CFG, and so are just boolean-valued

functions. Parsers additionally return information on why given strings are sentences,

typically via parse trees. A parse tree is a tree representation of the steps in a deriva-

tion, independent of the order that the steps were used. If an (interior) node is

labelled with a nonterminal A, its children, concatenated in order from left to right,

are one right-hand-side of a production of A. The leaves of the tree correspond to the

sentence. We focus on parsers as recognizers — in other words, the recognition of a

sentence, not its derivation. We represent an input sentence of length n as x1x2 . . . xn.

There are various normal forms for CFGs. One of the most common — and the

only one of importance here — is Chomsky Normal Form (CNF) [10]. It requires that

the right-hand-sides of productions be in one of two formats: a solitary terminal, or

a sequence of exactly two nonterminals.
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2.2 Comparison of Parsing Algorithms

To gain an appreciation for the nature and operation of Earley’s algorithm, it is

instructive to compare it to a number of other parsing algorithms that have been

proposed. Earley’s algorithm can be used as a general context-free parser, and can

also efficiently parse according to grammars that specialized (i.e. restrictive) parsers

can deal with in linear time. We sample from both of these types of parsers, not only

to exhibit the strengths of Earley’s algorithm, but also to expose its comparatively

simple structure — another reason to preferentially study it in depth.

2.2.1 Unger Parsers

The class of parsers attributed to Unger [22] work top-down and, in their simplest

form, can deal only with grammars containing no ε-productions or loops. (A loop

is a production of the form A → A, or a sequence of productions A → B,B →
C, . . . , G→ H,H → A.) Earley’s algorithm, in the form we work with in Chapter 5,

has no problems with ε-productions, and Earley parsers never have issues with loops.

Unger parsers require extra, dynamic checks to avoid infinite loops when processing

these CFGs, as we will see.

The intuition behind the algorithm is as follows. Assume that we are given a CFG

and a sentence for which we want to determine derivability from the start symbol.

This means that one of the right-hand-sides of the start symbol must derive the entire

sentence. If a right-hand-side is αβγ . . . and the sentence is abc . . ., then α must derive

some first part of the input, β must derive some subsequent part of the input, and so

on. If this can be done, then we know that this particular right-hand-side can derive

the entire sentence, and so too can the start symbol. The problem, of course, is that

we do not know how to partition the input sentence among the symbols αβγ . . . —

this is where the main observation (and the main downfall) of the algorithm lies.

The observation is simple: since we do not know how to partition the sentence, we

must try all possible partitions. If we are assuming that there are no ε-productions,

this amounts to dividing abc . . . in such a way that α, β, γ, . . . are individually “re-

sponsible” for deriving non-empty consecutive parts of the input. Assuming there

are p ways of accomplishing this partition, we have p new problems to solve, all of

which may require further partitioning. We can only stop this partitioning when we

reach the level of terminals; if we are trying to ascertain whether one terminal derives

another, we can answer this directly, without partitioning anything. This approach
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E + T

a + b+ c
a +b +c
a +b+ c
a+ b+ c
a+ b +c
a+ b + c

Figure 2.2: Partitions of a+ b+ c on expression grammar of Figure 2.1.

is a classic realization of the depth-first search technique. We start with a problem

to solve, break it into subproblems, and recursively solve those subproblems in turn.

The recursion ends when the subproblems are trivially solved.

Let us reconsider Figure 2.1 to see how this algorithm might proceed on input

a+ b+ c. The root of the CFG is S ′, so we are looking to partition a+ b+ c among

the symbols of a right-hand-side of S ′. At this level, we have just one choice: E must

derive a+ b+ c, and so this is our new problem to solve. There are two alternatives

for E, so we must consider both and partition a + b + c in all possible ways among

the right-hand-sides of these partitions. We begin with the first one, E → E + T .

The partitions of the input are below.

We thus have six subproblems to consider; solving one of them solves the original

problem. The first one is asking whether e can derive a, + can derive +, and e can

derive b+ c. In this particular case we have three more subproblems to solve, and all

seem promising. There are some subproblems, though, that look especially dubius.

The most naive Unger parser would indeed attempt to enumerate all partitions in

Figure 2.2, even those which are fated from the start, such as the second partition. It

is effectively asking if the terminal + can derive +b, which it most certainly cannot.

What we do not like in a depth-first search, of course, is when a so-called “sub-

problem” is the same as a problem we are trying to solve at a higher level. This

prevents the recursion from terminating, because we repeatedly try to solve the same

thing as we proceed deeper and deeper into the problem space. Unfortunately, this

is exactly what can happen when loops or ε-productions are present in a CFG. For

example, consider adding the production E → E to Figure 2.1. We will eventually

try to match the input sentence to this rule, and ask whether E can derive it. This,

sadly, will require knowing whether E derives the input sentence, and we have the

genesis of infinite recursion.
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It is conceptually not difficult to solve this problem. As evidenced in [13], all

we have to do is check the current stack of “goals” before adding a new one. If it

already exists, we do not add it again; if it is a new goal, we proceed as always.

This is unfortunate, however, as we are already beginning to obscure the core of

the algorithm. We can no longer use straightforward recursion as an implementation

method; indeed, Kwiatkowski manually maintains stacks, which balloons the resultant

code.

We now have a general context-free parser, and so it is interesting to compare

its behavior with Earley parsers. Ignoring the implementation difficulties incurred

by the stack searching, there is still one major drawback of the algorithm: it has an

exponential worst-case running time in its current form. What can be done about

this?

The insight to bring the algorithm from exponential to polynomial is similar to the

method by which we brought the algorithm out of the depths of infinite recursion [10].

Every time we successfully derive a partition of the input from the right-hand-side of

a nonterminal, we record this in a known parse table. Later, if we are presented with

the question of whether the same nonterminal derives the same part of the input,

we know it does — and we know how, by looking it up from the table. This results

in an O(nk+1) algorithm, where k is the maximum number of nonterminals on any

right-hand-side of a production.

Let us take stock of what Unger parsers give us. It has been found necessary to

obscure the once-elegant parser twice — once to solve infinite recursion problems,

the other to make it polynomial. Still, to have an O(n3) Unger parser, it is evident

from the time complexity above that k must be 2. We can do this via a conversion to

Chomsky Normal Form, but this may not always be practical as it hides the original

structure and meaning of the grammar. If we are willing to compromise on this,

then we might wonder if there are more direct algorithms that attain the same time

bounds; we survey one next.

2.2.2 CYK Parsers

The parsing technique attributed to Cocke, Younger and Kasami (CYK) [10] once

again has a very simple core idea, if we are willing to restrict it to CNF grammars.

The observation is that we can determine whether a given nonterminal can derive a

given segment of the input sentence by looking at the (non-empty!) substrings that
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its right-hand-side can recognize. Consider a production A → BC, and assume we

want to know if A⇒∗ a1a2 . . . an. This boils down to the task of finding a suitable k

such that B ⇒∗ a1a2 . . . ak and C ⇒∗ ak+1ak+2 . . . an. We do not know this k, so we

try all possibilities. Crucial here is that there are no ε-productions, so that for every

k, all necessary “lookups” about B and C focus on shorter substrings. At some point,

we will come to the “base cases” of the algorithm: productions of the form A → a,

for which we can trivially ascribe derivability.

The cannonical CYK parser is a bottom-up, dynamic-programming realization

of the above idea. An n × n matrix is the main data structure used to recognize

sentence a1a2 . . . an, where an element N in row i and column j means it has been

found that N ⇒∗ ai+1ai+2 . . . aj. The matrix is filled in shortest-length-first, so that

for all productions N → c, we have that N is a member of element (i− 1, i) if ai = c.

After this, we proceed with the above recurrence, determining derivability of longer

subsequences from the information about shorter subsequences that we have stored

in the matrix.

What goes wrong with arbitrary CFGs? Most of the above reasoning still works,

if we extend it appropriately. For example, if we have a production A → BCD, we

now split the substring into three parts instead of two, and determine if B derives the

first, C derives the second, and D derives the third. The bigger problem, reminiscent

of what we found with Unger parsers, is uncovered when we introduce ε-productions

or loops.

Consider a grammar with loop A → A, and assume that we are just about to

start deriving information about substrings of length l. We could previously assume

that all necessary information was already computed, since we were only concerned

with building up derivability of longer substrings from shorter ones. Now, for the

first time, we are asking whether A derives the substring of length l, and of course

this information is not available, as we have not processed any of this iteration yet.

(Incidentally, this is precisely the problem we run into with Earley’s algorithm, and is

the sole reason for the Aycock-Horspool reformulation.) Implementation techniques

to mitigate the problem rely, in some form or another, on re-computing the informa-

tion about length l over and over until “nothing changes”. In other words, we run

through the grammar productions once, gleaning some information about substrings

of length l. We then run over the productions again, and we may now have informa-

tion to add when loop productions require information about substrings of length l.

When nothing is added in an entire sweep of the productions, we have reached the
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fixed-point and can move on to length l + 1.

2.2.3 LL(k) and LR(k) Parsers

There are efficient algorithms which can perform recognition or parsing on

“reasonably-sized” subsets of the CFGs. We briefly look at two methods — LL(k)

and LR(k) — in this section.

For LL(k) parsing, we begin with the general idea of taking the start symbol,

and choosing a right-hand-side to effect the matching. If the chosen alternative fails,

then we backtrack and try the next alternative, until we find the one that succeeds,

or until all alternatives have been exhausted. In the worst case, the backtracking

can result in recognition time exponential in the length of the sentence. Determining

whether a right-hand-side recognizes a portion of the input is a recursive problem.

For example, if the grammar has a rule S → ABC, then we will quickly want to

know whether ABC can recognize the input sentence. This involves trying, in turn,

right-hand-sides of A to see which part of the input they can recognize, then trying

alternatives of B and C to try to recognize the rest. This is the essence of top-down

backtracking parsers, of which LL(k) parsers are a subset: we continue to expand the

first nonterminal (starting from the left), and if it fails to parse the next part of the

sentence, we backtrack until a point where we do succeed. These parsers, in general,

do not deal with all CFGs. For example, consider the grammar that consists of rules

S → Sb | a. We will expand S to Sb, then expand this new S again to Sb, and so

on, expanding S ad nauseam, and never reaching terminal symbols to match. These

appear to be dark times: we have an exponential running time, and now we cannot

even use it on an arbitrary CFG.

LL(k) parsers further cull from the set of CFGs that we can parse, because they

entirely remove backtracking from the general top-down parser. However, this modi-

fication makes the algorithm run in linear time on the size of the input sentence, so

this seems to be a fair compromise. Backtracking is used in general so that we are

not committed to choices that we make: if we make a bad choice and get stuck in

the recognition, we can just back out and try a different route. If we know that we

will make correct choices, backtracking becomes unnecessary, and we have the class

of grammars that LL(k) parsers can handle.

How do we know a choice will be correct? Consider the grammar fragment Q→
aB | aC, and assume that we are looking only at the next terminal in the sentence.
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S ′ → E
E → T
E → T + E
T → F
T → F ∗ T
F → a | b | c

Figure 2.3: Example of an LL(1) grammar.

We have no way of determining which of these two alternatives to try, so we cannot

be certain the choice is correct. On the other hand, if the two alternatives of Q began

with different terminals, then at most one has a possibility of succeeding (since the

other cannot match the next input symbol). This is one property that must hold of

our grammars if we hope to parse them via LL(k) techniques: that, of all right-hand-

sides of a nonterminal, no two can generate strings with a common prefix of length

≥ k.

We can often transform grammars that do not obey this property into grammars

that do. The grammar in Figure 2.3 accepts the same language as that given in

figure 2.1, except it is LL(1)-parseable. It is this type of grammar massaging that is

unnecessary if an Earley parser was being employed instead of an LL(k) parser: at

the cost of some efficiency, we have no concerns with whether the grammar is LL(k)

or not.

The LR(k) parsers also run in linear time, but can deal with a larger subset

of grammars than the LL(k) parsers. Less powerful predecessors of LR(k) parsers,

known as precedence parsers [6] exist, but in their present form, LR(k) parsers are

in widespread use and can cope with most programming language constructs. The

strategy this time is to begin with the input sentence, and determine the nonterminals

which can derive portions of it (see [3], Chapter 3). Conceiving of the process as

building a tree from the leaves to the root, each step in the process replaces some

sequence of terminals on the topmost layer with a nonterminal that can derive them

in a right-most derivation of the sentence. If this results in the situation where

the topmost level contains just the start nonterminal and the entire input has been

processed, we have a successful parse. If no further matching can be done, and we have

not reduced the sentence to the start nonterminal, the parse has failed. The critical

decision to make throughout the execution of the algorithm is whether to consume

the next input symbol from the scanner (a shift step) or replace terminals with a
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S → iEtS
S → iEtSeS

Figure 2.4: Example of Non-LR grammar.

nonterminal (a reduce step). Tables, generated by parser-generators, are typically

used to drive this decision process, since these parsers are prohibitive to write by

hand. A grammar which cannot be parsed via an LR parser will have one or more

conflicts in these tables. For example, consider Figure 2.4, which gives a natural,

though non-LR grammar, for “if” and “if-else” statements. The input symbol i is

used to represent an “if”, e an “else” and t a “then”; the nonterminal E representing

expressions is not elaborated. At any point in the parse, if the next input symbol is

e, it is not known whether we have just completed an if-statement (so this e is part

of some enclosing if-statement), or we are in the process of parsing an if-then-else

statement. The first of these options is realized through a reduce step; the second

through a shift step. The parser does not know which is correct: we have a shift-reduce

conflict, and the grammar is non-LR.

2.3 Earley’s Recognizer

2.3.1 The Algorithm

We present Earley’s recognizer in the spirit of its original presentation [5]. Like CYK,

it is iterative; unlike CYK, it recognizes increasingly longer prefixes of the input

sentence, not arbitrary portions of it.

Assume the input sentence is of length n and consists of terminals x1x2 . . . xn. The

data structure built this time, called s, is a length n+ 1 sequence of state sets — one

state set per input symbol, and one initial set. Inhabiting these state sets are states,

which record the history of what the recognizer has done so far. States are triples1:

the first component is a grammar production, the second is a pointer to somewhere in

the right-hand-side of this production and the third is an integer indicating when we

began recognizing this particular production. Earley uses dot-notation to represent

items, so that they look more like pairs when written. For example, an item that

1States are quadruples in Earley’s formulation, but since we drop the fourth “lookahead” com-
ponent later anyway, we opt not to obscure the current description.



12 2. Formalities and Background

could be generated from Figure 2.1 is

[E → E •+T, 1]

where the dot indicates “where we are” in the recognition of the production.

Assuming that the root production of the grammar is S ′ → S, we begin with the

state

[S ′ → •S, 0]

in s(0). We then continue applying three operations to the items in s(0) until nothing

further can be done. These three operations are mutually exclusive on a given state,

and are as follows [1]:

Scanner. If [A → · · · • a · · · , j] is in s(i) and a = xi+1, add [A → · · · a • · · · , j] to

s(i+ 1).

Predictor. If [A→ · · · •B · · · , j] is in s(i), add [B → •α, i] to s(i) for all produc-

tions B → α.

Completer. If [A→ · · · •, j] is in s(i), add [B → · · ·A • · · · , k] to s(i) for all items

[B → · · · • A · · · , k] in s(j).

Note how the scanner adds items to s(i+1). Once we have reached the fixed-point

of these three operations on s(i), we begin doing the same on s(i+ 1). If the scanner

adds nothing to s(i + 1), and we are not yet in state set n, then recognition has

failed. The scanner can be conceptualized as adding all states which have recognized

one more symbol from the input, by moving the dot one position to the right. If

there is no way to recognize any more of the sentence, the scanner can do nothing.

The predictor is responsible for expanding all nonterminals which we are interested

in recognizing, by enumerating their productions and adding them to the current

state set. Finally, the completer’s job is analogous to the scanner’s, but on the

nonterminal level rather than the terminal level. That is, if we have recognized the

next nonterminal in a right-hand-side of a production, the completer notes this by

moving the dot over that nonterminal. If the item

[S ′ → S•, 0]

is added to s(n) after n + 1 iterations, then recognition was successful, otherwise

recognition has failed. For an example of constructing state sets, consider Figure 2.5,
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s(0)

(a1) S ′ → •E , 0 Initialisation
(a2) E → •T , 0 Predictor (a1)
(a3) E → •E + T , 0 Predictor (a1)
(a4) T → •F , 0 Predictor (a3)
(a5) T → •T ∗ F , 0 Predictor (a3)
(a6) F → •a , 0 Predictor (a4)
(a7) F → •b , 0 Predictor (a4)
(a8) F → •c , 0 Predictor (a4)

s(1)

(b1) F → a• , 0 Scanner (a6)
(b2) T → F• , 0 Completer (b1)
(b3) E → T• , 0 Completer (b2)
(b4) T → T • ∗F , 0 Completer (b2)
(b5) E → T• , 0 Completer (b3)
(b6) E → E •+T , 0 Completer (b3)
(b7) S ′ → E• , 0 Completer (b5)

Figure 2.5: First two Earley sets for the grammar of Figure 2.1 using sentence a.

where we produce s(0) and s(1) for the venerable Figure 2.1, operating on the (ac-

cepted) sentence a. We have named the items in the state sets; the second column

indicates the operation and item name used to add the item in its row.

One of our gripes about the CYK algorithm was that it requires redoing an it-

eration until nothing new was added to the matrix. Implementations of Earley’s

algorithm use lists instead of sets, and process the lists in order, adding new items

to the end only if they were not present in the list already. We have “executed” the

algorithm in this way in Figure 2.5, and the result (modulo the order that the items

were added) is the same as it would have been had we thought of the state lists as

state sets. This does not work when ε-productions are present; we elegantly deal with

this snag in the reformulation given in Chapter 5.

2.3.2 Practical Uses

Earley’s algorithm has found application in several areas of language processing. It

is used to drive Accent, a compiler-compiler similar to yacc [17]. This allows natural

grammars, not supported by yacc or other tools restricted to subsets of CFGs, to

be used in language descriptions. For example, portions of Java are not inherently
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LR(k) for any k (see [8], Chapter 19). The grammar had to be massaged into such a

format for use with classic compiler tools, essentially forcing (what should be) parse

tree decisions into the context-sensitive portions of the analysis. Earley’s algorithm

has also been used in natural language processing [20]. Stolcke found that it was more

efficient in answering typical questions about language grammars than the often-used

CYK parsers, and could often produce information about a sentence “on-line”. One

question that exhibits these benefits is: given a string, what is the probability that

it is the prefix of any sentence generated by the grammar?2 Once a prefix has been

seen, its probability is immediately available, as a direct result of how the algorithm

processes sentences.

2.4 The B-Method

2.4.1 Overview

B is a formal method for specifying, refining and eventually implementing soft-

ware [16]. These three activities are all based around the abstract machine, which is

a component of a development encapsulating state, and including operations acting

on that state. Abstract machines make use of abstract machine notation (AMN), su-

perficially resembling imperative programming languages. There are two important

differences, however, which contribute to B’s expressiveness, and allow a greater ab-

straction from implementation detail. First, we are not restricted to simple data types

like arrays and records. While these are supported, mathematical objects — such as

sets, sequences, relations, and functions — are both available and more powerful.

Second, B provides a rich set of nondeterministic statements which allow decisions,

which should not be made at specification time, to be deferred to a later step. We use

the first of these features to give succinct (and not overspecified) versions of Earley

later, and is central to our decision to use the B-Method in the first place.

There are two types of related refinements supported by B: data refinement and

algorithmic refinement. Both involve creating a new machine based on some speci-

fication machine, and making it “more concrete”. In data refinement, for example,

we may decide to use an array as a representation for a set. Algorithmic refinement,

on the other hand, yields algorithms which are closer to implementable code, often

2This relies on an extension to CFGs, where right-hand-sides of productions are given probabili-
ties, indicating how likely they are to be used in parsing their associated nonterminals.
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facilitated by new representations of data from a data refinement step (see [18], Chap-

ter 1). That is, if we now use an array as a set, we have to reinterpret operations like

union and intersection, to manipulate array elements, instead of using abstract set

operations.

2.4.2 Machine Clauses

To illustrate the B machine components which we shall use, and give the flavor of a

simple machine description, we introduce an example in Listing 2.1. The machine is

meant to track the permissible moves in a water pouring game, in which we have just

a five-litre jar and a three-litre jar, and wish to measure a given number of litres of

water (usually four).

Listing 2.1: Water Pouring Game

MACHINE water

DEFINITIONS combine == three + five

CONSTANTS target

PROPERTIES target ∈ N1

VARIABLES three, five

INVARIANT

three ∈ 0..3 ∧ five ∈ 0..5

INITIALISATION five, three :=0, 0

OPERATIONS

fill3 = three := 3;

fill5 = five := 5;

empty3 = PRE three > 0 THEN three :=0 END;

empty5 = PRE five > 0 THEN five :=0 END;
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pourToThree =

PRE three ≤ 3 ∧ five ≥ 0 THEN

three , five := min({3, combine}), max({0, five − (3 − three)})
END;

pourToFive =

PRE five ≤ 5 ∧ three ≥ 0 THEN

five , three := min({5, combine}), max({0, three − (5 − five)})
END;

ans ←− containsTarget = ans :=bool(five = target ∨ three = target)

END

The MACHINE clause gives the machine a name; analogous REFINEMENT

clauses are used to do the same for refinements. Typically, names of refinements are

the same as those of the machines they refine, appended with R.

The DEFINITIONS clause assigns replacement text to identifier or function

names, much as the C preprocessor does3. They crop up frequently in B developments,

largely because it is prohibited for an operation of a machine to call other operations

of the same machine. Definitions can also capture expressions that are used more

than once, economizing on code length. In the present machine, there is just one

(mostly contrived) definition, giving a name to the sum of two variables.

The CONSTANTS clause allows the names for global constants to be specified.

The PROPERTIES clause is responsible for giving the type of such constants. The

current machine has one constant, target , meant to represent the number of litres

that a jar must contain to win the game. The machine must “work” regardless of the

value chosen for the constants; we see this when looking at proof obligations.

The VARIABLES clause lists the variables of the machine. Here we have two,

which will keep track of how many litres of water are present in the jars. Note, again,

that no typing information is given in this clause, but is instead deferred, this time to

the INVARIANT clause. The invariant usually does more than just type variables,

although at a minimum it must do this. It also usually gives constraints on how the

variables relate to one another, or asserts some property of a variable which cannot

3This is true even to the point that B definitions require extra parenthesization so that veiled
operator precedence problems do not present themselves.
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be captured simply by a type ascription. The present invariant asserts that the three-

litre jar can have between 0 and 3 litres of water in it, and the five-litre jar can have

between 0 and 5 litres.

The INITIALISATION clause is effectively executed on machine startup, and

must give values to variables to satisfy the machine invariant (which must always

be true throughout operation). Our initialisation uses an assignment statement to

empty the jars. The OPERATIONS clause contains what can be thought of as

methods or procedures, whose bodies modify the machine state. Some operations

may be executed only in certain circumstances: for these, PRE statements indicate

the preconditions that must be true for the result of the operation to be well-defined.

When a precondition is met, the body of the operation is required to re-establish the

machine invariant. Preconditions can also be used to impose logical constraints on

when operations should be called; for example, empty3 can only be called when there

is water in the 3-litre jar.

The pourToThree and pourToFive operations contain a multiple assignment, which

simultaneously sets the two variables on the left of the := to the two expressions on

the right, respectively. We also see the use of min and max, which operate on sets

of integers — in the present case, to ensure that the right amount of water is poured

(literally preventing overflow). These simple features are the first that are not typical

of imperative languages. The final operation is a query operation, so-named because

it returns a value (like a typical function). The bool notation causes a boolean truth

value to be given as output. Note how ans can be used as a variable in an assignment

statement: its final value is the one which the function returns.

2.4.3 Structuring Mechanisms

B includes several structuring mechanisms which allow multiple machines to interact

within a single development.

The INCLUDES clause allows one machine m to control machine n. This means

that m can access all aspects of n (including the values of variables), and can relate

its own state to the state of n. It can call operations of n, and is assured that no

other machine in the development can change the state of n. A restricted form of

this relationship is the IMPORTS clause, which can be used by an implementation

machine to control abstract machines. To facilitate data hiding, the values of the

imported machine’s variables cannot be accessed — they can only be obtained via
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= equality
∧ conjunction
or disjunction
¬ negation
⇒ implication
∀ universal quantifier
∃ existential quantifier
∈ set membership
6∈ set exclusion
∪ set union
∩ set intersection
P power set
⊆ subset

card set cardinality
closure transitive reflexive closure
closure1 transitive nonreflexive closure
→ total function
� total injection
7→ maps to
<+ relational override
⊗ direct product
↔ relation

dom domain of relation
ran range of relation

Figure 2.6: Set-related and logic symbols.

query operations.

The SEES clause allows a machine m read-only access to machine n. This means

that m can access the constants and state of n, and can execute query operations

of n. It cannot relate its variables to those of n in its invariant, because another

machine in the development could change the state of n. Similarly, m cannot call

any non-query operation of n, because the machine which includes n is the only one

which can modify its state.

2.4.4 Set Theory and Logic

Much of the B notation is based on set-theoretic operations and logical connectives.

We present the frequently-encountered symbols in Figure 2.6, and assume a general

familiarity with the majority of the concepts.
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first (s) first element of sequence s
tail (s) all but the first element of sequence s
last (s) last element of sequence s
front(s) all but the last element of sequence s
s ← e sequence s appended with element e
s _ t concatenation sequences s and t
size (s) number of elements in sequence s
s ↑ n first n elements of sequence s
s ↓ n sequence s with first n elements removed

Figure 2.7: Operations on sequences.

The “maps to” notation a 7→ b is used to represent the pair (a, b). The di-

rect product (⊗ ) of relations a ∈ b↔ c and d ∈ b↔ f is a relation with elements

(g, (h, i )) where g 7→ h ∈ a and g 7→ i ∈ d.

2.4.5 Sequences

It is often convenient to impose an order on a set of elements; B provides the seq

(sequence) and iseq (injective sequence) types for this purpose. A sequence is a to-

tal function from 1 .. N to an element type, where N is a positive natural number;

injective sequences additionally require that no element is repeated. The range of

a sequence is therefore the set consisting of its elements. Furthermore, this repre-

sentation lets us extract elements of a sequence by using function notation: if s is a

sequence, we can extract element n (1 ≤ n ≤ N) with s(n). The empty sequence is

written [] , and we can explicitly list the elements of a sequence as [e1, e2, ..., en],

where e1, e2, ..., en are elements of the sequence type. The operations we use on

sequences are summarized in Figure 2.7.

2.4.6 Correctness Criteria

To prove correctness of a machine requires that various proof obligations be dis-

charged; for example, we said previously that the machine invariant must always be

maintained. The core idea of the proofs is to use Dijkstra’s weakest preconditions to

reason logically about the state space of the machine. If S is an AMN statement and

P is a predicate characterizing a postcondition, we use the syntax [S]P to denote the

weakest precondition of S to establish P. All AMN statements have their own rules

for calculating weakest preconditions; the ones we use are given in Figure 2.8. The ;
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WPA [x := E] P = P[E / x]
WPM [x, y := E, F]P = P[E, F / x, y]
WPI [IF E THEN S END]P = (E ⇒ [S]P) ∧ (¬E ⇒ P)
WPB [BEGIN S END]P = [S]P
WPS [S; T] P = [S] ([T] P)
WPP [PRE Q THEN S END]P = Q ∧ [S] P

Figure 2.8: AMN weakest preconditions.

MACHINE N
CONSTANTS k
PROPERTIES B
VARIABLES v
INVARIANT I
INITIALISATION T
OPERATIONS
y ←− op(x) =

PRE P THEN S
END ;

...
END

Figure 2.9: Machine template.

operator is used for sequencing B statements.

The syntax P[E/x] is meant to represent the result of substituting all free occur-

rences of variable x in P with expression E.

We have that [S](P ∧Q) = [S]P ∧ [S]Q. That is, if we want to find the weakest

precondition of a conjunction, we can find the weakest preconditions for the pieces of

the conjunction separately.

Equipped with these rules, we can understand the proof obligations that must be

discharged to prove consistency of a machine. We consider the machine template in

Figure 2.9, whose proof obligations we give in Figure 2.10 (adapted from [16]). The

template shows only one operation; however, the last obligation in Figure 2.10 must

be discharged for all operations.

The first two proof obligations deal with the static specification of the machine.

The latter two prove the consistency of the machine as it executes, and are concerned

with preservation of the machine invariant. We must first prove that the initialisa-

tion clause establishes the machine invariant. Next, under the assumption that the
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(1) (∃k) . B — there are valid instantiations of the constants

(2) B ⇒ (∃v) . I — invariant is not falsehood

(3) B ⇒ [T]I — initialisation establishes invariant

(4) (B ∧ I ∧ P) ⇒ [S]I — operation preserves invariant

Figure 2.10: Proof obligations for template of Figure 2.9.

invariant and a given operation’s precondition hold, we must show that execution of

that operation leaves the invariant intact. The initialisation of the water example

establishes the invariant, since 0 is between 0 and 3, and 0 is between 0 and 5. The

operations all maintain the invariant; the last one is a query operation, which by

definition can never invalidate anything.

2.4.7 Proof Obligations for Refinements

A different set of proof obligations is required to prove that one machine is a re-

finement of another. Anything that the refined machine does must be a possibility

for what the abstract machine could have done in the same situation. In terms of

initialisation, this means that any initial state of the refinement must be a possible

initial state for the abstract machine. The refinement machine has its own invariant,

which includes a linking invariant. The linking invariant relates the state spaces of

the two machines. For operations, we must have that executing the refined version

and then the abstract version results in a state where the invariants (including the

linking one) are still true. For query operations, the required condition is that any

result returned by the refined machine must be a possible result of the operation in

the machine being refined. This makes refinements and their abstract counterparts

indistinguishable to the end user. Figure 2.11 gives a template for a machine assumed

to refine a machine of the form in Figure 2.9. The proof obligations for the refine-

ment are summarized in Figure 2.12; obligations (3) and (4) must be discharged for

all operations. In proofs, we drop the part of the proof obligation linking the results

of an operation if an operation does not return a value. Also, the two negations in

proof obligations (2) and (3) cancel if the abstract operation is deterministic [16], so

we elide this as well.
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MACHINE NR
REFINES N
CONSTANTS k2
PROPERTIES B2
VARIABLES v2
INVARIANT J
INITIALISATION T1
OPERATIONS
y ←− op(x) =

PRE P1 THEN S1
END ;

...
END

Figure 2.11: Template for refining machine of Figure 2.9.

(1) (∃k1, k2) . B1 ∧ B2 — there are constants satisfying the properties

(2) B1 ∧ B2 ⇒ [T1] ¬([T]) ¬(J) — initialisation is a proper refinement

(3) B1 ∧ B2 ∧ I ∧ J ∧ P ⇒ [S1[y’/y]] ¬[S] ¬(J ∧ y’ = y) — operation is a valid
refinement

(4) B1 ∧ B2 ∧ I ∧ J ∧ P ⇒ P1 — refined precondition is not strengthened

Figure 2.12: Proof obligations for refinement of Figure 2.11.
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(1) (I ∧ E ⇒ [S]I) — body preserves invariant

(2) (I ∧ ¬(E) ⇒ P) — invariant and negation of guard imply postcondition

(3) (I ∧ E ⇒ v ∈ N) — variant is a natural number

(4) (I ∧ E ∧ v = g ⇒ [S](v < g)) — loop decreases variant

(5) I — invariant is true before loop execution

Figure 2.13: Proof obligations for a while loop.

2.4.8 Correct Loops

Since it is not necessarily statically known how many times a loop will execute,

there is no rule for calculating the precise weakest precondition of a loop in B. In-

stead, various proof obligations must be discharged that, together, verify that the

loop is correct and that it yields the desired postcondition when called starting

in a state satisfying a suitable precondition. The template for the while loop is

WHILE E DO S INVARIANT I VARIANT v END. The invariant here is a

loop invariant, which has three proof obligations associated with it. First, it must

be true when the loop begins execution. Second, under the assumption that the in-

variant is true and the loop guard E is also true, the loop body S must maintain

the invariant. Third, together with the negation of E, the invariant must imply the

desired postcondition. The loop template also includes a variant, which is used to

prove termination. It incurs two loop obligations: first, that it is decreased on every

iteration and second, that all valid states of the loop are associated with nonnegative

values for the variant. These proof obligations are summarized in Figure 2.13.

2.4.9 Proof Method

We follow the proof method of Schneider [16], in which we begin with a statement

involving weakest preconditions, eliminate them, and then use logical reasoning to es-

tablish truth of the original statement. Justification of steps in a chain of equivalences

is given via comments in curly braces; we refer to rules of weakest preconditions via

the mnemonics in Figure 2.8. When the proof requires more justification than can be

given in such a way, we also use supporting lemmas.

The notation x := bool(b) is a shorthand for
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IF b THEN x :=TRUE ELSE x :=FALSE END. We do not make this ex-

pansion in proofs, since this unnecessarily complicates the structure. We therefore

have references to bool in post-conditions, where we are expecting IF statements.

In refinement proofs, we may be interested in determining whether the refined and

refining machines output the same boolean value for a certain operation. In this case,

asking whether two arguments to bool are the same is equivalent to showing that

both corresponding IF statements always execute the same branch (IF or ELSE).

2.4.10 Supporting Software

Two software packages were used to complement the given hand-proofs. First,

B4free [2] was used to syntax-check and typecheck the machines. B4free also gen-

erates proof obligations, and can prove some of them with its automatic provers.

Second, ProB [14] was used to perform model-checking. It includes both temporal

and constraint-based checkers, which can find different types of errors in specifica-

tions. Temporal checking involves exploring the state space of a B machine, by first

initialising the machine and then executing operations which modify the machine’s

state. While it is generally not possible to visit all configurations of a machine, it

does tend to quickly find consistency problems (such as a self-contradicting properties

clause) and invariant violations. As a case in point, ProB can be used to quickly and

automatically show consistency of the puzzle given in Listing 2.1, largely because the

state space is small. Additionally, one can supply the goal of the puzzle to ProB,

and it can automatically show the sequence of operation calls which solve the puzzle.

The constraint-based checker, on the other hand, does not begin by initialising the

machine. Instead, it tries to find states which satisfy the invariant, but which are just

one operation call away from violating it. Errors found in this way, and not by the

temporal-checker, involve states which are not reachable through the initialisation,

but are errors nonetheless according to B proof obligations.

The input formats accepted by B4free and ProB have several syntactic differ-

ences. We have used a common subset of B in order to achieve compatibility with

both tools. This leads to some unnecessary verbosity at several points in machine

descriptions. Specifically, ProB does not support the closure(s) operator on sets;

it is instead simulated by using closure1(s) ∪ id(x), where x is the type of s. Also

unsupported by ProB is the retrieval of definitions from files; we therefore must re-

peat common definitions in all machines which use them. Finally, we are required to
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include type information which could conceivably be extracted from the surrounding

context, because ProB explicitly requires it in source files.



26 2. Formalities and Background



Chapter 3

Correctness of Parsing Algorithms

In this chapter we chronologically outline the previous work on the correctness of

Earley’s algorithm. We consider the original, unstructured proof given by Earley;

Jones’ subsequent structured development; and Sikkel’s parsing schemata framework.

3.1 Earley’s Proof

Earley’s Ph.D. thesis [5] contains the first description and associated proof of the

algorithm. Earley immediately commits to a list representation of state sets, by

running the Earley operations “in order” on the lists. When an operation is to add

a new state, it is added to the end of the list, assuming it does not exist already.

Using this version of the algorithm, an if-and-only-if argument is given, showing that

a sentence is derivable from the root iff Earley’s recognizer returns true.

The given proof is unsatisfactory for several reasons. The version of the algorithm

used in the proof includes a lookahead feature, which adds complexity to both the

predictor and completer. Instead of only expanding the nonterminal after the dot,

the predictor also considers the possible strings of terminals that can follow this

nonterminal. The completer then uses this information to determine if a complete

step should be executed or not. That is, we can avoid some complete steps if the

lookahead expected by some state does not match with what is known to come next

in the supplied sentence. It is not clear if this lookahead feature is beneficial in

practice [1]. Some researchers have found more propitious variations of lookahead,

where the predictor makes the lookahead decisions instead of the completer; others

posit that it is not necessary at all. Unfortunately, this dubious feature dominates

27
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Earley’s proof and hides its comparitively elegant underlying structure.

Earley’s proof also gives no mention of the issues caused by ε-productions; a paren-

thetical warning that we should only complete when all states have been added is the

only foreboding comment. In a later implementation discussion, Earley comes back to

this point in stating that the completer cannot be implemented in a straightforward

way as lists are being processed. He offers a solution involving dynamic bookkeepping

of the nonterminals that have been completed, but there is no further proof that this

is sufficient for preserving the validity of the earlier proof.

3.2 Jones’ Structured Development

Cliff Jones [11] provides a correctness proof of the algorithm by breaking the problem

into several phases, beginning with specification and ending with implementation.

He gradually introduces properties that any correct parsing algorithm would have to

possess, and adds data structures and associated operations to achieve this.

For specifying the problem, Jones gives the definitions of grammar and deriv-

ability, then defines what it means to be a recognizer. For example, a grammar is

formally defined as a set of rules, rules are defined as (nonterminal, element-list) pairs

and elements are defined as the union of the disjoint terminal and nonterminal sets.

Having defined derivability, a recognizer is defined as a function from grammars and

strings to booleans. The function returns true when the string is derivable from the

root of the grammar, and false otherwise. We now know what Earley’s recognizer is

supposed to do.

In the next step, Jones serendipitously introduces state sets, in the form that they

are used in Earley’s algorithm. Importantly, though, he abstracts from how the states

are created, and only gives the lower and upper bounds of the state sets to ensure that

the algorithm can still act as a recognizer. Consider states as (r, j, f) triples, where r

is a production and j and f are natural numbers. The upper bound is that if a state

(r, j, f) exists in s(i), it means that x1x2 . . . xfα is derivable from the start symbol,

where x1x2 . . . xn is the sentence and α is some string of terminals. It also means that

the first j symbols on the right-side of production r can derive xf+1xf+2 . . . xi. There

are two lower bounds that must be satisfied: first, that the start item is present in

s(0), and second, that for all states in s(i), if the next symbol after the dot in a state

can derive xi+1xi+2 . . . xl, then the state, with the dot moved one symbol to the right,

exists in s(l). Any algorithm that generates state sets between this lower and upper
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bound will suffice — the next step shows that Earley gives us one such method.

The third step is to formulate Earley’s algorithm in terms of the complete, predict

and scan steps we are familiar with. To avoid any problems dealing with treating the

sets as lists, Jones uses closure on these operations to construct sets that are fixed-

points. All that has to be shown to prove correctness at this step is that the states

produced by this method fall between the bounds given previously.

We now know that any algorithm that produces sets which are fixed-points of

Earley’s operations can act as a general context-free recognizer. The fourth and final

step of Jones’ development is to use the list representation of states, scanning them in

order and applying the operation which applies. If this method ensures that no other

operation can extend a list which we have finished processing, then we have reached

the same fixed-point as in the previous step, and can conclude that the algorithm is

correct. Naturally, we can’t. Jones finds that the list-processing version is equivalent

to the set-building version when there are no ε-productions in the grammar, but

problems arise if there are.

This structured development improves on Earley’s proof in several respects. Since

a recognizer is formally defined, we have a specification of what Earley’s algorithm is

supposed to do. Additionally, the differences between treating collections of states as

sets or lists are made explicit, and issues with ε-productions naturally appear in the

development.

While the progression from one step to the next is intuitively clear, there is no

formal means given to verify that the steps are justified. In fact, Jones notes that

finding such general principles are one reason for carrying out this proof, and hopes

that future structured developments can be simplified by relying on such principles.

3.3 Sikkel’s Parsing Schemata

Sikkel’s work on parsing schemata [19] uses abstract descriptions of parsers to prove

their correctness. The goal is to prove that a given parsing scheme is correct, and

then show that a parsing algorithm uses such a scheme. Since schemata abstract

from implementation details, the framework makes proving parsing algorithms easier.

We illustrate the theory by exploring how it applies to CYK, and then discuss its

application to Earley parsers.
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3.3.1 Correctness Criteria

To begin, it is necessary to give the domain of items, a set of hypotheses, and a set of

deduction rules, collectively making up a parsing system. The items characterize the

execution of the parser; their presence will come to represent some “useful” property

of derivability which has been deduced. For the CYK algorithm, the domain of items

is as follows: {[A, i, j] | A ∈ N ∧ 0 ≤ i < j}, where N is the set of nonterminals

of the grammar. This means that throughout the execution of the parser, it is only

permitted to generate items which are triples consisting of a nonterminal and two

integers. It is hoped that an item [A, i, j] will have the property that terminals

i, i+ 1, ..., j of the input can be recognized by nonterminal A; we return to this below

when discussing valid items. For a string of length n, if we find [S ′, 0, n] in the set

of items, then we have successfully recognized the input string. The hypotheses and

deduction rules must be given to make this last statement true; that is, they add

[S ′, 0, n] if and only if the sentence is recognizable. The hypotheses state that we

immediately have items [a, i − 1, i] if a is the ith input symbol. (It is evident here

that hypotheses do not have to be in the item domain.) For the deduction rules, we

have two types, corresponding to the two forms of rules in a CNF grammar. First, if

[a, i− 1, i] is present, then [A, i− 1, i] can be added, assuming that A→ a. From the

hypotheses, this immediately gives us one item per grammar rule of the form A→ a

for use in adding more items. Second, if we have both [B, i, j] and [C, j, k], then we

can add [A, i, k] assuming there is a rule A→ BC.

All items that can be added, in one or more steps, from the hypotheses are termed

valid items. Additionally, some items will be designated final items — in the case of

CYK, the final item is [S ′, 0, n]. Final items correspond to the situations where the

entire string has been processed (i.e. we have a parse tree for the entire sentence). A

final item is termed a correct item for a given grammar if there is a valid parse tree

for recognizing the given sentence (and hence a reason for the final item being added

to the item set). To prove correctness then amounts to showing that all valid final

items are correct and that all correct final items are valid.

One issue not dealt with is how to find a closed-form W for the set V of valid

items — so far we just know that they are derivable from the hypotheses, using the

deduction rules, in one or more steps. We have to show that V and W are equal, so for

proving that V is a subset of W , we can use induction on the number of deductions

used to add the item. For proving that W is a subset of V , we use induction on
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a derivation length function (DLF) d. The function d must have the property that

for every item ν in W , there is a sequence of deduction steps that can add ν to V ,

and all ηi involved in such a derivation satisfy d(ηi) < d(ν). It is also required that

d(h) = 0 for all hypotheses h. Finding such a function is proof that W ⊆ V . Going

back to CYK, we are looking for a value v we can assign to each item [A, i, j] such

that all items used in its derivation have values less than v. We know that deduction

rules combine two nonterminals that each generate less of the input string, to find

a nonterminal that generates more. Thus, if we say d([A, i, j]) = j − i (because A

generates j − i terminals of the sentence), then no item used to create this one can

have a bigger value for d, and we have a suitable DLF.

3.3.2 From CYK to Earley

To prove Earley’s algorithm correct, Sikkel first takes a detour through a simpler

version he calls Bottom-up Earley, because it introduces the main ideas for the

more complicated case. Bottom-up Earley capitalizes on the fact that the predic-

tor operation is unnecessary if we “predict” every such item from the start. In other

words, instead of only predicting on nonterminals that can be expanded at the cur-

rent time, we take the pessimistic approach and add all productions of the grammar,

with the dot at the beginning, to all state sets. In characterizing the domain of

items, Sikkel uses one set of quadruples instead of multiple sets of triples; the new

component indicates which set the item would have been in. Items are thus of the

form [A → α • β, i, j], with A → αβ ∈ P . The valid items generated by using

the initial item and then employing the scanner and completer are characterized as

follows: {[A → α • β, i, j] | α →∗ xi+1 . . . xj}. Note that this is one of the two

upper bound conditions found in Jones’ formulation, showing that correctness can be

proven in spite of the other being dropped. Where CYK has two types of derivation

rules, Bottom-up Earley has three, corresponding to adding the initial items, using

the scanner and using the completer. In this context, a sentence is accepted if we

generate the item [S ′ → γ•, 0, n]. The hypotheses are the same as in CYK, and are

used only by the scanner to effectively compare the next symbol in a production with

the next token of the sentence. In the standard Earley algorithm, things are more

conventional. The deduction rule for the initialization adds only items [S ′ → •γ, 0, 0],

which corresponds to one item if our restriction on S ′ is enforced. The rest is the

same as Bottom-up Earley, except the predictor is of course necessary now.
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It is interesting to compare these two variations on their relative efficiencies. In

degenerate grammars, the standard Earley algorithm could be forced to add all pos-

sible predictor items anyway, so the Bottom-up version is still O(n3). The standard

version does add less items in general, but at the cost of a far more complicated DLF.

In the bottom-up case, associating each item with the number of complete and scan

operations it took to generate it would suffice, since items in its derivation would

necessarily have at least one less. For item [A → α • β, i, j]), we have recognized

j − i terminals, so it took j − i scan steps. To quantify the work of the completer,

it turns out that the number of complete steps corresponds with the number of steps

necessary to realize the derivation α→∗ xi+1 . . . xj; we can therefore add to j − i the

number of steps in this derivation to yield a DLF. We have implicitly used the fact

that [A→ α•β, i, i]) took 0 steps to be created (since it would be added initially). In

the standard version of the algorithm, this is not true: its value depends on execution

until that point. This is what complicates the DLF, whose definition and justification

can be found in [19].

Sikkel shows that parsing schemata are a generalization of chart parsers, and can

easily be converted to such an implementation. Chart parsers consist of an agenda

and a chart: the agenda is the queue of items still to consider, and the chart holds

all previously found items. Using deduction rules, items on the agenda are used

together with the contents of the chart to add new items to the agenda. We can

therefore produce a correct chart Earley parser, once we have established that the

Earley parsing schemata is correct. The problem is that chart parsers are inefficient,

and special-purpose data structures must be introduced to remedy this. Parsing

schemata say nothing about these parts of the implementation, though, and provide

no help in correctly implementing these optimizations.



Chapter 4

Proof of Earley’s Recognizer

4.1 Overview of Development

The previous chapter outlined the current proof approaches — some less formal, some

more formal — for Earley’s algorithm. Our goal is to provide a formal proof from

specification, taking into account new developments in the treatment of ε-productions,

and arriving at an efficient implementation. A proof exhibiting all these criteria has

so far been elusive.

Our first task is to define machines for representing grammars and sentences, since

these are the two data structures required by the algorithm. Using these two ma-

chines, we can then describe a context-free recognizer machine whose sole operation

tells us whether the given sentence can be recognized by the given grammar. This

machine will have nothing to do with Earley at all: it will indicate, in the most

abstract way, how to test derivability, giving no hint on how it can actually be im-

plemented. The implementation of this operation, of course, is exactly what Earley

provides, and so Earley’s algorithm will naturally be a refinement of this general

recognizer machine. It is difficult to implement this algorithm directly, however, so

first we develop a machine to encapsulate state sets, and the associated operations of

prediction, scanning and completion. Importing this machine into the refined version

of the recognizer allows us to express Earley’s algorithm using a while loop. It then

remains to prove that we have a valid refinement — that is, both machines return

the same boolean value for their respective recognition operations.

33
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4.2 A Grammar Machine

There are several design decisions that must be made in order to effectively represent

a context-free grammar via a machine. Many of the decisions parallel those used

in Chapter 3 of [18]. There, a machine was developed to represent an undirected

graph, and it was decided to use constants for the edges and weights, and the first N

natural numbers for the nodes. To that end, we represent nonterminals and terminals

as consecutive segments of the naturals, and the grammar productions as a relation

between nonterminals and sequences of symbols. We also require that the root of

the grammar appear as the left-hand-side of just one production, not appearing at

all in the right-hand-sides of any productions1. To impose these requirements, we

state that productions, under the image of Root— has just one member. Also, Root is

prevented from occurring in the range of any element in productions, which represents

the right-hand-sides of all productions. The machine is presented in Listing 4.1.

Listing 4.1: Grammar Machine

MACHINE gram

CONSTANTS numT, numNT, productions, ls, rs

DEFINITIONS

Nonterminals == (1 .. numNT);

Terminals == (numNT + 1 .. numNT + numT);

Symbols == (Terminals ∪ Nonterminals);

Root == 1;

directlyDerivable ==

{xx, yy | xx ∈ seq(Symbols) ∧ yy ∈ seq(Symbols) ∧
(∃µ, σ, ν , τ ).

(µ ∈ seq(Symbols) ∧ σ ∈ Symbols ∧
ν ∈ seq (Symbols) ∧ τ ∈ seq(Symbols) ∧
xx = (µ _ [σ] _ ν) ∧ (yy = µ_ τ _ ν) ∧ (σ 7→ τ ∈ productions))};

derivable == (closure1(directlyDerivable) ∪ id(seq(Symbols)))

PROPERTIES

numNT ∈ N1 ∧ numT ∈ N ∧
productions ∈ Nonterminals ↔ seq(Symbols) ∧

1These restrictions simplify proofs later and do not restrict the power of the recognizer in any
way; i.e. we can take any CFG and add a new root production.
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card(productions[{Root}]) = 1 ∧
(∀xx) . (xx ∈ ran(productions) ⇒ (Root 6∈ ran(xx))) ∧
card(productions) ∈ N ∧
(SIGMA (z) . (z ∈ ran(productions) | size(z))) + card(productions) ∈ N ∧
ls ∈ (1 .. card(productions)) → Nonterminals ∧
rs ∈ (1 .. card(productions)) → seq(Symbols) ∧
( ls ⊗ rs) ∈ 1 .. card(productions) �→ productions ∧
ls (1) = Root

OPERATIONS

ans ←− getLS(ii) =

PRE ii ∈ 1 .. card(productions) THEN

ans := ls ( ii )

END;

ans ←− getRS(ii, jj) =

PRE ii ∈ 1 .. card(productions) ∧ jj ∈ 1 .. size (rs( ii )) THEN

ans := rs( ii )( jj )

END;

ans ←− numRules =

ans := card(productions);

ans ←− ruleLength (ii) =

PRE ii ∈ 1 .. card(productions) THEN

ans := size (rs( ii ))

END;

ans ←− nullable(ii) =

PRE ii ∈ Symbols THEN

ans := bool ([ ii ] 7→ [] ∈ derivable)

END
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END

The representation of grammars just described is sufficient to specify the work-

ings of a context-free recognizer, and its first refinement to Earley’s algorithm. For

instance, consider executing the predictor on an item in an Earley state set. What we

require here is easy access to those productions whose left-hand-side nonterminal is

the symbol after the dot in the item. We can obtain the right-hand-sides of these items

by a relational image of productions under the nonterminal in question. However, in

terms of eventual implementation, these set-theoretic operations are not permitted

and so we require more conventional access to the components of the grammar. For

this reason, we introduce constants ls and rs, which impose an arbitrary ordering

on the grammar productions. They are defined as total functions whose domains

consist of card(productions) elements. The range of ls contains the left-hand-sides

of all productions, and the range of rs contains the corresponding right sides. The

constraint ( ls ⊗ rs) ∈ 1 .. card(productions) �→ productions says that the direct

product of ls and rs is a bijection between 1 .. card(productions) and the produc-

tions themselves — in other words, that the natural numbers are related to exactly

one production. We only require that ls (1) is the root, so that we know that the first

production in the ordering is the single production involving the root.

Now that we have imposed an arbitrary ordering, we can provide operations for

retrieving meaningful portions of grammar rules. We have getLS which, given a

suitable index, returns the left-hand-side nonterminal for the associated production;

getRS does similarly for right-hand-sides, although this time an additional index into

its sequence of symbols is necessary. Operations for obtaining the number of rules,

and the length of a specified rule, are provided so that later machines can be sure to

call the query operations within their preconditions.

4.2.1 Correctness

Our only task here is to show that the machine constants can be instantiated in at

least one way to yield a consistent properties clause; that is, we must show proof

obligation (1) in Figure 2.10. We can start by giving numT and numNT the value

1, so that numNT ∈ N and numT ∈ N. We then have to instantiate productions

with (s, t) pairs, where s is a nonterminal and t is a sequence of symbols. We can

use {(Root, [])} , which represents the grammar with one production Root → ε.

This satisfies the constraints dealing with the root as well, and so all constraints
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on productions are satisfied. For ls and rs, we can use {(1, Root)} and {(1, [])} ,

respectively. The types of these expressions are correct (they are total functions into

nonterminals and sequences of symbols), their direct product yields productions and

the first (and only) entry in the domain maps to the root production.

4.3 A Sentence Machine

A sentence is a sequence of terminals that we are interested in testing for derivability.

We thus define a constant, sentence, by seeing the gram machine, and making use

of the same definition of Terminals that was present there. Listing 4.2 contains the

sentence machine which encapsulates this idea. As with the grammar machine, it is

necessary to provide queries for retrieving the length of the sentence and the terminals

from which it is built.

Listing 4.2: Sentence Machine

MACHINE sent

SEES gram

DEFINITIONS

Terminals == (numNT + 1 .. numNT + numT)

CONSTANTS sentence

PROPERTIES sentence ∈ seq(Terminals) ∧ size(sentence) ∈ N

OPERATIONS

ss ←− senLength = ss :=size(sentence);

bb ←− senGet(xx) =

PRE xx ∈ N1 ∧ xx ≤ size(sentence) THEN

bb := sentence(xx)

END

END
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4.3.1 Correctness

All that is necessary is to exhibit an assignment to the sentence constant which is in

line with the machine’s properties clause; this is proof obligation (1) in Figure 2.10.

We can do this easily by giving it the value [] — that is, an empty sequence —

which is trivially a sequence of terminals. This corresponds to the sentence ε. In the

nontrivial case, numT in the grammar machine will be positive, so we would have a

nonempty set of terminals to draw from to construct the sentence.

4.4 A General Recognizer Machine

Consider Listing 4.3, which contains the definition of a machine that can recognize

whether the supplied sentence can be generated from the given grammar.

Listing 4.3: CFG Recognizer Machine

MACHINE recm

SEES gram, sent

DEFINITIONS

Symbols == (1..(numNT + numT));

Root == 1;

directlyDerivable ==

{xx, yy | xx ∈ seq (Symbols) ∧ yy ∈ seq (Symbols) ∧
(∃mu, sigma, nu, tau).

(mu ∈ seq (Symbols) ∧ sigma ∈ Symbols ∧
nu ∈ seq (Symbols) ∧ tau ∈ seq (Symbols) ∧
xx = (mu _[sigma] _ nu) ∧ (yy = mu _tau _nu) ∧ (sigma 7→ tau ∈

productions))};
derivable == (closure1(directlyDerivable) ∪ id (seq (Symbols)))

OPERATIONS

ans ←− isSentence =

ans := bool ([Root] 7→ sentence ∈ derivable)

END

The machine formalizes the notion of derivable, and then uses it to return whether

or not the sentence can be derived from the root. We first define directlyDerivable
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which is a relation whose domain type and range type is seq (symbols). The pair

(xx,yy) will be in directlyDerivable if yy is derivable from xx in exactly one step.

We rely on Definition 2.1, and almost literally transcribe it into B notation. We

use existential quantifiers to implicitly break up the sequences xx and yy into three

pieces, being careful to type σ as one symbol (not a sequence) since it is required to

be the same type as the domain of productions. We can use this definition to define

the notion of derivable, given in Definition 2.2. There, we said that yy was derivable

from xx if we could effectively iterate directlyDerivable enough times to obtain yy.

This corresponds to taking the reflexive, transitive closure of the directlyDerivable

relation just described.

With the given definition of derivable, we can succinctly describe the isSentence

operation: it returns true exactly when the root nonterminal and the sentence are

related by derivable .

We have nothing to prove to show consistency of this machine: there is no invariant

and no newly introduced constants. Furthermore, the included operation is a query

operation which incurs no proof obligations. In situations like this it is necessary to

convince oneself that the operations are meaningful, and carry out what is intended.

The machine will be refined by Earley’s algorithm in the next sections.

4.5 Introducing State Sets

We now write an implementation for the CFG recognizer of the previous subsection.

The isSentence operation is to be refined by a version using Earley’s algorithm instead

of an abstract assertion about derivability. What we are striving for is the use of a

loop which consecutively builds Earley state sets one at a time, until we have created

all n + 1 sets. At this point, we can check the last state set to see if it contains the

acceptance element, and return the corresponding Boolean value.

Since implementation machines can only make use of scalar variables and arrays,

we can separate out the state set data structure and its operations into a new machine,

and import it into the implementation. The state sets machine, on its own, maintains

some invariants, and so this separation also lets us locally prove properties of the state

sets. When used as part of the implementation, we can rely on these invariants to

hold, and they will be crucial for proving that Earley is a correct refinement. This

general technique is referred to as Design for Provability; see, for example, Chapter

3 of [18].
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To represent Earley states, we split the production component in two pieces

corresponding to the portions before and after the dot. We thus define a state as

state == (Nonterminals × seq(Symbols) × seq(Symbols) × N). We commonly re-

fer to the four components, in code snippets and in proofs, as (a, l , r , f), where

a is a nonterminal, l and r are the components of a right-hand-side of a which are

to the left and right of the dot, respectively, and f is the pointer to the production’s

starting state set.

Next, we consider the scan, predict and complete operations. Considering the

scanner first, we know that when it acts on a state, the most it can do is add one

more state. In particular, if the next symbol in a state is a terminal, and it matches

the next sentence symbol, then it relates this state to the same state with the dot

moved one position to the right. We also require access to the sentence, so that we can

inspect its (i+ 1)-st element in order to determine whether an item is in the domain

of the scanner. We can therefore conceive of the scanner as a function which, when

applied to an integer, is a partial function from states to states. In our definition, we

assert that two states are related by the scanner if their a and f components are the

same, and their l and r components are the same except the dot is moved over one

position to the right in the function’s range. The core of the function is the following:

scan( ii ) == {a1 7→ l1 7→ r1 7→ f1, a2 7→ l2 7→ r2 7→ f2 |
r1 6= {} ∧ first(r1) ∈ Terminals ∧ first(r1) = sentence( ii+1) ∧
a2 = a1 ∧ l2 = l1 ← first(r1) ∧ r2 = tail (r1) ∧ f2 = f1)}

The predictor and completer are similar to the scanner in that they relate state

sets to state sets. While the scanner is a partial function, the predictor and completer

are partial relations. The predictor can add multiple items from a single state in the

situation where the next nonterminal has multiple right-hand-sides; the completer

can add multiple items if the fth state set has more than one item with the required

nonterminal after the dot.

The predictor relates s = (a1, l1 , r1, f1) to t = (a2, l2 , r2, f2) if a2 is the

first symbol in r1. Additionally, the dot must be at the beginning in t, so l2 must

be empty, and r2 must correspond to a full right-hand-side of a production of a1.

Again, we require knowledge about which state set we are constructing, since this is

the value to give f2. This results in the following:

predict ( ii ) == {a1 7→ l1 7→ r1 7→ f1, a2 7→ l2 7→ r2 7→ f2 |
r1 6= {} ∧ a2 = first(r1) ∧ l2 = [] ∧ r2 ∈ productions[{first(r1)}] ∧ f2 =
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ii )}

The most complicated definition involves the completer. While the scanner re-

quires knowledge of our progress in order to inspect the input sentence and the pre-

dictor uses it for populating the f components, the completer has no use for it. An-

other difference is that we can no longer relate state s = (a1, l1 , r1, f1) to state

t = (a3, l3 , r3, f3) directly, but must use another state q = (a2, l2 , r2, f2) as

an intermediary. Specifically, we require that r1 is the empty sequence, corresponding

to the case where we have finished processing a1. State q is then confined to exist

in state set f1, and have a1 as its next symbol to process. With these conditions in

place, the completer can add a modified q to state set i, obtained by moving the dot

in the same way that the scanner did. This gives the following:

complete == {a1 7→ l1 7→ r1 7→ f1, a3 7→ l3 7→ r3 7→ f3 |
(∃a2, l2 , r2, f2) .

r1 = [] ∧ r2 6= [] ∧
(a2 7→ l2 7→ r2 7→ f2) ∈ ss(f1) ∧ a1 = first(r2) ∧
a3 = a2 ∧ l3 = l2 ← first(r2) ∧ r3 = tail (r2) ∧ f3 = f2)}

The machine contains two variables: ss for the state sets, and ii to maintain which

state set we are currently constructing. When executing the algorithm, we know that

the root element must first be added to ss(0), and all other ss( i) should be empty.

We can then construct the root element as rootElement == (Root 7→ [] 7→ rhs 7→ 0),

where rhs is productions(Root). The initialisation of the machine uses this to construct

the initial configuration of the state sets, and also sets ii to 0. We include an operation

init whose definition is the same as the initialisation. The reason is pointed out in

Chapter 3 of [18]: if we were to use this machine to run Earley’s algorithm twice

in succession, there would be no way to re-initialise the machine in between the two

runs.

The machine maintains some complex invariants, whose basis we have already

discovered in the expositions by Jones and Sikkel given in Chapter 2. First, we assert

that the root element is always present in ss(0). This is not hard to believe: the

initialisation adds it, init adds it, and there are no set operations besides union

anywhere else. Next, we make a claim about ss(0) — that it is the transitive closure

of the predictor and completer on the root element — but only when we have ii > 0;

if ii = 0, then we may be in the state immediately following the initialisation and

so the claim cannot possibly hold. To characterize the remaining state sets that we
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have constructed so far, we say that state set i results from running the scanner on

set i−1, and then closing the predictor and completer over the result.

We then give properties that are expected to hold on the state sets we have

constructed. We have that, if (a1, l1 , r1, f1) is present in state set i, then l1

derives sentence{f1+1} .. sentence(i). Additionally, if the next symbol in r1 derives

sentence(i+1) .. sentence( l ), then the same state, with the dot moved to the right,

exists in set l . We also have a sanity condition on all states: that the l and r

components, together, are a valid right-hand-side of a.

We can then give the machine operations. inc increments ii , but only in the

situation where state set i is properly constructed to adhere to the machine invariant.

In other words, at this level we are hoping that sequences of other operations can

create ss( ii ) correctly, so that the precondition of inc is true. It will be up to

the machine that imports this one to ensure that this is the case. getIi is a query

operation to obtain ii . nextOps runs the predictor and completer on the current state

set, while nextScan runs the scanner on it and deposits states into ss( ii +1). Finally,

accept encapsulates the acceptance criterion. The state sets machine is in 4.4.

Listing 4.4: State Sets Machine

MACHINE stateSets

SEES sent, gram

DEFINITIONS

Nonterminals == (1 .. numNT);

Terminals == (numNT + 1 .. numNT + numT);

Symbols == (Terminals ∪ Nonterminals);

Root == 1;

rhs == (productions(Root));

directlyDerivable ==

{xx, yy | xx ∈ seq(Symbols) ∧ yy ∈ seq(Symbols) ∧
(∃µ, σ, ν , τ ).

(µ ∈ seq(Symbols) ∧ σ ∈ Symbols ∧
ν ∈ seq (Symbols) ∧ τ ∈ seq(Symbols) ∧
xx = (µ _ [σ] _ ν) ∧ (yy = µ_ τ _ ν) ∧ (σ 7→ τ ∈ productions))};

derivable == (closure1(directlyDerivable) ∪ id(seq(Symbols)));

state == (Nonterminals × seq (Symbols) × seq (Symbols) × N);

type1 == a1 ∈ Nonterminals ∧ l1 ∈ seq(Symbols) ∧
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r1 ∈ seq(Symbols) ∧ f1 ∈ N;

type2 == a2 ∈ Nonterminals ∧ l2 ∈ seq(Symbols) ∧
r2 ∈ seq(Symbols) ∧ f2 ∈ N;

type3 == a3 ∈ Nonterminals ∧ l3 ∈ seq(Symbols) ∧
r3 ∈ seq(Symbols) ∧ f3 ∈ N;

scan( ii ) == {xx, yy | xx ∈ state ∧ yy ∈ state ∧
# (a1, l1 , r1, f1 , a2, l2 , r2, f2) .

(type1 ∧ type2 ∧
xx = (a1 7→ l1 7→ r1 7→ f1) ∧ yy = (a2 7→ l2 7→ r2 7→ f2) ∧
r1 6= {} ∧ first(r1) ∈ Terminals ∧ first(r1) = sentence( ii ) ∧
a2 = a1 ∧ l2 = l1 ← first(r1) ∧ r2 = tail (r1) ∧ f2 = f1)};

predict ( ii ) == {xx, yy | xx ∈ state ∧ yy ∈ state ∧
# (a1, l1 , r1, f1 , a2, l2 , r2, f2) .

(type1 ∧ type2 ∧
xx = (a1 7→ l1 7→ r1 7→ f1) ∧ yy = (a2 7→ l2 7→ r2 7→ f2) ∧ r1 6= {} ∧
a2 = first (r1) ∧ l2 = [] ∧ r2 ∈ productions[{first(r1)}] ∧ f2 = ii )};

complete == {xx, yy | xx ∈ state ∧ yy ∈ state ∧
# (a1, l1 , r1, f1 , a2, l2 , r2, f2 , a3, l3 , r3, f3) .

(type1 ∧ type2 ∧ type3 ∧
xx = (a1 7→ l1 7→ r1 7→ f1) ∧ yy = (a3 7→ l3 7→ r3 7→ f3) ∧
r1 = [] ∧ r2 6= [] ∧
(a2 7→ l2 7→ r2 7→ f2) ∈ ss(f1) ∧ a1 = first(r2) ∧
a3 = a2 ∧ l3 = l2 ← first(r2) ∧ r3 = tail (r2) ∧ f3 = f2)};

ops( ii ) == (predict(ii) ∪ complete ∪ id(state));

rootElement == (Root 7→ [] 7→ rhs 7→ 0);

indef == ss, ii := {xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}, 0

CONSTANTS zero

PROPERTIES zero = 0
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VARIABLES ss, ii

INVARIANT

ss ∈ (0 .. size (sentence)) → P(state) ∧ ii ∈ N ∧ ii ≤ size (sentence) + 1 ∧
rootElement ∈ ss(0) ∧

( ii > 0 ⇒ (ss(0) = ((closure1(ops(zero )))[{ rootElement}]))) ∧

(∀ jj , kk) . ( jj ∈ N1 ∧ kk ∈ N ∧ kk = jj − 1 ∧ jj < ii ⇒
(∃sc) . (sc ⊆ state ∧ sc = scan(kk)[ss(kk)] ∧ ss( jj ) =

(closure1(ops( jj ))[ sc ]))) ∧

(∀a1, l1 , r1, f1 , ind) . (type1 ∧ ind ∈ N ∧ ind < ii ∧ (a1 7→ l1 7→ r1 7→ f1) ∈
state ∧

(a1 7→ l1 7→ r1 7→ f1) ∈ ss(ind) ⇒
(( l1 7→ ((sentence ↓ f1) ↑ (ind − f1))) ∈ derivable)) ∧

(∀z, j , a1, l1 , r1, f1) . (type1 ∧ z ∈ N ∧ z < ii ∧ j ∈ N ∧
j ≤ z ∧ (a1 7→ l1 7→ r1 7→ f1) ∈ state ∧ (a1 7→ l1 7→ r1 7→ f1) ∈ ss(j) ∧
([ first (r1)] 7→ ((sentence ↓ j) ↑ (z − j))) ∈ derivable ⇒
((a1 7→ (l1 _ [ first (r1 )]) 7→ tail(r1) 7→ f1)) ∈ ss(z)) ∧

(∀a1, l1 , r1, f1 , ind) . (type1 ∧ ind ∈ N ∧ ind < ii ∧ (a1 7→ l1 7→ r1 7→ f1) ∈
ss(ii) ⇒

((a1 7→ (l1 _ r1)) ∈ productions ∧ f1 ≤ ind)) ∧

(∀ind) . (ind ∈ (ii+1).. size (sentence) ⇒ ss(ind) = {})

INITIALISATION

indef

OPERATIONS

init = indef ;

inc =

PRE ss(0) = ((closure1(ops(zero)))[{rootElement}]) ∧
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( ii > 0 ⇒
(∃sc, kk) . (kk ∈ N ∧ kk = ii − 1 ∧ sc ⊆ state ∧ sc = scan(kk)[ss(kk)] ∧
ss( ii ) = (closure1(ops( ii ))[ sc ]))) ∧

ii ≤ size (sentence) THEN

ii := ii + 1

END;

bb ←− getIi = bb := ii ;

nextOps =

ss( ii ) := closure1(ops( ii ))[ ss( ii )];

nextScan =

IF ii > 0 THEN ss(ii) :=scan(ii )[ ss( ii−1)] END;

bb ←− accept =

bb := bool ((Root 7→ rhs 7→ [] 7→ 0) ∈ ss(size (sentence)))

END

4.5.1 Correctness

Proving correctness of this machine requires showing, first, that the initialisation es-

tablishes the invariant (obligation (3) of Figure 2.10) and, second, that the operations

maintain it when called in a state satisfying their preconditions (proof obligation (4)

of Figure 2.10). The strategy is to show that the initialisation and operations estab-

lish all conjuncts of the invariant separately, from which we can conclude that they

establish the whole invariant.

Initialisation Establishes Invariant

We start with the first three conjuncts of the invariant: ss is total and ii is within

bounds of the sentence. We begin with the following lemma:

Lemma 4.1. If e ∈ E, f ∈ F and g ∈ F, then:

{xx, yy | xx ∈ E ∧ yy ∈ F ∧
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(xx = e ⇒ yy = f) ∧ (xx 6= e ⇒ yy = g)} ∈ E → F

Proof. All elements in E are related to exactly one element in F: one element to a

specific element of F, and all the rest to another element in F.

We can then complete the proof:

[ ss , ii := {xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}, 0]

ss ∈ (0 .. size (sentence)) → P(state) ∧ ii ∈ N ∧ ii ≤ size (sentence) + 1

= {WPM}
{xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}
∈ (0 .. size (sentence)) → P(state) ∧ 0 ∈ N ∧ 0 ≤ size(sentence) + 1

= {size(sentence) ∈ N, Lemma 4.1}
true

We now show that the initialisation establishes the fact that the root element is

in ss(0):

[ ss , ii := {xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}, 0]

rootElement ∈ ss(0)

= {WPA}
rootElement ∈ {xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}(0)

= {{0 7→ rootElement} is in the constructed set}
true

The next piece of the invariant is an implication with premise ii > 0; we know

that the invariant sets ii to 0 so this is vacuously true.

Next, a vacuous universal quantification:

[ ss , ii := {xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}, 0]
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(∀ jj , kk) . ( jj ∈ N1 ∧ kk ∈ N ∧ kk = jj − 1 ∧ jj < ii ⇒ ...

= {WPM}
(∀ jj , kk) . ( jj ∈ N1 ∧ kk ∈ N ∧ kk = jj − 1 ∧ jj < 0 ⇒ ...

= {empty range for jj}
true

Proceeding, we have a derivability claim on all elements in ss where the index is

less than ii . We have none.:

[ ss , ii := {xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}, 0]

(∀a1, l1 , r1, f1 , ind) . (type1 ∧ ind ∈ N ∧ ind < ii ∧ (a1 7→ l1 7→ r1 7→ f1) ∈
state ∧

(a1 7→ l1 7→ r1 7→ f1) ∈ ss(ind) ⇒
(( l1 7→ ((f1+1..ind) � sentence)) ∈ derivable))

= {WPA}
(∀a1, l1 , r1, f1 , ind) . (type1 ∧ ind ∈ N ∧ ind < 0 ∧ (a1 7→ l1 7→ r1 7→ f1) ∈
state ∧

(a1 7→ l1 7→ r1 7→ f1) ∈
{xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}(ind) ⇒
(( l1 7→ ((f1+1..ind) � sentence)) ∈ derivable))

= {empty domain}
true

Two easily-proved conjuncts are left, both vacuous universal quantifications. The

last conjunct asserts that all state sets are empty except for ss(0), also immediate.

This completes the proof that the invariant is established by the initialisation.

Operations Preserve Invariant

We now consider the machine operations, and show that they preserve the invari-

ant. The operation init is defined to be the same as the initialisation. Since the
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initialisation establishes the invariant under no preconditions at all, init preserves

the invariant as well.

For inc, we first show that the first four conjuncts of the invariant are maintained.

We let inv be the machine invariant in the following proofs.

[ ii := ii + 1]

ss ∈ (0 .. size (sentence)) → P(state) ∧ ii ∈ N ∧ ii ≤ size (sentence) + 1 ∧
rootElement ∈ ss(0)

= {WPA}
ss ∈ (0 .. size (sentence)) → P(state) ∧ ii+1 ∈ N ∧ ii+1 ≤
size (sentence) + 1 ∧ rootElement ∈ ss(0)

≤ =

inv ∧ ii ≤ size (sentence)

Next, we show that inc maintains that the zeroth state set is as expected:

[ ii := ii + 1]

ii > 0 ⇒ (ss(0) = ((closure1(ops(zero )))[{ rootElement}]))

= {WPA}
ii +1 > 0 ⇒ (ss(0) = ((closure1(ops(zero )))[{ rootElement}]))

≤ =

inv ∧ ss(0) = ((closure1(ops(zero )))[{ rootElement}])

Next, that executing inc gives us one more state set whose contents we know:

[ ii := ii + 1]

(∀ jj , kk) . ( jj ∈ N1 ∧ kk ∈ N ∧ kk = jj − 1 ∧ jj < ii ⇒
(∃sc) . (sc ⊆ state ∧ sc = scan(kk)[ss(kk)] ∧ ss( jj ) = (closure1(ops( jj ))[ sc ])))

= {WPA}
(∀ jj , kk) . ( jj ∈ N1 ∧ kk ∈ N ∧ kk = jj − 1 ∧ jj < ii + 1 ⇒
(∃sc) . (sc ⊆ state ∧ sc = scan(kk)[ss(kk)] ∧ ss( jj ) = (closure1(ops( jj ))[ sc ])))

≤ =

inv ∧ (ii > 0 ⇒
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(∃sc, kk) . (kk ∈ N ∧ kk = ii − 1 ∧ sc ⊆ state ∧ sc = scan(kk)[ss(kk)] ∧
ss( ii ) = (closure1(ops( ii ))[ sc ])))

Here, we have that the invariant was previously established throughout the first ii−1

state sets; the precondition of inc allows us to conclude that it is now true for the

next one as well.

We now know the precise contents of all state sets from 0 to ii − 1. The next

part of the invariant says for all such states, the symbols before the dot can derive

the terminals sentence(f+1) .. sentence(i). We can prove this using only the parts

of the invariant we have already shown inc to preserve, and so we can conclude that

inc preserves this conjunct as well. The proof obligation, with the previously proved

parts of the invariant numbered, is:

(1) ss ∈ (0 .. size (sentence)) → P(state) ∧ ii ∈ N ∧ ii ≤ size (sentence) + 1 ∧
(2) rootElement ∈ ss(0) ∧
(3) ( ii > 0 ⇒ (ss(0) = ((closure1(ops(zero )))[{ rootElement}]))) ∧
(4) (∀ jj , kk) . ( jj ∈ N1 ∧ kk ∈ N ∧ kk = jj − 1 ∧ jj < ii ⇒

(∃sc) . (sc ⊆ state ∧ sc = scan(kk)[ss(kk)] ∧ ss( jj ) =

(closure1(ops( jj ))[ sc ])))

⇒
(∀a1, l1 , r1, f1 , ind) . (type1 ∧ ind ∈ N ∧ ind < ii ∧ (a1 7→ l1 7→ r1 7→ f1) ∈
state ∧

(a1 7→ l1 7→ r1 7→ f1) ∈ ss(ind) ⇒
(( l1 7→ (sentence ↓ f1) ↑ (ind − f1)) ∈ derivable))

We prove this with the following theorem. We allow sentence(a) .. sentence(b) to

represent the subsequence beginning at position a of sentence and ending at position

b. We also allow (a, l , r , f) instead of (a 7→ l 7→ r 7→ f).

Theorem 4.1. Under conjuncts (1) to (4) of the invari-

ant of Listing 4.4, if (a, l , r , f) ∈ ss(i) and i < ii, then

( l 7→ sentence(f+1) .. sentence(i )) ∈ derivable.

Proof. The main ideas for this proof are from [5], but ours is simpler2.

2Earley’s uses lookahead, which adds complexity, and also proves an unnecessary property about
the start symbol.
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Invariant (2) establishes one element, the basis, to exist in the zeroth state set.

This state is (Root 7→ [] 7→ rhs 7→ 0); the claim is that the empty sequence can derive

the empty sequence, and since derivable is a reflexive relation, this is true.

Invariants (3) and (4) posit that all other elements come from a scan, com-

plete or predict step. We assume that all other states satisfy the property, and

show that any new state added via one of these operations does so as well. The

predictor adds elements whose l component is the empty sequence, so they all

satisfy the theorem in the same way that the element of invariant (2) does. The

scanner adds (a, l , r , f) to the ith state set, from (a, front( l ), last ( l ) −> r, f)

in the i − 1th state set. We have last ( l ) = sentence(i). We know that

(front( l ) 7→ sentence(f+1) .. sentence(i−1)) ∈ derivable. From this, and the

fact that last ( l ) = sentence(i), we have ( l 7→ sentence(f+1) .. sentence(i). The

completer adds (a, l , r , f) to the ith state set from (a, front( l ), last ( l ) −> r, f)

in state set g, and (b, m, [] , g) in state set i. From the defi-

nition of completer, last ( l ) = b, and (b, m) ∈ productions). We

have that (I) (m 7→ sentence(g+1) .. sentence(i)) ∈ derivable and (II)

(front( l ) 7→ sentence(f+1) .. sentence(g)) ∈ derivable. From (I) we have

(b 7→ sentence(g+1) .. sentence(i). Next, from (II), and the fact that

last ( l ) = b, we have (front( l ) ← b 7→ sentence(f+1) .. sentence(g) _

sentence(g+1) .. sentence(i )) ∈ derivable. So, ( l 7→ sentence(f+1) ..

sentence(i )) ∈ derivable.

Next, a proof that if an item exists in state set i and the next symbol derives the

next k ≥ 1 sentence terminals, then the item with the dot moved one position to the

right must exist in the i + kth state set. The proof obligation is similar to the one

above: we assume the part of the invariant we have shown inc to preserve, and then

show that this property follows. That is, we prove:

(1) ss ∈ (0 .. size (sentence)) → P(state) ∧ ii ∈ N ∧ ii ≤ size (sentence) + 1 ∧
(2) rootElement ∈ ss(0) ∧
(3) ( ii > 0 ⇒ (ss(0) = ((closure1(ops(zero )))[{ rootElement}]))) ∧
(4) (∀ jj , kk) . ( jj ∈ N1 ∧ kk ∈ N ∧ kk = jj − 1 ∧ jj < ii ⇒

(∃sc) . (sc ⊆ state ∧ sc = scan(kk)[ss(kk)] ∧ ss( jj ) =

(closure1(ops( jj ))[ sc ])))

⇒
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(∀z, j , a1, l1 , r1, f1) . (type1 ∧ z ∈ N ∧ z < ii ∧ j ∈ N ∧
j ≤ z ∧ (a1 7→ l1 7→ r1 7→ f1) ∈ state ∧ (a1 7→ l1 7→ r1 7→ f1) ∈ ss(j) ∧
([ first (r1)] 7→ ((sentence ↓ j) ↑ (z − j))) ∈ derivable ⇒
((a1 7→ (l1 _ [ first (r1 )]) 7→ tail(r1) 7→ f1)) ∈ ss(z)) ∧

We prove this with two theorems, corresponding to nonempty and empty portions

of the input sentence.

Theorem 4.2. Under conjuncts (1) to (4) of the invari-

ant of Listing 4.4, if (a, l , r , f) is in state set i and

( first (r) 7→ sentence(i+1) .. sentence(p)) ∈ derivable and p < ii, then

(a, l ← first(r), tail (r ), f) is in state set p.

Proof. The proof is by induction on the number of iterations of derivable neces-

sary to show first (r) derives sentence(i+1) .. sentence(p). In the basis, we have

zero derivation steps; first (r) = sentence(i+1) .. sentence(i+1) = sentence(i+1)

in this case. From invariant (3), the scanner must have acted on this state, adding

(a, l ← first(r), tail (r ), f) to state set p.

For the induction step, first (r) must be a nonterminal Q, since a step in

a derivation replaces a nonterminal by its right-hand-side, and we know there

is at least one such step. Since (Q 7→ sentence(i+1) .. sentence(p), one of its

right-hand-sides q1 q2 ... q’ must do so as well. This must be the first step in

the derivation, so the right-hand-side uses one less step to derive the input, and

therefore so do any of its subderivations. There are also t0 ≤ t1 ≤ ... ≤ tq ’

with t0 = i, tq ’ = p, and (q1 7→ sentence(t0) .. sentence(t1) ∈ derivable,

(q1 7→ sentence(t1) .. sentence(t2)) ∈ derivable and so on, until

(q(q ’) 7→ sentence(t(q’−1)) .. sentence(t(q ’)) . From invariant (3), we know

that the predictor adds (Q, [] , q1 q2 .., i) to state set i. From the inductive

hypothesis, (Q, q1, q2 .., i) is added to state set t1. The inductive hypothesis

keeps applying in this way, until we have (Q, q1 q2 .., [] , i in state set p. From

invariant (3), The completer uses this last state to add (a, l ← first(r), tail (r ), f)

to state set p.

Theorem 4.3. Under conjuncts (1) to (4) of the invariant of Listing 4.4,

if (a, l , r , f) is in state set i, i ≤ ii and first (r) is nullable, then

(a, l ← first(r), tail (r ), f) is also in state set i.
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Proof. A right-hand-side R of first (r) must be nullable. We know from in-

variant (3) that the predictor added ( first (r ), [] , R, 0) to the state set, and

can use an induction on the number of iterations of derivable used to find R is

nullable. In the basis, R is ε, and the completer used first (r ), [] , [] , i) to

add (a, l ← first(r), tail (r ), f). Otherwise, we have a production of the form

( first (r ), r1 r2 .. rk), whose components are all nullable. Iterating the inductive

hypothesis k times shows that ( first (r ), r1 r2, rk , [] , i) is added, which the com-

pleter used to add the required state.

We now show the last part of the invariant — the sanity conditions on the elements

of the state sets. Since our root element has an empty l1 and r1 is the only right-

hand-side of Root, the root element satisfies the invariant. Anything added by the

predictor has the whole right-hand-side of a production in r1 and an empty l1, so such

states satisfy the invariant as well. Finally, the scanner and completer add acceptable

items because they change the split between l1 and r1, not their concatenation.

Nothing else about this machine must be proved. We have two query operations

getIi and accept, so they cannot violate any invariants. We want accept to correspond

to whether or not the sentence belongs to the grammar, but this will only emerge

when we include this machine into an implementation of recm. The other operations

add items to ss( ii ) and no invariant says anything about this state set.

4.6 Refinement of the General Recognizer

To use the state sets to implement the CFG recognizer machine, we want ii to attain

a value of size (sentence) + 1, which is its maximum value allowed by the invariant.

To do this, we initialise ii to 0, and call inc in a loop. We use nextOps and nextScan

in order to make the precondition of inc true prior to its call. After this, we return

the same value that accept returns. The implementation machine resulting from these

ideas is below.

Listing 4.5: Recognizer Implementation

IMPLEMENTATION reci

REFINES recm

SEES gram, sent

IMPORTS stateSets
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OPERATIONS

ans ←− isSentence =

VAR jj, len IN

init ; jj := 0; len ←− senLength;

WHILE jj ≤ len DO

nextScan; nextOps; inc; jj := jj + 1

INVARIANT

jj ∈ N ∧ jj = ii ∧ jj ≤ size (sentence) + 1 ∧
len = size (sentence) ∧ len ∈ N ∧
( jj = 0 ⇒ ss(0) = rootElement)

VARIANT len − jj

END;

ans ←− accept

END

END

4.6.1 Correctness

We only have to show that this implementation of isSentence is a valid refinement

of the abstract version; this is proof obligation (3) in Figure 2.12. The other proof

obligations concern constants and initialisations, of which we have none. We use the

loop invariant upon termination of the loop, so the first task is to prove the loop

correct. We begin with the fact that the loop invariant is established prior to the first

iteration (proof obligation (5) of Figure 2.13). We use initSets as shorthand for the

function that init assigns to ss.

[ init ; jj := 0; len ←− senLength]

jj ∈ N ∧ jj = ii ∧ jj ≤ size (sentence) + 1 ∧ len = size (sentence) ∧ len ∈ N
∧
( jj = 0 ⇒ ss(0) = rootElement)

= {WPA, WPS}
[ init ]

0 ∈ N ∧ 0 = ii ∧ 0 ≤ size (sentence) + 1 ∧ size (sentence) =

size (sentence) ∧ size (sentence) ∈ N ∧ ss(0) = rootElement
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= {expand init , WPM}
0 ∈ N ∧ 0 = 0 ∧ 0 ≤ size (sentence) + 1 ∧ size (sentence) = size (sentence) ∧
size (sentence) ∈ N ∧ initSets(0) = rootElement

=

true

Next, we show proof obligation (1) of Figure 2.13. Assuming that inc succeeds,

the fact that the loop maintains the invariant is readily apparent because then both

ii and jj are incremented. For inc to succeed, its precondition must be true, and

it is once we call nextScan and nextOps. We let closeRoot represent the closure of

the predictor and completer on the root element, ops(i) the result of the closure and

predictor on state set i and scan(i) the result of the scanner.

[nextScan; nextOps; inc; jj := jj + 1]

jj ∈ N ∧ jj = ii ∧ jj ≤ size (sentence) + 1 ∧ len = size (sentence) ∧ len ∈ N

= {WPA, WPS}
[nextScan; nextOps; inc]

jj + 1 ∈ N ∧ jj + 1 = ii ∧ jj + 1 ≤ size (sentence) + 1 ∧ len =

size (sentence) ∧ len ∈ N

= {expand inc body}
[nextScan; nextOps; PRE ss(0) = CLOSEROOT ∧ (ii > 0 ⇒ ss(ii) =

OPS(SCAN(ii−1))) ∧ ii ≤ size (sentence) THEN ii :=ii + 1]

jj + 1 ∈ N ∧ jj + 1 = ii ∧ jj + 1 ≤ size (sentence) + 1 ∧ len =

size (sentence) ∧ len ∈ N

= {WPP, WPS}
[nextScan; nextOps]

ss(0) = CLOSEROOT ∧ (ii > 0 ⇒ ss(ii) = OPS(SCAN(ii−1))) ∧ ii ≤
size (sentence) ∧
jj + 1 ∈ N ∧ jj + 1 = ii + 1 ∧ jj + 1 ≤ size (sentence) + 1 ∧ len =

size (sentence) ∧ len ∈ N

In other words, running nextScan and nextOps has to establish the given postcondi-

tion; there are two cases. If ii is 0, then from the loop invariant we know that ss(0)
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is just the rootElement. In this case, the scanner does nothing and the predictor

performs the closure on the set, which is exactly what is required. Otherwise, we first

perform the scanner operation, so we have the intermediate assertion that the current

state set is the result of applying the scanner to the previous one. Next, nextOps does

the closure on this resulting set, satisfying the second conjunct of the postcondition.

We know that ii ≤ size (sentence) because ii = jj , and jj is constrained to be at

most the size of the sentence by the loop guard.

Upon termination of the loop, we have that jj = size (sentence) + 1, and so by

the invariant, ii also holds this value. With this knowledge, we can prove that the

result of the refined isSentence (i.e. the return value of accept) returns the same value

as the abstract operation.

We can show this equivalence in two parts. First, if the abstract isSentence returns

true, then the sentence is derivable from the root. This means the sentence is derivable

from the one right-hand-side of the root. If the refined version returns true, we know

that the element (Root 7→ rhs 7→ [] 7→ 0) is in the state set corresponding to the size

of the sentence, and from Theorem 4.1 we know that rhs must therefore derive the

whole sentence.

Second, if the sentence is derivable from the root, then the abstract isSentence

returns true. The refinement does the same, as follows. We know the root element is

in ss(0), and that the first symbol of rhs derives some portion of the input sentence,

say the first k ≥ 0 terminals. Then, by Theorem 4.2, we know that the same item,

with the dot moved one position to the right, will be in ss(k). We can repeat this

argument until we have the acceptance element in ss( size (sentence)) which causes

true to be returned.

4.6.2 Termination Argument

Proof obligations (3) and (4) concern the variant: (3) is discharged because jj ≤ len

so len − jj ∈ N. Obligation (4) is immediate because jj is incremented on every

iteration, thus decreasing the variant. It is also necessary to show that the closure

operations in the abstract machine terminate, since if they do not, one iteration of

the while loop may never finish. This is especially important in our later refinement

where loops are used to simulate these closures. There is a bound on the number of

items that can be added to the state sets, though, and since the closure just adds new

items, eventually we must reach a fixed-point. Assume we have p productions, the
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longest associated right-hand-side being p′. Then for state set i there are a maximum

of p(p′ + 1)(i + 1) items. The first three components of a state combine to form a

production, of which there are p, and we can perform the split between the left and

right sides in p′ + 1 ways. The last component is constrained to be between 0 and i,

so it has i+ 1 possibilities.

4.7 Result of Model Checking

ProB successfully analyzed the sent, gram and recm machines, finding no inconsisten-

cies. The state space of the stateSets machine could not be explored in its entirety,

however, and we assume this to be a result of the complexity of invariants which it

maintains. This general problem filters down to machines in the next chapter, by

their virtue of refining the already-complicated stateSets .



Chapter 5

Refining to Lists

5.1 Overview of Development

In this chapter, we consider a possible implementation of Earley’s algorithm by using

lists (B sequences) to model the sets of the previous chapter. We first show that a

naive implementation would be incorrect, but only when ε-productions are present.

A slight modification of this proposal yields the Aycock-Horspool version, which we

specify and prove here, and for which we give an executable implementation in the

next chapter.

5.2 Epsilon-Productions and Lists

We now move from using sets of states to lists of states, in order to come up with an

efficient method for implementing the recognizer. The most naive list-processing ver-

sion would insert the basis element, and then move linearly through the list applying

the Earley operations to the states. New items would be added to the end of the list,

but only if they were not present already. If we indiscriminantly added duplicates, we

would run into infinite loops because we would process the same item over and over.

For example, if a grammar contained the rule A → A, then the predictor would be

applicable to a state made from this item, resulting in the same state being added.

However, again we could apply the predictor, thus adding and processing this state

infinitely often. Besides, we previously used sets, so we know we can do without

duplicates.

This naive list-processing version does work for grammars with no ε-productions.

57
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S → AA
A → ε

s(0)

(1) S → •AA , 0 Initialisation
(2) A→ • , 0 Predictor (1)
(3) S → A • A , 0 Completer (2)

Figure 5.1: Naive list-processing Earley, failing to detect the root deriving the empty
string.

We can traverse state list i−1, and apply the scanner to all of its elements to give the

“kernel” of list i. From here, we must ensure that we have all possible items resulting

from running the predictor and completer over and over (previously accomplished by

taking the closure). Our linear scan of the list, then, cannot be permitted to pass by

a state which could later be used by an operation to generate new items. Assume we

are about to scan past a state to which the predictor is applicable. We know that

the completer cannot be used on this state, since there are symbols to the right of

the dot. Also, running the predictor again at some later point can add no new items,

since the action of the predictor does not in any way depend on the current contents

of the state list. We can therefore safely run the predictor and move to the next item.

Now, assume we are about to move past an item (a, l , r , f) in state list i which

should be acted upon by the completer. If f < i, then we are searching a state list

which we know can never have any new items added to it, since it has already been

processed. Therefore, once we run the completer, we can skip past this item since

there is no chance a new item can materialize in list f that could have been used here.

On the other hand, if f = i, we have a problem: list i is still being constructed at

the point that the completer is called. A new state could thus be added that would

have resulted in our complete step deriving a new state from it. Unfortunately, at this

time, we would have already executed the completer on the current item, and will not

run the completer on it again. We therefore do not have the closure of the predictor

and completer in this case. Figure 5.1 contains a grammar with an ε-production and

the ill-starred progression of a naive list-processor not recognizing the acceptance of

a sentence. The reason is that we could still use the completer on (2), using (3) to

add

[S → AA•, 0]

to the list.
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5.3 A List Machine

Our implementation of state sets performs several operations on state lists, including

testing membership of a state in a list, adding an item to a specified list, and extracting

information about the states that have already been added. We separate this list data

structure and its associated operations into a machine, which we import into the state

set implementation. It is shown in Listing 5.1.

Listing 5.1: State Lists Machine

MACHINE listData

SEES sent

DEFINITIONS

state == (N × N× N);

indef == lists := (0.. size (sentence)) × {[]}

VARIABLES lists

INVARIANT

lists ∈ (0 .. size (sentence)) → iseq(state )

INITIALISATION indef

OPERATIONS

initial = indef ;

addState(r, j , f , i) =

PRE r ∈ N ∧ j ∈ N ∧ f ∈ N ∧ i ∈ 0 .. size(sentence) THEN

IF (r 7→ j 7→ f) 6∈ ran(lists( i )) THEN

lists ( i) := lists ( i) ← (r 7→ j 7→ f)

END

END;

ans ←− numStates (i) =

PRE i ∈ 0 .. size(sentence) THEN

ans := size ( lists ( i ))

END;
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kill ( i) =

PRE i ∈ 0 .. size(sentence) THEN

lists ( ii ) := []

END;

ans ←− getR (i, j) =

PRE i ∈ 0 .. size(sentence) ∧ j ∈ N ∧ j ≤ size( lists ( i )) THEN

ANY rr, jj, ff

WHERE rr ∈ N ∧ jj ∈ N ∧ ff ∈ N ∧ lists(i)(j) = (rr 7→ jj 7→ ff)

THEN ans :=rr

END

END;

ans ←− getJ (i, j) =

PRE i ∈ 0 .. size (sentence) ∧ j ∈ N ∧ j ≤ size( lists ( i )) THEN

ANY rr, jj, ff

WHERE rr ∈ N ∧ jj ∈ N ∧ ff ∈ N ∧ lists(i)(j) = (rr 7→ jj 7→ ff)

THEN ans :=jj

END

END;

ans ←− getF (i, j) =

PRE i ∈ 0 .. size(sentence) ∧ j ∈ N ∧ j ≤ size( lists ( i )) THEN

ANY rr, jj, ff

WHERE rr ∈ N ∧ jj ∈ N ∧ ff ∈ N ∧ lists(i)(j) = (rr 7→ jj 7→ ff)

THEN ans :=ff

END

END;

ans ←− inList(r, j, f, i) =

PRE r ∈ N ∧ j ∈ N ∧ f ∈ N ∧ i ∈ 0 .. size(sentence) THEN

ans := bool((r 7→ j 7→ f) ∈ ran(lists( i )))

END

END
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We have changed our representation of a state, from a quadruple involving gram-

mar symbols and productions, to one simply comprising three naturals. Using the

ordering imposed on the grammar in the grammar machine, the first natural repre-

sents the production to which the state belongs. The second natural tells us where in

the right-hand-side we are in processing the item; it corresponds with the position of

the split between l and r in the previous representation. The third natural conveys

the same information as the previously-used f component. The reason for the change

here is that, in moving towards an implementation, it is not practical to carry around

the grammar productions in their entirety. When inspecting or adding new states, it

is much more convenient to use natural numbers than sequences of grammar symbols.

5.3.1 Correctness

The invariant here is that lists is a total function from 0 .. size (sentence) to in-

jective sequences of states. The initialisation establishes this (proof obligation (3) in

Figure 2.10), because (0 .. size (sentence)) × {[]} is a type-correct value for lists .

For addState, we calculate the weakest precondition to establish the invariant (proof

obligation (4) in Figure 2.10):

[IF (r 7→ j 7→ f) 6∈ ran(lists( i )) THEN

lists ( i) := lists ( i) ← (r 7→ j 7→ f)

END]

lists ∈ (0 .. size (sentence)) → iseq(state )

= {WPI}
((r 7→ j 7→ f) 6∈ ran(lists( i )) ⇒
[ lists ( i) := lists ( i) ← (r 7→ j 7→ f)]

lists ∈ (0 .. size (sentence)) → iseq(state )) ∧
((r 7→ j 7→ f) ∈ ran(lists( i )) ⇒

lists ∈ (0 .. size (sentence)) → iseq(state ))

= {WPA}
((r 7→ j 7→ f) 6∈ ran(lists( i )) ⇒

lists <+ {i 7→ lists ( i) ← (r 7→ j 7→ f)} ∈ (0 .. size(sentence)) →
iseq(state )) ∧
((r 7→ j 7→ f) ∈ ran(lists( i )) ⇒
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lists ∈ (0 .. size (sentence)) → iseq(state ))

The second conjunct is exactly the invariant; the first follows from the invariant

because all sequences are injective, and the new element does not exist in the sequence

before it is added.

5.4 State List Refinement

We want state lists to behave exactly as state sets, so that they can be used in the

reci recognizer machine. This leaves us little choice for the invariant: the state sets

must be somehow “equal to” the contents of the state lists. Since we’ve changed the

way in which states are represented, we cannot have direct equality. What we can

have, though, is equality in the sense that, if we translate between representations,

the lists and sets are equal. We define a total bijection which does this conversion

between our three naturals representation and quadruples notation:

rep == {xx, yy |
(∃rr , jj , ff , a, l , r , f) .

(rr ∈ N ∧ jj ∈ N ∧ ff ∈ N ∧ a ∈ Nonterminals ∧ l ∈ seq(Symbols) ∧ r ∈
seq(Symbols) ∧ f ∈ N ∧

xx = (rr 7→ jj 7→ ff) ∧ yy = (a 7→ l 7→ r 7→ f) ∧
a = ls (rr) ∧ l = (rs(rr) ↑ jj) ∧ r = (rs(rr) ↓ jj) ∧ f = ff )};

This embodies the idea that rr, the first component, is a natural number repre-

senting a production. The left side of rr should be a. We want the jj component to

represent the portion before the dot, which is the same role that l has. Similarly, r

represents the portion after the dot, which corresponds to everything following jj .

The initialisation first empties all state lists, then adds the root element. This

corresponds with the abstract operation of having all sets empty except the first,

where the root element is placed. The accept operation is the same as its abstract

counterpart, except it is evaluated on the new representation for states.

To refine nextScan, we use a loop to iterate over the elements of state set i−1.

When we come to a state whose next symbol matches the next symbol in the sentence,

we add the state, with the dot moved one position to the right, to state set i. The

loop invariant is that the contents of the current state set are the elements we get by

running the scanner on the first count elements of the previous set, where count keeps

our position in the loop. This corresponds with the destructive abstract nextScan,
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whose result is always a set of the scanned items, regardless of what was previously

in the set.

Refining nextOps amounts to iterating through the state list, applying predictor

and completer to the states. At the end of this loop, we want the state list to have

the elements that the corresponding state set started with, plus those added by the

closure of the predictor and completer. At the end of the loop, we have visited all

items, and claim that predictor and completer working on the whole list can add

nothing. Another part of the invariant claims that these are the only states in the

lists — that no rogue states have been added in some other way. The machine is in

Listing 5.2.

Listing 5.2: State Lists Refinement

IMPLEMENTATION stateLists

REFINES stateSets

SEES sent, gram

IMPORTS listData

DEFINITIONS

state == (N × N× N);

Nonterminals == (1 .. numNT);

Terminals == (numNT + 1 .. numNT + numT);

Symbols == (Terminals ∪ Nonterminals);

Root == 1;

MaxLength == (max ({x | (∃y) . (y ∈ ran(productions) ∧ x = size(y))}));
rep == {xx, yy |

(∃rr , jj , ff , a, l , r , f) .

(rr ∈ N ∧ jj ∈ N ∧ ff ∈ N ∧ a ∈ Nonterminals ∧ l ∈ seq(Symbols) ∧ r ∈
seq(Symbols) ∧ f ∈ N ∧

xx = (rr 7→ jj 7→ ff) ∧ yy = (a 7→ l 7→ r 7→ f) ∧
a = ls (rr) ∧ l = (rs(rr) ↑ jj) ∧ r = (rs(rr) ↓ jj) ∧ f = ff )};

scan( ii ) == {xx, yy |
(∃r1, j1 , f1 , r2, j2 , f2) .

(r1 ∈ N ∧ j1 ∈ N ∧ f1 ∈ N ∧ r2 ∈ N ∧ j2 ∈ N ∧ f2 ∈ N ∧
xx = (r1 7→ j1 7→ f1) ∧ yy = (r2 7→ j2 7→ f2) ∧
rs(r1)(j1+1) = sentence(ii) ∧ r2 = r1 ∧ j2 = j1 + 1 ∧ f2 = f1)};
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predict ( ii , upto) == {xx, yy |
(∃r1, j1 , f1 , r2, j2 , f2) .

(r1 ∈ N ∧ r1 ≤ upto ∧ j1 ∈ N ∧ f1 ∈ N ∧ r2 ∈ N ∧ j2 ∈ N ∧ f2 ∈ N ∧
xx = (r1 7→ j1 7→ f1) ∧ yy = (r2 7→ j2 7→ f2) ∧
rs(r1)(j1+1) = ls(r2) ∧ j2 = 0 ∧ f2 = ii )};

completer(upto) == {xx, yy |
(∃r1, j1 , f1 , r2, j2 , f2 , r3, j3 , f3) .

(r1 ∈ N ∧ j1 ∈ N ∧ f1 ∈ N ∧ r2 ∈ N ∧ j2 ∈ N ∧ f2 ∈ N ∧ r3 ∈ N ∧ j3 ∈ N ∧
f3 ∈ N ∧

xx = (r1 7→ j1 7→ f1) ∧ yy = (r3 7→ j3 7→ f3) ∧
j1 = size (rs(r1)) ∧ j2 < size(rs(r2)) ∧
(r2 7→ j2 7→ f2) ∈ ran(lists(f1)) ∧
(∃index) . (index ∈ N ∧ index ≤ upto ∧ lists(f1)(index) = (r2 7→ j2 7→ f2)) ∧
r3 = r2 ∧ j3 = j2 + 1 ∧ f3 = f2)};

complete == {xx, yy |
(∃r1, j1 , f1 , r2, j2 , f2 , r3, j3 , f3) .

(r1 ∈ N ∧ j1 ∈ N ∧ f1 ∈ N ∧ r2 ∈ N ∧ j2 ∈ N ∧ f2 ∈ N ∧ r3 ∈ N ∧ j3 ∈ N ∧
f3 ∈ N ∧

xx = (r1 7→ j1 7→ f1) ∧ yy = (r3 7→ j3 7→ f3) ∧
j1 = size (rs(r1)) ∧ j2 < size(rs(r2)) ∧
(r2 7→ j2 7→ f2) ∈ ran(lists(f1)) ∧
r3 = r2 ∧ j3 = j2 + 1 ∧ f3 = f2)};

ops( ii , upto) == (predict(ii, upto) ∪ complete);

prevItem == (∀uu) . (uu ∈ state ∧ uu ∈ ran(lists(ii)) ∧ uu 6∈ rep−1[ss(ii)] ∧
¬ ( ii = 0 ∧ uu = (Root 7→ 0 7→ 0)) ⇒ uu ∈ closure1(ops (ii, numR))[ran(lists(ii ))]);

restEqual == (∀i) . (i ∈ 0 .. size (sentence) ∧ i 6= ii ⇒ ss(i) =

rep [ran( lists ( i ))]);

setInList == rep−1[ss(ii)] ⊆ ran(lists(ii ));
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directlyDerivable ==

{xx, yy | xx ∈ seq(Symbols) ∧ yy ∈ seq(Symbols) ∧
(∃µ, σ, ν , τ ).

(µ ∈ seq(Symbols) ∧ σ ∈ Symbols ∧
ν ∈ seq (Symbols) ∧ τ ∈ seq(Symbols) ∧
xx = (µ _ [σ] _ ν) ∧ (yy = µ_ τ _ ν) ∧ (σ 7→ τ ∈ productions))};

derivable == (closure1(directlyDerivable) ∪ id(seq(Symbols)))

CONCRETE VARIABLES ii, numR

INVARIANT

(∀i) . ( i ∈ 0 .. size (sentence) ⇒ ss(i) = rep [ran( lists ( i ))]) ∧
numR = card (productions)

INITIALISATION

BEGIN initial; ii := 0; addState (Root, 0, 0, 0); numR ←− numRules END

OPERATIONS

init =

BEGIN initial; ii := 0; addState (Root, 0, 0, 0); numR ←− numRules END;

inc = ii := ii + 1;

bb ←− getIi = bb := ii ;

nextScan =

IF ii > 0 THEN

VAR count, len, rr, jj , ff , rLen, symbol, match IN

count := 0; len ←− numStates (ii−1); kill (ii);

WHILE count < len DO

count := count + 1;

rr ←− getR(ii−1, count);

jj ←− getJ(ii−1, count);

ff ←− getF(ii−1, count);

rLen ←− ruleLength (rr);
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IF jj < rLen THEN

symbol ←− getRS (rr, jj+1);

match ←− senGet (ii);

IF symbol = match THEN

addState (rr , jj +1, ff , ii )

END

END

INVARIANT

count ∈ N ∧ count ≤ len ∧ len = size( lists ( ii−1)) ∧
ran( lists ( ii )) = scan( ii )[( lists ( ii −1))[1..count ]] ∧
(∀i) . ( i ∈ 0 .. size (sentence) ∧ i 6= ii ⇒ ss(i) = rep [ran( lists ( i ))])

VARIANT len − count

END

END

END;

nextOps =

VAR count, inner, len, len2, rLen, rr , jj , ff , r , j , f , symbol, match, nl IN

count := 0; len ←− numStates (ii);

WHILE count < len DO

count := count + 1;

rr ←− getR(ii, count);

jj ←− getJ(ii, count);

ff ←− getF(ii, count);

rLen ←− ruleLength (rr);

IF jj < rLen THEN

inner := 0;

WHILE inner < numR DO

inner := inner + 1;

match ←− getLS (inner);

symbol ←− getRS (rr, jj+1);

IF symbol = match THEN

addState (inner, 0, 0, ii )

END

INVARIANT
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inner ∈ N ∧ inner ≤ numR ∧
(rr 7→ jj 7→ ff) = lists ( ii )(count) ∧ setInList ∧
predict ( ii , inner)[{(rr 7→ jj 7→ ff)}] ⊆ ran(lists( ii )) ∧
prevItem ∧ restEqual

VARIANT numR − inner

END;

symbol ←− getRS (rr, jj+1);

nl ←− nullable (symbol);

IF nl = TRUE THEN

addState (rr , jj +1, ff , ii )

END

END;

IF jj = rLen THEN

symbol ←− getLS (rr);

inner := 0; len2 ←− numStates(ff);

WHILE inner < len2 DO

inner := inner + 1;

r ←− getR(ff, inner);

j ←− getJ(ff, inner);

f ←− getF(ff, inner);

rLen ←− ruleLength (r);

IF j < rLen THEN

match ←− getRS (inner, j+1);

IF symbol = match THEN

addState (inner, j + 1, f , ii )

END

END;

len2 ←− numStates (ff)

INVARIANT

inner ∈ N ∧ inner ≤ len2 ∧ len2 = size( lists ( ff )) ∧
(rr 7→ jj 7→ ff) = lists ( ii )(count) ∧ setInList ∧
completer(inner)[{(rr 7→ jj 7→ ff)}] ⊆ ran(lists( ii )) ∧
prevItem ∧ restEqual

VARIANT (MaxLength × (ff + 1) × (card (productions) + 1)) − inner

END
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END;

len ←− numStates (ii)

INVARIANT

count ∈ N ∧ count ≤ len ∧ len = size( lists ( ii )) ∧ setInList ∧
(∀r, j , f ). (r ∈ N ∧ j ∈ N ∧ f ∈ N ∧ (r 7→ j 7→ f) ∈ lists(ii )[1.. count] ⇒
((ops( ii , numR)[{(r 7→ j 7→ f)}] ⊆ ran(lists(ii))) or

(( f = ii ) ∧ ((∀rr, jj , ff ) . (rr ∈ N ∧ jj ∈ N ∧ ff ∈ N ∧
(rr 7→ jj 7→ ff) ∈ (ops(ii, numR)[{(r 7→ j 7→ f)}]) ∧
(rr 7→ jj 7→ ff) 6∈ ran( lists( ii )) ⇒
(([ rs(rr)( jj )] 7→ []) ∈ derivable) ∧
(rr 7→ (jj−1) 7→ ff) ∈ ran(lists( ii ))))))) ∧

(∀r, j , f) . (r ∈ N ∧ j ∈ N ∧ f ∈ N ∧ (r 7→ j 7→ f) ∈ lists(ii )[1.. count] ∧
([ rs(r)( j+1)] 7→ []) ∈ derivable ⇒ (r 7→ j+1 7→ f) ∈ ran(lists(ii))) ∧
prevItem ∧ restEqual

VARIANT (MaxLength × (ii + 1) × (card (productions) + 1)) − count

END

END;

bb ←− accept =

VAR ruleLen, senLen IN

ruleLen ←− ruleLength(Root);

senLen ←− senLength;

bb ←− inList(Root, ruleLen, 0, senLen)

END

END

5.4.1 Correctness

Refinement of Initialisation

We calculate the weakest precondition for the abstract initialisation to establish the

linking invariant (proof obligation (2) in Figure 2.12):

[ ss , ii := {xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
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(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}, 0]

(∀i) . ( i ∈ 0 .. size (sentence) ⇒ ss(i) = rep [ran( lists ( i ))]) ∧
numR = card(productions)

= {WPM}
(∀i) . ( i ∈ 0 .. size (sentence) ⇒
{xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}(i) =

rep [ran( lists ( i ))]) ∧
numR = card (productions)

Next we calculate the weakest precondition of the implementation to establish

this postcondition:

[ initial ; ii := 0; addState(Root, 0, 0, 0); numR ←− numRules]

(∀i) . ( i ∈ 0 .. size (sentence) ⇒
{xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}
( i) = rep [ran( lists ( i ))]) ∧
numR = card (productions)

= {WPS}
[ initial ; ii := 0]

(∀i) . ( i ∈ 0 .. size (sentence) ⇒
{xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}
( i) = rep [ran(

lists <+ {0 7→ ( lists (0) ← (Root 7→ 0 7→ 0))

( i ))]) ∧
numRules = card (productions)

= {WPS}
(∀i) . ( i ∈ 0 .. size (sentence) ⇒
{xx, yy | xx ∈ (0 .. size (sentence)) ∧ yy ∈ P(state) ∧
(xx = 0 ⇒ yy = {rootElement}) ∧ (xx 6= 0 ⇒ yy = {})}
( i) = rep [ran(
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(0 .. size (sentence)) × {[]}
<+ {0 7→ ( lists (0) ← (Root 7→ 0 7→ 0))

( i ))]) ∧
numRules = card (productions)

= { definition of rep}
true

The last step follows because all state sets and lists besides 0 are empty. We

are thus claiming only that (Root 7→ 0 7→ 0) represents rootElement. We find that

rep((Root 7→ 0 7→ 0)) is indeed the quadruple (Root 7→ [] 7→ rs(Root) 7→ 0). Since the

definitions of init are the same as the initialisations, we have a proof for this operation

as well.

Refinement of Accept

The accept operation is a query, so we just have to verify that the outputs match

(proof obligation 3 in Figure 2.12). Renaming the output of the refined accept to bb’,

we have:

[VAR ruleLen, senLen IN

ruleLen ←− ruleLength(Root);

senLen ←− senLength;

bb ←− inList(Root, ruleLen, 0, senLen)

END]

bool ((Root 7→ rhs 7→ [] 7→ 0) ∈ ss(size(sentence))) = bb’

= {WPV, WPC}
[ruleLen ←− ruleLength(Root); senLen ←− senLength]

bool ((Root 7→ rhs 7→ [] 7→ 0) ∈ ss(size(sentence))) =

inList(Root, ruleLen, 0, senLen)

= {WPC}
[ruleLen ←− ruleLength(Root)]

bool ((Root 7→ rhs 7→ [] 7→ 0) ∈ ss(size(sentence))) =

inList(Root, ruleLen, 0, size (sentence))
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= {WPC}
bool ((Root 7→ rhs 7→ [] 7→ 0) ∈ ss(size(sentence))) =

inList(Root, size (rs(Root)), 0, size (sentence))

= {since sets and lists are equal under rep}
true

Refinement of Scanner

We can make some observations prior to the proof to make it less reprehensible.

First, the two scanners — abstract and concrete — perform the same function on

their respective state representations. Consider an item (rr , jj , ff ) existing in a

state list, and let (a, l , r , f) be the corresponding item in the state set. From the

definition of the scanner on triples, if jj +1 matches the next symbol in the sentence,

then we add (rr , jj +1, ff ). To perform the same function, the abstract scanner

should add the corresponding item to its state set. From the definition of rep, this

item is (a, l ← first(r), tail (r ), f), which is precisely what the abstract scanner

would add when operating on (a, l , r , f). Second, if all state lists and sets are

equal before execution, then we only must show that the ith state and list are equal

afterwards; no other state or list is modified. Finally, on state set 0, both scanners

do nothing, so we can restrict our attention to the positive integers. With these in

mind, we calculate the weakest precondition of the abstract scanner to establish the

linking invariant:

[ ss( ii ) := scan( ii )[ ss( ii−1)]]

ss( ii ) = rep [ran( lists ( ii ))]

= {WPA}
scan( ii )[ ss( ii−1)] = rep[ran( lists ( ii ))]

We therefore have to show that the result of the concrete nextScan is the same as

that obtained by the scanner on the previous list. To start, we prove obligation (5)

in Figure 2.13. There are four conjuncts in the invariant that must be true prior to

loop execution; the fifth is always true as argued above:

[count := 0; len ←− numStates (ii−1); kill(ii)]

count ∈ N ∧ count ≤ len ∧ len = size( lists ( ii−1)) ∧
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ran( lists ( ii )) = scan( ii )[( lists ( ii −1))[1..count ]]

= {WPS}
0 ∈ N ∧ 0 ≤ size( lists ( ii−1)) ∧ size( lists ( ii−1)) = size( lists ( ii−1)) ∧
{} = scan( ii )[( lists ( ii −1))[1..0]]

=

true

We turn to proof obligation (1) in Figure 2.13. The body of the loop extracts the

next element (rr , jj , ff ) from the state set, and if its next symbol matches the next

sentence terminal, it adds (rr , jj + 1, ff ) to lists ( ii ), emulating what the scanner

definition would do on this element.

At the end of the loop, we have postcondition

ran( lists ( ii )) = scan( ii )[( lists ( ii−1))], so this list equals the corresponding

set, and the linking invariant is reestablished.

Refinement of Predictor and Completer

To correctly refine nextOps, we can finally introduce the modification made in the

algorithm due to Aycock and Horspool [1]. The completer remains the same, but

the predictor includes a new condition. The definition of the predictor as given by

Aycock and Horspool is:

If [A→ · · · • B · · · , j] is in Si, add [B → •α, i] to Si for all rules B → α.

If B is nullable, also add [A→ · · ·B • · · · , j] to Si.

We can now show the correctness of nextOps, starting with proof obligation (5)

in Figure 2.13. We have to show that the invariant of the outer loop is true prior to

its execution. We include only the first four conjuncts; the others are true because

the premises of their respective implications are vacuously true when count = 0.

[count := 0; len ←− numStates (ii)]

count ∈ N ∧ count ≤ len ∧ len = size( lists ( ii )) ∧ setInList

= {WPA, WPS, expand operation bodies}
0 ∈ N ∧ 0 ≤ len ∧ size( lists ( ii )) = size ( lists ( ii )) ∧ setInList
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The final conjunct, setInList , asserts that the elements in the corresponding state list

are already present in the list. This follows from the linking invariant, stating that

states and lists are equal.

We now show proof obligation (1) by showing that the operation body maintains,

piece by piece, the outer loop invariant.

For count ≤ len, we simply observe that the loop guard is count < len. To justify

len = size ( lists ( ii )), we have that the last thing the loop does in its body is ensure

this is the case. Next, setInList is always true, because the machine invariant asserts

that all sets and lists are equal prior to the operation call, and nextOps only adds

new items.

The next piece of the invariant states, for all (r , j , f) ∈ lists ( ii )[1 .. count]:

• If f 6= i, then this state cannot be used to add new items

• If f = i, and some new item (q, k+1, g) could be added from this state, then

(q, k, g) is already present and rs(q)(k) is nullable.

The inner loops of nextOps add the items that a predict or complete operation

would add, and we have already argued that once we use the predictor, or complete

on an item where f < i, no further item can be added. When f = i, we know

that (q, k, g) is present, otherwise the completer could not have added (q, k+1, g).

The item (r , j , f) was initially created in list i and completely recognized without

consuming any input, so the right-hand-side of r must be nullable. This means that

nonterminal r = rs(q)(k) is nullable as well.

The next conjunct states that for all items (r , j , f) we have visited, if the next

symbol is nullable, then (r , j+1, f) is added. This addition is exactly made by the

part of the predictor corresponding to the Aycock-Horspool modification.

Continuing with prevItem, we state that all newly added items are in the closure

of the predictor and completer acting on the current contents of the list. The only

possibly problematic item is the one added when (r , j , f) is present, and (r , j+1, f)

is added by moving over a nullable symbol. However, we know that (r , j+1, f) must

be in the closure of the predictor and completer over any set that includes (r , j , f),

via an argument paralleling Theorem 4.3.

Lastly, we want that all other sets and lists are still equal, certainly true because

they were equal prior to this call, and we are not changing them.

We calculate the weakest precondition for the abstract nextOps to establish the

invariant. As with the scanner above, we focus on the set that we know is changed:
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[ ss( ii ) := closure1(ops( ii ))[ ss( ii )]]

ss( ii ) = rep [ran( lists ( ii ))]

= {WPA}
ss <+ { ii 7→ closure1(ops( ii ))[ ss( ii )]}( ii ) = rep [ran( lists ( ii ))]

In other words, it adds the closure of the predictor and completer to the state

set. The implementation does the same, because on termination of the while loop we

have that no predictor or completer operation on any state can add a new state. The

reason is that even if a state where f = i exists, there is no (q, k+1, g) that could

be added using it. If there were, we know (q, k, g) exists in the list and its k + 1st

symbol is nullable, so (q, k+1, g) must be present. Combining this with the fact that

all newly added states result from a predictor or completer step shows we have the

required closure on the predictor and completer.

As in the execution of the scanner, the predictor and completer run in their own

inner loop, in order to systematically add all resultant states to the list. The loop

invariant of the predictor states that, using only the first inner productions of the

grammar, we have added the elements that the predictor would produce, so that at

its completion, we have predicted all items using the current one. The completer loop

operates similarly: at any point, we have used the completer on the first inner states

of state list f. Since the loop iterates until the whole list has been processed, nothing

further can be accomplished using the completer at this point. We thus know that if

f 6= i, this item can never be used again to add a new item; if f = i, we know that

the modified predictor will add any items that we will miss by running this complete

step now and not again at some later point.

To conclude, we require a suitable variant for the loops in nextOps. When exe-

cuting the predictor, the variant is simply the number of rules of the grammar not

processed. The variant of the completer and outer loop use the analysis in 4.6.2,

which indicates the maximum number of states we can visit before we must exhaust

the current list.

5.5 Optimizing via Invariants

The loop invariants given in the previous section for the list refinement are useful for

understanding correctness. Interestingly, they have also directly lead to the discovery
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of an optimization we can make, which we briefly outline here. For an item where

f = i, we can process it and move to the next item, even if we could have used it later

to add a new state. Assume that we are about to run the inner loop corresponding to

the completer on such a state, and consider what happens if we in fact do not run the

completer and just move past the item. We have f = i, so the loop invariant tells us

that, for any (s , k+1, g) that could be generated from this state, we have (s , k, g)

present in the state list already, and the predictor will add (s , k+1, g). Therefore,

we do not have to produce any of the (s , k+1, g) items at all, since the predictor will

do this. Essentially, running the completer at this point accomplishes a subset of the

work that the predictor would do. In summary, we can avoid running the completer

on any state where f = i.
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Chapter 6

Literate Implementation

We give a self-contained, literate implementation of Earley’s algorithm in Pascal.

Literate programming [12] was conceived by Donald Knuth in 1984, as a way to

reverse the roles of comments and code. The essense of the approach is that code

should be written primarily for human consumption, not in the form compilers and

interpreters expect. We can freely mix code chunks and associated documentation

in a single file which can be converted (woven) into a document (a literary work)

to be read and understood. We can also extract (tangle) the code from the file,

resulting in the removal of documentation and reorganization of code into the form

required for computer processing. Since documentation and code cohabit, it is hoped

that the documentation will remain up-to-date with the code, rather than becoming

unsynchronized.

Weaving and tangling is accomplished by a literate programming tool which sup-

ports the desired input and output languages. We have chosen Noweb [15] since it

is input-language-independent, thus supporting Pascal, and can generate LaTeX as

output.

6.1 Algorithm Description

Earley’s algorithm is a context-free recognizer, with the property that it can be used

on any context-free grammar, and still run in no worse than O(n3) time. It takes a

sentence and a grammar, and determines whether or not the sentence belongs to the

grammar.

The algorithm works conceptually in n + 1 phases, where n is the length of the

77
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input string. These phases are all associated with their own set of data, referred to

as a state set. These state sets are composed of so-called Earley items, which, taken

in unison, maintain the entire state of the parser (that is, what has been parsed so

far and what can potentially be parsed next).

Earley items can be represented by triples (r, j, f) of integers, assuming that the

grammar productions have been arbitrarily ordered. We have that r is the integer for

a rule of the grammar, j represents the position we are interested in parsing of the

right-hand-side of r and f represents the state set in which parsing this production

began. A final item is one which has been completely parsed. In such a case, j = p′,

where p′ is the length of the rule, since the last token parsed was the last token in

the production.

The algorithm requires that a new rule, S, be introduced, which has only one

production. This simplifies the recognition condition, and is a simple transformation

that can be performed on all grammars.

The algorithm begins with the item (S, 0, 0) in state set 0. If the sentence has

length n and the length of the root production is S ′, then it accepts the sentence if

sn contains (S, S ′, 0).

To get an idea of what states represent, consider an item (r, j, f) belonging to state

set i. Recall that the f component represents the state set where the production r

began to be parsed. Keeping in mind that a state set corresponds with the current

position in the input string, f represents the fact that the first f characters of the

input string, followed by the nonterminal on the left-hand side of rule r, can be

generated.

Next, we turn to the j component, which says that we have parsed j tokens of the

right-hand side of rule r. This tells us that the first j tokens can generate the string

consisting of the terminals from f + 1 to i in the input sentence.

Earley’s algorithm seeks to systematically build these state sets. It involves the

repeated application of three functions: predictor, scanner, and completer. We review

them for completeness, and assume that they are operating on a state set (r, j, f) in

state set i.

• Predictor: adds, to state set i, items (q, 0, i), where q is the j + 1st symbol in

the right side of r

• Completer: if operating on a final state, then for all items of the form (q, l, g),

found in state set f , if the l+ 1th symbol in q is r, then add (q, l+ 1, g) to state
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set i

• Scanner: If the j + 1st symbol in the right side of r is the i+ 1st symbol in the

sentence, add (r, j + 1, f) to state set i+ 1

In order to deal with grammars containing ε-productions, it is necessary to add to

the predictor step given: if the jth symbol of the right-hand side of rule r is nullable,

then we also add (r, j + 1, f) to the state set.

6.2 Grammar Module

The first step is to define a module for representing grammars. There must be a way

to extract the left side of a rule, part of the right side of a rule, the nonterminal and

terminal sets, the first rule belonging to a given nonterminal, the length of a rule,

and so on. The following interface is used.

〈GrammarInterface〉≡
unit grammar;

interface

const

ruleLength = 10;

function getRuleLeft (w : integer) : char;

function getRuleRight (w, p : integer) : char;

function getRuleLength (w : integer) : integer;

procedure newRule (c : char; s : string);

function getRuleNum (w : char) : integer;

function numRules : integer;

procedure addNT (c : char);

function inNT (c : char) : boolean;

procedure addTT (c : char);

function inTT (c : char) : boolean;

procedure findNullable;

function isNullable (c : char) : boolean;
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The upper limit on the length of a rule is to allow an array to represent the rules,

for faster access. The number of rules, however, is not known and so is represented as

a linked list in the implementation. A variable pos is introduced, to point at the end

of this list. This makes it fast to add a new rule to the end of the list, via newRule.

The implementation procedures are then straightforward:

〈GrammarImplementation〉≡
implementation

type

ruleList = ^ruleElement;

ruleElement = record

left : char;

right: string[ruleLength];

which : integer;

next : ruleList

end;

var

rules : ruleList;

nRules : integer;

pos : ruleList;

tt, nt : set of char;

nullable : array[char] of boolean;

function getRule (w : integer) : ruleList;

var counter : integer;

var t : ruleList;

begin

counter := 0;

t := rules;

while counter < w do

begin

t := t^.next;

counter := counter + 1

end;
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getRule := t

end;

function getRuleLeft (w : integer) : char;

var t : ruleList;

begin

t := getRule (w);

getRuleLeft := t^.next^.left

end;

procedure newRule (c : char; s : string);

begin

new (pos^.next); pos^.next^.left := c; pos^.next^.right := s;

pos^.next^.which := nRules; pos^.next^.next := nil;

nRules := nRules + 1; pos := pos^.next

end;

function getRuleRight (w, p : integer) : char;

var t : ruleList;

begin

t := getRule (w);

getRuleRight := t^.next^.right[p]

end;

function getRuleLength (w : integer) : integer;

var t : ruleList;

begin

t := getRule (w);

getRuleLength := length(t^.next^.right)

end;

function getRuleNum (w : char) : integer;

var t : ruleList;

begin

t := rules;
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while t^.next^.left <> w do

t := t^.next;

getRuleNum := t^.next^.which

end;

function numRules : integer;

begin numRules := nRules end;

procedure addNT (c : char);

begin nt := nt + [c] end;

function inNT (c : char) : boolean;

begin inNT := c in nt end;

procedure addTT (c : char);

begin tt := tt + [c] end;

function inTT (c : char) : boolean;

begin inTT := c in tt end;

〈nullable〉

begin

nt := []; tt := [];

new (rules); rules^.next := nil;

pos := rules; nRules := 0

end.
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We can compute the nullable elements of the grammar with a fixed-point proce-

dure. We know that all nonterminals with ε-productions are nullable. Moreover, if

all right-hand-side symbols of a production are nullable, then so is the left-hand-side

of this production. We continue this until no new information is added.

〈nullable〉≡
procedure findNullable;

var

ch : char; i, j : integer;

change : boolean; {did something change on this iteration?}

temp : boolean;

begin

for ch := ’$’ to ’z’ do

nullable[ch] := false;

i := 0;

while i < numRules do

begin

if getRuleLength (i) = 0 then nullable[getRuleLeft (i)] := true;

i := i + 1

end;

change := true;

while change do

begin

change := false;

i := 0;

while i < numRules do

begin

temp := nullable[getRuleLeft(i)];

if getRuleLength (i) > 0 then

begin

j := 1;

while (nullable[getRuleRight(i, j)]) and

(j < getRuleLength (i)) do

j := j + 1;

if (j = getRuleLength (i)) and

(nullable[getRuleRight(i, j)]) then
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nullable[getRuleLeft(i)] := true

end;

if temp <> nullable[getRuleLeft(i)] then change := true;

i := i + 1

end

end

end;

function isNullable (c : char) : boolean;

begin isNullable := nullable[c] end;
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6.3 Reading the Grammar

We have to provide a way for a grammar to be entered by the user, for use in the

algorithm. Our input format is one production per line, where a production begins

with a nonterminal symbol, followed by a space, the = character, another space, the

right-hand-side of the production and a period (.). The right-hand-side is a sequence

of nonterminal symbols and quoted terminal symbols.

〈ReadGrammar〉≡
unit readgrammar;

interface

procedure getGrammar;

implementation

uses grammar;

procedure getGrammar;

var

l, r, temp : char;

counter : integer;

text : string[ruleLength];

begin

while not eof do

begin

read (l);

addNT (l);

read (temp); read (temp); read (temp); read (r);

counter := 0;

while true do

begin

if r = ’.’ then begin readln; break end;

counter := counter + 1;

if r = ’"’ then
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begin read (r); addTT (r);

read (temp); end;

text[counter] := r;

read (r)

end;

SetLength (text, counter);

newRule (l, text)

end;

end;

end.

6.4 State Set Module

The other data that the algorithm uses is state sets, which will also be presented as a

module. The interface primarily consists of procedures to add new Earley items, and

to retrieve their components. A constant maxInput is introduced, so that state sets

can be represented as elements of arrays, improving the access time:

〈StateInterface〉≡
unit statesets;

interface

const

maxInput = 50;

procedure addToEnd (i, r, j, f : integer);

function inSet (i, r, j, f : integer) : boolean;

function numIn (i : integer) : integer;

function getR (i, j : integer) : integer;

function getJ (i, j : integer) : integer;

function getF (i, j : integer) : integer;
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〈StateImplementation〉≡
implementation

〈StateType〉
〈StateCode〉

The Earley items consist of three integers, so will be represented as triples. An

array stateObj will be introduced, whose elements are linked lists of these items. We

also keep an array containing the count of the number of elements in the state sets.

〈StateType〉≡

type

stateList = ^state;

state = record

r, j, f : integer;

next : stateList

end;

var

stateObj : array[0..maxInput] of stateList;

objCount : array[0..maxInput] of integer;

i : integer;
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Procedure addToEnd adds the given triple to state set i.

〈StateCode〉≡
procedure addToEnd (i, r, j, f : integer);

var t : stateList;

begin

t := stateObj[i];

objCount[i] := objCount[i] + 1;

while t^.next <> nil do

t := t^.next;

new (t^.next);

t^.next^.next := nil;

t^.next^.r := r;

t^.next^.j := j;

t^.next^.f := f

end;

Earley’s algorithm requires that new items be added, only if they did not previ-

ously exist in the list. inSet thus returns true or false, reflecting whether or not

the item is in the list:

〈StateCode〉+≡
function inSet (i, r, j, f : integer) : boolean;

var t : stateList;

begin

inSet := false;

t := stateObj[i];

while t^.next <> nil do

begin

if (t^.next^.r = r) and (t^.next^.j = j) and (t^.next^.f = f) then

inSet := true;

t := t^.next

end

end;
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Returning the number of items in a state set is achieved through the objCount

array:

〈StateCode〉+≡
function numIn (i : integer) : integer;

begin numIn := objCount[i] end;
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To retrieve a specific item from the list, the list number and item number are

required. So as not to duplicate code, a general getItem procedure is defined, and

used by the following procedures to extract a certain part of the rule:

〈StateCode〉+≡
function getItem (i, j : integer) : stateList;

var counter : integer;

pos : stateList;

begin

pos := stateObj[i];

counter := 0;

while counter < j do

begin

pos := pos^.next;

counter := counter + 1

end;

getItem := pos

end;

function getR (i, j : integer) : integer;

var pos : stateList;

begin

pos := getItem (i, j);

getR := pos^.next^.r

end;

function getJ (i, j : integer) : integer;

var pos : stateList;

begin

pos := getItem (i, j);

getJ := pos^.next^.j

end;

function getF (i, j : integer) : integer;

var pos : stateList;

begin
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pos := getItem (i, j);

getF := pos^.next^.f

end;

begin

for i := 0 to maxInput do

begin

objCount[i] := 0;

new (stateObj[i]);

stateObj[i]^.next := nil

end

end.
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6.5 Earley Module

It now remains to use these two modules to execute Earley’s algorithm. The main

loop is a for loop that iterates through all the state sets. An inner while loop iterates

until there are no further items in the current state set to process. After the for loop

ends, the recognition condition is checked and the result is printed. Note that if the

sentence does not belong to the grammar, some iterations of the for loop will do

nothing; it will just loop until it has searched the last (and empty) state set. This

is fine — although Earley optimized slightly and short-cuts the algorithm if the next

state set is empty. After reading the input string and grammar, the algorithm is

executed.

〈EarleyAlgorithm〉≡
program earley (input, output);

uses grammar, readgrammar, statesets;

var

x : string[maxInput]; {input string}

procedure computeEarley;

var

nr, i, inner, counter, r, j, f, q, l, g : integer;

begin

addToEnd (0, 0, 0, 0); findNullable;

for i := 0 to length (x) do

begin

inner := 0;

while inner < numIn (i) do

begin

r := getR (i, inner);

j := getJ (i, inner);

f := getF (i, inner);

{prediction}

if (j <> getRuleLength(r)) and inNT((getRuleRight(r, j+1))) then
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begin

if (isNullable (getRuleRight(r, j+1))) and

(not inSet (i, r, j + 1, f)) then

addToEnd (i, r, j + 1, f);

nr := getRuleNum (getRuleRight (r, j+1));

while nr < numRules do

begin

if getRuleLeft (nr) <> getRuleRight (r, j+1) then break;

if not inSet (i, nr, 0, i) then

addToEnd (i, nr, 0, i);

nr := nr + 1

end

end

{completion}

else if (j = getRuleLength(r)) then

begin

counter := 0;

while counter < numIn (f) do

begin

q := getR (f, counter);

l := getJ (f, counter);

g := getF (f, counter);

if getRuleRight (q, l+1) = getRuleLeft (r) then

if not inSet (i, q, l+1, g) then

addToEnd (i, q, l+1, g);

counter := counter + 1

end

end

{scanning}

else if (i < length (x)) and (j <> getRuleLength (r)) and

(inTT (getRuleRight (r, j+1))) then

begin

if getRuleRight (r, j+1) = x[i+1] then
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if not inSet (i+1, r, j+1, f) then

addToEnd (i+1, r, j+1, f);

end;

inner := inner + 1

end

end;

writeln (inSet (length (x), 0, 1, 0));

end;

begin

readln (x);

getGrammar;

computeEarley

end.
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In Closing

We have shown a development of Earley’s recognizer in the B-Method, from an ab-

stract description of a recognizer, through a set-theoretic version of the algorithm and

ending at an efficient list-processing realization. For two reasons, a literate Pascal

implementation was also presented. First, we wanted to show that the B implemen-

tation using lists closely corresponds to an actual implementation in a commonplace

programming language. Second, it gave an opportunity to demonstrate an optimiza-

tion of the version developed in B. Specifically, the scanner was incorporated into

the same loop structure as the predictor and completer, whereas the B development

relies on a separate operation to act as the scanner. We chose to carry out the B

development in this way to simplify the reasoning of the list refinement, whose proof

was already obscured by the complexity of the algorithm and the change of represen-

tation of states. This observation directly leads to some possible future work: we can

try to incorporate optimizations of Earley’s recognizer into the proof. Besides the

scanner optimization, various forms of lookahead have been proposed to speed up the

algorithm [5, 1]: it would be interesting to show when and where lookahead could be

used, but also to find cases where “obvious” lookahead optimizations in fact break

the algorithm.

In its full glory, an Earley recognizer can also build parse trees corresponding to

the steps used in the recognition of a sentence. It would be instructive to formlize

this as well for several reasons. First, it would require a rigorous description of what

exactly a parse tree is, so that we can assert that Earley’s algorithm indeed generates

parse trees for a given sentence. Second, for ambiguous grammars, there may be

multiple parse trees for a given sentence. We therefore cannot simply ignore the
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addition of an item to a set or list when it is added two or more times, as we did

here. It would be instructive to modify the B development to take this into account,

and we wonder how much of the current development would readily scale up to this

more chalenging problem. There is also work [21] indicating that the method Earley

gives for constructing parse trees is incorrect in some instances involving ambiguous

grammars. A B development should provide another avenue for exploring the reason

for this incorrectness, and directly or indirectly lead to possible solutions.

A litany of other parsing algorithms exist, some of which we outlined at the outset.

Formalizing these algorithms may provide common ground for which to analyze their

commonalities, or to make clear the subsets of the CFGs that they can deal with. We

expect that the CYK algorithm, with its simple matrix-multiplication-like structure,

would be particularly amenable to an elegant specification and implementation.

While we have focused on context-free parsing algorithms, which have been widely

studied and understood, there are other means by which languages can be specified.

In particular, for describing programming languages, a more modern device is the

Parsing Expression Grammar (PEG) [7]. These grammars allow only a single pro-

duction per nonterminal, thus disallowing the very idea of ambiguity from entering a

grammar. The languages recognized by the PEGs are an arbitrary-looking mélange of

regular, context-free and even non-context-free languages. While these fuzzy bound-

aries may be disconcerting, an interesting property is that we can have a linear-time

parser for any PEG. We wonder if the parse trees generated by these grammars would

be easier to reason about than the potential parse forests produced by a context-free

recognizer.
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