Semantic Inspection of Early UML Designs

Tim Heyer

Abstract— In this paper we present an approach to tool-
based inspection focusing on the functional correctness of
early designs expressed in a subset of UML. The approach is
based on traditional inspection but extended with elements
of formal verification. The idea is to relax the requirements
on formal rigor to yield a novel method that makes it eas-
ier to express and reason about designs while still allowing
the automatic generation of questions that help in finding
defects.

I. INTRODUCTION

E present an approach for automatically generat-

ing relevant, focused questions for the inspection
of early designs expressed in the Unified Modeling Lan-
guage (UML). In contrast to testing inspection facilitates
early detection of defects. Other methods that are applica-
ble at earlier stages are formal verification and inspection.
Formal verification is based on mathematical principles to
demonstrate the correctness of a formal artifact (e.g., the
design or the implementation) with respect to a formal
specification. The required knowledge of the formal no-
tation and its proof system is often perceived a significant
barrier against industrial use. Hence formal verification
is typically used only for especially critical components.
We believe greater acceptance of formal principles may be
achieved by relaxing the amount of formality.

Inspection, first introduced by Fagan in 1976 (see [1]),
is the process of finding defects in an artifact by human
examination. Inspection is reported to be very effective
both with respects to defect-detection and cost (a detailed
description of software inspection can be found e.g. in [2]).
However, generally the focus is on style rather than on
functionality. Since functionality changes from artifact to
artifact it is difficult to give general guidelines for how to
systematically check the artifact for defects with respect to
its intended functionality. The effectiveness of inspection
is very much depending on the experience and discipline
of the personnel involved. Several tools to support the
inspection process are available. For instance, Macdonald
and Miller (see [3]) compared 16 tools in 1999. However,
the focus of these tools is almost entirely on administrative
tasks like scheduling meetings and collecting defect reports.
What is missing are guidelines that focus on the functional
correctness of the particular artifact, i.e. guidelines that
precisely state which questions to address to find defects.
Ideally, these questions should be generated automatically

T. Heyer is with the Department of Computer and Information
Science, Linkdping University, S-581 83 Linkdping, Sweden. E-mail:
timhe@ida.liu.se .

The project is funded by NUTEK and VINNOVA, and it
is carried out in cooperation between Ericsson SoftLab AB
and the Department of Computer and Information Science at
LinkGping University. Further information can be found at
http://www.ida.liu.se/ "~ ulfni/nutek.

from a given artifact. We call this semantic inspection,
since the questions address the semantics of the artifact.

In this paper we present such an approach to inspection
of designs expressed in UML (see [4]). Our approach com-
bines today’s inspection process with elements of formal
verification to yield a systematic design inspection process.
The aim is to develop tools to support the systematic in-
spection of software designs expressed in UML. The focus
is on providing practical means for the inspection of soft-
ware designs. In Sect. II we introduce technical details
of how the questions to address during the inspection are
automatically generated. A simple example to further ex-
plain our approach can be found in Sect. III. In Sect. IV we
outline a semantic design inspection process based on the
automatic generation of questions described ealier. Finally,
after an overview of related work in Sect. V, we summarize
our work in Sect. VI.

II. OUR APPROACH TO INSPECTION

Our approach to design inspection is based on traditional
inspection but extended with elements of formal verifica-
tion. The design is expressed using annotated sequence and
class diagrams. The (system) specification consists of an-
notated use-case diagrams. The annotations are also called
assertions. Assertions in this context are conditions on the
state of the system or parts hereof which are supposed to
be satisfied at certain reference points during the execution
of the system. The conditions may be specified partly in
an informal manner (see Sect. II-A). Given a specification
and a design (both typically incomplete) it is possible to
automatically generate a set of questions which address the
critical issues to establish the functional correctness of the
software.

Our main goal is to demonstrate a new method to the
inspection of software artifacts given e.g. in UML; the goal
is not primarily to provide a precise semantic description of
UML. The principles for generating questions out of formal
notations accompanied with semi-formal annotations are
applicable to other types of artifacts and notations. In
fact, they have been applied earlier to code (see [5]).

A. A Specification Notation

The system specification notation is based on UML and
consists of annotated use-case diagrams. A use-case dia-
gram describes the relationships between various uses of
the system and its environment. To simplify the initial
development and implementation we have chosen a subset
of UML. For use-case diagrams we support use-cases, ac-
tors, and association relationships between actors and use-
cases. The annotations consist of two types of assertions
(explained later). Assertions are expressed in a notation
similar to quantification-free first order predicate logic. An

assertion is a well-formed formula which may contain (well-
formed) expressions (or terms). We assume the existence
of a first order alphabet consisting of function symbols (de-
noted by f in our abstract syntax) and predicate symbols
(denoted by p) both with an associated arity. Constants
are considered function symbols of arity 0, except numerals
denoted by n. Variables are denoted by z.

Definition 1 (Well-formed expression)

Numerals and variables are expressions. Complex expres-
sions can be built by combining expressions with predefined
operators or user-defined functions. The abstract syntax of
expressions is as follows:

E :=n
| z | this | result
| \E|E—E | E+E | EJE | ExE
| f(E,...,E)

The meaning and precedence of the predefined operations
is like in conventional arithmetic. We assume that all well-
formed expressions are type-correct.

All variables used in the design can be used in assertions.
These variables are called design variables. However, often
it is necessary to refer to initial values of design variables.
For example, if we want to specify what an operation ac-
complishes we may need to refer to the initial values of its
parameters, e.g. to express that a car has half its initial
speed after breaking shortly. Therefore, e.g. initial values
of variables are captured in logical variables which do not
appear in the design. Unlike design variables, logical vari-
ables do not change their values. To distinguish logical vari-
ables from design variables they have a special appendage
“@pre” or “#n” (where n is a natural number denoting
a reference point in the sequence diagram, see Sect. II-B).
For each design variable a corresponding logical variable
with the same name and appendage “@pre” is implicitly
defined. These logical variables refer to the initial values
of the design variables with respect to the context of the
assertion. For example, an assertion that expresses that a
car has half its initial speed after the “brake-shortly” op-
eration could be written as 2 * speed = speed@pre. The
variables this and result are special design variables. The
variable this generically refers to each single instance of
a class, i.e., it is a place-holder for the name of that in-
stance (often when assertions are specified the name of the
instance is not known). The variable result refers to the
return value of an operation in case it has one.

Definition 2 (Well-formed formula)

The boolean constants true and false are formulae. Pre-
defined and user-defined predicates are atomic formulae.
Complex formulae can be built by combining formulae with
predefined operators:

F ::= true | false
| -F | FAF | FVF |F=F
| EXE|E<E|E>E|E>E|E=E|E+#E
| p(E,...,E)

The meaning and precedence of the predefined predicates
and operations is like in conventional predicate logic except
when an actual parameter is undefined. The result of a
conjunction is false if the first argument is false and the
result of a disjunction is true if the first argument is true.
We assume that all well-formed formulae are type-correct.

A user-defined function or predicate may be defined for-
mally (using an expression respectively a formula) or in-
formally (using e.g. natural language). The point is that
any means is possible as long as it provides a unique inter-
pretation of the function or predicate to the human reader.
For example, a use-case postcondition that expresses that a
phone phoneA is off-hook and connected to another phone
phoneB over a network net could look like this:

offHook(phoneA) A connected(phoneA, net, phoneB)

The definition of the predicates offHook and con-
nected are provided together with the postcondition. For

example, an informal definition of connected could look
like this:

define connected(phoneA, net, phoneB)
The phone “phoneA” is connected with the phone
“phoneB” over a full-duplex, dedicated line provided
by the network “net”.

end define

A limited form of quantification may be expressed with
the help of natural language predicate definitions. For ex-
ample, we may use a predicate hasUser. The definition of
the predicate may be:

define hasUser(cell)
There is at least one active user (e.g., cellular phone)
in the network cell “cell”.

end define

An assertion using the predicate hasUser(cell) would
express “J” (there exists) without explicitly using the quan-
tifier in the assertion. Instead, the quantifier is hidden in
the definition of the predicate.

The two types of assertions which are attached to use-
cases are use-case pre- and postconditions:

Use-case pre- and postcondition. The precondition is
assumed to be satisfied prior to the execution of the use-
case. The precondition specifies the states in which the
use-case can be invoked. Hence the preconditions may
only refer to the initial state of the objects involved in
the use-case (using the “@pre” notation). The post-
condition has to be satisfied after the execution of the
use-case. It specifies the service provided by the use-
case and it may refer to the initial state of the objects
involved in the use-case as well as their final state (using
the objects name). If U is a use-case then Py denotes
the condition that is satisfied when the use-case starts
and Qu(r) denotes the condition that is satisfied when
the use-case ends at reference point r (according to a re-
lated sequence diagram — see Sect. II-B and Sect. II-C).
The Qu(r) is basically the postcondition with all design

variables replaced with a corresponding logical variable
with appendage “#r”.

B. A Design Notation

The design notation consists of annotated class and se-
quence diagrams. Class diagrams describe the static struc-
ture of the system. They describe what to implement. Our
UML subset comprises classes, and association and gener-
alization relationships between classes. Sequence diagrams
(see e.g. Fig. 1), on the other hand, describe dynamic be-
havior of the system. In sequence diagrams the focus is on

—| Sequence <MNormalOperations | - | |
Inspect
L joe louvre 7
Parzan Museurmn |52
X
C} | + enter(joe) +
— __—..__
— -2 B 41
||z exit{joe)
. |"I|_

Fig. 1. Sequence diagram LV (lawful visit)

the temporal order of messages exchanged between con-
crete instances (i.e., objects) of classes. However, mes-
sages are only ordered within each thread. Messages of
different threads may be sent in parallel or in an arbitrary
order. Moreover, the actual time is not proportional to
the distance between messages etc. Thus it is not possi-
ble to use distance relations in the sequence diagram to
draw conclusions about time relations. In our approach
each object has a single thread of execution. The period
during which an object is active is called an activation. An
activation segment is the period between two subsequent
receptions of messages, dispatches of messages, start of ex-
ecution, and/or end of execution. A reference point is a
point on the time axis of a sequence where an activation
segment starts or ends. A sequence diagram describes a
well-formed sequence as described in the next three defini-
tions.

Definition 3 (Partial sequence)
Below we will use the following symbol to represent a par-
tial sequence containing an arbitrary (but fixed) number n

of objects:
1 1

[

1. An empty sequence is a partial sequence. An empty
sequence consisting of n objects is denoted €,,.

2. If S is a partial sequence then so is S' obtained by
prepending a signal and two activation segments to S:

E
il
5|
2 3
S

[A

3. If S is a partial sequence then so is S' obtained by
prepending an operation invocation and two activation seg-

ments, and by appending an operation return and two ac-
tivation segments to S:

S
f —
s s

The above figure indicates that both objects get an addi-
tional activation segment attached to their top segment in
S. However, since operation invocations are synchronous,
the dispatching object is blocked after the invocation. This
is denoted by drawing the corresponding activation seg-
ment as a line instead of a block.

4. If S; and S, are partial sequences over the same set
of objects then so is S’ obtained by prepending Si1 to S
(written Sy o Sy):

o o
o o o o S1
. 1o B H
L L L L -
L L

Definition 4 (Complete sequence)

If S is a partial sequence then S’, obtained by prepend-
ing an activation segment to each object, is a complete
sequence:

[

[

[A

Definition 5 (Well-formed sequence)
A complete sequence is well-formed if and only if every
object is active when it dispatches a message.

When writing assertions the current state of a variable
is denoted by the variable name whereas the previous state
(if applicable) is denoted by the variable name followed by
“@pre”. For instance, an assertion that is attached to an
activation segment A and that expresses that the object

phone it belongs to has not changed during the activation
segment could look like this:

phone=phone@pre

However, the questions which are eventually presented
to the inspector typically consider the reference points to
which various conditions apply by appending #r to vari-
able names (where r is the reference point, e.g. 1, 2, 3, 4,
and 5 in Fig. 1). For instance, if the activation segment A
mentioned above starts at reference point 2 and ends at ref-
erence point 4 then questions may contain A(2,4) rendered
as:

phone#4=phone#2

The following types of assertions can be attached to class
respectively sequence diagrams:

Sequence pre- and postconditions. A sequence is usu-
ally only applicable under certain circumstances. For
example, it is common to have sequences describing ex-
ecution under normal conditions and under exceptional
conditions. A sequence precondition is supposed to be
satisfied prior to the execution of the sequence. Like
a use-case precondition, a sequence preconditions may
only refer to the initial state of the objects contained in
the sequence (using the “@pre” notation). A postcon-
dition has to be satisfied after the execution of the se-
quence and it may refer to the initial state of the objects
contained in the sequence as well as their final state (us-
ing the objects name). If S is a sequence then Ps denotes
the condition that is satisfied when the sequence starts
and @Qs(r) denotes the condition that is satisfied when
the sequence ends at reference point 7. For instance, the
postcondition of the sequence of Fig. 1 is referred to as
Qrv(5)- A pair of sequence pre- and postconditions is
also called a scenario specification.

Sequence intermediate assertions. An intermediate
assertion is a condition that specifies the state changes
within an activation segment (i.e., the condition is satis-
fied when the end of the activation segment is reached).
An intermediate assertions express what functionality
later refinements (e.g. a state machine or code) provides.
Whether the e.g. code complies to the assertion has to
be verified at a later stage in the development. An inter-
mediate assertion may refer to the object it belongs to
and to parameters of messages the object has received
from other objects. If A is an activation segment then
A(r1,72) is the condition that is satisfied when the ac-
tivation segment starts at reference point r; and ends
at reference point 5. For example, the assertion of the
second activation segment of louvre in Fig. 1 is referred
to as louvre;(1,2).

Class invariants. A class invariant is a condition that is
maintained by each instance of the class. For example,
it is assumed that the condition is satisfied prior to each
invocation of the object and that it is reestablished after-
wards. If a is an object of the class A then C,(r) is the
invariant condition of the class A at reference point r.

Operation pre- and postconditions. A precondition is
supposed to be satisfied prior to the execution of the op-
eration. The precondition specifies the states in which
the operation can be invoked. An operation precondi-
tions may only refer to the initial state of the object
it belongs to and to the initial state of the parameters
to the operation (using the “@pre” notation). A post-
condition has to be satisfied after the execution of the
operation. The postcondition specifies what the opera-
tion is doing and it may thus refer to the initial state
of the object it belongs to and to the initial state of the
parameters to the operation as well as their final state.
If O is an operation then Io(r) is the condition that has
to be satisfied when the operation is invoked at reference
point r and Fp(ry,r2) is the condition that is satisfied
when the operation was invoked at reference point 71
and returned at reference point ra.

We require that all class attributes are private (i.e., not
visible outside the class definition). To refer to the state of
a particular attribute of an object we use user-defined func-
tions instead. For example, an intermediate assertion say-
ing a received record r is the same as the record contained
in an entity e could be expressed by defining a function
record. The assertion could look like this: r=record(e).
The (informal) definition of the function would simple state
that the function returns the record contained in the argu-
ment (of the entity type) to the function.

C. Generation of Questions

Common to approaches to formal verification is the aim
to prove that the artifact is correct with respect to the
specification. Usually, the intention is to prove that the
final state of the system satisfies a certain postcondition
provided that the initial state satisfies a certain precondi-
tion.

In our approach the overall behavior of the system is
specified by a set of use-cases and corresponding pre- and
postconditions. The system is correct if the execution of
each use-case in a state that satisfies the precondition ends
in a state that satisfies the postcondition. That is, what
we would like to verify corresponds to Arrow 1 in Fig. 2.
However, to verify a use-case, its effect on the state has

1)

Use-case
postcondition

Use-case
precondition

®) (4)

PEC]

Fig. 2. Verification model

Sequence
precondition

Sequence
postcondition

)

to be completely defined. In our approach each use-case is
specified in more detail by a set of sequence diagrams. The
sequence diagrams together with the class diagrams consti-
tute our design. Each sequence diagram comes with corre-
sponding pre- and postconditions. A sequence diagram is
correct if its execution starting in a state that satisfies the
precondition ends in a state that satisfies the postcondition
(Arrow 2 in Fig. 2). We can generate questions to verify
this since a sufficiently annotated sequence diagram con-
tains enough detail. If we finally verify that each use-case
precondition implies the disjunction of the corresponding
sequence preconditions (Arrow 3 in Fig. 2) and that each
sequence postcondition implies the corresponding use-case
postcondition (Arrow 4 in Fig. 2) we have achieved our orig-
inal goal. To generate questions to verify the last proposi-
tion is straightforward. However, the preceding proposition
implies that the sequence diagrams belonging to a use-case
cover all possible states when the use-case may be executed.
We consider it very hard if at all possible, and seldom desir-
able to describe the behavior of a system completely with
sequence diagrams. We are aiming at the development of
practical means for the inspection of designs and our belief
is that the verification of critical properties of particularly
important uses of the system is sufficient with respect to
cost and benefit. It is here where our approach differs in
an important way from formal verification. We verify that,
if the execution of each sequence starts in a state that sat-
isfies the sequence precondition then it ends in a state that
satisfies the corresponding use-case postcondition. How-
ever, for executions that are not captured in a sequence
diagram we do not know if the use-case postcondition will
be satisfied.

For every sequence diagram and every use-case, ques-
tions need to be generated. In particular, questions are gen-
erated to verify that all use-case postconditions, sequence
postconditions, and operation preconditions are satisfied,
and that all class invariants are maintained. In principle,
one question is generated for each of the conditions that
has to be verified. The resulting questions are the only
questions needed to be answered during the design inspec-
tion (for functional correctness). A single question consists
of a premise and a conclusion, i.e. it is of the form: assum-
ing that z is satisfied, is also y satisfied? Possible answers
are “yes”, “no”, and “don’t know”. From a logical point of
view, “no” and “don’t know” are the same. However, we
suggest that “no” is used if there is a contradiction between
the premise and the conclusion and that “don’t know” is
used if there is not. If all questions can be answered posi-
tively then the design is assumed to be correct.

The questions are generated from a given annotated
UML diagrams using an inference system. The formulae
of the inference system have either the form {P} D {Q} or
simply R, where D is a use-case or sequence and where P,
@, and R are formulae as described earlier. The triples are
very similar to Hoare triples (see [6]) and are to be read
“4f D starts executing in a state where P holds, and if the
execution of D terminates, then) holds upon termina-
tion” (i.e., we are concerned with partial correctness only).

The following axioms and rules thus define the semantics
of well-formed sequences as described in Def. 5.

Rule 1 (Use-case)

Let Sy be a complete sequence associated with the use-case
U and let v be the reference point at which the sequence
(and hence also the use-case) ends. If Ps,NQs, (r)= Qu(r)
and if executing Sy in a state where Pg,, is satisfied results
in a state where Qg,(r) is satisfied, then executing U in
a state where Pg,, is satisfied must result in a state where
Qu(r) is satisfied:

Ps, ANQsy(r)=Qu(r) {Psy,} Su{Qs,(r)}
{Psy } U {Qu(r)}

Rule 1 is used to generate questions to verify that each
sequence precondition and postcondition imply the corre-
sponding use-case postcondition (Arrow 4 in Fig. 2). The
formula Ps, AQs, (r) = Qu(r) usually contains predicates
without formal definition and it is therefore not possible to
formally prove that it is satisfied. Instead, this formula is
presented as question to the human inspector.

Axiom 2 (Empty sequence)
Executing €,, in a state where Q) is satisfied must result in
a state where @ is satisfied:

{Q} en {Q}

Rule 3 (Signal)

Let Sg be the partial sequence obtained by prepending a
signal and two activation segments to the partial sequence
S (see below). If executing S in a state where P is satisfied
results in a state where @) is satisfied, then executing Sg
in a state where A(r1,r2) AB(r1,73) = P is satisfied must
result in a state where @) is satisfied:

[[
{P} s {Q}
L] L]
; E
; H , H
{A(r1,72)AB(r1,73) = P} F . - {Q}
L] L]

The effect of the signal E is not obvious from the above
inference rule. However, the effect is that the arguments
to the signal become visible to the receiving object and
thus can be used in the intermediate assertion of activation
segment B.

Axiom 4 (Operation invocation and return)

Let So be the partial sequence obtained by prepending an
operation invocation and one activation segments, and by
appending an operation return and two activation segments
to the partial sequence S (see below). Executing So in
a state where Io(r1) A (A(r4,75) ABa(r4,76) AFo(T1,74) A

Cy(rs4) = Q is satisfied must result in a state where @ is
satisfied:

Io(ri)A) "2 3

(A(r4,rs) ABz(r4,76)A s {
A e

Fo(r1,m4) ACp(rs) = Q)

It should be noted that we do not verify operation post-
conditions. We simply assume that later implementations
of operations satisfy their postconditions and leave the ver-
ification to later stages (see [5]). However, it is possible to
replace the above axiom with a rule that verifies the post-
conditions already at the design stage.

Q}

Rule 5 (Composition)

Let S¢ be the partial sequence obtained by appending the
partial sequence S» to the partial sequence S1 (see below).
If executing Sy in a state where P is satisfied results in
a state where R is satisfied and if executing S» in a state
where R is satisfied results in a state where () is satisfied
, then executing S¢ in a state where P is satisfied must
result in a state where @) is satisfied:

o 1 o 1
{P} S1 {r} {R} S2 {Q}
L L L L
1 1
S1
{P} — — {Q}
S
L L

Rule 6 (Completion)

Let Sg be the complete sequence obtained by prepending
an activation segment to each object in the partial sequence
S (see below). If PAC,, (r1)A---ACly,, (T1)AA1L(r1,74,)A - A
A (r1,74,)= R is valid and if executing S in a state where
R is satisfied results in a state where @) is satisfied, then
executing Sg in a state where P is satisfied must result in
a state where @ is satisfied:

PAC,, (ri)A--- ol !
NCq, (r1)ANAx(r1,ra)A--- {R} S {Q}
N, (ri,7a,)=>R L] []
:1 o
A An
Py {Q}
]]

Rules and Axioms 2 to 6 are used to generate question
to help the inspector to detect defects in a sequence dia-
gram (Arrow 2 in Fig. 2). The formula P A C,,(r1) A--- A
Co, (r1)ANAi(r1,74,)A---ANAp(r1,74,)= R in Rule 6 usu-
ally contains predicates without formal definition and it is

therefore not possible to formally prove that it is satisfied.
Hence the formula is presented as questions to the human
inspector after certain automatic simplifications. For ex-
ample, usually some atomic formulae in the premise are
of the form z#7r; = y#ry. Then all occurrences of y#rsy
in the question are replaced with z#r; and the predicate
x#ry =y#rs is removed. Another simplification is e.g. that
predicates which appear both in the premise and conclu-
sion can be removed from the conclusion.

The axioms and rules as they are presented above are
not complete. Two simple types of variable substitutions
have been omitted for better readability. Class invariants
and operation pre- and postconditions usually refer to the
object they belong to by using the special variable this.
Whenever the variable this occurs while applying the ax-
ioms and rules of the inference system it has to be substi-
tuted with the actual name of the object it represents. In
addition the formal parameters occurring in operation pre-
and postconditions need to be substituted with the actual
parameters appearing in the sequence diagram.

III. AN EXAMPLE

The example is intended to illustrate how the questions
used in the semantic design inspection are generated. It
does not describe a useful system.

A. System Specification

We consider a single use-case visit that represents the
person Joe visiting a museum Louvre. One aspect of such
a use-case is the location of Joe. When Joe starts visiting
the Louvre he should be outside of the museum. Hence the
use-case precondition is:

outside(Joe@pre, Louvre@pre)

When the use-case ends Joe should again be outside of
the Louvre. Thus the use-case postcondition is:

outside(Joe, Louvre)

B. Scenario Specification

Figure 1 shows a very simple sequence diagram that de-
scribes the order of messages that occur during Joe’s visit
of the museum. The sequence precondition is the same as
the use-case precondition:

outside(Joe@pre, Louvre@pre)

However, in our scenario we want to describe Joe’s lawful
visit of the museum. That is, after Joe’s visit we want the
museum to be the same as before his visit (in particular we
want no painting to be missing or damaged). Therefore,
the sequence postcondition is:

lawfulOutside(Joe, Louvre, Louvre@pre)

C. Design

A short visit of Joe consists of entering and leaving the
museum. This is modeled by invoking the operations enter
and exit of the museum. Both operations have one param-
eter person representing the person visiting the museum.

The precondition of the operation enter is that the per-
son should be outside first:

outside(person@pre, this@pre)

The postcondition is that the person is inside the mu-
seum and that the museum otherwise remains unchanged:

entered(person, this, this@pre)

The precondition of the operation exit is that the person
is inside the museum:

inside(person@pre, this@pre)

The postcondition is that the person is outside the mu-
seum and that the museum otherwise remains unchanged:

exited(person, this, this@pre)

Operation pre- and postconditions (and class invariants
which in this example are all true) are attached to class
diagrams (which are not shown in this example).

Since the lawful visit requires the museum to remain un-
changed in the end, we have to attach a couple of inter-
mediate assertions to the sequence. The first, third, and
fifth activation segment of the Louvre as well as the first,
second, and third activation segment of the Joe have the
following intermediate assertion:

this=this@pre

D. Generation of Questions

The generation of questions is based on the axioms and
rules presented in Sect. II-C. The following notation is
used. The person Joe is abbreviated with j and the mu-
seum Louvre with [. The activation segments of each ob-
ject are denoted with the object letter and the segment
number as index (the segments are sequentially numbered
starting with 1 for the top segment). Since all class invari-
ants are true, we omit them from the formulae below. The
pre- and postcondition of enter are abbreviated i; and f;
whereas the pre- and postcondition of exit are abbrevi-
ated i, and f,. The use-case postcondition is abbreviated
@, and the sequence pre- and postconditions are abbrevi-
ated P’ and Q'. The following derivation tree shows how
the questions are produced (the numbers in front of the
lines indicate which axiom or rule has been used):

B T sy {8y T {e1
U {R} T3 {7}
v {P} = {1
(P} {Q}

Where:
S: io(S)A(j3(4a 5)/\15(415)/\f0(314):>QI(5))
ii(l)/\(j2(2, 3)Al3(2, 3)/\fi(1, 2) =>S)
P'AjL(0,1)AL(0,1)= R
P'AQ'(5)=Q(5)

N9 &

In general, the formulae U and V' cannot be formally ver-
ified because they contain predicates without formal defi-
nition. The formula U is presented as a single question to
the inspector:

Assume:
1. outside(Joe@pre, Louvre@pre)
2. lawfulOutside(Joe, Louvre, Louvre@pre)

Then:
1. outside(Joe, Louvre)

The answer to the above question is obviously “yes” (if
Joe is lawfully outside the Louvre then he is outside the
Louvre).

The remaining formula V is presented to the inspector
as well. Using conventional predicate logic the formula can
easily be rewritten as a conjunction of three implications:

(P'Aj1(0,1)Al1(0,1) =4;(1))

A
(P'Aj1(0,1)Al1(0,1)Aja(2, 3) Al3(2,3)A
fi(1,2)=>1,(3))

A
(P'A71(0,1) AL (0,1)Aj2(2, 3) Al3(2, 3)A
fi(1,2)Aj3(4,5)Al5(4,5) A fo(3,4) = Q'(5))

The second question checks if the precondition of enter
is valid:

Assume:
1. outside(Joe@pre, Louvre@pre)

Then:
1. outside(Joe@pre, Louvre@pre)

The answer to the above question is obviously “yes”. In
fact, it could (and should) be answered automatically.

The third question checks if the precondition of exit is
valid:

Assume:
1. outside(Joe@pre, Louvre@pre)
2. entered(Joe#2, Louvre#2, Louvre@pre)

Then:
1. inside(Joe#2, Louvre#2)

The answer to the above question is obviously “yes” (if
Joe entered the Louvre then he is inside).

The final question checks if the sequence postconditions
is valid:

Assume:

1. outside(Joe@pre, Louvre@pre)

2. entered(Joe#2, Louvre#2, Louvre@pre)
3. exited(Joe#4, Louvre#t4, Louvre#2)

Then:
1. lawfulOQutside(Joe#4, Louvre#4, Louvre@pre)

The answer to the question is “yes”. Joe was outside the
Louvre, he entered the Louvre without changing it (besides

entering it), and then he left the Louvre again without
changing it (besides leaving it). The premise indicates that
we do not know if Joe changed while entering or leaving the
museum.

IV. THE INSPECTION PROCESS

Our approach defines precisely what to do in the defect
detection phase (i.e., answer the automatically generated
questions). Hence, it may be adapted to different exist-
ing inspection processes. The resulting process has the
advantage of being more precisely defined, e.g. the inspec-
tion phase is easy to document (storing the answers to the
questions), and it is repeatable and systematic. Moreover,
re-inspections after modifications of the design are facili-
tated since only the questions that are influenced by the
modifications have to be considered. Questions that have
not changed from the original inspection need not to be an-
swered again (provided no definitions of involved predicates
are altered).

Due to the automatic generation of questions our ap-
proach allows for a novel type of inspection based on vot-
ing. It was not our initial focus to define a complete in-
spection process. However, to fully exploit the advantages
we suggest the following (design) inspection process:

1. During the planning phase the inspection team is se-
lected, the design to inspect is chosen, and a deadline
for the individual inspections is defined.

2. The inspection phase consists of one or two steps. In the
first step each member of the inspection team answers
individually the questions generated for the inspected
design. After the deadline the answers of all members
are compared. If a (qualified) majority answered “yes”
to each question then the inspection is over. If there is no
majority for some questions the inspection team meets
to discuss these particular questions. If there still is no
majority for “yes” for some questions then a potential
defect has been found.

3. Finally, in the rework phase the discovered defects have
to be removed. A defect may be a fault/omission in
the specification or in the design. Thus the specification
or the design has to be corrected or extended and an
additional inspection has to be scheduled. However, as
mentioned earlier, only the new questions that arise from
the modification have to be investigated. The original
question allows to locate the defect in the design.

The voting approach facilitates a distributed, asyn-
chronous inspection. In conventional inspection the inspec-
tion phase includes a group meeting for group inspection
and logging. Group meetings are typically limited to a
maximum duration of two hours. Larger artifacts thus re-
quire several inspection meetings. Each meeting is associ-
ated with a large overhead due to problems finding a mutu-
ally agreeable time, a room for the meeting etc. This over-
head is to a large extent avoided in the voting approach.

Tool-support is essential for our type of inspection. The
tool should allow to enter specification and design, that is
annotated use-case, class, and sequence diagrams. More-

over, it should be able to generate the questions and to
present them to the user. The presentation should include
both the question itself and the involved diagrams with
the relevant parts highlighted. Finally, the tool has to col-
lect the result and to establish the outcome of the voting.
All the services above have to be provided in a distributed
environment with some kind of central repository.

It is not actually necessary to build such a tool from
scratch. For example, the functionality outlined above may
be realized as a “plug-in” to an existing tool as e.g. Ra-
tional Rose. To evaluate our approach and to show its
feasibility a prototype tool has been implemented in Java.
The prototype allows to enter specification and design, and
it generates and presents resulting questions in a single
user environment but it does not support voting and re-
inspections. The screenshot found in Fig. 1 is taken from
that prototype.

V. RELATED WORK

The basis of our approach to systematic functionality-
oriented design inspection is traditional inspection and for-
mal verification. A great number of books, articles, and
conferences are concerned with these topics and we can only
mention a fraction of them. However, existing approaches
are either completely formal or completely informal. We
are not aware of other approaches that combine traditional
inspection and formal verification to systematically con-
sider semantic issues in the design inspection process.

A. Software Inspections

Inspection techniques have been introduced for various
artifacts that are created in the software development pro-
cess (i.e. requirements, design, code, and tests). Several
inspection processes have been presented, e.g. Two-Person
Inspections by Bisant and Lyle (see [7]), N-Fold Inspec-
tions by Schneider and Martin and Tsai (see [8]), Phased
Inspections by Knight and Myers (see [9]), and Active De-
sign Reviews by Parnas and Weiss (see [10]). In general,
software inspections are reported to be very effective both
with respects to defect-detection and costs (see e.g. [2]).
Various tools are available to facilitate inspections. For
example, Macdonald and Miller (see [3]) presented a com-
parison of 16 inspection tools and there own tool ASSIST.
However, the focus of these tools is almost entirely on ad-
ministrative tasks. Thus, there is still a lack of guidelines
which describe exactly how to find defects with respect to
the intended functionality of the inspected artifact.

Porter et al. (see [11]) have investigated the effects of
structural changes of the (code) inspection process (i.e.,
team size, number of sessions, repair occasions) on the in-
spection performance (i.e., inspection effectiveness and in-
terval). However, they discovered that the performance
varied widely independent of the treatment used. Also
their data indicated that only 15 % of the issues reported
during individual preparation concern true defects. This
suggests that it may be much more important to develop
better defect detection techniques than other inspection
processes. Further studies (see [12]) consider the influence

of process inputs, (e.g., code units and reviewers) on the
defect detection. Porter et al. found that even when the
process inputs are accounted for, then structural changes of
the inspection process had little effect on the defect detec-
tion. Therefore, according to Porter et al., research on bet-
ter techniques for the actual defect detection steps should
not be neglected. The semantic software inspection ap-
proach presented by us is a suggestion of a more strict
defect detection technique. Our approach defines precisely
the questions that need to be addressed to check whether
the software artifact contains defects.

B. Formalizations of UML

The lack of formal semantics of the UML has been rec-
ognized as a major problem. Ambiguities hinder the ex-
change of UML models between different parties and also
impede the development of computer support for analy-
sis and verification. Thus, several attempts for formalizing
UML have been published. An overview can be found e.g.
in [13]. In the next two paragraphs we discuss two specific
approaches.

Back, Petre, and Paltor (see [14]) presented an approach
that allows formalizing UML use-cases in the refinement
calculus. That is, use-cases are annotated with a kind of
pre- and postconditions in a formal contract language. The
contract language allows to verify the use-cases against a
kind of annotated class descriptions. Our focus is on the
verification of early, usually incomplete designs expressed
in UML.

In the Syntropy approach (see [15]) class and statechart
diagrams are annotated with formulas in predicate logic to
allow e.g. automatic consistency and completeness checks.
Detailed knowledge of the formal notation is required and
large portions of the system have to be annotated. Our
focus is on semi-formal annotations and on sequence di-
agrams which only describe particular executions of the
system. We can argue for the correctness of the software
in certain scenarios which is, as we believe, an easier and
more practical approach.

C. Sequence Charts

The key type of diagram for the generation of questions
used in the our design inspection is the sequence diagram.
UML sequence diagrams are very similar to Message Se-
quence Charts (MSC) and Live Sequence Charts (LSC).

Several formalizations of MSCs have been suggested.
Among them are approaches based on automata theory
(see [16]), Petri net theory (see [17]), and process algebra
(see [18]). Common to these approaches is their focus on
the communication, i.e., on the order, timing, and number
of received and dispatched messages (similar approaches
exist for UML as well, e.g. in [19] an algorithm to check
compositions of UML sequence diagrams for timing incon-
sistency is presented). However, the actual calculations
that are performed are not considered. To verify that the
system provides the intended functionality we need a se-
mantics that takes these calculations into account.

LSCs introduced by Damm and Harel (see [20]) are an
extension to standard MSCs. The precise semantics of
LSCs is the basis to relate an inter-object specification (e.g.
LSCs) to an intra-object specification (e.g. statecharts) of a
system. Klose and Wittke (see [21]) describe how a subset
of LSCs can be transformed into a Timed Biichi Automa-
ton from which a temporal logic formula can be generated.
In principle this allows to verify (using a model checker)
a statechart model of the system against LSCs (temporal
logic formulae). However, we are interested in the verifi-
cation of early designs and state charts are typically used
later in the software development .

D. Assertions

The use of assertions to formally specify and verify soft-
ware has been introduced by Hoare [6] in 1969. Since then
the use of different types of assertions for various nota-
tions and constructs has been investigated in detail (in
academia). Assertions are used for formal verification, run-
time checking, and documentation. Our approach differs
from others in that we use assertions containing predicates
without formal definitions together with a formal design
notation. The type of assertions we are using makes for-
mal verification impossible but we are able to automatically
generate questions which form the basis for a systematic
design inspection.

VI. CONCLUSION

We have presented a novel approach to design inspection.
In contrast to existing approaches we combine conventional
inspection with elements of formal verification. Conven-
tional inspection lacks guidelines that precisely state which
questions to address to find defects. Formal verification is
often perceived as being very difficult due to the required
knowledge of the formal notation and its proof system.

In our approach, the design is expressed in annotated
UML class and sequence diagrams whereas the specification
is expressed in annotated UML use-case diagrams. The an-
notations (called assertions) are similar to quantification-
free predicate logic. Our key idea, is that we allow predi-
cates without associated formal definition to occur in the
assertions. Instead the definitions are provided informally,
e.g. natural language. These informal predicates make it
easier to express the required assertions and enable rea-
soning about assertions at a high level. Since our asser-
tions have a formal syntax it is still possible to automati-
cally generate questions (verification conditions) to be an-
swered during the design inspection. If all questions can
be answered positively then the design is assumed to be
correct with respect to the specification. The semantic
design inspection we suggest allows a distributed, asyn-
chronous, repeatable, and systematic inspection. More-
over, re-inspections after modifications of the design are
facilitated.

From a technical point of view our approach is working
and has successfully been applied to small designs (around
five objects and ten messages). In-depth evaluations in-
volving large real-world applications are still to come. The

key issues are the amount and complexity of the asser-
tions and the generated question. It is possible to decrease
the complexity of assertions and questions by increasing
their number and vice versa. For example, the introduc-
tion of sequence diagram invariants (i.e., conditions that
remain satisfied during the whole execution of a sequence)
decrease the complexity of assertions but increase their
number. Global intermediate assertions in sequence dia-
grams (i.e., conditions that specify the state of the whole
system at a certain reference point) increase the number
of assertions and questions but decrease their complexity.
The future challenge is to find the right mix of complexity
and amount of assertions and questions.

REFERENCES

[1] Michael E. Fagan, “Design and code inspections to reduce errors
in program development,” IBM Systems Journal, vol. 15, no. 1,
pp- 182-211, 1976.

[2] Tom Gilb and Dorothy Graham, Software inspection, Addison
Wesley, 1993.

[3] Fraser Macdonald and James Miller, “A comparison of computer
support systems for software inspection,” Automated Software
Engineering, vol. 6, no. 3, pp. 291-313, 1999.

[4] “OMG Unified Modeling Language specification 1.3,” June 1999.

[5] Staffan Bonnier and Tim Heyer, “COMPASS: A comprehensible

assertion method,” in TAPSOFT ’97: Theory and Practice of

Software Development. 1997, pp. 803-817, Springer-Verlag.

[6] C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Communication of the ACM, vol. 12, no. 10, pp. 57680,
583, Oct. 1969.

[7] David B. Bisant and James R. Lyle, “A two-person inspection
method to improve prog ramming productivity,” IEEE Trans-
actions on Software Engineering, vol. 15, no. 10, pp. 1294-1304,
Oct. 1989.

[8] G. Michael Schneider, Johnny Martin, and W. T. Tsai, “An
experimental study of fault detection in user requirements doc-
uments,” ACM Transactions on Software Engineering and
Methodology, vol. 1, no. 2, pp. 188-204, Apr. 1992.

[9] John C. Knight and E. Ann Myers, “An improved inspection

technique,” Communication of the ACM, vol. 36, no. 11, pp.

51-61, Nov. 1993.

David L. Parnas and D. M. Weiss, “Active design reviews: prin-

ciples and practices,” Journal of Systems and Software, vol. 7,

no. 4, pp. 259-265, Dec. 1987.

A. Porter, H. Siy, C. A. Toman, and L. G. Votta, “An experi-

ment to assess the cost-benefits of code inspections in large scale

software development,” in Proceedings Symposium on the Foun-
dations of Software Engineering (SIGSOFT ’95), G. E. Kaiser,

Ed. 1995, pp. 92-103, ACM Press.

Adam A. Porter, Harvey Siy, Audris Mockus, and Lawrence G.

Votta, “Understanding the sources of variation in software in-

spections,” ACM Transactions on Software Engineering and

Methodology, vol. 7, no. 1, pp. 41-79, 1998.

Andy Evans, Jean-Michel Bruel, Robert B. France, and Kevin

Lano, “Making UML precise,” in Proceedings Conference on

Object Oriented Programming Systems Languages and Applica-

tions (OOPSLA’98), Oct. 1998.

Ralph-Johan Back, Luigia Petre, and Ivan Porres Paltor, “For-

malising UML use cases in the refinment calculus,” Technical

report 279, Turku Centre for Computer Science (TUCS), May

1999.

Steve Cook and John Daniels, “Let’s get formal,” Journal of

Object- Oriented Programming, pp. 22-24, 64-66, 1994.

Peter B. Ladkin and Stefan Leue, “What do message sequence

charts mean?,” in Formal Description Techniques VI, IFIP

Transactions C, Proceedings Conference on Formal Description

Techniques (FORTE ’93), 1994, vol. C-22, pp. 301-316.

Peter Graubmann, Ekkart Rudolph, and Jens Grabowski, “To-

wards a Petri net based semantics definition for message se-

quence charts,” in Using Objects, Proceedings SDL Forum (SDL

’93), 1993, pp. 179-190.

[18] S. Mauw and M. A. Reniers, “An algebraic semantics of basic

(10]

11]

(12]

(13]

(17]

message sequence charts,” Computer Journal, vol. 37, no. 4, pp.
269-277, 1994.

Xuandong Li and Johan Lilius, “Checking compositions of uml
sequence diagrams for timing inconsistency,” Technical report
363, Turku Centre for Computer Science (TUCS), Aug. 2000.
Werner Damm and David Harel, “LSC’s: breathing life into
message sequence charts,” in Proceedings conference on formal
methods for open object-based distributed systems (FMOODS
’99). 1999, pp. 293-311, Kluwer Academic Publishers.

Jochen Klose and Hartmut Wittke, “An automata based inter-
pretation of live sequence charts,” in Proceedings Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS ’01). 2001, Lecture Notes in Computer Science
(LNCS), pp. 512-527, Springer-Verlag.

