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Abstract

Tabular expressions (Parnas et al) [26, 27, 29, 31, 32] are a software specification
technique that becomes increasingly popular in software industry. The current state
of the technique is restricted to sequential systems only. In this thesis we show
how concurrency can be treated in some systematic way in the framework of tabular
expressions.

A precise notion of composite global automata (compare [20, 36]) will be defined.
The tabular expressions [24, 26, 28] used by Software Engineering Research Group
will be slightly extended to deal with the transition function/relation of concurrent
automata.

In the thesis, each sequential process is viewed as a Finitely Defined Automaton
with Interpreted States [18], and all of the processes in the system are composed to a
global finite state automata to model the concurrent system. The thesis starts with
a common model of a nondeterministic finite automaton, extends the traditional
automata, and associates two sets called synchronization set and competition set,
respectively, to each action of the individual processes. Finally, whole processes in the
system are composed and the actions dependence of individual process is eliminated
for the global action. A simple example of Readers-Writers is given to illustrate this
method.
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Chapter 1

Introduction

This chapter provides a brief introduction to the background, purpose and the outline
of this thesis.

1.1 Background

It is well known in the software community that a software product is of little use
unless people can learn to use it and to maintain it. Documentation and specification
plays an important role in this purpose. Hence, they are the key part of the total
software product, and their development is an important topic in software engineering.

Documentation of a software product is basically generated for two purposes. One
is to explain the features of the software and to describe how to use them. This is
known as the user documentation since it is designed to be read by the user of the
software products.

The other purpose of documentation is to describe the software itself so that
the system can be implemented by the programmers and could be modified later in
its life cycle. Documentation of this type is known as system documentation and
is inherently more technical in nature than the user documentation. This thesis
focuses on the documentation of the latter type, which is commonly refered to as
software system specification. Software documentation and software specification is
used interchangeably in this thesis.

A software specification expresses the functional and/or relational requirements
of a piece of software. It states what a software product is intended to achieve (rather
than how it should achieve it) and it states the attributes or features the software
must possess.

A specification is used for validation and verification purposes; it is validated
to assure that it represents the intended use of software and that the software as
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specified will meet it objectives; then it forms a basis for developing a design that
can be verified against the validated specification. The beauty of a specification lies
in deriving a natural, abstract, implementation independent specification that is still
precise and complete.

There are a few criteria to judge specifications. First and most important, a soft-
ware specification is a contract between the specifier and the implementor defining the
system to be constructed. It therefore must be clearly and unambiguously understood
by both parties.

Secondly, it must be possible to ascertain whether an implementor has fulfilled
such a contract; that is, to test whether a specification and an implementation is
equivalent and consistent. Hence testability is another criterion for judging a specifi-
cation.

However, traditional specifications usually include a narrative description of soft-
ware structure using natural languages, which is inherently ambiguous. One way to
avoid the ambiguity inherent in natural languages is to write the software requirement
specification (SRS) in a particular SRS languages. The advantage of using SRS is
that it is rather easy for both machines and human beings to detect inconsistencies,
redundancies, incompleteness, and ambiguities.

It has been described in [12, 13, 24] that because of the vagueness and imprecision
of natural languages, they are not suitable for writing precise documentation for
software product. Rather, mathematical documentation can improve the consistency,
precision and completeness of natural languages documentation.

Because of this reason, Parnas [24] has proposed the principle of func-
tional /relational documentation. It defines the required content of documents in
term of mathematical relations. In this scheme [29], each of the documents is asso-
ciated with certain relations; the software document must contain a representation
of these relations. If a document contains enough information to determine whether
or not any pair is included in the specified relation, it is complete. No additional
information should be included.

The advantages of this formal approach are to [5]:

e improve specifications and designs for which behavioral properties of systems
can be precisely stated;

e support for reasoning about systems through formal analysis;

e provide a basis for (potentially) much more powerful support environments than
exist today.

In [23, 26, 27, 29], tabular expression, a functional documentation model for doc-
umenting software products was proposed. Since then it has been successfully used
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in military and civilian applications, such as in U.S Naval Research Laboratory for
writing the A-7E document of software requirements, Darlington Nuclear Power for
inspecting safety-critical programs, and Bell Labs for writing requirement documents.
Its success in these practical projects has proved the power of tabular expressions on
documenting software products.

The Software Engineering Research Group (SERG) at McMaster University has
made significant contributions in using the tabular expressions to write a functional
documentation for software system. However, most of the previous work was uti-
lizing the functional method to reason sequentially about the whole model, without
expressing the concurrent behavior of software system module explicitly.

However, in real life, very few of computational systems are sequential. On all
levels, from dynamic web pages to bank interactive system, the computational system
behaviors are truly concurrent, in the sense that they may be seen as spatially sepa-
rated activities that accomplish a join task. Also, many such systems do not really
mean to be terminated, and hence it makes little sense to discuss their behaviors in
term of the traditional simple input-output model. Rather, one is interested in the
behavior of often complex patterns of stimuli/response relationships over time.

Hence, during the study of concurrent system, one is forced to take a different view
of behavior than the traditional input-output one. One needs a notion of behavior to
express aspects of pattern of actions, for which a system is capable of performing. This
is the main task to be accomplished in this thesis. The Finitely Defined Automata
[18] with Interpreted States serves as a medium to specify the concurrent systems.

The uses of finite state automata significantly reduce the ambiguity of specifica-
tion. Moreover, the concept of a “finite state automata” is now understood by any
engineering/computer science graduate.

In this thesis, the nondeterministic automaton is used to model and reason about
each process. The transition function of each process is given as a tabular expressions.
Later, all processes involved in the concurrent system are combined into a global finite
state automaton. The transition function of this global automaton is also described
by the tabular form. In this model, the standard semantic of tabular expressions [15]
is slightly extended to address concurrent issues.

In recent years, formal specification techniques have been used in both academics
and industrial areas. It has been considered as one of the useful tools to specify
and document concurrent systems. However, one disadvantage in using particular
SRS languages is the length of time required to learn them. Even it is an excellent
specification language available, very few people will use it if it requires a great effort
to learn or it difficult to learn.

One interesting experiment [2] conducted in SERG has shown that functional
documentation method in the tabular form can be learned and used by typical un-
dergraduate engineering students within a short time.
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1.2 Purpose

The purpose of this thesis is to develop a method to write a precise mathematical
documentation of concurrent software system using tabular expressions. The goal
for this specification technique is to lower its ambiguity level and to increase its
understandability to computer-oriented people who design and test software.

The general nature of such a method is that a mathematical formalism is utilized
to represent and reason the behavior of concurrent computational systems. The
purpose of this method is to provide a conceptional understanding of systems and
their behavior.

Throughout the thesis variations of automata are used to illustrate ideas, defi-
nitions and applications, and products of finite state automata are used to model
concurrent systems.

Traditional automata notations as well as SERG’s tabular expressions are ex-
tended to address the concurrent system properties.

1.3 Outline

Chapter 2 introduces tabular expressions as used by the McMaster Software Engi-
neering Research group at McMaster University.

Chapter 3 introduces finite state automata, which includes deterministic and non-
deterministic finite automata as well as composite automata.

In Chapter 4, a simple model for representing concurrent system is introduced,
and its semantics is also defined. The choice of this model is then motivated.

Chapter 4 is the most important part of this thesis. First automata are used to
model each process and a transition function/relation is specified with the traditional
automaton technique. Secondly, the concurrent properties are modeled by combining
each process involved. The global state change is described by the global transition
function/relation. The semantics of transition is extended from the traditional au-
tomaton theory. The approach to document a concurrent system with tabular form
is also described.

In Chapter 5 an example, reader and writer, is given to demonstrate and to analyze
how to use this approach.

Chapter 6 discusses the contributions of this thesis. The conclusions are made
based on this work, and future work in this area is proposed.

The author believes that this thesis is rather a beginning then a conclusion of
a research approach. Chapters 1, 2, and 3 present the results already known, and
Chapter 4, 5, and 6 are the contributions of this work.



Chapter 2

Tabular Expressions of Functional
Documentation

2.1 Background of Tabular Expressions

It has been recognized that most software problems result from erroneous descriptions
of the intended behavior. However, mathematical expressions can be used to provide
precise, concise, and unambiguous description of software system behavior.

Since conventional expressions are lengthy or deeply nested, they increase the
complexity of software document. It was pointed out in Parnas’ work [23] that the
traditional mathematical notation is not practical to provide a precise mathematical
description of computer systems due to its special characteristics, e.g. the range and
domain of functions are often tuples whose elements are of distinct types.

Parnas et al [23, 24, 26, 31] advocated the use of a relational model for docu-
menting the intended behavior of programs. In this model, each of the documents is
associated with certain relations. Relations are described by giving their characteris-
tic predicate in terms of the values of concrete program variables. To properly specify
and document these relations, tabular expressions are used. As a multi-dimensional
expression, tabular notations are often easier to read and understand as compared to
the equivalent traditional scalar expressions . Furthermore, tabular expressions are
more systematic, and can reduce a complex problem to a simple one.

Tabular expressions are means to represent complex relations that are used to
specify and document software systems. The structure provided by tables makes it
possible to separate discontinuous conditions, to isolate distinct domain and range el-
ements, and to make it unnecessary to continually repeat common sub-expressions[1].

A formal syntax and semantics of tables was initially proposed by Parnas [23],

LA term or predicate expressions as defined in [25] will be called a scalar expression.
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y= 10|y > 10|y < 10| H,

fly)= |z>0] 0 | ¢ | =4
Hijz<0| =z |z+y|lz—y|G

Table 2.1: An Example of Normal Function Table

which was based on the use of tabular expression in few practical applications [27, 29].
Later a more general treatment was given by Janicki [11, 13|, and Janicki, Khedri[15].
The latter one is currently used as a standard by the SERG group. Both of their
works paved the foundation of tabular expression used by SERG 2.

2.2 Definition of Tabular Expressions

In this chapter, the syntax and semantics of table based on the work of Janicki and
Khedri [11, 13, 15] will be presented.

First, an example of normal table is presented that can be used to define a function,
depicted as Table 2.1.

Informally, this table is to be read as follows. The predicate expression in header
H, and H, partitions the domain, and is used to first select a row (based on the value
of z), and then to choose a column (based on the value of y). The expression in the
selected main grid G is the value of function.

The header H; at the left side of Table 2.1 is the predicate expression in terms
of variable z, which partitions the domain of function with regard to variable x; the
header H, at the top of Table 2.1 is the predicate expression in terms of variable vy,
which partitions the domain of function with regard to variable y; Together, header
H; and H, partition the domain of the function.

Each cell in the main grid G of table defines the value of the function. For example,
when the predicate expressions z < 0 and y > 10 are true, then the returning value
of function is  + y. The function is defined as a union of each individual cell in the
main grid.

2The group SERG was recently renamed to SQC/REL
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A definition of the same function with the classical predicate logic is given by:

(0 if (z > 0) A (y = 10)

y? if (x> 0) A (y > 10)

—y?  if (x> 0) A (y < 10)

F@) =9 " e<0)nly=10
x4y if (x <0)A (y>10)

(| z—y if (z <0)A (y <10)

Comparing the tabular form and the conventional form of the same function il-
lustrated above, it is obvious that tabular form is easier to understand, and easier
to search for the relevant information. More detailed description can be found in
Janicki’s work [15].

The key assumptions behind the idea of tabular expressions are:

e The intended behavior of programs is modeled by a (usually complex) relation,
say R.

e The relation R may itself be complex but it can be built from a collections of
relation R;, i € I, where I is a set of indices, each R; can be specified rather
easily. In most cases R; can be defined by a simple formula that can be held in
few cells of a table. Some cells define the domain of R;, the others R; itself.

e The tabular expression that describes R is a structured collection of cells con-
taining definition of R;’s. The structure of a tabular expression defines how the
relation R can be composed for all the R;’s.

2.2.1 Raw Table Skeleton

Intuitively, a table is an organized collection of sets of cells, each cell contains an
appropriate expression. Such an organized collection of empty cells, without expres-
sions, will be called a (raw or medium) table skeleton. We assume that a cell is a
primitive concept which does not need to be explained.

e A header H is an indexed set of cells, H = {h; | i € I}, where I = {1,2,...,k}
(for some k) is a set of indices.

e A grid G indexed by headers H; ... H,, with H; = {h} | i € ['},j =1,...,n, is
an indexed set of cells G, where G = {go | @ € I'}, and I = I" x ... x I". The
set I is the index set of G.
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hi|hs|h3 Hy={h3|j=1,2,3}
h% 911|912|913
Hl:{hz1 |i=1,2} | hy][g21] 922|923 G={gi;|i=1,2Nj=1,2,3}

Table 2.2: An Example of Raw Table Skeleton

e A Raw Table Skeleton, the first approximation of table skeleton, is a tuple
T = (Hy,...,H,,G), where Hy,..., H, are headers, and G is the main grid
indexed by headers Hi,..., H,. The elements of the set {Hy, Hs,...,H,,G}

are called table components.

Table 2.2 is an example of the Raw Table Skeleton.

2.2.2 Cell Connection Graph and Medium Table Skeleton

The first step in expressing the semantic difference between various types of tables is
to define the cell connection graph, which characterizes information flow ("where do
I start reading the table and where do I get the result?”) of a given table. Intuitively
a Cell Connection Graph is a relation that could be interpreted as an acyclic directed
graph with the grid and all headers as nodes, plus the decomposition of nodes into two
distinct classes called guard components and value components. The only requirement
for the relation is that each arc must either starts from or ends at the grid G.

Let T = (Hy,...,H,,G) be a raw table skeleton, i.e. Components(T) =
{Hi,...,H,,G}.

— C Components(T) x Components(T)
satisfying:
VA, B € Components(T).A— B= (A=GV B=G)A\A# B), (2.1)

plus a decomposition of Components(T) into Guards(T) and Values(T).

The relation —* is a transitive and reflexive closure ® of —. A compo-
nent A € Components(T) is maximum if A ——* B implies B = A for every
B € Components(T). Similarly, A € Components(T) is minimum if B —* A
implies B = A for every B € Components(T). A component A € Components(T)
is neutral if it is neither maximum nor minimum. The components built from the
cell describing the domains are never maximum, while the components built from the

3Ar—*B<— (A=B)U(A+— B)U(34y,..., 4. Ar— Aj — Ay +— ... +— A — B)
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cells containing formulae for values are never minimal. For a Normal Table [23], each
element is either maximum or minimum, there is only one maximum.

The partition of Components(T) into Guards(T) and Values(T') must satisfy the
following properties:

. Components(T) = Guards(T) U Values(T),

. Guards(T) N Values(T) = 0,

. A is maximal = A € Values(T),

. A is minimal = A € Guards(T),

. VA € Guards(T),VB € Values(T). A—**B.

Ot = W N~

We may now define CCG, Cell connection Graph, as a triple
CCG = (Guards(T),Values(T),—)

where — satisfies (2.1) and Guards(T), Values(T) satisfies above five properties.

By adding the Cell Connection Graph we obtain the next approximation of
the table skeleton concept. By a medium table skeleton we mean a tuple T =
(CCG,Hy,...,H,,G), where (Hy,...,H,,G) is a table skeleton and CCG is a cell
connection graph for Hy,..., H,, G.

2.2.3 Raw and Medium Table Elements

Let T™¢ = (CCG, Hy,...,H,,G) be a medium table skeleton with the index I,
and let 7" = (Hy,...,H,,G) be the table skeleton. Considering the element
(h; h? gs) € Hi X ...x H, X G.

AR in

(h}

i>- - Ni s 9a) is a raw element <= a = (iy,. .., in).

2

We will denote the raw element (k] ,..., AT, g,) by T |,, since it can be in-
terpreted as a kind of projection (restriction) of 77 onto the index a. The set
{h} h , go} will be denoted by Components,(T7*").

AR

Let —4C Components,(TT*) x Components,(T™") be a relation defined as
€1 —q Cg <= JA;, Ay € Components(T™).c; € Aj Neyg € Ag N Ay — As.

We also define Guards,(T™"), Values,(T™") as appropriate projections of
Guards(T™") and Values(T"™™") onto (k] ,...,h} , ga), formally

310" "

Guards,(T™") = {c | ¢ € Componants,(T"™*") A A € Guards,(T™").c € A)},

A=t B (Ar— B)U@A,...,Ap Ar— Ay r— Ay r— ...+— Ay +— B
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@ x,< 0 h

L~

h* | x<o y= X+ X, g

Figure 2.1: An Example of (partially) Interpreted Medium Element.

Valueso(T™) = {c | ¢ € Componants,(T"™") A JA € Values,(T™).c € A)}.
The triple CCG, = (Guards,, Values,,—,) will be called the cell connection
graph of T™ |,. By a medium element of T™? we mean a tuple

T | o= (CCGay by, .-, B}, ga)

1

where (h}

i+ P, ga) is a raw element. Figure 2.1 illustrates a medium element.

2.2.4 Well Done Table Skeleton

Let R be a relation that will be specified by the tabular expression. Let dom(R)
and range(R) denotes the domain and range of R, respectively. Both dom(R) and
range(R) could be Catersian Product or subsets of Catersian Products, i.e. in general
dom(R) C X; X ... x X, for some X;, range(R) C Y7 x ... x Y,,, for some Y.

The relation R can be composed of R,’s, a € I, where [ is a finite set of indices,
and the set F = {R, | « € I} will be called as a representation of R. In practice we
frequently use a medium element 7" |, to specify R,,« € I. The relation R is equal
to R = expr(F), and the table structure is supposed to make the understanding of
expr(F) natural and simple.

Let x be a (possible vector) variable over dom(R), y be a (possible vector) variable
over range(R), and let P(z) be a predicate defining the domain of R,, i.e. = €
dom(R,) C dom(R) <= P(z) = true .

Let E,(z,y) be a relational expression that defines a superset E, of the relation
R, i.e. R, C E, where (z,y) € E, <= E,(z,).

The relation R, is a restriction of E, to dom(R,), i.e Ry = Eq |dom(a), and is
entirely described by the following predicate expression: if P,(X) then Ey(z,y).

The idea we will be using is the following:

e The expressions defining the relational expression E,(z,y) are held in value
cells (Values(T)).
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e The expressions defining the predicate expression P,(x) are held in guard cells
(Guards(T))

To define precisely how the medium element can be used to specify the expression
if P,(z) then FE,(z,y), we need not only to divide cells into value and guard types,
but also to decide how P,(x) can be built from the expressions held in the guard cells
and E,(z,y) from the expressions held in the value cells.

Let T = (CCG,H,,...,H,,G) be a medium table skeleton. Assume that
Guards(T) = {By, ..., B}, Values(T) = {Ay, ..., A, }.

e A predicate expression Pr(By,..., B;), where By, ..., B, are variables, is called
a table predicate rule.

e A relation expression rr (A1, ..., As), where Ay, ..., Ay are variables, is called a
table relation rule.

The predicate P,(x) can now be derived from Pr(Bjy,...,B,) by replacing each
variable B; by the content of the cell that belongs to both the medium element I",, and
the component B;. Similarly, the relation expression E,(z,y) can now be derived from
rr(Aq, ..., As) by replacing each variable A; by the content of the cell that belongs
to both the medium element I', and the component A;.

A relational expression Cr in the form R = Expr(F) is called a table composition
rule. In general, Expr(F) is a relational expression built from the expression defining
R,’s, and various relational operators.

The final approximation of a table skeleton is the following.

e A well done table skeleton is a tuple T = (Pp,rr,Cr,CCG, Hy,...,Hs, Q),
where (CCG, Hy, ..., Hy, G) is a medium table skeleton, Pr is a table predicate
rule, rr is a table relation rule, and C7r is the table composition rule.

In Table 2.1, py is H; A Hy, which means that the predicate expressions, are
obtained by the conjunctions of contents of each cells in header H; and Hy; The rp
being G means that if guard cells are h} and h?, then the corresponding value cell is
in the cell g; ;.

In principle, a well done table skeleton defines all the structure of a tabular ex-
pression except filling out all the cells with proper expressions that define all R,.

In general, the table composition rule Cr should give a precise answer to the
question, “how to build the whole, i.e R, from the parts, i.e. R,” in term of algebra
of relation. In [14], various operations are introduced. However, for our purpose, only
union operation is used to build a whole relation R from all of R,.
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2.2.5 Tabular Expressions
We are now able to define formally the concept of tabular expression.

e A tabular expression is a tuple

T = (Pr,rr,Cr,CCG,Hy,...,H,,G;V,IN,OUT)

where (Pp,ry,Cr,CCG,Hy,...,H,,G) is a well done table skeleton, and
is a mapping that assigns a predicate expression, or part of it, to each guard
cell, and a relational expression, or part it, to each value cell. The predicate
expression has variables over IN, the relational expression have variables over
IN x OUT, where IN is the set (usually heterogeneous product) of inputs, and
output is the set (usually heterogeneous product) of output.

For every tabular expression 7', we define the signature of T as:
SignT = (PT, rr, CT, CCG)

The signature describes all the global and structural information about the table. We
may say that a tabular expression is a triple: signature, raw skeleton—which describes
the number of elements in headers and indexing of the grid, and the mapping ¥ —
which describes the contents of all cells.

Both Pr and r7 must satisfy the following consistency rule:

e For every a € I, PT is a syntactically correct predicate expression.

e For every a € I, rl is a syntactically correct relational expression.

2.2.6 Semantics of Tabular Expressions

Let T = (Pp,ry,Cp,CCG, Hy, ..., H,,G; ¥, IN,OUT) be a tabular expression, with
the index I, and let o € I. By an interpreted medium element, we mean a tuple:

T|a = (PT, rr, CCGa; T/J |ComponentsaT)-

Figure 2.1 plus Pr = H; A Hy, represents an example of interpreted medium element.
For every a € I, we define A,, E,, as

x € Ay <= P,(z) =true, (z,y) € E, <= E,(z,y).
Every interpreted medium element 7’|, describes now the relation R,, i.e.
(z,y) € Ry < if P,(z) then E,(z,y).

We may now define the semantics of tabular expressions in a formal way:
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e The relation R, describes the semantics of the interpreted medium skeleton T |,.

e The semantics of a tabular expression T is defined by

Rr = Cr(R,)

Further detailed treatments of syntax and semantics of tabular notation can be
found in other works [13, 14, 23].

In the specification of concurrent systems, the most commonly used tables are the
normal function table and normal relation table. Following is the formal definition of
their pr, rr rules and Cr relation.

e pr = H; A\ Hy, header H; or H, partitions the current states into disjoint sets.
Header H, or H, partitions the global events into disjoint sets

e 7 = (G, the content in grid G is the set of next states

o Cp = Uger



Chapter 3

Introduce to Finite State
Automata

In this chapter, deterministic and nondeterministic finite state automata as well as
composite finite automata [7, 20, 35, 36] will be introduced. The application areas of
these automata will also be discussed.

It has been recognized recently that automata theory is a successful medium in
specifying and analyzing of the sequential and concurrent computer system, including
both software and hardware systems. The reason for the success is mainly due to the
simplicity of these techniques. Indeed, they are easy to implement and easy to use.
Moreover, they have well defined semantics and are well understood by the computer
society.

The finite state automaton, or finite state machine (abbreviated as FA), is a
mathematical model of a dynamic system, with discrete inputs and outputs. The
system can be in any one of a finite numbers of internal configurations or “states”.
The state of the system summarizes the information concerning previous inputs that
are needed to determine the behavior of the system on subsequent inputs.

Applications for finite automata can be any devices in which there are a finite set
of inputs and a finite set of parameters that must be “remembered” by the device.

A FA, particularly a non-deterministic automaton (NFA) is a useful tool for spec-
ifying a concurrent system. The beauty of the finite automaton is that it only needs
to remember finite amount of information, namely the current state. This property
makes the model easier to design and understand.

14
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3.1 Finite State Automata Definition

First of all, we list some general concepts of automata theory. An alphabet X is a finite
nonempty set. A word over ¥ is a finite string P = z;...z,(z; € X,i=1,...,n) of
elements of 3. For the empty word, i.e. for the word of length of 0, the notation ¢ is
used.

Intuitively, a finite state automaton is a model of computation consisting of a set
of states, a start state, an input alphabet, and a transition function that maps input
symbols and current states to a next state. Computation begins in the start state
with an input string. It changes to new states depending on the transition function.
There are many variants, for instance, machines have actions (outputs) associated
with transitions (Mealy machine) or states (Moore machine), multiple start states,
transitions conditioned on no input symbol (a null) or more than one transition for
a given symbol and state (nondeterministic finite state machine), one or more states
designated as accepting states (recognizer), etc. In the thesis, non-deterministic finite
automata will be used to model computing system.

3.1.1 Deterministic Finite Automaton (DFA)

A DFA consists of a finite set of states and a set of transitions from state to state
that occurs on input symbols chosen from an alphabet ¥. For each input symbol
there is exactly one transition output of each state (possibly back to the state itself).
One state, usually denoted by qq, is the initial state, from which the automaton
starts. Some states are designated as final state. More formally, a deterministic finite
automaton is 5-tuple (Q, %, 6, qo, F'), where

Q@ is a finite set called the states,

. Y is a finite set called the alphabet, or input symbol,
. 0:Q x ¥ — (@ is the transition function,

. o € @ is the start state, and

. F C @ is the set of accept states or final states.

SHNIGURI R

Finite automata are frequently given by means of transition tables. If M =
(@Q,%,6,q, F) is an automaton with m states and n input symbols, then the ta-
ble of M has n rows and m columns. Each row is labeled by an input signal such that
different rows have different labels. Furthermore, columns are also labeled by state
in a one-to-one manner. If the label of i row is = and the label of j** column is a,
then the entry in the i row and j* column is 6(a, ):
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e
ql qz 0,1 q3

Figure 3.1: The Finite Automaton M,

(5‘ e -
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For example, let us consider the deterministic finite automaton M; depicted in
Figure 3.1.
We can describe M; formally by writing M1=(Q, %, d, ¢1, F'), where

1. Q = {q17q27q3}7
2. ¥ ={0,1},
3. 60 is described as

91|91 492
q2\43 q2
q3(92 42

4. ¢, is the start state, and

It can be seen from the table that for every state on one input symbol 0 or 1,
there is only one corresponding next state.

Extension of Notation: the function §* for DFA

It M =(Q,%,0,Qo, F), we now have a concise way of writing “The state to which the
machine M responses if it is in the state ¢ and receives an input symbol a,” which is
d(q, a). We would like an equally concise way of writing ” The state in which M endes
up, if it begins with state ¢, and receives the string x of several input symbols. Let
us write this as §*(g, x), and 6* may be considered as an extension of the transition
function §, which is defined as ) x %, to the large size @) x ¥*.
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Definition 3.1
let M = (Q,%,9,Qq, F) be a FA defining the function §* : QQ X ¥* — @ recursively
as follows.

1. For any q € Q,0*(¢,¢ ) =¢
2. For any y € ¥*,a € ¥, and q € Q,0*(q,ya) = 0(6*(q,y), a)

The extended transition function can be used to decide whether certain string belongs
to the language defined by the FA. Let z be the input string, gy be the initial state,
and F' be the set of final states. If §*(go,z) C F, then z belongs to the language
defined by the DFA.

3.1.2 Nondeterminism Finite Automaton

Nondeterminism is a useful concept to model the concurrent system. For DFA, the
transition function § specifies exactly one next state for each possible combination of
a state and an input symbol. For NFA, several choices may exist for the next state at
any given point. In other words, every state of a DFA always has one exit transition
arrow for each symbol in the alphabet, but for a NFA a state may have zero, one, or
many existing arrows for each alphabet symbol. More formally,

A nondeterministic finite automaton is 5-tuple (@, %, 9, qo, F'), where

1. ) is a finite set called the states,

2. Y is a finite set called the alphabet, or input symbol,
3. §:Q x X —> 29 is the transition function,

4. qo € @ is the start state, and

5. F C (@ is the set of accept states

For example, let us consider the finite automaton M, depicted in Figure 3.2. The
formal description of M, is My=(Q, %, 0, ¢1, F'), where

1. Q = {qu%%a Q4}7
2. ¥ ={0,1},
3. 0 is described as

0 1
q1 {Q1, QZ} {Ch}
| {gs} 0
q3 0 {(14}
g4 {(14} {Q4}

4. ¢y is the start state, and
5. F = {qu}

It can be seen from transition function ¢ that at state ¢; on input symbol 1, the
next state is a set of states {1, ¢2}.
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0,1 0,1

o
9

—0——0—+0
.9 9

Figure 3.2: The Nondeterminism Finite Automaton M,

Recursive definition of §* for a NFA

Let M = (Q,%,,Qq, F) be a NFA, define the function 6* : Q x ¥* — 29 recursively
as follows.

1. For any q € Q,*(¢q,¢) =¢q
2. For any y € ¥*,a € 3, and ¢ € Q,0*(q,ya) = Upeé*(q,y) d(p,a)

If no confusion will be made in the context, ¢ is used instead of * in this thesis.

3.2 Concurrent composition of automata

Traditionally, finite automata are considered to be a mathematical tool for modeling
sequential systems, not concurrent systems. However, along with the development
of formal method, recently there are significant numbers of researchers interested in
using automata to model concurrent systems.

In this section, different approaches for combining independently finite automata
are investigated in order to construct composite automata.

3.2.1 Parallel Composition

Shields [35] in his works defined a parallel composition of automata out of component
automata.

Let M, and Mp be the two individual finite state automata, two component
machines that run synchronously in parallel. The new machine, also a finite state
automaton, will take a pair of inputs, one from ¥4 and Xgz. These inputs are pro-
cessed by two component automata in the normal way, and the outputs are produced
together as a pair. This parallel composition of two machines M4 and Mp is written
as Ma || Mg.

Formally, let MA = (QA; EA, F, 5,4, )\A; qA()) and MB = (QB; ZB, F, 53, )\B; qBo) be
finite automata, then their parallel composite, My || Mp is defined to be the machine
M, where
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Q=QasxQsp.

Y=X4 X Xpg.

6((s1,82), (11,12)) = (1(51,71),6(82,72))
A((s1, 82), (i1,72)) = (A1(81,71), Aa(82, i2))
qo = (QAO,QBO)-

Crk W

Obviously, Shields’ method synchronizes the composition of independent processes
and is suitable to construct composite automata from parallel running component
automata that do not interfere with each other. Taking a close look at this method, we
should observe that it does not provide a proper mechanism to specify asynchronous
events of component automata as well as shared objects by different components.

3.2.2 General Composition of Finite Automata

Gecseg [7] defined a general form of products of automata. In his method, all of the
component states are fed back to each other, products of finite state automata are
obtained by composition of certain individual finite state automata in such a way
that the resulting system is also a finite state automaton. The most general form of
such a composition of a finite system of automata can be derived by determining the
actual input of each component automaton, depending on the actual states of these
machines and on the actual input signal of the system; the output of the system also
depends on the states of the component machines and on the input of system.

Definition 3.2 (General product)
Let P, = (Qs, X4, T4, 04, Niy gio) (6 = 1, ..., k; k£ > 0) be a system of finite automata, and
assume two mappings.

® V: () X ... XQEXY > X...xX X
o Y:QI X ... XQpxX—>T
Let us define the composite finite automaton P = (Q, %, T, 0, A, qy) where

1. @ = Q1 %X+ X Qy Is a finite set called the states, the element of Q is (¢1, - - ., qk)
where (q1,...,qx) €EQ = q¢1 € Q1 N+ A gy € Qy

2. X=X, X -+ X Xy Is finite set called the alphabet, or input symbol

3. : Q x X — @ is the transition function, 6((q1,...,qx),z) =
(01(q1, 1), - -, 0k(qk, xk)), where (q1,...,qx) € Q, x € X and (z1,...,z) =
SO(CIb---aC]kaﬂU)-

4. M(q1,---,%),x) = ¢(qu,- .., qx, ) is the output function, and
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5. go = (qio, "+, o) € Q is the start state.

From the above definition of an automata defined by general composition, it is clear
that the actual transition of individual component automata relies on the actual
state of each automaton and the input symbol of system, therefore this method can be
easily utilized to synchronize the joint events of each individual automaton. However,
this method does not explicitly provide a solution when the transition of individual
components also rely on the value of shared objects.

3.2.3 Asynchronous Automata

Asynchronous automata, introduced by Zielonka, Klarlund, Mukund, Sohoni [20,
36|, are natural generations of finite-state automata for concurrent systems. In its
terminology, an asynchronous automata consists of a set of processes that periodically
synchronize to process their inputs. Each letter a in the alphabet is associated with
a subset 6(a) of processes which jointly decide on a move on reading a. A distributed
alphabet of this type gives a rise to an independence relation I between letters: (a,b) €
I if @ and b are processed by disjoint sets of components.

Distributed alphabet. Let P be a finite set of processes. A distributed alphabet is
a pair of (X, 0), where ¥ is a finite set of actions and 6 : ¥ — 27 assigns a non-empty
set of processes to each a € X

State space. With each process p, we associate a finite set of states denoted by V.
Each state in V), is called a local state. For P C P, Vp is used to denote the product
[I,cpVo- An element @ of Vp is called a P-state. A P state is also called a global
state. Given ¥ € Vp and P’ C P, we use Up to denote the projection of ¥ onto Vpr.
Also, v5r abbreviates ¥p_ps. For singleton p € P, we write 2, for v,,. For a € X, V,
stands for V) and V5 stands for VW' Similarly, if 7 € Vp and 6(a) C P, we use 7,

—

for (4 and v for Upray-

Asynchronous automaton. An asynchronous automaton U over (3,60) is of the
form ({Vpe}per, {—=ataes, Vo, Vr), where —,C V,, x V, is the local transition relation
for a, and Vy, Vr C Vp are set of initial and final global states. Each relation —,
specifies how the process #(a) that meets on ¢ may decide on a joint move. Other
processes do not change their state. Thus, we define the global transition relation
= CVpxIxVpby == v if 7, =4 v and ¥, = v/,

U is called deterministic if the global transition relation of U/ is a function from
Vp x ¥ to Vp and if the set of initial state V), is a singleton.
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This model is a natural representation of the concurrent system, but it poses
the same inconvenience as general composite automata, namely when the actions of
individual component automata need to be synchronized with the involved objects
that competes with the resources.

Zielonka’s Asynchronous Automaton seems to be good for theoretical considera-
tions, but their use for practical specifications seems to be rather limited (see [6]).A
Major problem is that in reality the independency relation I is seldom completely
static, it rather depends on some global state S, but dynamic I(s) cause a lot of
theoretical problem. See [16] for some analysis.



Chapter 4

Global Finite Automata

In this chapter, a simple, but effective approach for specifying concurrent systems
with the global state machine is outlined first. Then, the formal semantics of global
finite automata system are defined.

4.1 An Approach to the Problem

This section describes general ideas of our approach to write documentation and
specification of a concurrent system.

First of all, the notion of event ordering is introduced. Some events may be
allowed to happen at the same time or concurrently while others must happen in a
predetermined order or sequentially. We call such situations the temporal ordering
of events and we will call systems with these types of properties concurrent systems
and sequential systems, respectively. For concurrent system, very often the ability
to proceed with an activity will depend on some other activities being completed or
having reached a suitable stage. For example, in a producer and consumer problem,
the producer puts a product into the buffer and the consumer gets the product from
the buffer. The consumer must wait until the buffer is not empty and the producer
must not make products if the buffer is full.

In the specification of concurrent systems, we are particularly concerned with the
patterns of synchronization between processes as well as objects in the system. As
the system as a whole evolves so do the individual processes. It is important that we
find some means of modeling the evolution of a system and, in particular concurrent
properties in our context.

The particular techniques of interest are the specification of complex systems
by the parallel composition of simpler ones, using restrictions where necessary to
constrain the observable system behavior as a whole, and the system specification in

22
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terms of their general state transitions.

Through investigations, it is found that finite state automata can best serve as
this role. Finite state automaton is an abstract virtual machine with a very well
defined behavior. As both a graphical and mathematical model, automata are con-
venient tool to model both sequential and concurrent systems. They can be used to
model processes that run independently as well as concurrently. Such processes take
particular states and perform state changes. The argument is that such states or
changes that are coincidental may be combined into a global state change.

In this thesis, a concurrent system is considered to be a set of concurrent processes
that may be cooperating (and need to be synchronized with them) or competing to
acquire some resources. The goal of this thesis is to develop a tool to write a formal
specification and documentation to synchronize different processes.

In this thesis, whole systems are viewed as normal non-deterministic automata at
the “level” of "global states”. Formally, the model advocated in [18] will be used.
Basically, during the life cycle of each process, it changes its state from one to another
or simply stays at the same state, depending on the actual input symbols and the
current process state as well as the value of shared object. Moreover, the global state
change is the combined result of individual process.

Certainly it is desired to record all of the possible states a system can evolve to
through the actions of its various processes. At any instance there may be a number
of processes, each of which is capable of a variety of next actions. One way to model
the change of a system state is to model all of the changes that could occur. For a
small system, it is possible to do so, but for a real practical system, it is not an easy
task to model all of the changes of the global state as the results of state explode.
Therefore, we do not attempt to use this approach. The divide and conquer strategy
is utilized instead, namely the synchronization of different processes is considered at
the global level and the actual actions of each individual process are delegated to
their local level.

The goal is to develop specification methods for concurrent finite-state system that
avoid the part of combinatorial state-space explosion problem, namely the explosion
of the number of state due to the modeling of concurrency by interleaving. To this
end, the tabular expressions are used to specify the constraints that must be satisfied
by all of the processes that interact with each other. Further treatments will be
illustrated in later sections.

To specify a concurrent program using tabular expressions, we propose the idea
of constraints, in which every implementation of a concurrent program either satisfies
the constraint imposed by the specification, or fails to implement the specification.

Constraints are requirements that are imposed on the solution by circumstance,
force, or compulsion. Constraints limit absolutely the options open to a designer
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of a solution by imposing immovable boundaries and limit. They can be policies
for database integrity, resource limits etc.

For example, in the Readers-Writers system, our leading example, one of the
constraints is whenever one of writers is in the writing state, other writers cannot enter
the writing state and readers can not enter the reading state. Another constraints
is whenever one of readers is in the reading state, writers cannot enter the writing
state.

A software specification should identify constraints as a part of the final prod-
uct. The designer, who implemented customer specifications, for any number of
reasons, has design preferences. However, if his/her design did not meet customer’s
constraints, then the solution is not acceptable.

We consider executing of concurrent programs as states changing, from initial
state to next state, etc in which they must satisfy the system constraints. The point
is that the system can perform and only perform the transition our model allows,
namely, satisfy the constraints that the system imposes.

For more than one processes accessing the same resource or critical section, concur-
rently, the system constraint will be considered when processes entering and leaving
the critical section. This is the part we are interested in the most for concurrent
issues. For example, when readers and writers both try to access the same database
resource, it is considered that either readers or writers can enter the database to read
or to write. In another situation, when they leave the critical section, they should
satisfy the condition for the global state. For example, when all of reading readers
and writing writers leave the critical section, the resource should enter the resource
free state.

To clearly express the method, this approach is separated into few steps. First of
all, the underlying concurrent system is analyzed and all the processes and objects
involved in the system are identified, then nondeterministic finite state automata are
used to model each individual process. For application concern in this stage, the state
of the finite state automata can be combined if different values of one variable make
no significant contribution to the definition of state. For example, if certain aspects of
the state are irrelevant to the behavior being observed, these aspects can be ignored.

Secondly, these state machines are combined together to general state machines,
which are called global finite state automata. They are used to model the concurrent
system. The formal definition of global finite state automaton is given and the tran-
sition function is provided. The reason that the transitions function of the global
state automata are not given as the traditional one is simply because it is neither
convenient nor necessary. Since outside the critical section, the individual automata
model can be used to check individual process. The transition function of global state
automata will be given by the tabular form. The proof of completeness of our table
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is also provided.

Thirdly, the system invariant is specified and the proof of the invariant held for
the model specification is given. Finally, the deadlock free properties of the tabular
specification are proved.

The formal tools associated with the methodology proposed here are elementary.
Finite automata, particular the nondeterministic finite automata, are used to model
each process involved as well as the entire system.

4.2 Global State Machines

It is assumed that concurrent systems are composed of different components, called
processes, that can act in parallel and interact with each other. It is also assumed that
processes have a finite state, and processes can be synchronized by executing together
a joint transition and by performing an operation on shared objects. Furthermore, a
possibility of simultaneous execution of a and b implies a possibility of execution in
the order a followed by b, and in the order b followed by a (paradigm 7g according to
Janicki and Koutny classification [10]).

4.2.1 Model for Each Individual Process

First of all, each process in the concurrent system is modeled as an NFA. Let I =
{1,...,n} ! be an index set of processes. For alli € I, P, = (Q;, A;, 6;,¢7) %, where Q;
is the set of local states of process P;, A; is the alphabet, d; is the transition function,
and ¢} is the initial state.

It is assumed that 3; C A, C ¥; UY;, where 3; is the set of all actions/events,
and 3; = {@ | a € %;} is the set of co-actions/co-events. The meaning of the elements
of set 3; will be explained shortly.

Without any loss of generalization, we may assume that Q; N Q; = 0 < i # j,
YiNY; =0« i+#j. Even if two processes P, and P; have virtually identical action
a, the a from P; can be renamed to a;, and the a from P; can be renamed to a;.

Let O be a finite set of objects shared by the processes, and for every o € O,
let v, denote the value of an object o, and V, denote the set of values that can be
assigned to the object o. Let also V' denote the Cartesian product [] ., V,. We may
also assume that V,NV, =0 < 0 # o'. We use Vy to denote the Cartesian product
[I,cor Vo- It is assumed that O' C O. Let 9o = (v1,...,v;) € V, we use 9o to denote
the projection of 7o onto Vor.

Lp is the number of processes in the concurrent system.
2Interactive systems and concurrent systems are not intended to stop, so it is meaningless to
model these system with a final state, therefore the final state is not applicable in our model.
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The set Q; and the state ¢ are defined as in standard finite state automaton
theory. However, the definition of events is extended, namely to associate two sets to
each event a of process P;. One set, called the synchronization set, consists of events of
process Pj, (j # i)A(j € {1,...,n}) to be synchronized with event a by executing the
joint transition; another set, called the competition set, consists of events of process
P;, (7 #14) A (J €{1,...,n}) that competes for access to the shared objects.

Formally, let ¥ =}, %, S =, S5, A=l A, ¥ =S —%;,j € I. Let
S:¥ — 2% and C : ¥ — 2% be two mappings, such that Va € Y.a € &; = S(a) C
YA C(a) C X' The set S(a) is called the synchronization set of a, and the set C(a)
is called the competition set of a. It is assumed that S(a) N C(a) = 0.

Let v: ¥ — [[,cor 2" be a mapping interpreted as follows. If O' = {oy,...,0;},
v(a) =V, x ... x V, means that each Vi € {1,...,;} is the set of values of the
shared object o; for which the set of events C(a) U {a} has equal opportunity to
compete. For example, in the Readers-Writers problem, the database is modeled as a
shared object. When the database is in free status (no reader and writer is accessing
the database), readers and writers have equal opportunity to compete to access it.
For most of the applications, | O’ |=| {0} |= 1, and then v : ¥ — 2. Tt is assumed
that S(a) = C(a) = () implies v(a) = 0.

The set S(a) is () whenever event a does not perform any joint transition with other
events. The set C(a) is ) whenever event a does not compete for any shared objects.
An event a € X is independent if S(a) = C(a) = 0, otherwise it is a dependent event.
The set A;, i € I, must satisfy: Va € ;. a is independent < @ ¢ A;

There are two status for a given event ”a”, namely enable and disable. Whenever
an event ”a” satisfies all the restrictions (if there are any) that the concurrent system
imposes on it, it is at enable status, written as a. Otherwise it is in a disable status,
written as @.

Let o : A — {enable, disable}, and

()_ enable ifaeX
T\Y =1 disable ifaecTNA

The function o is useful form the application viewpoint even though it is com-
pletely defined by the distribution of A into ¥ and X.

For an event a of process P;, if a is an independent event, it is always evaluated
to enable status. In this case, process P; transits to the next state according to the
transition function; If set S(a) and/or C(a) of an event a is not empty, it is evaluated
to disable from the function o, and this event leads the process P; staying at the same
state. Through the composition of other proper processes, it is possible to eliminate
all the elements of set S(a) and C(a), then the event a is enable and can be executed
to lead the process P; to next state, possibly to the same state, according to the
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local transition function. Further details of elimination will be discussed in the next
section.

The transition function 4; is slightly extended to the traditional finite state au-
tomata. The alphabet of traditional automata consists of events/actions, or possibly
e for NFA. The alphabet of P; consists of events/actions, part of co-events/co-actions,
and e. For independent action a, only one transition needs to be defined for a given
state ¢, namely 5~1(q, a); For non-independent action b, two transitions need to be
defined for a given state ¢, one for o(b) = enable, another for o(b) = disable, namely
1 (g,b) and b1 (g, b) respectively. It is assumed that the ¢ action upon any state leads
to that state itself. Formally 5,-(q,~,s) = ¢;, where ; is the transition function of
process i, ¢; € @Q;

Let ¢;,qx € Qi, @ € A;. Function 6; is defined as follows:

N {g;} if
0i(gj,a) = ¢ {a} if
{g;} ifa

Each process is defined as so called deterministic nondeterministic automaton.
Deterministic means that the transition function [6;(¢;,a)| < 1, where ¢; € Q; and
a € Y; Nondeterministic means that not all event and state combination is defined.
In other words, an automaton is deterministic since no nondeterministic choice is
made, but it is nondeterministic according to the standard automaton theory.

It is assumed that all undefined transitions are considered as error and this error
propagates to the next level, namely global automata level. Therefore, no matter
what level the error happens, it should been considered as an error of the whole
system.

Let us consider a producer and consumer example. In this model, producer pro-
duces one product once a time and puts it into a buffer; The buffer has a capacity of
two, which means that it can contain at most two products; The consumer consumes
the product that fetched from the buffer once a time. The producer and consumer
compete to access the buffer when vy, = 1, where a producer can produce a product
or a consumer can consume one product. The producer cannot produce if buffer is
full, and consumer cannot consume if buffer is empty.

The buffer ”buf’ has three values, namely 0, 1,2, which represent no product in
the buffer, only one product in the buffer, and two products in the buffer, respectively.
Hence Vi, y = {0, 1,2}. The producer is modeled as P, = (@1, A4, 6, q%), depicted as
left of Figure 4.1, where

a=c¢,
(a € 3;) A (gr is the next state of the transition),
€XiA(beX;Ab=aAb(g;,b) is defined)

1. Q1 = {s1,s2} is a finite set of states, s; means that producer is ready
to produce, and sy means that producer ﬁnishes_ making product.
2. X1 = {t1,12} is a finite set of events, and 3; = {#1,,} is the finite
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Figure 4.1: The Finite State Automata of Producer and Consumer

51‘ tl fl tg 13
s1|{s2} {s1} {s1}
52 {s1} {s2}

Table 4.1: Transition Function of Producer

set of co-events. There are two events for producer. One of them ¢;
is not a joint event since set S(t1) is empty, and it competes to access
object buf with event t3 of process P, when vy, = 1. C(t1) = {t3} and
v(t1) = {1}. Another event t, is an independent event and it is free to
execute the transition without considering other events. A; = {t1, 19,11}
is the alphabet, where ¥; C A; C 3y U,

3.0, : Q1 x Ay — 291 is the transition function defined as table 4.1, and
4. s1 € (1 is the initial state of producer.

The consumer is modeled similarly as the producer. It is modeled as P, =
(Q2, Ao, 52, 49), depicted as right of Figure 4.1, where

1. Q9 = {s3, 54} is a finite set of states, s; means that consumer is ready
to consume the produce, and s, means consumer finish consume product.
2. Yy = {t3,t,} is a finite set of events. ¥y = {f3,%,} is a finite set of
co-events. There are two events for consumer. One of them %3 is not a
joint event since set S(t3) is empty, and it competes to access object buf
with event ¢; of process p;. Another event ¢, is an independent event and
it is free to execute the transition without considering of other events.

AZ == {tSa t4a E}
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52‘ t3 53 t4 g
sz|{sa} {53} {s3}
S4 {s3} {54}

Table 4.2: Transition Function of Consumer

3. 0y : Qg X Ay — 292 ig the transition function defined as Table 4.2, and
4. s3 € ()9 is the initial state of consumer.

From the model of producer and consumer, it is easy to understand that if an
event of a process is not an independent event, it cannot be evaluated solely by the
information of itself. It needs other processes’ activities to joint decide a move on
the restrictions that concurrent system imposes on them. Hence, we need compose
individual process to a general finite state automata to eliminate the elements of set
S(a) and C(a) for event a.

4.2.2 Model for Composite Process

In the process based specification techniques, a concurrent system is modeled as
a set of interconnected processes. Each process can perform some transitions and
interact with other processes and shared objects. At any given time, there may be
several transitions (from different processes) concurrently running in the system. The
complete dynamic behavior of a system can be specified by the dynamic behavior of
each process and shared objects.

Having specified the individual process as a NFA, the concurrent system is defined
as Global Finite State Automata(GFSA). It is assumed that there are n processes in
the system and the processes can access a finite set of k£ shared objects.

Definition of Global Finite State Automaton

Let Con = (P,..., Py, 0,{V,}oc0, S, C,0,v) be a concurrent system. We construct
a global automaton P = (Q, X, d, qy) that model concurrent system as follows:

® Q=1L Qi xIl,co Vo, is a finite set called the global states, or simply states.
An element of Q is (¢1,-..,qn,v1,...,V), where (q1,...,Gn, V1,...,0) € Q@ =
GEQIN-- NG EQuNVIEVIN... NV, €V},

o> = [Lc, %5, 3 is a finite set called the alphabet, or input symbol,

3%¢ represent ¥; Ue, i =1,---n
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o ¢ =1{q,...,q%,19,...,v0), is the initial state, where ¢} € Q;(i € {1...n}) is
the initial state of process p;, and v) is the initial value of an objects o;,

e §:(Q x X — 29 is the transition function.

The mapping of § : Q x ¥ — 29 is quite complicated formally, although intu-
itively rather obvious. It must take into account the rule for ”Element elimi-
nation of the sets S(a) and C(a)”. However, The transition function ¢ must
satisfy following property:

!

6((%15"'aQRavl,'"avk)a(ala-":a'n)) - {(pla"'apnavia"'avk)}
= 0i(gi, ;) = {pi} N a; € {e,a;,a;}

In this scheme, all of the component states and shared objects values are fed
back to each other and the transition relation of the global automaton is derived by
determining the actual input of each component automaton, depending on the actual
states of these machines and objects values. The event dependence of each component
event is eliminated through the combination of component event and shared object.

The Elements Elimination of the Sets S, C

Let an element of the set of global events be A = (ay,...,a,), where g; € ¥5(1 <i <
n), S(a;) is the synchronization set of a; and C(q;) is the competition set of a;. Let
also ((q1y .-y, V1, oy 08), (a1, ..oy 0)) = {(P1y-- s Pn, V], .o, 00)} = i, di) =
{pi} Na; € {e,a;,a;}. Let v5 = (v1,...,v;) € V, we use o to denote the projection
of vH onto Vor.

Let A : ¥ — 2% be a mapping interpreted as follows. If A = (@1,...,a,) € 3, then
AMA) ={ay,...,a,} with the duplicate ¢ actions removed.

Five cases need to be considered for each individual process’s action a;.

L. If a; = ¢, no element in the sets S(a;), C(a;) needs to be eliminated, since they
are already empty. The process i executes transition 6;(g;, d;) = 0;(gi,€) =

{pz'} = {QZ}

2. If a; is an independent action, then sets S(a;), C(a;) are also empty. The action
a; is evaluated to enable status. The process i executes transition d;(g;, G;) =

51'(%&1’) = {pz}

3. If S(a;) # O A C(a;) = 0, all elements of set S(a;) need to be eliminated to
execute a joint transition.

v} is the value of object i after execute the transition
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Two cases need to be considered. First, if S(a;) C A(A), which means that the
synchronization actions of a; are exactly the sub-actions of the global action
A with respect to individual processes, then all the elements of set S(a;) are
eliminated. The action a; is evaluated to enable status. The process i executes
transition 52 (qz, dz) = (Sz (ql, CLZ) = {pz}

Secondly, if S(a;) € A(A), which means that the synchronization actions of a;
are not all appeared as the sub-actions of the global action A with respect to its
corresponding processes, then some elements of set S(a;) cannot be eliminated.
The action a; is evaluated to disable status. Therefore, the process i executes
transition 0;(¢;, @;) = 0;(¢i, @) = {pi}-

4. If S(a;) = O A C(a;) # 0, then the elements of set C; need to be eliminated to
possibly execute only one action of set C'U {a;} depending on the value of the
shared objects. Supposed that a; competes with other processes to access shared
objects O on set of value v(a;). If Ui ¢ v(a;), then the elements elimination is
irrelevant since the shared objects values do not satisfy the competing condition.
The transition of process 7 follows the definition of ¢ function.

However, if o € v(a;), then two cases need to be considered for elements
elimination of set C(a;)

First, if C'(a;) AA(A) = 0, which means that in the global action A, the compete
actions of action a; do not appear as sub-actions of A with respect to the corre-
sponding processes. All the elements in the competition set of a; are eliminated.
The action g; is evaluated to enable. Hence the process i executes transition
6i(qi, di) = 0i(qs, a;) = {pi}

Secondly, if C(a;) A A(A) # () which means that action a; competes with other
actions to access the shared objects O'. Only one of competing actions is eval-
uated to enable, and other actions in the set C(a;) U {a;} are evaluated to
disable. The action i is either evaluated to enable and process i executes tran-
sition 6;(q;, a;) = 0;(qi, a;) = {p;}, or the action i is evaluated to disable and
process i executes transition &;(g;, d;) = 0;(¢;, @) = {p:}. It is arbitrary that the
action ¢ is evaluated to enable or disable status if we do not take into account
the priority of competing actions.

5. If S(a;) # 0 A C(a;) # 0, careful consideration is needed. Three cases need to
be considered for such a situation.

First, if S(a;) € A(A), which means that the synchronization actions of a; are
not all appeared as the sub-actions of the global action A with respect to the
corresponding processes, then some elements of set S(a;) cannot be eliminated.
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The action q; is evaluated to disable status. Therefore, the process i executes
transition 0;(¢g;, ;) = 0;(¢i, @;) = {pi}-

Secondly, if S(a;) € A(A), o ¢ v(a;), then for the reason explained above, this
case is irrelevant for elements elimination of sets S(a;) and C/(a;).

Thirdly, if S(a;) C A(A), Tor € v(a;), which means that the synchronization
actions of a; are exactly the sub-actions of the global action A with respect to
individual processes, then all the elements of set S(a;) are eliminated. It also
means that action a; compete with other actions to access the shared objects
O'. Only one of competing actions is evaluated to enable, and other actions in
the set C(a;) U {a;} are evaluated to disable. The action i is either evaluated
to enable and process i executes transition d;(¢;, d;) = 6;(qs, a;) = {p;}, or The
action 7 is evaluated to disable and process 7 executes transition &(q,-,d,-) =

0i(qi @) = {pi}.
Put it together, the transition function ¢ should satisfy the following property:

5(((]1: ceeyQny V1, - 'avk)a (a'la e ,a'n)) - {(pla e ,pnavi, v 'avllq;)} = Sz(qzaaz) - {pz} A
a; € {¢,a;,a;} and

/

éi(qiae) ifa= g,
6i(gi,a;)  if (S(a;) = 0) A (Cla;) = 0),
0i(gi,a;)  if (S(a;) # 0) A (Clas) = 0) A (S(as) C A(4)),
di(gi @) if (S(a:) # 0) A (Cla;) = 0) A (S(as) € MA)),
5:(gi, @) = ¢ 0i(gi;ai)  if (S(a;) = 0) A (Cla;) # 0) A (Tor € v(a;)) A (Clai) A A(A) =0),
B di(gi;ai)  if (S(a;) = 0) A(Cla;) # 0) A (Tor € v(ai)) A (Clai) AA(A) #0),
Udi(gi, aq)
Si(gi,@i)  if (S(ai) # 0) A (Clai) # 0) A (S(as) € A(4)),
oi(gi;@i)  if (S(ai) # 0) A (Cla;) # 0) A (S(a;) C A(A)) A (Tor € v(ai)),
L U0i(gi,ai)

From the definition of individual process i, one may find that action @; upon
certain state leads the process to the state itself, and action € upon any local states
leads the process to the state itself too. One may immediately asked ” Why don’t you
just use ¢ action to substitute all the @, and simplify the transition function table”.
Careful readers may find that it is not necessary the case. For example, for a global
action A upon certain global state, if the action a; is evaluated to disable status,
then according to our scheme, upon certain state, it leads the process to the originals
state itself; Upon other states, it may leads the processes to error if a; is not defined
in these states. If all the co-action of @ is substituted by ¢ action in the transition
function, then upon any local state, it leads the process to the originals state itself,
which is wrong. It is our intention to capture the illegal global events through local
transition function, Therefore @ action and ¢ action is not equivalent, it cannot be
substituted by e action.
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Base on the above scheme, the global finite state automaton of Producer-
Consumer concurrent system is defined as NFA P = (Q, %, 0, go), where

® () = Q1 X Q2 X Viyy is a finite set called the global states, or simply states, and
Q = {(Sla 53, O)a (817 53, 1)7 (517 53, 2)7 (Sla S4, O)a (81, S4, 1)a (817 S4, 2)7 (827 53, 0)7
(823 53, 1)5 (82a 53, 2)’ (82a S4, 0)’ (823 S4, 1)5 (82; S4, 2)}

35 x 3§ is a finite set called the alphabet, or input symbol, and
= {(tl, t3)a (tla t4)a (tla 5)5 (t2a t3)7 (tQa t4): (tQ: 8), (5, t3)7 (65 t4): (E, 5)}

o
by

®J : QX g] — 29 is the transition function, 0((q, 42, Vbuy), (a1, a2)) =
(61(q1,@1), 62(g2, G2), vy, ;) Where (g1, G2, vour) € @, and a; € {¢,a;,a;} where
a; € ¥;. The transition function/relation is defined as Table 4.3 in traditional

way.

e ¢y = (s1,83,0) is the initial state, where s; € @), is the initial state of producer,
S3 € (9 is the initial state of consumer, 0 is the initial value of shared object
buf.

The transition function of Producer-Consumer is defined as follows. The initial
state of Producer-Consumer system is (s1,s3,0), which means that producer is in
"ready to produce product” state, consumer is in "ready to consume product” state
and the value of buffer is 0 (no product in the buffer). At the initial state, if the global
transition event is (¢, t3), since consumer cannot consume any product when the value
of buffer is 0, then ?; is evaluated to enable status, ¢3 is evaluated to disable status,
angi 5((81, S:i’ 0), (tl, t3) = {(51 (81, tl), 62(83, %3), 1)} S~imilarly,~5((sl_, S3, 0), (tl, 8)) =
{((51(81, tl), (52(83, 6), 1)}, and 5((81, S3, 0), (6, tg)) = {(51(81, 6), 62(83, tg), 0)}

At state (s, 83, 1), which represents that producer is in ”ready to produce prod-
uct” state and consumer is in "ready to consume” state, and the value of buffer is
1. If the global transition event is (t1,%3), since the value of buffer is 1 € v(¢;) and
1 € v(t3), the producer and consumer have equal right to access the share object, but
only one process can get the change to access it. Therefore, the set of next states
is defined as §((s1, s3, 1), (t1,3)) = {(01(81,%1), 02(53,3), 2), (01(s1,%1), 02(83,t3),0)}.
The rest terms are defined similarly as above. The final result of transition function
after being evaluated from process’s local transition function is shown in Table 4.4.

There are two processes and one share object involved in the Producer-Consumer
system, each process has two states and the object has three values, hence transition
table needs 2 x 2 = 12 rows. Each process has two actions and a ¢ action, hence the
table needs 9 columns to specify the global actions. It has been shown that the table
size increases exponentially.

Let us consider another system, called weird system. A weird software system
consists of two processes P;, P, and one shared object o. P; has three events, namely
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[ Il (t1,t3) (t1,t4) (t1,€) (t2,t3) (t2, ta) (t2,€) (e, t3) (e, tq) (e,¢)
(s1,83,0) [[{(01(s1,t1),02(s3,¢3), 1)} {(01(s1,t1),83,1)} {(s1,02(s3,13),0)} {(s1,53,0)}
(s1,83,1) || {(81(s1, £1), 62(s3, 13),2), {(01(s1,t1),53,2)} {(s1,02(s3,t3), 1)} {(s1,83,1)}

(01(s1,%1),02(s3,13),0)} . B -

(s1,53,2) [[{(01(s1,%1),02(s3,t3),1)} . {(61(s1,%1),53,2)} {(s1,02(s3,t3), 1)} ~ {(s1,53,2)}
(s1,54,0) {(01(s1,t1), {(s1,02(s4,ta),0)} {(s1,54,0)}
(s1,54,0) 02(s4,t4),1)} . {(s1,54,0)}
(s1,54,1) {(01(s1, 1), {(s1,02(s4,t4), 1)} {(s1,54,1)}
(s1,34,1) 02(s4,t4),2)} B {(s1,84, 1)}
(s1,54,2) {(d1(s1, 1), {(s1,02(s4,t4),2)} {(s1,54,2)}
(s1,54,2) 02(s4,t4),2)} B B . {(s1,54,2)}
(s2,53,0) {(01(s2, t2), {(31(s2,t2),83,0)} {(s2,02(s3,%3),0)} {(s2,53,0)}
(s2,83,1) 02(s4,14),0)} {(d1(s2,t2),83,1)} {(s2,92(s3,¢3),0)} {(s2,83,1)}
(s2, 83, 2) {(d1(s2, t2), {(01(s2,t2),53,2)} {(s2,02(s3,t3),1)} {(s2,53,2)}

02(s4,t4),0)}

{(01(s2, t2),

02(s4,ta), 1)} B B
(s2,354,0) {(01(s2,t2), {(81(s2,t2),54,0)} {(s2,02(s4,t4),0)} {(s2,54,0)}
(s2,54,1) 02(s4,t4),0)} {(d1(s2,¢2),54,1)} {(s2,92(s4,t4), 1)} {(s2,54,1)}
(s2;, 84, 2) {(01(s2,t2), {(d1(s2,¢t2),54,2)} {(s2,02(s4,t4),2)} {(s2,54,2)}

82(sa,ta), 1)}
{(61(s2,t2),
02(s4,t4),2)}

Table 4.3: The Global transition Function of Producer-Consumer System
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{(z7s2s)} {(g ¥s‘?s)} {(g7s 1)} {(g‘es ‘1s)} (g ‘¥s ‘@s)
{(17s2s)} {(1¢s2s)} {(17s18)} {(1¢s18)} (1°7s ‘2s)
{(07ses)} {(0*¢s ‘es)} {(o‘rs 1)} {(0*¢es “1s)} (0°vs ‘@s)
{(g eses)} {(1rses)} {(g es1s)} {(1¢rs18)} (z‘ts ‘es)
{(r<¢s‘es)} {(07s es)} {(1 €5 1s)} {(07s1s)} (1°€sCs)
{(0‘es‘2s)} {(0es2s)} {(0‘¢s‘1s)} {(0es18)} (0‘¢s ‘2s)
{(@vs‘ts)} {(gEs‘1s)} {(z ts‘1s)} (¢7s‘1s)
(17sTs)} {(1°¢s‘1s)} {(g‘es ‘2s)} (1°7s ‘1s)
{(07sTs)} {(0‘€s ‘1s)} {(1°es‘es)} (07s‘1s)
{(zes1s)} {(rrs18)} {(ges18)} {(17s18)}|| (¢ ‘€5 “1s)
{(1vs‘1s)
{(rees‘1s)} {(o‘vs‘1s)} {(g‘eses)} (¢ €s‘es)} || (1 €s ‘Ls)
{(0‘¢s‘1s)} {(0‘¢s‘1s)} {(1°¢ses)} {(1€s‘es)}||(0¢s ‘1)
(33) (77°3) (¢2°3) (329) (72%) (¢7°27) (3'19) (72¢17) G I
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(1) Process 1

(2) Process 2

Figure 4.2: The Finite State Automata of Process 1 and Process 2

13

13

51‘ h by b
S1 {82}
S2 {s3} {52}

53

{s1}
{s2}

{s1} {s3} {s3}

Table 4.5: Transition Function of Process 1

t1,19,13, and three states, s1, s, 3 ; P; has three events, namely 14, t5,ts, and three
states, s4, S5, S¢ ; Object o is shared by the two processes and (0 < v, < k)A(v, € int)
(for some integer k). The initial value of object o is 0.

Event ¢, of process P; and event t; of process P, are both independent events;
Event ¢y of process P; and event t5 of process P, competes for accessing object o.
These two events have equal priority to access the object o when 0 < v, < k, namely
Cl(te) = {ts}, C(t5) = {t2} and v(as2) = v(az) = {v,|0 < v, < k}. Event ¢, adds 1 to
0if 0 <w, < k. Event t5 subtract 1 from o if 0 < v, < k; Event ¢3 and event ¢ are
joint events, namely S(t3) = {ts} and S(t6) = {t3} and they synchronize to transact
simultaneously. Therefore, P, and P, are defined as follows.

P; is modeled as P, = (@1, %4, o1, s1), depicted as left of Figure 4.2, where

1. @1 = {s1, s2, 53} is a finite set of states,
2. ¥y = {t1, 1,13} is finite set of alphabet, or events.
3.0 : Q1 XX — 2? is the transition function defined as table 4.5, and

4. s1 € Q1 is the initial state.

P, is modeled as Py = (Q2, X3, 0, 54), depicted as right of figure 4.2, where

1. Q2 = {54, s5, 56} is a finite set of states,
2. ¥ = {t4, 15,16} is finite set of alphabet, or events.
3. 00 : (g X X9 — 2? is the transition function defined as table 4.6, and

4. s4 € ()9 is the initial state.
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Oo| ta ts T ts ts e

s4|{s5} {s4}
S5 {se} {s5} {ss}
S6 {sa} {s6} {s6}

Table 4.6: Transition Function of Process 2

The global finite state automata of weird system is defined as P = (@, ¥, 6, ),
where

. @ = Q1 x Qs xV, is a finite set called the global states, or simply states.

. X = X7 x X5 is a finite set called the alphabet, or input symbol,

. 6:Q XNZNI — 29 is the transition function, §((q1,q2, Vo), (a1, a2)) =
1(Q1;&1),52(Q2,a2)avéuf) where (q1,42,v,) € Q, and @; € {¢, a;, @;} where
a; € ¥;. 4. qo = (81, 54,0) € @ is the initial state.

SW N =

Let an element of a set of global events be A = (ay, ay), where a; € ¥ is an event
of process 1, ay € ¥y is an event of process 2. An element of a set of global state be
(q1,42,v0) € Q, where 1 € Q1 A g2 € Q2 and v, € Vp.

A few interested global events need careful consideration in this system.

e The global event is A = (t5,15), which means the event of process 1 and the
event of process 2 compete to access the object 0. When 0 < v, < k, since to, t5
have equal priority to access the object o, then either ¢; = b1 ('q1,t2) AN gy =
02("q2, t5) A v, ="v, +1) % or ¢4 = 61 ('qr, T2) A gy = 02('ga, t5) A, = "v, — 1) will
be true, but not both. When v, = 0, process 2 cannot execute action t5, then
q = b1 ('q1, t2) NGy = 52('q2,f5)/\1); = 1) is true; On the other hand, when v, = k,
process 1 cannot execute action t,, then ¢ = & ('q1, t2) NGy = 52(’(12, ts) Av, = k)
is true,

e The global event A = (t3,%s), which means that the event of process 1 synchro-
nizes with the event of process 2 to jointly execute a transition. Since the global
action satisfies the system constraints, the transition 51(’(]1, a) A 52('(]2, ag) is
executed. If global event is A = (a1,a2) and a; = t3 A ag # ts, 51(’q1,61) will
be executed with respect to process 1 ; Similarly if global event is A = (a4, as),
and a; # t3 A ag = tg, 02('qz, @2) will be executed with respect to process 2.

5The same convention as traditional tabular expressions is used, namely if a represents the value
of a variable (or state of a process), then 'a represents the value of variable (or state of a process)
before the transition, and a is used to represents the value of variable (or state of process) after the
transition.
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There are two processes and one share object involved in the weird software sys-
tem, each process has 3 states and the object has k values, hence transition table
needs 3 x 3 x k = 6k rows. Each process has 3 actions and a ¢ action, hence the
table needs (34 1) x (3+ 1) = 16 columns to specify the global actions. If the value
of £ is relatively big, then the table will need many rows to specify the transition.
Therefore, it is not practical to use traditional transition table to specify it. The
transition function will be specified using tabular expression in next section.

4.3 Tabular Expression

Finite automata are frequently given by means of transition tables. If M =
(Q,%,6,q) is an automaton with m states and n events symbols, then table M
has m rows and n columns. For practical software system, the value of m and n could
be large, especially when combining different processes together, the events and states
will be increased exponentially, therefore it is not practical to use the conventional
transition table to specify global automata. However, the formal specification nota-
tion, tabular expressions can be used to resolve this problem.

Here, the meanings of tabular expressions used by SERG is slightly extended.
Functional method uses tabular expressions to specify Input/Output relation of se-
quential program execution. For the concurrent program, the situation is a little more
delicate. One of the reasons for this lies in the fact that such programs do not have
inputs and outputs defined as easily as those for sequential programs. In this work,
the concurrent system is viewed as a global finite state automaton, and the tabular
expression is used to specify the transition function of the global automaton.

The two-dimensional table [11, 12, 23] will be used to write the transition function
of concurrent systems. The predicate in the first column (called header H;) /row of
each table partitions the global state into mutually exclusive set. i.e. for a given
state, only one row in each table can be evaluated as “true”. The predicate in the
first row (called header Hy) /column of table partitions the global events into mutually
exclusive set. i.e. for a given set of input event, only one column in each table can be
evaluated as “true”. The cell in the main grid is the expressions of set of next states
in term of each process local transition function and the object next value.

The Tabular Expressions of Producer-Consumer system

The transition function of producer and consumer system is specified as follows. Let
an element of a set of global events be A = (ay, az2), where a; € ¥; is an event of
producer, ay € Y5 is an event of consumer; An element of a set of global state be
(q1, 92, Vbuy) € Q, where ¢ € Q1 A g2 € Q3. The transition function of Producer and
Consumer system is defined as tabular form depicted as Table 4.7.
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5 l (a1 = t1,a2 = t3) | (a1 = t1,a2 # t3) | (a1 # t1,a2 = t3) | (A1 # t1, A2 # t3)
"vpuy = 0[[{(01(q1,01),02("g2,a2), D} [{(91(q1,01),92("g2, a2), 1)} [{(1("q1, @1),02("g2,@2),0)} [{(01(q1,01),02("g2,a2),0)}
"vpug = 1]]{(01(q1,01),02("q2,a2),2), [{(01("q1,a1),02("q2,a2),2)} [{(01 (g1, 01), 02("g2,a2),0)} [{(01("q1,a1),02("q2,a2),1)}
(61('q1,a1),62('q2,a2),0)}
"pur = 2|[{(01(q1,@1),02("g2, a2), 1)} [{(01 ("q1,@1),02("q2, a2),2)} [{(61 (g1, 01), 02("g2,a3), 1)} [{(01 ("q1,a1),02("q2,02),2)}

Table 4.7: The Tabular Expressions of Producer-Consumer System’s Transition Func-
tion

k) || "vo =0 | 0<’vo <k | "vo = k

(a1 = t1,a2 = ta)U || {(01('q1,01),02('g2,0a2),0)} {(01(q1,0a1),82( g2, a2),v, = "vo} {(01('q1,a1),02("g2,a2), k) }
(a1 = €,a2 = t4)U
(a1 =t1,a2 = E)U
(a1 =t3,a2 = ts)
(a1 = t1,a2 = t5)U || {(61(q1,01),02('42,@2),0)} | {(61('a1,a1),82( g2, 02),v, ="vo — 1)} [{(61('q1,0a1),02('g2,a2),k — 1)}
(a1 = €,a2 = t5)
(a1 = t1,02 = t6)U|| {(01('q1,01),02('g2,32),0)} | {(01(q1,01),02('q2,a2),v, ="v0)} {(01('q1,a1),02("a2,a2), k) }
(a1 =¢g,a3 = ts)
(Oél =t2,a2 = t4))U {001(a1,01),02("q2,a2), )}}[{(d1("q1,a1),02(" a2, 02),v, = "vo + 1))} {(01('q1,01),02('q2,a2), k)}
a; =t2,a2 =¢
(a1 =t2,a2 =t5 || {(01("q1,01),02('g2,@2),1)} {(51('q17a1)752(’q2ﬁ2)a¢; ="vo +1), [{(91('q1,@1),92('g2,0a2),k — 1)}
(61('q1,a1),02('g2,02),v, ="vo — 1)}
(a1 =t2,As = te) || {(01(q1,a1),02('q2,32),0)} | {(61(q1,a1),82('q2,a2), v, = 'vo)} {(01('q1,a1),02('g2,a2), k) }
(a1 Tt3af42 =)t4)U {(01(q1,a1),02('g2,02),0)} | {(61(q1,a1),02('q2,2),v, = 'v0)} {(41('q1,@1),02('g2,02), k) }
a; = t3, €

(a1 =ts, A2 = t5) || {(61('q1,31),02('42,@2),0)} | {(01('q1,31),02("q2,02),v, = "vo — 1)} [{(01('q1,T1),02(q2,02), k — 1)}

Table 4.8: The Tabular Expressions of Weird System’s Transition Function

The Tabular Expressions of Weird system

Let an element of a set of global events be A = (a1, as), where a; € ¥; is an event
of process 1, ay € 35 is an event of process 2; An element of a set of global state be

(91,92, v0) € Q, where g1 € Q1 A g2 € Q2.

The transition function of the Weird system is defined as tabular form depicted as
Table 4.8. Header H; of the table is the predicate of global actions which partitions
the global events into mutually exclusive set; Header H, is the predicate of global
state which partitions the global states into mutually exclusive sets.

It can be observed from the Producer-Consumer system and the weird system
that the tabular expressions can significantly reduce the number of rows and columns
needed to specify the transition function. It is especially true for the loosely coupled
system, since the global state of this kind of system can be partitioned easily to few
sections.
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5 l (a1 = t1,a2 = t3) | (a1 = t1,a2 # t3) | (a1 # t1,a2 = t3) | (a1 # t1,a2 # t3)
"vpuy = 0[[{(01(q1,01),02("g2,a2), D} [{(91(q1,01),92("g2, a2), 1)} [{(d1("q1, @1), 02 (g2, @2),0)} [{(01(q1,01),02("g2,a2),0)}
"vpus = 1][{(01(q1,@1),02(q2,02),0), [{(01(q1,0a1),02("q2,02),2)} [{(01(q1,01),02("g2,a2),0)} [{(01("q1,01),02("q2,02),1)}
"vpu g = 2[[{(01(q1,@1),02("a2, a2), 1)} | {(61("q1,@1),2("q2, a2),2)} [{(01 (g1, a1), 02("q2, a3), 1)} [ {(01 (a1, 1), 62(" g2, a2), 2)}

Table 4.9: The Tabular Expressions of Producer-Consumer System’s Transition Func-
tion with Priority

4.3.1 Processes’ Priority

Priority is considered as the most important factor and it should be dealt with before
anything else. In the specification of concurrent computing system, priority is an
important property needed to be addressed. In a practical computing system, such
needs do exist when some processes’ activities have high priority. For example, in the
Producer-Consumer system, when the value of buffer is vy, s = 1, if the global event
is (t1,t3), then the producer and consumer have equal right to access the buffer.

However, for whatever reasons, if it is desirable to give some events a high priority,
it is nice to have that kind of mechanism to do so. This could be done easily by adding
additional symbol to process’s events, namely adding +, - symbols to the events of
competition set of a competing event.

Let ¢; be an event of process 1, and #; competes with an event f5 of process 2
and an event t3 of process 3 to access an shared object o on a set of values V. t,
has a higher priority than ¢; while ¢3 has a lower priority than ¢;. According to our
approach, the competition set of event ¢; is written as C(t;) = {+t2, —t3}.

In the Producer-Consumer system, if the consumer is given a higher priority than
producer, then the competition set of ¢; is C(t;) = {+¢3}, and t3 is C(t3) = {—t1}.
The transition function of Producer and Consumer system, with consumer having a
higher priority, is defined as tabular form depicted as Table 4.9.

There is a difference between the two specifications of Producer-Consumer system.
In the first one, producer and consumer have equal right to access the buffer when
the buffer value is 1. Hence, on the global event (¢;,¢3), there are two possibilities for
the next state. In the second one, since the consumer has a higher priority, there is
only one choice for the next state, namely consumer consumes the product and enters
into the next state and producer stays in the same state.

4.3.2 The Equivalent Relation of Two Specification

After specifying the transition function of concurrent systems with tabular expres-
sions, it is nature to ask “whether the tabular form specification is equivalent to
traditional counterpart”. This is the fundamental principle that needs to be estab-
lished. Moreover, for practice specification of concurrent system, if this principle
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cannot be guaranteed, then it is an incorrect specification of underlay system.

It can be proved that the tabular expressions specification of Producer-Consumer
system is equivalent to the traditional one. It can be established a onto mapping
from traditional specification to the tabular one. Moreover, for every element of
partitioned set in tabular form, the corresponding element can be matched into the
traditional transition table. For example, when the global state is (s1, s3, 0), the global
event is (f1, t3), the next state is defined as {(d1(s1,%1), 02(s3,%3),1)} in the traditional
transition function table, and this term can be mapped to the tabular specification
term, namely the term ("vpyr = 0 A ay = t1,a0 = t3) = {(01(s1,%1),02(s3,%3),1)}.
However, the later term defines more terms than the traditional one. It also includes
global states (s1, $4,0), (82, $3,0), (82, $4,0) on global events (¢1,?3). These three cases
lead the global state to error, which is also true for the traditional transition function
table. These arguments can be applied to the other terms of the specifications.
Therefore, it is safe to claim that the two specifications are equivalent if the tabular
expression approach is used correctly.

4.3.3 The Properties of Tabular Form of Concurrent System
Specification

An tnvariant is a property or set of properties that must always be true for any
state to which the system may evolve. The crucial and important activity in building
any specification is the identification and specification of invariants for the underlay
system. It will be shown in the example that the invariants can be maintained by the
tabular expressions.

It can also be proved from the tabular expression that the specification is deadlock
free. This properties will be showed in the specification of Reader-Writer system on
next chapter.

It should be noted that the global actions is modeled as a tuple with individual
process actions as elements, including possible empty actions from each process in
the tabular specification. Hence, it is obvious that global actions is the joint effort
of individual process actions, which means that all the processes activities can be
processed simultaneously with the specification.

Following the formal definition of “global” automata, it is obvious that the con-
current system starts at its initial state, and executes global transition which consists
of each individual process action (possibly ¢ action at process level and system level)
as an element. At each global state, on given global event the concurrent system
executes transition by following the transition function, which is based on the system
restriction and system properties. The computational result of composite automata
is the total history of underlay concurrent system events.



Chapter 5

An Example of Readers-Writers
System

In this chapter, an example of Readers-Writers problems is given to illustrate how to
apply this approach.

5.1 Readers-Writers Problems

The Readers-Writers problem is associated with accessing to a shared database by
two kinds of processes, namely readers and writers. Readers execute transitions and
examine database while writers examine and update database. To update a database
correctly, writers must have an exclusive right to access the database while they are
updating it. If no writers are accessing the database, any numbers of readers can
concurrently access it. In this chapter, tabular expressions are used to specify and
document a program that must satisfy these properties.

Before writing documentation for the Readers-Writers problem, it is necessary to
establish a set of policies that govern their usage.

The following situations are considered:

e If there are already one or more active (executing) readers, can a newly arriving
reader immediately joins them even there is also an acquiring writer?

e If some readers as well as some writers are trying to access the database while
database is free (no readers and writers are accessing the database). Should a
bias policy be specified toward readers or writers?

The basic policy to specify is that whenever there are already one or more active
executing) readers, a newly arriving reader can immediately join them even there
g g

42
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is a writer waiting to access the database. However, when database is free, either
readers or one writer can enter it, but not simultaneously.

It is assumed that there are n readers and m writers in the system. Let R;(1 <
i < n) represent a reader process i, and W;(1 < j < m) represent a writer process
j. In the system, each reader competes with other writers to access the database,
and each writer competes with other readers plus other writers to access the database
when database is free.

5.1.1 Finite State Automata for Individual Process

Each of readers and writers is modeled as a NFA, respectively, and the database is
modeled as an object, named D. The value of D is modeled as a set I'. The elements
of the set are the readers processes and writers processes. If a process’s name is in
the set I', it means that the corresponding process is accessing the database. When
database is free, I' = (). The set of values of database is represented by Vp. Due to
the characteristics of Readers-Writers system, at most one writer process can be in
the set I or any numbers of readers can be in the set I' at any given time. Moreover,
when one writer is in the set I', other writers and readers cannot be in the set.

Notations

A set of symbols are used to represent both states and actions of individual process.

e The first capital letter in a string represents the kind of process it belongs to.
For example, R represents a reader, and W indicates a writer.

e REW: Reader enters the waiting state of reading.

e RAq Reader acquires for accessing database.

e RRI: Reader releases the accessed database.

e R.Lp: Reader is in a local processing state without interfering with the database.
e R.Wt: Reader is in the waiting state.

e R.Rd: Reader is in the state of reading database.

e WEW : Writer enters the waiting state for writing.

e WAq : Writer acquires for updating database.

e WRI : Writer releases the updated database.
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e W.Lp: Reader is in the local processing state, without interfering with database.
o W.Wi: Writer is in the waiting state.

o W.Wr: Writer is in the updating database state.

RRl

RLp RWt RRd W, Lp W W

(1) Reader’ s State Machines (2) Writer's State Machines

Figure 5.1: The Finite State Automata of Individual Reader and Writer

In this model, each process is modeled as a nondeterministic finite state automa-
ton, Figure 5.1 is the automaton of each individual reader and writer, respectively.

The reader 7 is described as a nondeterministic finite state automaton, as shown
in Figure 5.1, formally written as MF=(QE, AR, 6% R;.Lp), where

1. QF = {Ri.Lp, Ri.Wt, R;.Rd)},

2. AR = {R,.REW, R;.RAq, Ri.RRI}, C(R;.RAq) = (W, WAq|l < j <
m}

3. 6% is described as

0% | REW | RAq | RAq | RRl | «

R.Lp |[{R.Wt} {R.Lp}
RWt {R.Rd}|{R.Wt} {RWt}
R.Rd (RLpY| {R.Rd}

The writer is also described as a finite state automaton, formally written as
V=(QY,x)V, 8, W;.Lp), where
1. Q;/V = {WJLP, Wj.Wt, Wj.W’I‘},
2. A]W = {W; WEW,W,; W Aq, W; WRI}, C(W; WAq) = {R;.RAq|1 <
i <n}U{WWAGL <k <mAk# )},
3. tilded]” is described as
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W | WEW | WAq | WAq | WRI | ¢

W.Lp [ (Wt} W.Lp}
Wi W | (Wi Wi
WWr {W.Lp}|{W.Wr}

From the transition function of a reader, it is noticed that when a reader is in
R.Wt state, on an event RAq the reader either enters R.Rd state or R.Wt state.
This means that the next state is nondeterministic, and the next state cannot solely
depend on the information of the individual process’s event itself. The same argument
is also true for the writer, namely when it is in W.Wt state the next state on an input
W.Aq is nondeterministic. Also it should be mentioned that sufficient information
cannot be obtained from the specification of individual finite state automaton. More
powerful tools are required for this purpose.

Through analysis of the finite state automata of individual process, it is found
that constraints of the concurrent system are always in the nondeterministic part of
finite state automata. For example, when a writer is in the waiting state and the
next state on event WAq is either a writing state or a waiting state, which one is the
next state depends on the constraint of the whole system. Therefore, more attention
should be given to these parts when combining automata together.

5.1.2 Global Finite State Automaton for Readers-Writers
System

The Readers-Writers system is modeled as a globe state automaton, defined as P =
(Q,%,6,q), where

e Q =QQFx ... xQEx QY x...x QY x Vp is a finite set called the global
states, or simply states. An element of Q is (¢f,...,¢% qV,...,q,vp), where
(gff, ..., al,...,q, vp) €Q =g € QEN---NgE € QENGY € QY A--- A
qTVXEQTVX/\UDEVD

o X =Nl x . x BF x ¥V x ... x Y is a finite set called the alphabet,
or input symbol. An element in the set of global events is A = (a1, ..., Gpim),
where a; € X[ (1 <@ <n) Adpy; € B (1< j <m).

®§:Qx ¥ — 29 is the transition function, 6((qu, - - -, Gnym; VD), (A1, - - -, Gnym)) =
{(55((]1’ dl)a sty 571;2(qna an)a 5¥V(QR+1a an—H)a cery 57V;¥(qn+ma anj—m), UID)} 9
where (q1,...,0ntm,¥p) € @,(01,...,0n1m) € X, (T1...Tpim) =

@((qla -« s Qnym, UD)a A)’ a'nd &Z € {61 ai;ai}-
IvRE = yRye
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e o= (Ri.Lp,-,R,.Lp,Wy.Lp,- -+ ,W,,.Lp,) € Q is the initial state, where
is the initial value of the shared database v.

The transition function is given as tabular expressions depicted in Table 5.1 and
it specifies and documents the constraints that the concurrent system imposes, for
which an implementation should be followed. The other system properties can be
referred from the individual automata model since these activities can be executed
independently without interfering with other processes. In such a manner, the tradi-
tional automaton and the extended automaton model can be extended to specify the
concurrent system.

In the table 3!j means that there exists only one j in the corresponding set which
satisfies the predicate expressions. ?7j means that only one element of j satisfies the
predicate expressions that is selected. Moreover, it should be aware that £ and ¢ are
equivalent.

In the table, the traditional convention of tabular expressions used in the SERG
is followed. Each element in the H; is a predicate expressions of the current events.
For example, the first element (Ji|(1 < i < n) : 'a; = R;.RAq) A (Fj|(1 < j <
m) :'a; = W;WAg A (1 < k < m)) in the H; represents a set of global events
that at least one reader acquires for accessing the database and at least one writer
acquires for accessing the database as well. Each element in the header Hj is the
predicate expressions of the current states. For instance, the second element (|'T'| =
DA @1 <5 <m) g =W, Wr) A (Vil(1 < i< n):gff # Ri.Rd) in header H,
represents that one writer is accessing the database. The central part of the table is
called grid, which represents the predictions of next states in global automaton. For
example, the content in grid (1,2) represents a set of next states when one writer is
accessing the database and one or more readers and writers acquire to access it as
well.

From Cell(1,1) in Table 5.1, it indicates that whenever the database is free, one or
more readers acquire for accessing the database, and one or more writers acquire for
writing to the database. The set of next states are either all of the acquiring readers
in the reading state or one of the acquiring writer in the next state.

5.2 The Completeness [23] of Tabular Expressions

There are three predicate expressions in header H, of Table 5.1, each represents
part of global state of the readers-writer system. The first one, 'vp = (), represents
that neither readers nor writers are accessing the database; the second one, (|'vp| =
DA@EY1<j<m): ,q}/v = W;. Wr) A (Vi|(1 < i <n): ¢ # R;.Rd), represents
that one writer is accessing the database; the third one, (|'vp| > 1) A (Vj](1 < j <
m) : ’q;-/V # W;Wr) A (3i|(1 <4 < n): ¢ = R;.Rd) indicates that at least one
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reader is accessing the database and no writer is accessing the database. These three
predicate expressions partition a set of global states into a disjoint set. It is obvious
that the pairwise conjunction of these three predicate expressions equals to false, and
the union of them is equal to true.

There are five predicate expressions in header H; of tabular expressions. The first
one, (Fi|(1 < i< n):'a; = Ri.RAg) A (Fj|(1 < j <m):'a; = W; WAq) A (1 <
k < m), represents that at least one reader or writer is acquiring for accessing the
database. The second one, (Vi|(1 <i < n):'a; # Ri.RAQOA(Fj|(1 < j<m) :'ap4j =
W; WAQA((Fk|(1 < k <m) :'anyx = Wi.WAQ)A(k # j)), represents that no reader
and more than one writers are acquiring for accessing the database. The third one,
(Vil(1 <i<n):'a; # Ri.RAg) A (3j|(1 < j < m) : a4, = W;.W Aq), represents
that no reader and only one writer is acquiring for accessing the database. The fourth
one, (F|(1 <i<n):'a; = Ri.RAG) AN (Vj|(1 < j<m):'a,; # W; W Aq) represents
that no writer and one or more readers are acquiring for accessing the database. The
fifth one, (Vi[(1 < i < n) :'a; # R;.RAQ) A (Vj|(1 < 5 < m) :'any; # W;. WAg),
indicates that neither reader nor writer is acquiring for accessing the database. It
is obvious that the pairwise conjunction of these five predicate expressions equals to
false, and the union of them is equal to true.

In header H,, all of the possible current states regarding the readers-writers con-
current system are considered, and in header H; all of the events regarding readers
and writers are covered. Therefore, Table 5.1 is complete.

5.3 The Invariant of the System

It should be mentioned that the invariant is an important part of specification and
documentation for the concurrent system.
Invariant of the readers-writers system for every global state is:

1. The total number of readers in the local processing state, waiting state
and reading state are invariant, namely number n.

2. The total number of writers in the local processing state, waiting state
and writing state are also invariant, namely number m.

3. When one writer is writing, other writers and readers cannot be in
writing or reading state; Also the number of readers in reading state are
always between 0 and n. If no readers are reading and no writer is writing,
the database should be in its free state.

Proof: First, it can be referred from the global automata specification of the
Readers-Writers system that the initial state implies the invariants. For example, the
initial state of system is g = (Ry.Lp,- -+, Ry.Lp, W1.Lp, -+, W,,,.Lp, ) € @, which
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means that all of the readers and writers are in the local processing state and the
database is free. It is obvious that the initial state satisfies all of the above invariants.

Second, it can be proved from the specification of tabular expressions that every
legal global event maintains the invariants.

Starting from the initial state, the global automata transacts to one or other
states. In the initial state, all of the processes are in the local processing state and
database is free. On a global event, automaton transfers to other state by following
the cell(5,1), the event on that cell is (Vi|(1 < ¢ < n) : 'a; # R;.RAq) A (Vj|(1 <
J < m) :'any; # W;WAq) and state is 'vp = ), In this case, the next states is
(Vil(1 i < m) s g = 6R(qfa)) A (I <5 <m): g = 0¥ ansy).
This means that every process executes transitions according to its local transition
table and the value of database stays the same. For instance, if a reader processing
event is a; = R;.REW, then this reader transacts to the next state according to
6%(R;.Lp, REW) = R;.Wt, indicating that this reader enters the waiting state. The
number of readers in the local processing state decreases by 1 and the number of
readers in waiting state increases by 1. Therefore, the total number of readers in the
Lp,Wt, Rd states does not change. A similar situation exists for the writer process
J on the event a,,; = W;.REW. In that case, the number of writers in the local
processing state decreases by 1 and the number of writers in waiting state increases
by 1. The total number of writers in Lp, Wt, Wr states does not change at all.
Meanwhile, neither reader nor writer is accessing the database and the database is
free. If a reader event is ¢, the reader stays in the same state. Similar argument
holds for a writer process. Then the number of readers in the Lp, Wt, Rd state and
the number of writers in the Lp, Wt, Wr state does not change, and processes in the
database do not change neither. From the above arguments, it is safe to claims that
the transition in cell(1,5) guarantees all of the three invariants.

Considering cell(1,2), the state is (|'vp| = 1)A @1 <j<m): ’q;-/V =W, Wr)A
(Vi|(1 <7 < n): ¢ # R;.Rd), which means that no reader and one writer is accessing
the database; The event is (Fi[(1 <i < n):'a; = R;.RA¢) A (Fj|(1 < j <m):'a; =
W; WAq) A (1 < k < m) which means that at least one reader and at least one
writer are acquiring for accessing the database. The set of next states are divided
into two categories. One of them is ((¢% = 67(q’,a:) A ((an; = W;.RAq) =
(@ = 874} @) A ((ansy # WiRAG) = (@ = 674} ans)) A (v] =
'vp U{R;|la; = R;.RAq})), which means that the readers get the chance to access
the database and the writers that acquire for accessing the database are denied. It
is assumed that the previous state guarantees the invariants. After the transition
of global events, the number of readers in waiting state decreases by the number of
acquiring readers, and the number of readers in the reading state increases by the
same number corresponding to the reader processes’ acquiring event. Meanwhile,
other readers’ events decrease by the number of readers in one state and increase by
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the same number of readers in another particular state. The total number of readers
in the Lp, Wt, Rd states keeps the same, namely n. Since the acquiring writers are
denied for accessing the database, the number of writers in waiting state remains the
same as well. Other writers’ events decrease by the number of writers in one state
and increase by the same number of writers in another particular state according
to the processes’ local transition function. Hence, the total number of writers in
Lp, Wt,Wr states keeps the same. The number of readers in the database is the
number of readers acquiring for accessing, which is larger than 1 and smaller than n
since the total number of readers is n. From the above argument, it can be concluded
that this category keeps all the above three invariants.

For another category, the set of next events is ((a; = R;.RAq = ¢f =
0F(q @) A ((ai # Ri.RAq = ¢F = 6R('q a:) A (2j(ans; = Wj.RAq) = (¢ =
07 (45", ani)) A (Cangr = Wi RAQ) A (k # 1)) = (" = 6 (a0 @) (ke #
Wi RAQ) = (a = % (4l ani))) A vy = 0pULW; 12 (Anys = W5 W Aq)}), which
means that the acquiring readers are denied to access the database and only one of
acquiring writers gets the chances to access the database. The denied readers stay
in the waiting state, and other readers transfer to another state, which decreases the
number of readers in one state and increases by the same number of readers. Hence
the total number of readers in the Lp, Wt, Rd states does not change. One of the
acquiring writers enters into the database, which decreases the number of writer in
waiting state by 1 and increases the number of writer in writing state by 1. The
other acquiring writers remain in the waiting state after the transition. The rest of
the writers transfer to another state according to the local transition table. Therefore,
the total number of writers in the Lp, Wt, Wr states is as the same as before. More-
over, after the transition, only one writer is accessing the database, which satisfies
the third invariants. Therefore, it is safe to claims that this category also maintains
the invariants.

Other combinations of global events and states can be proved similarly, i.e. they
keep the system invariants. Therefore, the tabular expressions of global transition
function keep the underlay concurrent system invariants.

5.4 Deadlock Free Specification

It can be proved that the tabular expressions of system transition function will not
lead to the deadlock state.

From Table 5.1, when ‘vp = (), database is in the free state. If the event is
(Bi(1 < <n):'a; = RiRAQ) A (3|(1<§ < m): 'ay = W, WAQ) A (1 < k < m),
then either the acquiring readers can perform a transition to access the database,
or one of the acquiring writers can enter to access the database. If the event is
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(Vil(l < i <)oy # ReRAG)A (3](1< § < m) : ‘ane; = Wy W Ag) A (3K](1 <
kE < m):'appy = WeWAQ) A (K # j)), then one of the acquiring writers can
perform a transition to access the database. If the event is (Vi|(1 < i < n) :'a; #
R,.RAq) A (37](1 < j < m) : 'any; = W;WAq), then the acquiring writer can
perform a transition to access the database. If the event is (Vi|/(1 < i < n) :'a; #
R, RAq) A (Vj|(1 <j <m) :'any; # W;. W Aq), the readers and writers can perform
the specific transition.

When global state is (|'vp| = 1) A(F[(1 <7 <m): 'q;-/v =W, Wr)A(Vi|(1 <i<
n) : ¢ # R;.Rd), which represents that one writer is accessing the database. If the
event is (Fi[(1 < i< n):'aq; = R.RAGQ) AN (Fj|(1 <j<m):'a; =W;WAq) A (1<
k < m). If the event is (Vi|(1 < i < n):'a; # R;.RAqQ) A (Fj|(1 < j <m) :'apy; =
W; WAq) A ((Fk|(1 < kB < m) :ang = Wi WAg) A (k # 7)), or if the event is
(Vi|(1 <3 <n):'a; # Ri.RAg) A (3|1 < 5 <m) :'apy; = W; W AQ), then the
non-acquiring readers and writers can perform the specific transition, and the writing
writer can release the database transition. If the event is (Vi|(1 < i < n) : 'a; #
R, RAq) A (Vj|(1 <j <m) :'any; # W;. W Aq), the readers and writers can perform
the specified transition.

When global state is (['vp| > 1) A (Vj|(1 <5 <m): ’q}’v #W; Wr)A(Fi|(1 <i <
n) : ¢f = R;.Rd) which represents that at least one reader is accessing the database
and no writer is accessing the database. If the event is (Ji|(1 < i < n) : 'a; =
R,,RAq) AN (Fj|(1 < j <m) :'a; = W;WAg) A (1 < k < m), then the acquiring
readers can perform a transition to access the database. If the event is (Vi|(1 < i <
n):'a; # Ri.RAQNA(FF|(1 < j <m) :'apny; = W WADA((FE|(1 < k <m) :'apyg =
Wi WAQ) A (k # 7)), or If the event is (Vi|(1 < i < n):'a; # Ri.RAq) A (F|(1 <
Jj <m):'ayy; = W;.WAq), then the non-acquiring writers can perform the specified
transition, and the reading reader can release the database transition. If the event is
(Vi|(1 <4 <n):'a; # Ri.RAg) AN (Vj|(1 < 5 <m) :'any; # W; WAgq), the readers
and writers can perform the specified transition.

From above analyses, it is clear that for any combinations of global states and
events, some transition can always be performed. Therefore, our tabular expression
is a deadlock-free specification.

5.5 Priority Analyses

As both a graphical and mathematical representation of the concurrent computer
systems, global automata are simple and intuitively understandable. Furthermore,
when there is a need to express the priority of the different processes, it can specify
this property with less effort in a natural manner.

For example, in the Readers-Writers system, when the database is free and both



52 5. An Example of Readers-Writers System

readers and writers are acquiring to access the resources, the priority is given to the
writers over the readers. In this case, the competition set of a reader acquiring event
change to C(R;.RAq) = {+W,;. W Ag|1 < j <m}. It is noticed that a ” +” symbol is
added to each writer event in the competition set of reader’s acquiring event, which
indicates that writers have a high priority over readers when both of them acquire to
access the resources at the same time.

The competition set of a writer acquiring event change to

C(W;WAq) ={-Ri.RAqI1 <i <n}U{W, WAgl1 <k<mAk#j}. A" ="
symbol is added to each reader event in the competition set of writer acquiring event
to indicate that readers has a less priority over writers. The transition function of
global automaton with priority is given as tabular expressions, as shown in Table
5.3. The nondeterministic choice of next state of cell(1,1) in Table 5.3 becomes
deterministic or at least more deterministic than the previous specification, namely
only the writer can enter to access the resources in this global state.

Furthermore, it can be easily expressed the situation that whenever there are
acquiring writers out there, the acquiring readers will not be allowed to enter for
accessing resources even the resources still have capacity to allow more readers to
enter. Table 5.3 is the transition function for this special case. It can be seen from
this table that the acquiring reader is not allowed to enter the reading state even the
resources have the capacity, which means that the readers’ activity can be downplayed
without sacrificing the locks that exist in other readers.

These few cases have demonstrated the natural way to document the design of
concurrent, software system. Moreover, it can be argued that the tabular expressions
significantly reduce the size of traditional transition function. More importantly, it
can be used in different development stages to specify and to document the concurrent
system properties.
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'vp =0
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A(Vi|(1 < i < n):gff # R;.Rd)

("vpl 2 DA <5 <m):"a)Y #W; Wr)
AFi(1 < i< n):gf = R;.Rd)

(Fi|1<i<n):
'A; = R;{.RAQ)A
(FjlA1 <j<m):
"A; =W;.WAqg)
A1 <k <)

("A; = R;{.RAq = Sw\ =Rl a)n
((A; # Ri.RAq = ¢ = 5F('qF,a;)A
(75 Angs = Wi.RAQ) = (¢ =67 ('¢¥ an))
A Anr = Wi.RAQ) A (k # 1))
= @ =0 (all  Tagr))

:iilﬁ.ieusw\u%q%_git:
Ay ="vp U{W;|%(Any; = W;.WAQ)}))

((A; = Ri.RAq) = (afF = sF(af,a)))A
((A; # Ri.RAq) = (¢f =sF('qf, a;i))A
((Antj = Wj.RAQ) = sﬁ\ =67 (¥, a;)MA
((Angj #W;-RAQ) = (a) =61V (a)¥ . ant;)))
A ="vp \ {W;|An4; = W;.WRI})

((A; = Ri.RAq) = (aFf =6F(qf,a)))A
((A; # Ri.RAQ) = (aF = 6F('qf,a)))A
((Ant; = W;-RAQ) = (@ =6 (¥ @A
((Ants #W;.RAQ) = (@) =6 (¥ ant))
A(wp ='vp U{R;|A; = R;.RAq}
\{Ri|A; = R;.RRI})

(Vil(1 < i< n):

'A; # Ri.RAq)A

Gl <j<m):
"Antj = W;.WAQA

((Fk](1 < k < m):
"Aptr = Wi.WAQ)
Ak #35))

((%il(1 < i < n) s qF =6B(af, ai))A
(?5( Anyj = Wj.RAQ) = (¥ =57 (¥, a;)))
A Apyr = Wi.RAQ) A (k # 5)) =
@y = (al Jm)))a
((Apgy # Wi-RAQ) = (@ =61 (al¥ ,anir))
Ay ="vp U{W;|?%(Apny; = W;.WAQ)})

T
(Vil(1 < i <) s (e =67 ai))A
((Angj = W;.RAQ) = (¢} =61 (), @ani;))A
"Anyi # W;.RA W W (W ;
((Antj #W;.RAq) = (¢ff =67 (a5 san4;)))
A ="vp \ {W;|A,4; = W;.WRI})

- . T
Wil <i<n): @ff =08 ai))A
(Any; =W;.RAq) = (afV =6 (q}" ,@ny;N)A
!
(Ant; #W;.RAQ) = (o) =67 (d) ,anys))
A} ='vp \ {R;|A; = R;.RRI})

(Vi|(1 < i< m):
"A; # Ri.RAQ)A
@Y < <m):
"Anq; = W;.WAgq)

T
Vil < i <n)caft =68 (el ai))A
(Vil(1<j<m):af =6 (a) ,ant;))
A ="vp U{W;|A,4; = W;. W Aq})

T
(Vil(1 < i <n) s (aft =68 Cai ai)))A
((Anyg # W;-RAQ) = (qf = 87 ("alV, ajgn))N
(Anyj =W;.RAq) = @V =6 (a),T4n))
Awp ="vp \ {W;lAny; = W; . WRI})

T
vil(1 <i<m): (@ =6 (af ai)))n
(CAnyy # W;-RAQ) = @ =¥ () any))
ACAnyj = W;.RAQ) = (@ =6% (a7 @01 ;))
n+j j-tAaag a; i (a5 @nyj
AWy ="vp \ {Ri|Ai = R;.RRI})

(Fi(1<i<n):

"A; = R;.RAQ)A

(Vi1 <j <m):
"Anyj # W;.WAq)

T
Vil(1<i<n)caft =68 an)A
Vi1 <j<m):afV =60 (a)  anys))
A(vp ="vp U{R;|A; = R;.RAq})

T
((Ai # Ri.RAq) = (qFF =6F(q,a:)))A
((A; = Ri.RAq) = (aff = sR(qP,a))A
1
(il(1<j<m):a) =6 () anst;)
Awp ="vp \{W;|Apy; = W; WRI})

T
Vil < i<n):aft =of(Ca},ai)A
(Vi1 < <m) " =6 ('l ang;)
A(wp ='vp U{R;|A; = R;.RAq}
\{RilA; = R; RRI})

Vil(1<i<n):

'A; # R;.RAq)A
\?G.;H <j<m):
Anyj #W; . WAq)

T
vVil(1 < i <) s aft =68 ai, ai))A
(Vi1 <j<m):ql =67 ("al¥  anys))
A(wp ="vp)

T
Vil (1 < i <) s aft =87 af, ai))A
A<i$ < .N\M m) "m.wa\ Hm.w<ﬁmw<,93+u.vv
Awp ="vp \{W;|Any; = W;. WRI})

Vil(1 < i <n):aft =0 (qf ai))A
!
Vil < <m)af” =677 (0} an )
A@p ="vp \ {Ri|A; = R;.RRI})

Table 5.3: Reader Not Allowed to Enter Database When There Are Acquiring Writers




Chapter 6

Conclusion and Future Work

This chapter summarizes the contributions of this thesis, and suggests future research
work in the area.

It is important to mention that it is unwise to use our constrain specification
technique to write all of the specification documentation for concurrent systems. In-
stead, it is intended to use this technique as a complement for other specification
techniques, i.e., functional (relational) documentation technique used by software en-
gineering group at McMaster University. It should be clear that each approach serves
a unique purpose and offers the ability to specify a particular aspect of a software
system’s external behavior. For example, as parts of a large concurrent system, some
of component programs do terminate after running for a while, these component
programs can be specified and described with the functional document method.

The goals of this thesis is to use the same tabular notation to document the
concurrent systems and to find a way to couple these two schemes under one roof to
fulfill our dream to specify the concurrent systems efficiently and precisely.

6.1 Contributions

In this thesis, we slightly extended the traditional finite state automata, associated
two sets, namely competition set and synchnization set, to every event of automata,
and provided a frame work to composite individual automata to global automata in
order to document the characteristics of concurrency. The major contribution of this
thesis is to extend the tabular expressions used by SERG to document concurrent
programs explicitly. This new method is ready for use in practical software docu-
ments.

Another contribution of this thesis is to provide a way to couple automaton theory
and tabular expressions to describe the concurrent system efficiently and precisely.

95
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To the author knowledge, this is the first systematic attempt to model concurrency
in the framework of tabular expressions. Automata have been used before but more
restrictions [3, 7, 34, 35, 36] than we assumed. Hence our approach is most likely far
from being perfect, but it works as we have shown. The beginning of our approach
is philosophically similar to the petri net approach [19], but then it is different. It
seems to rather clear, that for big system a set of tools is necessary. Unfortunately
in comparison with Petri nets [19] the set of tools for Tabular Expressions is rather
poor. Complexities of our method and Colored Petri Net methods looks similar.

6.2 Applications

In the thesis, the global state automata model is used to specify and to describe the
software constrains inherited in the concurrent software system. This method can be
used to specify the functionality of concurrent systems, and to record design decisions
made during system development. For example, in the Reader-Writers system, we can
specify the functionality of readers and writers as well as to record whether allowing
Readers or Writers to enter database when both of them are acquired to enter the
database.

It is obvious that our model can be utilized to write the specification of concurrent
systems with a serial of processes to access multiple resources to carry its task. This
method can be used to write a software requirement document, module interface
specification, and module design document.

The tabular expressions can also be used to document constrains of concurrent
programs. These tabular expressions can be utilized to generate test cases for con-
current programs. It can provide some guidelines for selecting input data to test
programs as well as to determine the correctness of programs. Each condition row in
the tabular expressions should be explicitly tested for different input events to valid
the concurrent program to ensure that it satisfies the constrain to which the system
exposes.

6.3 Limitations

Our model cannot express the situation when real time comes into play in the system.
It is a very important area that needs to be researched.

Fairness is another aspect of concurrency program properties. Our model should
be further extended by adding an artificial label (variable in the context of language)
to control the fairness constrain.
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6.4 Future Work

The work presented in this thesis can be further extended in several aspects.

First of all, it is important that the documentation written by this method should
be complete and deadlock free. For the application of practical computer system,
it is tedious and error prone to check these issues. Since transition relations are
written in the tabular form for both individual automata and composite automata,
such potential does exist that automate check the safety of concurrent systems. It is
hoped that tools can be developed to check the deadlock free property based on our
tabular specification.

Secondly, it is useful if a tool could be produced that generates a Test oracle [33]
from our formal specification, and verifies that the implementation does what it is
supposed to do.

Thirdly, in the context of concurrent programming, timing constrains inducted by
synchronization and communication do arise, especially in the real-time system, in
which time constrain is reinforced. Therefore, it is of interest to further extend our
model to addresses the timing issues.

Finally, it will be nice that more power is added to solve the fairness problem.
One of possibilities is to add more artificial variables to retain more information.

6.5 Conclusions

The main goal of this thesis is to develop a simple and precise way to write for-
mal specification and documentation of concurrent software systems with the tabular
form. The formal definition of composite automata and examples illustrated in the
previous chapters have demonstrated that our model can be easily applied and well
understood. We believe that it can be used to write the specification and documenta-
tion for practical applications with less efforts. However tools, at least as sophisticated
as for Colored Petri Net benchmark are neccessary.
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