PROC. OF WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING (WISE’01), PARIS, FRANCE, JULY 2001. 1

Integrating Formal V&V and Structured
Design Reviews

Issa Traoré, Demissie B. Aredo

Abstract— In the new Internet economy time-to-market
has replaced quality as a primary concern in most software
development organizations. Fortunately, that is not yet the
case in organizations concerned with the development of
critical systems. Most of these organizations consider de-
sign review as an efficient approach to improve the quality
of their software products. In this paper, we discuss a set
of correctness arguments that may be used in conjunction
with formal validation and verification (V&YV) in order to
improve the quality of critical systems in a cost-effective
way.

Keywords— Software inspection, Critical Systems, Formal
Methods, UML, PVS, OCL

I. INTRODUCTION

One of the major challenges that the software community
has to face nowadays is to develop systems that provide a
high level of quality at reasonable cost and time delay. The
pressure to be the first in the market has drastically com-
pressed the development process so that software products
are often delivered without meeting the minimum quality
assurance criteria, with vendors often relying on the pa-
tience and skills of customers to discover and report bugs.
Though lower costs and rapid delivery seem to be the main
issues in the contemporary marketing environment, meet-
ing some level of quality assurance is still an important
concern in highly competitive markets.

Software quality may improve significantly by integrat-
ing formal validation and verification (V&V) activities into
the development process. V&V is a whole range of soft-
ware analysis process that encompasses reviews of require-
ment and design, program inspection, and testing. Testing
requires a prototype or an executable program code. In
contrast, inspection may be used at all stages of the de-
velopment process, especially at the earlier phases, where
fixing errors is far more cheaper [6]. According to several
studies in the literature, inspection can be more effective
and cheaper error detection technique than testing [39],
[20], [33]. However, inspection and testing shall be viewed
as complementary V&V techniques. Inspection is good at
checking conformance of a system with its specification,
whereas testing appears to be a cost-effective technique for

validation of dynamic behaviours.

The level of quality obtained with conventional V&V
techniques may be insufficient for critical systems - where
a failure may result in significant economic losses, physical
damage, or threat to human life. Achieving a high level

I. Traoré is with Department of Electrical and Computer Engineer-
ing, University of Victoria, Canada. E-mail: itraore@ece.uvic.ca

D. B. Aredo is with Norwegian Computing Center, Oslo, Norway.
E-mail:demissie.aredo@nr.no

of dependability (i.e. availability, reliability, safety and se-
curity) is usually the most important quality criteria that
must be met before launching the system. Although a bet-
ter reliability can be achieved by using formal development
techniques, the esoteric nature of formal methods, however,
imposes a significant barrier on their large scale utilization
[27]. As mentioned in [15],

Normal software developers will not, in the foreseeable future, be will-
ing to use abstract formal languages and notations to design software
systems, regardless of how theoretically desirable it might be to do so.

To overcome these barriers, several strategies for incor-
porating formal methods into software development process
have been proposed in the literature [19], [1], [31]. Most of
the strategies integrate the strengths of formal and semi-
formal methods [22], [13], [42]. For instance, in [32] a visual
formalism based on tables is used in the first place to write
the specification. Then the verification is performed by
generating automatically a PVS model based on the ta-
bles, and invoking the PVS theorem-prover tool.

The work reported in the sequel draws on the same
principle by highlighting the major limitations of formal
V&V and by compensating them with alternative strate-
gies to facilitate its large scale utilization. We have devel-
oped a platform known as Precise UML Development En-
vironment (PrUDE) [4], [46] that integrates formal meth-
ods with suitable existing graphical object-oriented nota-
tion(s). The graphical object-oriented notations are easy
to learn and use, and in most cases they have industrial
strength tool supports. PrUDE is based on four principles
that are direct consequences of the argument of Evans et
al quoted above. The first three principles are concerned
with the following capabilities of the notations involved in
the PrUDE platform:

1. a notation that can easily be grasped and used in an
industrial context, and that has properties such as com-
municability and friendliness.

2. the ability to produce a formal specification which is
amenable to rigorous analysis.

3. that it has efficient tool support, a prerequisite for large-
scale application.

In order to achieve these objectives, a formal semantic for
UML (Unified Modeling Language) [7] is defined using PVS
(Prototype Verification System) [37]. In this way, the for-
mal notation is hidden behind the graphical notation that
is used by system developers as usual. At the same time,
features of the formal notations are available for rigorous
reasoning during the V&V process.

The fourth principle is motivated by the fact that there
are several aspects of formal V&V that cannot be auto-
mated, or can only be automated partially with inten-
sive user interactions, resulting in a complex and time-

PROC. OF WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING (WISE’01), PARIS, FRANCE, JULY 2001. 2

consuming process. The idea promoted by PrUDE re-
places these ”dark sides” of formal V&V by informal de-
signs complemented by systematic manual reviews. More
specifically, formal design steps that cannot be automated
are carried out using informal arguments such as informal
correctness arguments which are recorded and challenged
during a review process.

The rest of this paper is organized as follows. In Section
IT, we give a general overview of the PrUDE platform and
discuss the role of inspection in this platform. In Section
ITI, we introduce and discuss our inspection criteria. In
Section IV, we demonstrate our approach through a case
study of a security critical system. Finally, in Section V,
we present some concluding remarks.

II. OVERVIEW OF THE PRUDE PLATFORM
A. Foundation

The core notation used in the PrUDE platform is the
UML [7]. The choice of UML was dictated by the fact
that it provides an underlying notation for specification,
a graphical notation which contributes to communicabil-
ity and user friendliness. Moreover, UML is an inter-
national standard for object-oriented modeling, which is
popular among industrial community and is supported by
industrial-strength CASE-tools.

In spite of these features, UML lacks the semantic foun-
dation necessary for precise specification and rigorous anal-
ysis of systems. The Object Constraint Language (OCL)
[47] is an assertional language used in conjunction with
UML notations. Although OCL complements the expres-
siveness of UML, its contribution in the context of rigor-
ous reasoning is limited due to the lack of formal seman-
tics. Several works on formalization of UML notations are
available in the literature [17], [14], [30]. The formalization
proposed in [14], for example, uses Z [41] as the under-
lying semantic foundation. In our case, we decided to use
the PVS Specification Language as it provides a very gen-
eral semantic foundation, and is supported by a powerful
toolkit which integrates model-checker and proof-checker.
Our previous works [2], [44], [3], focus on UML structural
and behavioral diagrams, namely the class diagram, inter-
action diagram, and statechart diagram.

B. Automation

The PrUDE platform is automated by a tool suite con-
sisting of an integrated V&V environment that supports
consistency-checking, model-checking, proof-checking, and
testing [4]. Model-checking and proof-checking are based
on the PVS toolkit. The interface of PrUDE to the UML
is based on XMI, which provides an explicit model ex-
change format for UML based tools. Since any tool sup-
port for UML is expected to export models in XMI for-
mat, the PrUDE platform is independent of any tool ven-
dor. This makes it possible to easily adapt the platform to
an existing software development environment. PrUDE’s
main strength is that it allows users to deal with mod-
els described in graphical notations that are user friendly,

easy to learn and use. All formal specifications in PVS
are processed at the back end. PrUDE also provides a
specification-based testing component that consists of the
current version of a test case generator and a test execution
tool [45]. In the future, we extend the testing component
by adding a test coverage analyzer. Test cases are gener-
ated from valid UML specifications.

C. V&YV Strategy

The V&V strategy followed in the PrUDE platform is
depicted by Figure 1. Typically, a designer develops his
model using his favorite UML CASE-tool, and then sub-
mits the model to the PrUDE CASE-tool, which automat-
ically generates formal semantic models in the PVS speci-
fication language. Ideally, the UML specification is accom-

Semantic
conversion

OoCL
business
rules

OCL2PVS
Tranglation

- Consistency-checking
-Well-formedness-checking

Validation/Verification
-Model-checking
-proof-checking
-Manual review

Valid UML modgl

Test case generation

Test excution/
Test coverage analysis

Fig. 1. V&V Strategy using the PrUDE Platform

panied by business rules (e.g. invariants, preconditions,
post-conditions, system properties etc.) expressed in OCL.
The OCL expressions are also translated into PVS and inte-
grated with the semantic model !. The business rules may
also be written and inserted directly using PVS. Then, the
resulting model may be checked for well-formedness and
consistency. Well-formedness is checked based on the rules
defined in the informal semantic of UML constructs and
abstract syntax [36]. A consistency check focuses mainly
on the interrelationships among the various UML diagrams
involved. In the next step, the model is checked against
the business rules by invoking the PVS toolkit in batch
mode. The business rules expressed as PVS conjectures
and theorems are analysed using model-checking and/or
proof-checking. Model-checking is conducted automati-
cally. Proof-checking may be conducted automatically in
batch mode for simple proofs. However, when the proofs

In the current version of the PrUDE, the OCL expressions are
converted into PVS manually. It is our intention to implement, in
the future, an OCL to PVS translator for potential users of OCL.

PROC. OF WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING (WISE’01), PARIS, FRANCE, JULY 2001. 3

reach a certain level of complexity, the proof-checker re-
quires some user interaction. In that case, PrUDE offers
the option to run the PVS proof-checker interactively. In
principle, if an error is discovered, the analyst goes back to
the OCL and/or UML models to fix the error.

Having a valid UML model, the designer may refine the
model through subsequent steps and then implement the
system. The program code may be tested with PrUDE
using the UML specification. The valid UML model ob-
tained after the series of V&V steps is used to generate test
cases. The test cases are derived from various constraints
related to the model, e.g. invariants, preconditions, post-
conditions etc.

D. The Role of a Reviewer

Most of the steps involved in the V&V strategy pre-
sented above can be carried out automatically. Unfortu-
nately, some of the most error-prone and trickiest aspects
cannot be automated and often rely on human guidance
or ingenuity. The refinement and correctness-checking ac-
tivities are among the most vital aspects involved. That
is, where a strong review may be very helpful. In order
to make formal V&V process more affordable, we advocate
conducting of these steps using informal arguments. For
instance, for a given correctness argument that cannot be
checked automatically, a model analyst may provide and
record an informal proof. During the review, the inspector
is expected to challenge the correctness arguments using a
carefully designed review procedure.

The role of the reviewer is not limited to these specific
aspects, although they are the most critical in terms of
review, since the influence of the human factor is higher.
The reviewer may need to redo some of the other V&V
activities that the designer may have already performed
automatically. However, there is a difference between the
analysis performed by the designer and the one performed
by the reviewer. For instance, the designer may call the
consistency-checker on unfinished design, whereas the re-
viewer will work only with a stable model [9]. During
the design, a designer may decide to postpone consistency-
checking, or not to resolve some of the inconsistencies at
all. Sometimes it is better to find ways to live with incon-
sistencies, since a systematic removal may constrain unnec-
essarily the development process, or may result in new ones
[24], [16]. During the review, the designer should be able
to justify the need to keep specific inconsistencies, and the
reviewer should be able to challenge the arguments of the
designer.

In principle, a reviewer is not expected to spend exces-
sive time on parts of exhibits that have already undergone
automatic checks for obvious reasons. Ideally, the reviewer
selects suitable samples of these parts of exhibits, e.g. the
most critical components and focuses the inspection on
them. For instance, the main limitation of test cases gen-
erated automatically in the PrUDE platform is that they
are generated from a design model which is supposed to be
formally validated. But, since there could possibly be some
arrangements made during the refinement steps, by adding

some informality, the validity of the test model would be
overridden to some extent. So, the role of the reviewer will
be to challenge the expressions, e.g. invariants, precondi-
tions, post-conditions, that served for the design of the test
cases, by analyzing selected test cases.

III. DESIGN REVIEWS
A. Review Arguments

As we have already noticed, the most critical aspect of
the review process in the PrUDE platform is concerned
with parts of the exhibits which are directly related to
the refinement process. There is a common belief that the
traceability of an OO design to its analysis is straightfor-
ward. In practice, however, OO designs can get pretty far
from the original analysis models, for instance by adding
some design patterns or some mechanisms for decoupling
or performance. It is important to be able to relate imple-
mentation or design elements to requirements. Generat-
ing these relationships tends to expose important mistakes,
misconceptions, and omissions. By using formal methods,
it is possible to establish these relationships precisely. A
design step in that context consists of recording a series of
assumptions about subsequent development and showing
a correctness of the design step under the given assump-
tions [26]. The correctness of a design step is shown by
discharging some proof obligations. Achieving that level of
precision is rarely cost-effective, especially when the proof
obligations involved are completely formal [11]. Moreover,
the notion of formal proofs is outside the skills or expe-
riences of an average software developer. Therefore, we
advocate the use of informal (correctness) arguments in
order to bridge the gap between specifications, designs and
implementations. As we mentioned earlier, the role of a
reviewer is to challenge these arguments in the light of the
original requirements.

Our approach draws on the work performed by Britcher
[9], where the key program attributes, namely topology,
algebra, invariance, and robustness, are defined for proce-
dural programs. The correctness arguments are presented
as a series of questions that should be answered by the
inspectors and the author. The idea of the questionnaire
follows the Active Design Review approach developed by
Parnas [38].

In the sequel, we consider the following six correctness
arguments that encompass and extend the criteria defined
in [9]: walidity, traceability, optimality, robustness, well-
formedness and consistency. Though some of these argu-
ments are overlapping, they provide a good coverage of the
most important concerns raised w.r.t. design correctness.
Validity is concerned with the conformance of a specifica-
tion to the customer requirements. In order to check the
validity of a model, the analyst will typically draw some
conjectures from the requirements and check these conjec-
tures against the model. The conjectures may be stated
either informally or formally in the form of proof obliga-
tions that need to be discharged.

Traceability consists of relating requirement and design
specifications. Questions that should be answered by an

PROC. OF WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING (WISE’01), PARIS, FRANCE, JULY 2001. 4

inspector are targeted towards achieving two main goals:
structural and behavioural conformances among the cor-
responding abstract and refined specifications. Structural
conformance ensures the preservation of the static prop-
erties, e.g. operations and attributes, of the data object
involved. Behavioural conformance ensures that the state
structure, e.g. specifically sequences of events, accepted at
an abstract level must be accepted at the corresponding
concrete representation and leave it in the same state. In
the case of UML, structural conformance is checked among
involved classifiers such as classes, components, nodes, etc.,
whereas behavioural conformance is checked among state
and interaction models such as statechart, sequence, and
collaboration diagrams. For instance, a class defined in an
abstract specification may be refined in one or more classes,
possibly with new attributes and operations. However, it
should be possible to establish clearly how the informa-
tion defined in the abstract class is restated in the refined
ones. In the case of a statechart, new states, events, or
transitions may appear in the refined diagram, according
to some well-defined rules, and it is the responsibility of
the inspector to check that the rules are respected.
Optimality is concerned with appropriateness and effi-
ciency of design choices. Choosing a representation of a
data type can have considerable impact on the performance
and scalability of the whole application. For instance, the
choice of a concrete representation of a collection of items
should consider whether or not a duplication is necessary,
which specific operations are performed on the data in-
volved, etc. If the application requires an efficient search
mechanism in the collection, the choice must take into ac-
count not only efficiency of algorithms but also optimal use
of storage, since wasted storage could considerably reduce
the performance of the search algorithm. It is the respon-
sibility of the inspector to establish the optimality of the
choices made by the designer by analyzing the rationale
behind the choices.

Robustness deals with how abnormal or exceptional sit-
uations are handled. That means, developers need to take
into account unexpected behaviors a system may exhibit
even if that was not explicitly required in the original re-
quirement document. The responsibility of the analyst is to
specify what should be done, and describe how it should be
done during the design phase by sticking to the original re-
quirements. However, a good designer should go far beyond
the basic requirements and identify unexpected behaviors.
That may serve as a base to renegotiate the requirements.
Moreover, it may provide information needed by the imple-
mentor to handle these situations. Questions asked during
the inspection will be drawn on the omissions and gaps
in the design. For instance, in a statechart diagram, it
is possible to highlight easily such kinds of omissions by
considering non-specified transitions or sneak paths [5].
Well-formedness is mainly concerned with the correct
utilization of the notations used to describe the design
model. A model is said to be well-formed when the syntac-
tic rules underlying the notation are all enforced.
Consistency is the broadest concept among the correct-

ness arguments defined so far. Some of these arguments
may fall easily in the consistency category. In fact, there
are several kinds of inconsistencies, e.g. nine different kinds
of inconsistencies are identified in [29]. In the sequel, we
retain the interpretation of inconsistency provided in RM-
ODP [25] as a contradictory requirement involved in a soft-
ware artifact or process. Inconsistencies may arise from
various sources. A development process is inconsistent if
it involves contradictory activities; a software artifact is
inconsistent if it contains contradictory requirements.

In the case of UML, three levels of inconsistencies are
worth investigating: internal inconsistencies within a UML
model, inconsistencies among UML models, and inconsis-
tencies between UML abstract specifications and concrete
design models. Some of these inconsistencies are captured
by most of the existing UML CASE tools, but a few of
them are not. The main reason behind that is the flexi-
bility of the UML notations that the existing CASE tools
are trying to preserve. Therefore, it is a responsibility of
the designer, and a reviewer to ensure that there are no
contradictions among the models, at least in their stable
versions.

B. Review Procedure

The first step in the review process is a discovery of user
requirements document by the reviewer. Even before read-
ing the exhibits, the reviewer needs to make an initial anal-
ysis of the requirements. The discovery of the requirements
must go beyond the standard meeting that takes place at
the beginning of reviews in order to present the system.
The reviewer needs to make his own analysis in order to
build an informed and independent opinion about the sys-
tem under review. During the discovery phase, the reviewer
will answer questions like:

1. What are the main business rules, the properties and
invariants that characterize the system?

2. What are the significant scenarios underlying the sys-
tem functionality?

3. What are the exceptional or abnormal conditions under
which the system may function?

The goal of the initial discovery is to bring actively the
reviewer in the review process, and at the same time to
prevent his reasoning from being biased by the existing
exhibits.

After the discovery phase, the reviewer starts the actual
review by reading the exhibits. The first correctness argu-
ment that the reviewer may consider is the validity of the
design. The following are among the questions that need
to be answered during this step:

1. Do the exhibits provide a complete coverage of the
business rules, the properties and invariants that charac-
terize the system?

2. Do the exhibits derive naturally from the require-
ments?

3. Are the exhibits consistent with the requirements?
Having made his own assessment during the discovery
phase, it may be easier for the reviewer to challenge the

PROC. OF WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING (WISE’01), PARIS, FRANCE, JULY 2001. 5

rules defined in the exhibits and to discover possible gaps,
omissions or inconsistencies.

The next argument to be considered by the reviewer is
traceability. Some of the questions that may be answered
during this step are the following:

1. How many refinement levels are involved in the design?

2. Do the exhibits provide a complete traceability be-
tween the levels?

3. Are the relationships between abstract and concrete
features adequately and consistently defined?

It is not sufficient to achieve traceability. The optimality
of the refinement is important as well. The argument of
optimality may be analysed by answering questions like:

1. Are the representations chosen during design refine-
ment efficient with respect to the requirements?

2. Are there other alternatives and better solutions?
Consistency and well-formedness arguments can be anal-
ysed automatically. They may be analysed before or after
the four other ones. The main goal of the reviewer will
be to identify potential inconsistencies, and to discuss the
consequences of keeping or removing them.

The last argument to be considered is robustness of the
system. The following are some of the questions that could
be raised during this step:

1. What are the normal conditions under which the sys-
tem operates?

2. What are the exceptional and abnormal conditions re-
lated to the system operation?

3. Do the exhibits handle all the exceptions and abnormal
conditions?

A suitable process in which our review strategy may fit
efficiently is the Rational Unified Process [28] which is used
in conjunction with UML in most software organizations.
The Rational Unified Process consists of an iterative and
incremental development approach aimed at risks mitiga-
tion. At the end of every iteration, stable software arti-
facts that handle specific aspects and risks of the system
are produced. Subsequent iterations are built on previous
ones by assessing and revising corresponding risks. Our re-
view strategy can be integrated at the end of each iteration
and before starting the next one. The errors discovered by
the reviewers should be fixed before starting the next it-
eration. Alternatively, the comments of the reviewers can
also be included in the planning of the next iteration.

IV. CASE STUDY

In order to illustrate our approach, we present an
overview of a case study on a security critical system that
provides a secured patient document service (PDS) [34].

A. Summary of User Requirements

The main function of the PDS system is to provide se-
cured accesses to patient medical record worldwide. The
system must provide special protection features dealing
with suspicious users and disclosure of unauthorized in-
formation. The actors involved in this system are the pa-
tients, patients’ relatives and friends, doctors, and site ad-
ministrators. The main resources to be secured are medical

records of patients. A patient may choose a unique family
doctor who is automatically granted the right to read and
modify medical records of the patient. Only authorized
doctors can read or modify a medical record. Every doctor
is solely responsible for the modification that he made to
the medical record database, and the system is expected
to enforce this responsibility. An authorized doctor is a
registered doctor that a patient has chosen either as his
family doctor or as "guest” doctor, e.g. a specialist, or for
travel reasons or unavailability of family doctor etc. The
patient is the only person that is allowed to choose his own
doctor. A patient may have read access to his own medical
record, but he cannot modify it. He may grant read access
to his friends and family members. The site administrator
is the only person who can create, delete, read and modify
a patient record. The system is required to be secure, i.e.
it must ensure that authenticity, integrity, confidentiality,
and authorization are always preserved.

B. Overview of UML Business Model

Some selected properties of the system are discussed be-
low. Static structural aspects are modeled by class dia-
grams, whereas dynamic behavioral aspects are described
by statechart diagrams. The class diagram provided in

- name: string
- password: string
- userid: string

- address: Address
- age: Date

- ssn: nat

5

* users

MedicalRecord

DocumentProvider

SecurityProfile |~ {set} securityDirectory

-owner:Person

+register()
+login(prof:Profile)
+negociate()

+modify()
+sendRequest(req:Request)
+receiveResult(res:Result)

*{ et} right

- +close()
AccessRight +abnormal Close()
- read: boolean +detectViolation()
- modify: boolean +analyzeViolation()
- delete: boolean +backToNormal ()
- create: boolean
- addDoc: boolean

- removeDoc: boolean
- addFriend: boolean
- removeFriend: boolean

- resource: setof[MedicalRecord)]

Fig. 2. Class Diagram of the Patient Document Service

Figure 2 depicts structural components of the system de-
scribed above. The potential users of the system are rep-
resented by the Patient, Doctor, Administrator and Friend
classes. These classes are subclasses of the Person class
that describes a set of common attributes. The Document-
Provider class manages the access to and delivery of medi-
cal records which are described by the MedicalRecord class.

PROC. OF WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING (WISE’01), PARIS, FRANCE, JULY 2001. 6

The SecurityProfile of a user is defined as a set of Access-
Right associated to the Person class.

DocumentServerState

register()
detectViolation()

Normal Operation

Abnora Operation
backToNormal ()

SecurityViolation
[taccept]

[recoverable]
Negociation

modify(newprof)

Recovery

siveResult()

DataCommunication,

Fig. 3. State Diagram of class DocumentProvider

The statechart diagram shown in Figure 3 describes dy-
namic behaviors of the DocumentProvider class. The sys-
tem starts in an initial state where security parameters are
initialized. Then, it moves to an idle state where it waits
for requests from users. When a request is received, the
security profile of the user is checked and the request is
either served or rejected.

B.1 Business rules

The UML business model needs to be augmented by a set
of business rules stated in OCL. We discuss some examples
of business rules below.

Rule 1: A patient cannot create, delete or modify his
own medical records.

context Patient

inv self.profile.right — forAll(r | not(r.create or
r.modify or
r.delete))

Rule 2: A doctor cannot create or delete a medical record.

context Patient
inv self.myDoctor.profile.right —
forAll(r | not (r.create or
r.delete))

Rule 3 A doctor that has not been chosen by a patient
(as a family doctor or a friend), cannot access the patient’s
medical record.

context MedicalRecord
inv self.owner.myDoctor — excludes(doc)) implies
not (self.owner.myDoctor.profile.right—
exists(r| ((r.resource=self) and
(r.read or
r.modify or
r.delete or
r.addDoc or

r.removeDoc or
r.addFriend or
r.removeFriend))))

Rule 4: Only a site administrator can create or delete a
medical record.

context MedicalRecord
inv self.person.profile.right —
exists(r | (r.create or r.delete)) implies
person.asType(Administrator)

Rule 5: A patient can read only his own medical record
unless he has been chosen by another patient either as a
”friend” or a doctor or he is a site administrator.

context MedicalRecord
inv self.patient.profile.right —
exists(r | (r.resource =self and r.read) implies
(self.patient=self.owner or
owner.myFriend — includes(patient) or
owner.myDoctor — includes(patient))

C. Reviews

UserManager

- name: string

- password: string

- userid: string

- address: Address

- age: Date

- ssn: nat

- role: { patient,doctor friend, admin}

DirectoryService

* users

*\ vector} records | access
) SecurityManager
* {seq} registry

SecurityProfile |~ {} securityDirectory

-owner:Person
+register()
+init()
+login(prof:SecurityProfile)
+check((prof: SecurityProfile)
+service(req:Request,res:Result;
+monitor()
+close()

*{seq} right

AccessRight

- read: boolean

- modify: boolean

- delete: boolean

- create: boolean

- addDoc: boolean

- removeDoc: boolean

- addFriend: boolean

- removeFriend: boolean

- resource: setof[M edical Record]

Fig. 4. Design Diagram of the Patient Document Service

As we already mentioned, well-formedness and consis-
tency arguments may be checked automatically using the
PrUDE toolkit. This is performed after PVS semantic
model corresponding to the UML model is generated. For
instance, Figure 5 shows a PVS model generated from
the UML statechart diagram shown in Figure 3 using the
PrUDE toolkit.

PROC. OF WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING (WISE’01), PARIS, FRANCE, JULY 2001.

PrUDE

Documments ervers tatellachine: THEORY
o CocurnentServerStated achir|| BEGIN

IMPORTING Abstracts yntax
lnstance variables
V:TYPE=
v VARW
%5 tub5 tate definition
emptySet: StibS tate
SmStub: set[StubState] = {s: StubState | s=emptySet}
¥ IntialS tate definition
initial i 55: Initals tate
initial .54 Initials tate
initial xrod42: Initials tate

Srolnitial: set[InitialS tate] = {s: InitialS tate | s=initial_xmi.55 OR s=initial xmi.54 OR. s=initial sxrod 42}
¥ FinalState definition
emptySet: Finals tate

SmFinal: set[FinalState] = {2: FinalState | s=emptySet}
#Join definition

emptySet: JoinS tate

Fig. 5. PVS Semantic Generated Using the PruDE Toolkit

PROC. OF WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING (WISE’01), PARIS, FRANCE, JULY 2001. 8

The lower window is a log area that shows the report
from the PVS theorem-prover that is started in batch mode
in order to check the business rules. The remaining argu-
ments are checked manually. In the rest of this section, we
show, by examples, how that can be conducted. In order to
check the traceability argument the reviewer will first ex-
amine the relationships between the structural and behav-
ioral elements defined in the specification and the design
documents. The business model provided in Figure 2 is re-
fined into a new design model given in Figure 4. Instead of
having several classes for different users of the system, e.g.
Person, Patient etc., there is only one user class, namely
the UserManager class which carries the same set of at-
tributes as Person class, in addition to a role attribute that
corresponds to the specific role played by the user. The Se-
curityManager 2 class is a new class that performs all nec-
essary security checks before executing a request. There is
also a standard directory service represented by the Direc-
toryService class. Since the configuration of the model has
changed, ensuring design traceability is important. That
consists of showing that all information mentioned in the
abstract model can be found in the design model.

For instance, the designer may consider that there is
a direct correspondence between DocumentProvider class
in the abstract model and SecurityManager class in the
design model. The same correspondence may also ex-
ist between Patient, Doctor, Friend, Administrator and
User. The correspondence is documented by providing re-
trieve functions that relate abstract and concrete represen-
tations. We use the following notation for retrieve function:
retr : Rep — Abs, where Abs is the abstraction and Rep
is a representation. For instance, for the SecurityManager
class, the following retrieve function can be defined:

retr : SecurityM anager — DocumentProvider
context DocumentProvider
sm: SecurityManager
inv self = retr(sm) implies
(self.records = retr(sm.records) and
self.securityDirectory =
retr(sm.securityDirectory) and
self.users = retr(sm.users))

The retrieve function for the classes is defined in terms
of the retrieve functions of their attributes that must also
be defined. The retrieve function can be as simple as the
identity function or more complex in case the data types
involved are modified. For instance, the above retrieve
function establishes correspondence between the records at-
tributes in, respectively, the DocumentProvider and Securi-
tyManager classes. However, their data types are different
(see the respective class diagrams). The abstract records
attribute is defined as a set of MedicalRecord whereas the
refined one is defined as a vector of MedicalRecord, e.g. an
array. The retrieve function for the attribute records may
be defined in this case as follows:

retr(sm.records) = {sm.recordsli] |

2This has nothing to do with the standard SecurityManager class
provided in the Java security API.

0 <i < sm.records.size}

The abstract attribute records is defined by the retrieve
function as the set of elements contained in the concrete
representation vector. In order to establish correctness of
the representation, an adequacy proof obligation may need
to be discharged. The following proof obligation states that
the retrieve function must be total:

context DocumentProvider
inv self — forAll(dp | (SecurityManager —
exists(sm | retr(sm.records)
= dp.records)))

The proof obligation is discharged straightforwardly by
providing the following informal constructive argument:

Given any finite set, it is always possible to arrange its elements into
an array. The set will represent the collection of elements associated
to that array.

The use of informal constructive arguments to discharge
simple proof obligations is encouraged in [26]. Although
the data representation chosen by the designer seems ad-
equate, the reviewer may raise some concerns about its
optimality. From the requirements, it appears that the at-
tributes records where all medical records are stored should
allow efficient searching. The question will be whether rep-
resenting the records as a binary tree would be more effi-
cient than using just a vector? The review may also estab-

Friend Patient Doctor Administrator
‘ Person ‘
p3:Doctor | pl:Patient p2:Friend p4:Administrator

DocumentProvider

Fig. 6. Dynamic Reconfiguration in the Patient Document Service

lish that the design is not walid, because it fails to describe,
consistently, user requirements that state the fact that a pa-
tient must not be able to modify his own record. A patient
can be a doctor by profession in which case he can choose
himself as a ”guest” or family doctor, and grant himself
the right to modify his own record, as the above system
design does not prevent him from doing so. To be valid the
business rules should be rephrased stating that patients
may choose, as family or ”guest” doctor, any person who
is a registered doctor, except themselves. An additional
business rule may be stated as follows:
Rule 6:

context Person
inv (self.asType(Patient) and
self.asType(Doctor)) implies
(self.myDoctor — excludes(self))

Another possible solution is redesigning the model in or-
der to incorporate some dynamic reconfiguration features

PROC. OF WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING (WISE’01), PARIS, FRANCE, JULY 2001. 9

(cf. Figure 6). The solution adopted in Figure 6 describes
the different roles a Person may play, as interfaces Patient,
Doctor, Administrator and Friend). In this way, the inter-
faces may be constrained to prevent the same object of the
Person class from playing roles that may violate the re-
quirements. A discussion on how dynamic reconfiguration
can be described using UML can be found in [43].

The robustness issue raised during the review process
may be due to the fact that the patient is the only person
allowed to choose his doctor. How about the case when a
serious accident has happened to the patient at the other
end of the world where the authorized doctors listed in his
record cannot reach him, and the patient is not in condition
to choose a local doctor?

Another robustness issue is due to the assumption that
there could be some security violations since no system is
absolutely secure. Hence, we need to design a mechanism
that allows the system to discover, analyse and recover from
security violations. This concern is already handled by the
statechart diagram given in Figure 3 by specifying appro-
priate recovery mechanisms.

V. CONCLUDING REMARKS

Though inspection can be quite effective in finding defi-
ciencies and bugs in programs, it should not be considered
as a replacement for other formal V&V techniques such as
testing and formal reasoning. For instance, testing is more
practical than inspection for verification tasks related to
system integration, performance analysis, reliability assess-
ment or user interface validation. Formal reasoning may
significantly improve the level of precision and rigor of a
software product. But both testing and formal reasoning
may involve high costs. This work builds on the strengths
of such technique to develop an efficient and cost-effective
integrated V&V framework. We show how design review
can be used effectively as a replacement for the trickiest
phases of formal V&V. Though this work focusses mainly
on design reviews, the overall framework encompasses var-
ious V&V techniques such as testing and formal reasoning.
The PrUDE platform provides a CASE-tool aimed at de-
velopment and rigorous V&V of critical systems. Unfortu-
nately, not all steps of software V&V can be automated.
Several complex steps rely on human guidance and inge-
nuity. The approach presented in this paper can help in
improving the confidence in V&V of critical systems by
bridging the gap by using systematic manual reviews based
on selected correctness criteria.

Currently, we are also investigating additional testing
strategies in order to strengthen our framework for testing.
We are exploring how test cases can be generated using
model-checking based on UML statecharts. We observed
that one of the most complex aspects of the design phase
is the underlying refinement process. We believe that an
integration of a thorough review into refinement process
is urgently needed. Our future work will focus on iden-
tifying more systematic mechanisms involved in the UML
refinement process. That may help in increasing the level
of automation of the refinement process, and consequently,

the quality of software products.

Several works have been performed on using correctness
arguments in design reviews. Closely related to our work
is the work of Parnas and Weiss [38] on active design re-
view (ADR). The ADR method is guided by questionnaires
provided to the reviewers by the authors. The questions
are designed in such a way that they can only be answered
after a careful review. The goal of the questionnaire is to
force the reviewer to play a more active role in the review
process than just reading the exhibits passively. Based
on the ideas of the questionnaire, Britcher [9] later pro-
posed an approach that combines the strength of formal
correctness arguments with informal review. Four correct-
ness arguments namely algebra, topology, invariance and
topology are examined using a questionnaire based on the
ADR method. In our case, we define additional arguments
that broaden the scope of the review process, and thereby
increase the number of potential defects that may be un-
covered. In contrast to ours, the cleanroom process devel-
oped at the IBM put a strong emphasis on formal proof-
checking, which is used as an alternative to unit testing
[35]. The goal of the cleanroom process is to achieve zero-
defect software by using rigorous inspection processes. The
software is developed and validated incrementally through
successive refinement steps. The software code obtained at
the end is verified using rigorous software inspections which
replace unit testing. After integrating the increments, reli-
ability of the overall system is tested using statistical tests.
The stepwise refinement that contributes significantly to-
wards the efficiency of the cleanroom process is a source
of its main weaknesses, because of the inherent complex-
ity of formal verification. A successful application of the
approach may require skilled and committed developers as
reported in [40].

REFERENCES

[1] M. Archer, C. Heitmeyer, S. Sims, TAME: A PVS Interface to
Simplify Proofs for Automata Models, In Proc. User Interfaces
for Theorem Provers, Eindhoven, Netherlands, Eindhoven Univ.
Technical report, Eindhoven Univ. of Technology, July 1998.

[2] D.B. Aredo, I. Traoré, K. Stglen, An Outline of PVS Semantics
for UML Class Diagrams, In Proc. of 11t" Nordic Workshop
on Programming Theory (NWPT’99), Oct. 6-8, 1999, Upsala,
Swedden.

[3] D.B. Aredo Semantics of UML Sequence Diagrams in PVS, In
the Proceedings of the Workshop on Dynamic Behavior in UML
Models, at UML2000, October 2-6, 2000, York, UK

[4] M. Belaid, I. Traoré, The Precise UML Development Environ-
ment Reference Guide, Technical Report NO ECE01-2, Depart-
ment of Electrical and Computer Engineering, University of Vic-
toria, April 2001.

[5] R.V.Binder, Testing Object-oriented System: Models, Patterns
and Tools, Reading, MA:Addison-Wesley Longman, 1999.

[6] B. Boehm, Industrial Software Metrics Top 10 List,
Software, 4(5):84-85, September 1987.

[7] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling
Language User Guide, Addison Wesley Longman Inc, Reading
Massachusetts 01867, 1999.

[8] H. Bowman, J. Derrick, M.W.A. Steen, Viewpoint Consistency
in ODP, a general interpretation, In E. Najm and J.-B. Stefani,
editors, 1st IFIP International Workshop on Formal Methods for
Open Object-Based Distributed Systems, pages 189-204. Chap-
man & Hall, March 1996.

[9] R. N. Britcher, Using Inspections to Investigate Program Cor-
rectness, IEEE Computer, Nov. 1988.

IEEE

PROC. OF WORKSHOP ON INSPECTION IN SOFTWARE ENGINEERING (WISE’01), PARIS, FRANCE, JULY 2001. 10

(10]

(11]

[12]

(13]

(17]

(18]

[19]

(20]

(21]

(2]

(24]

(25]

[26]
(27]
28]

(29]

(30]

(31]

(33]

(34]

V. Cassigneul, How to Control the Increase in Complezity of
Civil Aircraft On-board Systems, AEROSPATIALE Aircraft,
Internal Report, Toulouse, France, 1994.

D. F. D’Souza, A.C. Wills, Objects, Components and Frame-
works with UML-The Catalysis Approach, Addison-Wesley Ob-
ject Technology Series, 1999.

S. Easterbrook, J. Callahan, V. Wiels, V & V through In-
consistency tracking and Analysis, International Workshop on
Software specification and Design, April 16-18 1998, Ise-Shima,
Japan.

S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, D.
Hamilton, Ezperiences Using Lightweight Formal Methods for
Requirements Modeling, IEEE Trans. on Soft. Eng., Jan. 1998,
Vpl. 24, 4-14.

A. Evans, UML class diagrams - filling the semantic gap (draft),
Technical Report, York University, 1998.

A. Evans (moderator), S. Cook, S. Mellor, J. Warmer, A. Wills,
Advanced Methods and Tools for a Precise UML, In the Proc. of
2nd International Conference on the Unified Modeling Language.
Editors: B.Rumpe and R.B.France, Colorado, LNCS 1723, 1999.
A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, B. Nu-
seibeh, Inconsistency Handling in Multi- Perspectives Specifica-
tions, In the Proc. of 4th European Software Engineering Confer-
ence (ESEC’93), Garmisch-Partenkirchen, Germany, September
1993, 84-99, LNCS 717, Springer-Verlag.

R. B. France, A. Evans, B. Rumpe, The UML as a Formal Mod-
eling Notation, Computer Standards & Interfaces, 19 (1998), P.
325-334.

M. D. Fraser, K. Kunar, V. K. Vaishnavi, Informal and Formal
Requirements Specification Languages: Bridging the Gap, IEEE
Trans. on Soft. Eng.,Vol. 18, NO. 17, May 1991, P454-466.

M. D. Fraser, K. Kunar, V. K. Vaishnavi, Strategies for Incorpo-
rating Formal Specification in Software Development, Oct. 94,
Vol 37, No. 10,Communications of ACM, p 74-86.
T. Gilb, D. Graham, Software Inspection,
Addison-Wesley, 1993.

J. Grundy, J. Hosking, W. B. Mugridge, Inconsistency Manage-
ment for Multiple-View Software Development Environments,
IEEE Trans. On Soft. Eng., Vol. 24, No. 10, Nov. 1998.

M. P. E. Heimdahl and N. Leveson, Completeness and Consis-
tency in Hierarchical State-Based Requirements, IEEE Trans.
On Soft. Eng., Vol. 22, P. 363-377, 1996.

C. L. Heitmeyer, R. D. Jeffords, B. G. Labaw, Automated Con-
sitency Checking of Requirements Specifications, ACM Trans.
on Soft. Eng. and Meth., Vol. 5, No. 3, July 1996, P. 231-261.
A. Hunter, B. Nuseibeh, Analyzing Inconsistent Specifications,
Proc. RE’97, 3rd Int’l Symp. Req. Eng., P. 78-86, Annapolis,
Md., 1997.

ISO-IEC JTC1/SC21/WGT, The
of Open Distributed Processing,
cs.open.ac.uk/ m_newton/odissey/RMODP.html

C. B. Jones, Systematic Software Development using VDM, 2d
ed.,Prentice-Hall, Englewood Cliffs,NJ,1990.
R. Kneuper, Limits of Formal Methods,
Computing (1997) 9: 379-394.

Workingham:

Reference Model
http://www-

Formal Aspects of

P. Krutchen, The Rational Unified Process, Addison Wesley,
Sept. 1999.
A. V. Lamsweerde, R. Darimont, E. Letier, Managing Conflicts

in Goal-Driven Requirements Engineering, IEEE Trans. On soft.
Eng., Vol. 24, No. 10, Nov. 1998.

D. Latella, I. Majzik, M. Massink, Towards a formal Operational
Semantics of UML Statechart Diagrams, Proc. FMOOD’99,
Feb. 1999, Florence, Italy.

M. Lawford, J. McDougall, P. froebel, G. Moum, Practical Ap-
plication of Functional and Relational Methods for the Speci-
fication and Verification of Safety Critical Software, In Proc.
Algebraic Methodology and Software Technology, 8th Interna-
tional Conference, AMAST 2000, Iowa City, USA, May 2000.
M. Lawford, P. Froebel, G. Moum, Application of Tabular Meth-
ods to the Specification and verification of a Nuclear Reactor
Shutdown System, Submitted to Formal Methods in System De-
sign, August, 2000.

R. C. Linger, Cleanroom Process Model, IEEE Software, March
1994.

M.Y. Liu, H. Ye, I. Traoré, Using formal methods in Security
Engineering: case Study of a Patient Document Service, tech-
nical Report No. ECE01-3, Department of Electrical and Com-
puter Engineering, University of Victoria, May 2001.

(35]
(36]

(37]

(38]

(39]

[40]
[41]

(42]

[43]

[44]

45]

[46]

[47]

H. D. Mills and M. Dyer, Cleanroom software engineering, IEEE
Software, vol. 4, no. 5, pp. 19-25, 1987.

Object Management Group, OMG Unified Modeling Language
Specification, Version 1.3, OMG standard document, June 1999.
S. Owre, N. Shankar, J. Rushby, D. W. Stringer-Calvert, PVS
Language Reference, version 2.3, Computer Science Laboratory,
SRI International, Melon Park, CA, September 1999.

D. L. Parnas, D. M. Weiss, Active Design Reviews: Principles
and Practices, Journal of Systems and Softwares 7, 259-265
(1987).

R. W. Selby, V. R. Basili, Cleanroom software development:
an empirical evaluation, IEEE trans. on Sof. Eng., SE-13990,
1027-37.

I. Sommerville, Software Engineering, 6th Ed. Addison-Wesley,
2001.

J. M. Spivey, The Z Notation: A Reference Manual, 2nd Ed.
London: Prentice Hall.

I. Traoré, A. Jeffroy, M. Romdhani, A.E.K. Sahraoui, An Ezperi-
ence with a Multiformalism Specification of an Avionics System,
in Proc. INCOSE 98, July 25-31 1998, Vancouver, Canada.

I. Traoré, D. Aredo, K. Stolen, Formal Development of Open
Distributed Systems: towards an Integrated Framework, OOSDS
Workshop, PLI Conference, Paris, Sept. 1999.

1. Traoré, An Outline of PVS Semantics for UML Statechart,
Journal of Universal Computer Science, Springer Pub. Co., Nov.
2000.

I. Traoré, A Framework for Rigorous Testing of Object-oriented
Programs, ECBS Conference, Workshop on Formal Specification
of Computer- Based Systems (FSBCS01), April 2001, Washing-
ton D.C., USA.

I. Traoré, An Integrated V€V Environment for Critical Systems
Development, to be published in the Proc. of 5th IEEE Inter-
national Symposium on Requirements Engineering (to be held),
August 2001, Toronto, Canada.

J. Warmer, A. kleppe, The Object Constraint Language: precise
Modeling with UML, Addison-Wesley, 1999.

