On Documenting the Requirements for
Computer Programs Based on Models of Physical Phenomena
Konstantin Kreyman and David Lorge Parnas

Abstract

Programs for use by Scientists and Engineers are usually embodiments of mathematical
models of physical phenomena. Complete and accurate models are usually quite complex
because they must deal with the wide-variety of situations that can arise in the real-world.
Informal descriptions of these models are often incomplete, imprecise, and, inaccurate
and are not suitable for specifying what is required of a software package. This paper
presents an approach to writing requirements documents for such programs. It
demonstrates how tabular notation can make precise mathematical expressions more
readable. It also shows how we can document systems in which the user is given some
control of the computational method to be used.

1 Why do we need a better design process for software that models physical phenomena?

For many decades computers have been used to predict the behaviour of physical systems by
using software that implements mathematical models of physical processes. These predictions can
be very important as they are often used in the design of critical structures and systems, evaluating
environmental impact, or controlling potentially dangerous processes. Unfortunately, often the
predictions are wrong because the software is not an accurate implementation of the model of the
physical phenomena. Errors in the software are often quite hard to detect because the underlying
model may not be accurately and completely described; the software is quite complex and
differences between the intended model and the actual one may be quite subtle [11]. This paper is
part of an ongoing effort to develop methods and notations that improve the quality of software
and reduce the number of errors made in its development.

The most effective way to avoid faults during a system’s operation is to eliminate or reduce
errors during the initial design and early development phases. It is much more difficult to correct
those errors later, when the design has progressed and the complexity has increased.

Although there have been some successes in solving complex engineering and scientific
problems using computer systems, the usual process of designing software appears quite irrational
to many observers. Programmers usually start working without a clear statement of the desired
behaviour and implementation constraints and often solve the wrong problem.

Ideally, we would derive computer programs from a statement of requirements in the same
way that theorems are derived from axioms in mathematical proofs. Probably, we’ll never see a
software project that proceeds in such a perfectly “rational” way. Parnas and Clements [16]
discussed at least seven reasons why that would be hard to achieve. However, precisely
documenting the requirements can improve the software design process in many applications.
Without a proper requirements document, we may end up with a good solution to the wrong
problem. Program developers are also quite likely to overlook important special cases or even to
invest effort in modelling situations that are not important.

2 Why do we need a relational model of documentation?

A significant portion of most software development efforts is devoted to documentation [1,
14]. In addition to improving program quality, good documentation improves software usability
and maintainabiltiy; these are very important for reducing long-term software related expenses.

models3august 1/14 1/23/02

Although there is widespread recognition that documentation is important, the literature often
contains different, even contradictory, opinions about whether or not a certain fact should be
included in a given software document. Most documentation standards specify the format, but not
the information content of the document. For these reasons, similar information is often included
in several documents or not found in any.

Documentation can play a major positive role in the software development process.
Unfortunately, very often, the documentation is one of the final steps in software development
[19]. If the documentation is written by the developers when the project is nearing completion, the
document is often useful to people who know the software well, but usually hard for others to
understand. Because of the complexity of mathematical models that are usually used in
engineering and scientific simulations, any way to make requirements documentation easier to
understand and use during software development could dramatically reduce the number of errors
found in such software [11].

A positive industrial experience with relational documentation is reported on the results of
Bell Labs project [7]. The time invested in development of a precise statement of requirements
was more than regained when the system received its first on-site test. The test period was the
shortest in the Lab’s history. Software assessment showed that most of the misunderstandings that
normally become apparent during testing had been eliminated when the relational requirements
document was reviewed. Another result of the rational approach was improved accuracy and
usability of informal user documentation. It was found that if the structure of the informal
documentation was based on the structure of formal software documentation and, in fact imitates
it, the quality of the informal documents was greatly enhanced. The use of formal mathematical
documentation to supplement the informal user documentation is consistent with accepted
engineering standards.

A relational requirements model and program documentation model were used for inspecting
of safety-critical computer programs for the Darlington Nuclear Power Generating Station in
Ontario (Canada). At Darlington, the safety shutdown systems were computer controlled. The
information that was actually relevant to understanding the shutdown system of nuclear reactor
was summarized in a system requirements document. They described exactly what properties are
needed for the shutdown system [15]. The relational specifications of the Darlington Shutdown
Software allowed a team of engineers and programmers to work together when inspecting the
code. The precise specification was essential for understanding, effective inspection and testing
and correcting the software.

This paper outlines an approach to software documentation and software design that is
intended to help scientists, engineers and programmers who develop or review software to deal
with the complexity of software products. If software that is based on mathematical models and
destined for predicting physical phenomena or behaviour of a system is to play a safety-critical
role, it is essential to restrict the complexity of the programs. We believe that the technique
described below can not only simplify the process of software requirements development but will
also help all members of the team to obtain a more complete understanding of the phenomena
being modelled. It will combine the knowledge of model and program developers and thereby
contribute to the improvement of software quality in many engineering and scientific applications.

3 Mathematics-based models of requirements documents: basic definitions

Although academic computer science has investigated formal methods intensively, such
methods are not routinely used in industry. Even when formal methods are often used, they are

models3august 2/14 1/23/02

used only to a limited extent and resisted by engineers and programmers. This situation is hardly
surprising, both because there are many widely held misconceptions about the use of formal
techniques [2] and because many of the methods are not practical. Below we will argue that it is
possible, to obtain benefits from methods based on a relational model of software requirements.

The principles of documentation and the software design process most applicable for our
objectives are based on the concept that the core of a requirements document is a mathematical
model, including a set of mathematical relations that may be described in tabular form [6, 16, 20].
Assuming that each document must contain a representation of one or more binary relations, and

that each relation describes a set of ordered fddanas and Madey [17], defined the contents of

a number of standard documents, including requirements documents. One of these documents is
considered to be complete if it contains enough information to determine whether or not any
ordered pair should be included in the relation. This approach automatically answers questions
frequently asked by programmers and engineers about what information should be included in a
document. In this approach, a document containing additional information is considered to be
faulty, because misinterpretation of the additional information is possible [5].

The four-variable model works well for control systems [15] and has also been used for
information systems [7] but does not fit well for programs that are based on mathematical models
of specific phenomena. This paper presents a five-variable model that better reflects the reality of
forecasting tools and makes it easier to apply relational methods in practice.

3.1 The environmental variables

The choice of quantities describing the system under consideration is a critical step in the
development of any mathematical model. As in [17], the requirements analysis begins with
identification of the environmental quantities. The environmental quantities are divided into two
sets:monitored quantitiedVQ, i.e. those that the user wants the computer system to observe and
measure, ancontrolled quantities,CQ, whose values the software is intended to compute
(predict). Monitored quantities are physical quantities that exist outside of the computer system.
Controlled quantities are also physical quantities that are measurable outside of the computer
system but may be incorrectly perceived as being part of the system because the system controls

then?. Although these are concepts that are often used in the design of real-time control systems,
they are also useful concepts for designing other systems such as Computer Aided Design (CAD)
systems [21].

The monitored quantities can be further partitioned into those whose values are unknown and
should be computed and those whose values are known or can be measured. Often, the controlled
guantities are intended to be accurate estimates of the monitored quantities that cannot be
measured directly. Below we will usgy,my,..m, andcy,c,,,..¢ to denote quantities from sets MQ

and CQ, respectively. The values of each of these quantities can be recorded as functions of time.
The function describing the value of an environmental quaatiy timet will be denoted bya'.
The tuple of time-functionsnffy,m’,,..nty) and €'3,c%,...C), containing one element for each of

the monitored or controlled quantities will be denotearbgndc' respectively.

aFor example the relation y = x + 1 is a set of pairs of integers (x,y) that includes... (1,2) (2,3)...
(99,100)...
bFor example the clock on a computer screen is a physical quantity measurable outside the system.

models3august 3/14 1/23/02

3.2 The computer’s inputs and outputs

Input devices are used to sense the values of the monitored variables and transform them into
digital inputs for the computers. The set of inputs will be denatgd,..i,. Similarly, output

devices transform digital output values to values of the controlled variables. The set of outputs
will be denotedo,,0,,..q. The inputs provide information about the values of the monitored

guantities while the outputs influence the values of the controlled quantities.

3.3 Method dependant values and user preferences

In many scientific and engineering applications, numerical methods are applied to obtain a
solution of a system of equations that constitutes a mathematical model of the physical
phenomena under consideration. It is important to distinguish between a model and a method. A
mathematicainodeldescribes the physical phenomena in terms of the values of physical variables
in that environment. A model may embody any of the physical laws including special properties
of materials and the environment. To compute the values described by the model, we must choose
a computational methqd.e a specific procedure for calculating values that are (approximately)
those predicted by the model. For any model, there will be several methods that we might
consider.

When we apply a computational method, we usually introduce new quantities that do not
correspond to any quantities in the environment and are not mentioned in the model. These
guantities are method dependant, that is, if we choose a new method, we may have different
guantities. Examples of such method-dependent quantities are mesh size, termination conditions
for iterative procedures, the resolution of numeric variables, etc. These method-specific quantities
are not properties of the physical world; they only have meaning in reference to a specific
computational method.

We may also introduce quantities that represent the user’s assumptions about the environment
and their preferences about the results. Examples of characteristics that a user may be allowed to
specify are accuracy and output report format. Nothing in the physical problem deals with these
values. For example, mathematical models do not deal with inaccuracy caused by finite numerical
representations - all values in the model are the ideal values. However, limitations on our
computational devices and methods will introduce error and a user may wish to specify upper
bounds on that error. Examples of user assumptions about the environment include limitations on
the range of values or their rate of change.

In an earlier approach known as the four-variable-model, [15, 17, 21], such model-dependant
variables were treated as if they were environmental variables but this can be confusing. It
confuses the distinction between model and method, and can lead designers to ignore important
factors and to make poor software design decisions. Distinguishing these non-environmental
guantities from the environmental monitored quantities has many advantages. For example, it
would allow a developer to use new methods without having to make changes in most of the
documents describing the system requirements.

The values of these non-environmental quantities must be communicated to the software. We
will refer to the non-environmental quantities that are described abovg a§..n°g_. In the four-
variable model, the inputs provide information about the values i In this paper, we extend

€ In principle the non-environmental quantities can change while the system is running and should
be represented as time functions. However, this is not the usual case and we will not do so.

models3august 4/14 1/23/02

the set of inputs to include additional items that will carry information about elements of n. The
additional inputs to the softwarg,will be a function, NEQ, of (1) method dependant quantities,

(2) users assumptions about the valuemaind (3) user requirement variables, i.e. variables used

by the user to state required quantitative properties of the solution. IThUSEQ(n) where n
denotes a tuple specifying values for these non-environmental quantities. Figure 1 shows the
computational system and the five variables (n,n,&) described above.

User/Researcher

n

Computer System

Method-Dependant
User Interface

Environment — = —1 Processor

m Input Devices| i iei

L | with Storage| © Output Device c

Figure 1: The five variable model of software modelling physical phenomena as explained in 3.

3.4 Relations between the variables

A relation NAT will describe the environmental restrictions, (which result from the constraints
imposed by nature and previously installed systems), on the values of environmental quantities. In
accordance with the approach taken in [17], NAT will be defined as follows:

« domain (NAT) is a set of vectors of time functions containing exactly the instanaes of
allowed by the environmental constraints

«range (NAT) is a set of vectors of time functions containing exactly the instances of
allowed by the environmental constraints

If there are no constraints an' andc!, then NAT = MQ x CQ. However, usually NAT is a

subset of MQx CQ and is not a function. It is important that if any valuestfare not in the
domain of NAT, the program designer may assume that these values will never occur. Thus, a
representation of the relation NAT describes the phenomena to be modelled by the software. For
example, often NAT could be described by a set of equations. It should be the responsibility of
scientists and engineers who are experts in the domain of application of the software to determine
the relation NAT. They need not be skilled programmers to do this but they must understand what
information the programmer will need to develop a system that will adequately predict the
behaviour of the variables of interest.

To restrict the relation NAT to environmental quantities (nature) only, a new re‘P'dﬂErQ,
describing newly introduced quantities, can be used.

dThis relation will usually be a function.

models3august 5/14 1/23/02

Relation NEQ is defined as follows:
« domain (NEQ) is a set of vectors of time-functions containing the new quantities
« range (NEQ) is a set of vectors of time-functions containing possible instarides of
« (N, iY) O NEQ if and only ifi' describes values of the input registers that are possible when
n' describes the values of the non-environmental quantities.

Separating NEQ from NAT will make both descriptions clearer. It also clarifies who is responsible
for providing the information.

The computer system behaviour that is acceptable can be documented by describing a relation
REQ, defined as follows:

« domain (REQ) is a set of pairs of vectors of time functions containing the instancés of
allowed by the environmental constraints and all possible valu#s of

« range (REQ) is a set of vectors of time functions containing only those instancethat
are allowed by a correctly functioning computer system.

The relation REQ can be considered feasible with respect to the relation NAT and NEQ if

domain (REQ)J domain (NAT) (1)
domain (REQn NAT’) = (domain(REQ) domain(NAT)® (2)
where NAT = {((m,n),c) 0 (m,c) O NAT}. 3)

Feasibility in this sense means that the restrictions described in relation NAT ot &AT
NEQ will allow the required behaviour as described by REQ.

For several reasons, for instance the approximate nature of numerical computations, imperfect
computational algorithms or computer hardware, “small” errors are usually acceptable in the
results of computations, i.e. in the values of controlled quantities. Therefore the relation REQ is
usually not a function. Moreover, the relation REQ may depend on the method dependent
guantities.

The interpretation of the inputs can be described by relations IN and NEQ. Before further
defining IN, it is convenient to define INRelation IN is a set of pairsr',i). The pair mti!) is

in IN” if it represents possible values of the inputs wimtrepresents the values of the monitored
gualities. The relation IN can be defined as follows:

« domain (IN) is a set of vectors of time-functions containing the possible instanodsbf
where “¢” denotes concatenation;

domain (IN)J domain (NAT) 4)
« range (IN) is a set of vectors of time functions containing possible instaniéé’s of

Relation IN is a set of pairs of vectors of time functionsi¢f!), (i%i%)). The pair ((nen), (i'it))
is in IN if (m%,i%) is in IN” and @) is in NEQ.
The behaviour of the output device can be described by means of relation OUT as follows:
« domain (OUT) is a set of vectors of time-functions containing the possible instanées of o
« range (OUT) is a set of vectors of time functions containing all possible instaretes of

®Note that these formulae assume that the values of the newly introduced quantities are independent
of the values of m.

models3august 6/14 1/23/02

The software will provide a system with input—output behaviour. It can be described by a
relation SOF. Relation SOF is defined as follows:

« domain (SOF) is a set of vectors of time-functions containing the possible instaribé's of
« range (SOF) is a set of vectors of time-functions containing the possible instantes of o

For the software to be acceptable, SOF must satisfy the following cohdition

O m,c,ntitit ol [(IN (mtentitit) O SOF(Isit, oY) TOUT(d,c') ONEQ(H,iY) O

NAT(m',c)) O REQ(nt,d})] (5)
Figure 2 shows the computing system and the relations described above.
User/Researcher
| n
TTTTttmmmmommmmmomes #é ________ Computer Systen
Method- '
Dependant User NEQ
Interface .
. S
m| el c

Enwronmenti—%r Input Devices|i A AT processor | A 077 | Output device| A g

with storage

Figure 2. Relational structure of the five variable model. Solid arrows show data flow. Dashed
arrows show the relations discussed im3n, c, 4i, 0 are as in Figure 1.

4 Interaction of team members during the requirements document development process.

The approach in Section 3 allows individual team members to start working on some parts of
the documentation independently. Ideally, the relation NAT would be described by professionals
who are experts in mathematical modelling of physical phenomena. Computing professionals
need not be involved in writing this description, but they must read it.

Development of the relation NEQ requires cooperation between the future users and experts in
numerical algorithms and computations. Developing the relation REQ can be done by software
system designers consulting with representatives of the future users and should not require an
understanding of computational methods. Computer or Software Engineers must describe the
relations IN and OUT. The relation INcombines the work of Software Engineers, future users,
and experts in numerical algorithms. The software implementers inspect the relation SOF to
determine its implementability, and then use it to guide this work.

f From this expression one might identify this model as a six-variable model. We have chosen to
consider i and as a single variable.

models3august 7/14 1/23/02

In theory, this approach allows experts from various disciplines to work independently, but, in
fact, they must cooperate to be sure that what they have specified is compatible and feasible.
Having an interdisciplinary team produce the documents mentioned above will make it more
likely that the software will accurately reflect the physical conditions, and engender more
confidence in the accuracy of the computed results.

5 Tabular representation of relational requirements documents: an illustrative example

The use of the relations described above, represented as tables, for documenting software
requirements and behaviour has a comparatively short history. In late 70’s tabular expressions or
tables were used to document aircraft software [6]. The tabular approach was developed in
response to the practical needs of industry and government which were experiencing the
frustration of trying to get software to do the right thing. Many “bugs” were caused by
misunderstandings that would have been avoided by better documenting of software
requirements. Tables can be constructed recursively from simpler components, namely
conventional expressions and grids [13]. A general syntax and semantics of tables, based on the
concept of a cell-connection graph, has been developed more recently [8, 9, 10, 22]. Some
promising results of industrial applications of the approach to software that controls systems in
“real-time” were obtained in recent years [4]. However, software designed for predicting the
behaviour of physical systems has not received the same attention.

When software is designed for predicting physical phenomena, the relation between the
monitored quantities can be described by means of a system of equations, which together with
necessary initial and boundary conditions becomes the basis of the computer programs. Below, as
an example, we consider the radioactive contamination of the ocean. To illustrate our approach,
we have simplified the processes and physical interactions in this example as much as possible.

Many pollutants are transferred from the atmosphere to the ocean. Among these pollutants are
radioactive elements that appear in the atmosphere because of human activity and can cause
radioactive contamination of the ocean. Penetration of radionuclides, deposited on the ocean
surface to the deep layers is caused by several factors. Vertical turbulent diffusion is one of the
major mechanisms in the long term. We will assume that vertical turbulent exchange is the only
mechanism influencing the distribution of a pollutant concentratiam a water body, and the
mass of a pollutant isotope of half-life decaying in unit time, is in direct proportion to the total
amount of pollutant. Under the assumption that the coefficient of vertical turbulent difflsion
does not change along the vertica) éxis, the general equations together with necessary initial
and boundary conditions are those presented in Figure 3. Tiremresents timeb; is a period of

time for which computations have to be carried aytis a contaminant flux through the unit of
area of ocean surface per unit of tineg, is the pollutant concentration a£D, where the water
depthD is counted from the free water surface along the z-axs$sa turbulent path assumed to be

constant,‘é—z is the vertical temperature gradient (which is knowandky are coefficients of

turbulent impulse exchange and turbulent diffusion of heat respectivedya constant coefficient

of turbulent exchange reflecting others mechanisms, which differ from shearing turbulence
generated by drift currents with horizontal componemtand v, g is the acceleration due to
gravity, p andp, is water and air density correspondingly, o1, yr, B andc, are constantsz, is

a friction coefficient in atmospher®V is the wind speed,= 2w sin is the Coriolis parameteg,

is latitude. In the full document each variable would be listed and defined.

models3august 8/14 1/23/02

DIFF
t=0 Py > t>0 Ot=Py t<0 Ot>P; O
-TURB
H1
z=0 cC=¢ ke (0c/0z) = gy TURB c=-1
B aclot =k (9%cldz?)-hc ~ c=-1
0<z<D =% A=In 2 t ATURB
z=D c=¢ C=¢ c=-1
z<00O c=-1 c=-1 c=-1
z>D
H2 G
TURB P < 0 AY=(0uldz)®+ P > 0 A= (duloz)>+ CUR
(OvIozy- o1 yrg @T/oz) " (vIozY- a1 yrg @T/oz)" B
CUR CUR
H1
D
rl k=i ke = (ar 22/D) [(y) 2z +y | Kr=
0
ACUR
ke | ke=acky ke= o¢ kr k= %
H2 G
CUR
z=0 O<z<D z=D z<00zD
H1
- A 20/02)+fv=0"
ky(0uloz)= -Gy/p ky(0“uloz®)+fv=0
uv| k, (@vI0z)=0 " ky (02vIoZ)-fu=0" U=v=0 | ,=y=-1000
Go=PaCaW2 A ky = PaCa WHRB
ky = paCa WHB
H2 G

Figure 3: The tabular representation of time-dependent problem for computing pollutant
concentrations at the different depths in a water body. An indegdénotes the value
of a variable before calculations. Values -1 and -1000 used as flags to indicate that

these are cases where the models do not apply.

The tables presented in Fig. 3 not only provide a computer specialist with information about
core equations but also show which of the equations are used for computing pollutant
concentrations at a given depth and time. Each table represents a separate process; the
composition of these tables embodies a model of the phenomenon under consideration. For

models3august 9/14 1/23/02

instance, the table DIFF describes the vertical turbulent diffusion of a contaminant in a water
body. The table TURB describes a model that we can use to compute the average value of the
coefficient of turbulent exchange within a water body. The method for calculating the drift
currents in a horizontally boundless ocean is presented in the table CUR. Taken together, the three
tables completely describe a model of the phenomenon under study. Even someone who is not a
physicist can see the interconnections clearly. The set of interconnected tables constitutes a model
of the phenomena in the same way that pieces of coloured glass form a mosaic.

The concise tabular description of the physical processes given above, warns the software
developers about cases that are not covered by the model and other possible errors and describes
the system behaviour that is required in those cases. For example, the tables in Figure 3, clearly
indicate that the logic errors described by [11] can arise in a program wi@en>P,, z<0, z>D

because under those conditions the equations do not describe the physical processes.

6 Using tabular notation to describe a computational method

A tabular representation is a convenient way to continue the development of requirements
documentation after the numerical method for solving the core system of equations is chosen. For
example, if we choose to apply finite-difference methods to the problem, we can approximate a
temporal derivative as the forward or right difference; we can also approximate a second order
spatial derivative with central differences. The finite-difference approximation of the diffusion
equation and corresponding initial and boundary conditions from the table DIFF (Figure 3) is
given in Figure 4.

DIFFNUM j=0 O<|<N-10j=N¢1 7 J<OOj>N-10
O<e<1/4 ™ e=k A/AZ £<00e>1/4 0
- TURBNUM
H1
¢! = cp iz¢ 1 307 ArurBNUM ¢ =-1
i=0 ! i i+1 kC !
j_ k At - i_
. ¢ =% chlchC— oo Ci‘_l
0<j<N,-1 i i AR U+ i il
ATURBNUM
i= N1 i i i
ci—cD C,‘CD cl— 1
i<0O j i_ i_
H, G

Figure 4: Finite-difference representation of a time-dependant, one-dimensional contaminant
diffusion problem.

models3august 10/14 1/23/02

Therej = 0,1,2..N-1,i = 0,1,2..N-1. FurtherAt = P/ Ni-1 andAz = D/ N1 are the time step

and mesh step along the vertical, respectively. The table DIFFNUM refers to another table
TURBNUM, which embodies a finite-difference approximations of equations presented in table
TURB. In accordance with the relational model of documentation given in Section 3, the non-
environmental quantitieg i, Ny, N, At and Az, reflecting the details of the chosen numerical

method are introduced at this stage by describing the relation NEQ. The stability colditibg

0.25for the explicit finite—difference representation of the diffusion equation (see, for example,
[18]) from the table DIFFNUM (Figure 4) belongs to this relation also. Figure 4 has to be
supplemented by additional tables that will describe the finite difference equations for the
problem presented in Figure 3. New quantities, which can appear during this process, must be
documented in the relation NEQ.

The vertical distribution of strontium 90 concentration calculated using the above approach is
presented in Figure 5. This figure adds to the results given in [12]. The computed profiles of the
pollutant concentrations reflect the general assumptions and number of simplifications that have
been made.

W
o
o

0 0.5 1 1.5 2 2.5 3
Sr/m3

Figure 5: Figure 5. Vertical distribution of strontium-90 concentration in the Atlantic Ocean at
the start of (a) 1955, (b) 1958, (c) 1961 and (d) 1964: the solid lines present computed
concentrations when average wind speed was 4 m/s, isotope flux from the atmosphere
to the ocean was 7.4101°/cn? « s, vertical diffusion coefficient was 37 &fs; the
dashed lines and circles represent an analytical solution and average field data for 1955
- 1958 as given in Ozmidov [12] correspondingly.

models3august 11/14 1/23/02

7 Conclusion

The development of software that is based on models of physical phenomena is, unavoidably,
an interdisciplinary effort; consequently, to get trustworthy results, it is important that precise
documentation be used to communicate between the physical scientists, the engineers, and the
software specialists. Such documentation should be used at every stage in the design process. We
have illustrated the advantages of using precise formal documentation in the specification, design
and review of such software.

In general, the task of such software is to calculate a set of values that are consistent with (a)
general physical laws, (b) the detailed characteristics of a specific physical conditions and (c) user
preferences about properties such as resolution and accuracy. Engineering projects often require
simulation models that approximate the behaviour of physical systems taking many details into
account. The physical laws are usually described by sets of equations, that apply within specific
space and time boundaries and under specified conditions. The shape of the boundaries, and the
conditions at the boundaries, can be quite complicated. The properties of the physical bodies are
also complex and may change drastically under certain conditions. In summary, the software must
model very complex physical conditions. The requirements for such software are usually
described using a combination of natural language and mathematical formulae. Such hybrid
descriptions can be unclear and are frequently misunderstood by some members of the software
development team. As a result, there are many misunderstandings and these, unavoidably, have a
negative influence on the final quality of the software.

We believe that the creation of mathematics-based requirements documents, as an integral part
of the software development process, is the only rational way to design trustworthy software for
science and engineering. Since the users of such software products must be able to specify the
values of certain method-dependant (non-environmental) quantities, the four-variable model
introduced in [17] has been extended to a five-variable model to make it possible to describe the
meaning and effect of those quantities.

The experience gathered working with tables for real-time problems is sufficient for us to
propose that mathematical tables replace more conventional ways of documenting software. This
paper illustrates how tabular expressions can be used for documenting the requirements of
engineering and scientific modelling software. Moreover, we have illustrated how the same
notation can be used when developing the models and methods that will be employed in the
software.

In this paper, the five-variable relational model for documenting requirements has been
illustrated using a simple example of a time-dependent environmental problem. The approach
proposed will allow a user to benefit from the capabilities of the Table Tool System [3]. These
tools can assist in several ways such as the production and inspection of tables, and verification of
their completeness and consistency. In practical engineering applications with more advanced
models, the approach that we have proposed and illustrated can decrease the likelihood of serious
errors at the earliest phases of software development process and increase the trustworthiness of
the results.

8 Acknowledgements

We are grateful to Professor Spencer Smith for many encouraging and constructive
suggestions. We also thank Georgy Kirillen for the computed results in Figure 5.

models3august 12/14 1/23/02

©

References

=

Boehm, B.W., Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981,
ISBN 0-13-822122-7.

2. Hall, A., “Seven myths of formal method$&ZEE Software7(5), pp. 11-20, 1990.

3. McMaster University Software Engineering Research Group, “Table Tool System
Developer’'s Guide” CRL Report 339, McMaster University, Communications Research
Laboratory), TRIO (Telecommunications Research Institute of Ontario), January 1997.

4. Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B.G., “SCR: A Toolset for Specifying and

Analysing Requirements” Proceedings of the % Annual Conference On Computer
Assurance (COMPASS'9%3aitherburg, MD, 1995, pp. 109-122

5. Heitmeyer, C., Lynch, N., “Formal Verification of Real-time Systems Using Timed
Automata”, in Formal Methods for Real-Time ComputinHeitmeyer, C., Mandrioli, D.
Eds.), J Willey and Sons, Chichester, New-York, Brishane, 1996, pp.83-106

6. Heninger, K.L., Kallander, J., Parnas, D.L., Shore, J.E., “Software Requirements for the A-7
Aircraft’”, NRL Memorandum Report 387@&Jnited States Navel Research Laboratory,
Washington DC, November 1978

7. Hester, S.D., Parnas, D.L., Utter, D.F., “Using Documentation as a Software Design
Medium”, Bell System Tech. 80(8),pp. 1941-1977

8. Janicki, R., “Towards a Formal Semantics of Parnas Tablesiceedings of the g4
International Conference on Software Engineering (ICSE'9REE Computer Society,
Seattle, WA, 1995, pp. 231-240.

9. Janicki, R., Khedri, R., “On a Formal Semantics of Tabular Express&iERG Report.379
McMaster University, September 1999.

10. Janicki, R., Parnas, D.L., Zucker, J., “Tabular Representations in Relational Documents”, in
Relational Methods in Computer scien@&rink, C., Kahl, W., Schmidt, G. (Eds), Springer-
Verlag, 1995, pp. 184-196.

11. Kreyman K., Parnas, D.L., Qiao, S., “Inspection Procedures for Critical Software That Model
Physical Phenomena™CRL Report No. 368McMaster University, Hamilton, Ontario,
Canada, February 1999.

12. Ozmidov, R.L. Diffusion of Contaminant in the Ocean, Kluwer Academy Publisher,
Dordrecht, Boston, 1990.

13. Parnas, D.L., “Tabular Representation of Relatio@R| Report 260McMaster University,
CRL, Telecommunications Research Institute of Ontario (TRIO), 1992.

14. Parnas, D.L., “Predicate Logic for Software EngineerilgEE Trans. Software End.9 (9),
1993, pp. 856-862.

15. Parnas, D.L., Asmis, G.J.K, Madey, J., “Assessment of Safety Critical Software in Nuclear
Power Plants”Nuclear Safety32 (2),1991, pp. 189-198.

16. Parnas, D.L., Clements, P.C., “A Rational Design Process: How and Why to FakedE,
Trans. Software EngE-11 1986, pp. 251-257.

17. Parnas, D.L., Madey, J., “Functional Documentation for Computer Systems Engineering”, in
Science and Computer Programmiiiglsevier)25 (1) October 1995, pp. 41-61

18. Ramming, H.-G, Kowalik, Z., “Numerical Modelling of Marine Hydrodynamics. Application

models3august 13/14 1/23/02

to Dynamic Physical Processes”, Elsevier Scientific Publishing Company, Amsterdam,
Oxford, New-York, 1980

19. Rojiani, K.B., Programming in C with numerical methods for engineers, Prentice Hall, Inc.
1996,

20.van Schouwen, A.J., Parnas, D.L., Madey, J., “Documentation of Requirements for
Computer Systems”Proceedings of'93 IEEE International Symposium on Requirements
Engineering San Diego, CA, 4 - 6 January, 1993, pp. 198 - 207.

21. Zou, Y. Application of the Four Variable Model to a CAD System for Microwave
Communication DevicesSERG Report 38WcMaster University, Dept. of Computing and
Software, June 2000, 168 pgs.

22. Zucker, J., “Transformations of Normal and Inverted Function Taplesmal Aspects of
Programming 8, 1996, pp. 679-705.

models3august 14/14 1/23/02

