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Chances are that if software is used within a device, system, vehicle, airplane or facility that
can have an effect on safety, health, security or the environment  regulators will be involved in
the approval process before  the entity can be released  for public use.  The regulators primary
need is to have evidence & demonstrated assurance in place that the software  meets
requirements and  does nothing unsafe. Regulators place heavy emphasis on testing,
comprehensive & systematic inspection,  standardized processes and qualified people

This paper presents a model of regulatory software approval that has evolved over the last 15
years: first, by the licensing of the safety critical shutdown systems software at Darlington
which was completed in 1990; and second, by a period of formalization & standardization to
bring software to the level of standard as other, albeit complex, engineered components. The
thrust in the standardization process was to reach an acceptable level of maturity and remove
fixation on software as a “treat-as-something-special” submission. This would permit software
components to  be changed, maintained or replaced as other engineered components are
through an approved & managed process.

This paper goes behind the scene to show how regulators arrived at their “software”
expectations. These expectations cascade down & influence the inspection efforts. The
inspection of software is an important stepping stone in providing the evidence & confidence
that the end result will be reasonable assurance of safe operation.

1. Introduction

Intuitively, I think, this audience feels inspection is an important component of the regulatory
process.  Regulators are inspectors and what could be more relevant then the  inspection reports
that this audience produces.  I first explain the regulatory process that leads to the approval and
use of equipment, systems or facilities of which the software is an important component. It is
important to remember that regulators are not software engineers.  Regulators respond positively
to good  evidence, and by extension to you, that what they are about to approve will cause no
harm.

There are many regulatory agencies.  My experience has been with regulators that deal in health,
safety, security and protection of the environment.  The model I draw from is the nuclear
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regulatory model.  But drafting agencies that produce the laws and regulations for the nuclear
regulatory  agencies are similar to those of other safety agencies.

Regulators stake out their areas of responsibilities by excluding the public from certain activities
or possession of certain materials.  For example, in nuclear regulation it is forbidden that the
general public possesses and manipulates radioactive materials without a license.  This means that
to it is not possible to operate a nuclear generating station and by extension the equipment that
includes the software, that you might have inspected, without having gone through an approval
process.

A regulator is not a design authority.  Nor is a regulator an  operator.  It is the licensee that is
responsible for safe design and operation. For example, a pilot has  the primary responsibility of
the safety of the airplane that he or she flies.  It is not the regulator, Transport Canada that will be
held responsible for mishaps or accidents.  The regulator  is another chain in the safety link.  It is
another level of protection that the public has decided it needs for its own safeguard.

A regulator fulfills his or her  mandate by asking for evidence that all is well.  What constitutes
proper and sufficient evidence is usually given to the discretion of the regulator.  The dilemma is
that for new technology or a new branch of engineering such as software engineering consensus
standards do not exist.  The regulator then, in search of evidence, may have to step in and be
much more proactive in what is required than in any other mature technologies.

In addition to granting an operating license the regulator is also charged with responsibility of
seeing that the conditions of the license are being met throughout operation.  This brings into
action additional inspection  activities for the maintenance, addition or replacement of software
throughout the life of the licensed activity.

2. What Do Regulators Do?

Regulators are busy people!  The regulation of an industry where high reliability is demanded is
complex.  Not only does the equipment have to meet certain standards but there will be
requirements on the licensing of operators, of maintenance, on financial guarantees, on the
protection of the environment and on the need to  communicate with the public. Technical
requirements are as diverse as fire protection, the structural integrity of pipes, security and
screening of workers.

The four  by seven matrix on the right
shows a typical regulatory framework.
What the regulator has to do -- the
mandate -- is written across the
horizontal axis.  How the regulator goes
about his or her work is shown in the
vertical axis. The flow of  work leading
to license approval starts with the
specification of standards or the
agreement of standards that will be used
for the project.  The licensee then
carries out the design which is
submitted for assessment.  A license is
then issued, most likely with conditions,
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3 { scenario, liklehood,consequence}

and the facility is put into action. Once the equipment or facilities is in operation the regulator
will inspect as required and if necessary issue enforcement action.  Other functions of the
regulator are emergency preparedness just in case the previous four processes fail, the fulfillment
of international obligations and the building of trust with the public through communication.

From the software perspective the first two boxes in the upper left-hand corner are the important
ones.  If the standards are in place, then the assessment process for the design will be fairly
straightforward.  Components and systems are compared against standards and if a match can be
made the licensing process can proceed.  When standards are not in place, or the standards or the
effectiveness of the standards have been put into question because of incidents and accidents ,
then all of the vertical boxes included in the safety column become important.  And particularly
important will be the lower left box regarding public communications and public trust. During the
licensing of the Darlington nuclear generating station the public eye was very  much on the
software component of that station. A heavy burden was placed on all participants to provide the
evidence which would be defensible and stand public scrutiny.

Regulators abhor ad-hoc processes.  They continuously strive towards formalization and
standardization.  This way, they can handle the enormous job entrusted to them by the public!

Regulators triage their time and effort according to risk!   The  regulator will take action and
will adjust the intensity of his or her action depending on:

• will failure cause immediate and serious harm to the
operator or the public

• will failure cause long-term negative effects
• will failure cause economic hardship or deny needed

service to the public
• will failure cause loss of public confidence in the

regulator and in the government

Regulators are scenario thinkers! And when they think up a scenario they usually are pessimists.
The classical scenario in nuclear safety is that of pipe break.  Loss of structural integrity of the
primary heat transfer system is the dominant thinking of regulators.  The pipe break causes loss of
coolant, loss of heat removal to the fuel and the potential of uncontrolled dispersion of radioactive

materials.  We know from real accidents that
things almost never happen according to the
design scenarios but we also know that the
defenses built-in to cater to the design
scenarios usually do well in real events.

Regulators think out a scenario, work out the consequences, and if the consequences are deemed
to be serious they determine the likelihood of that scenario taking place.  The scenario thinking
may be supported by mathematical tools such as event trees and fault trees, engineering judgment
based on past experience, by intuition or by fundamental review of the physical phenomena that
could take place.  The regulator builds up his or her risk picture through the summation  of  the
scenarios. With this triplet  (scenario, likelihood, consequences)  the regulator forges strategy to
set standards and to carry out assessment and inspection.
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Regulators expect the  components of safety critical systems are rigorously inspected!   And
they expect the inspection (analysis)  to verify that the specified behavior is met by the design.

Regulators are used to having the
hypothetical accidents -- and the
resulting challenges and forces acting
on a plant -- described in
mathematical terms. For example, in
accident analysis, an accident scenario
will consist of a hypothetical pipe
break within containment that will
cause an overpressure condition, rise
of temperature, rise of humidity,  the
injection of contaminants into
containment and a host of other
system transients. The safety analysts
will describe these physical
phenomena by mathematical
equations .  The regulator will expect that the corresponding containment and control actions that
will render the plant safe against accidents,  are also described in mathematical terms.  They then
expect  that the proponents present conclusions that  the facility is safe to by showing that the
facility’s withstand capabilities equal or exceed the anticipated challenges. Instrumentations and
control logic required  to button up containment will be shown to be adequate  by logic equations
and functional relationships. Demonstration of structural integrity to resist accident forces will be
by mathematical analysis.  It will not be adequate to simply inspect the design by reading
blueprints, provide arguments of quality or appeal to previous successful designs.

The safety analyst will turn over  to the system
specialist the set of  environmental variables of
interest that need to be monitored and controlled.
The transmission of requirements be in the form of a

mathematical specification called REQ.  The regulator upon concurrences will expect the safety
systems to perform accordingly. The job of the operator, the job of any automated control system,
is to monitor the accident variables deemed important and so identified by the safety analysts  and
to initiate the requisite control actions..
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Regulators are not designers - but they have a mindset! In the design of high reliability systems
regulators expect to see redundancy to cope with equipment failures and expect to see redundancy
and diversity where exceptionally high reliability is required. They also expect to see excess
capacity and extra strength to cope with the unforeseen.

When it comes to complexity,
regulators like to divide and conquer.
A case in point is the Canadian system
of "special safety systems".  There's a
lot of complexity in the control of a
nuclear generating station.  There are
many potential failure modes.  They
cannot all be guarded against, but
protection can be provided by fairly
simple systems whose only job is to
contain or to safely shut down the
reactor.  Shutdown of the reactor can
be controlled by three systems.  The
main reactor regulating system is
responsible for adjusting power
produced as well as carrying out other
duties such as monitoring, alarming, logging and ancillary control.  This system monitors the
plant's performance and can cause power generation to stop if anything goes wrong.  In addition
there are two safety systems: there only job is to shut the reactor down if anything abnormal
occurs.  During normal operation the two safety systems have no function other than collecting
and displaying data to be used in determining if they are functioning normally.

3.  What are the “Software” Concerns of the Regulator?

Regulator will have heard of the Therac 25 cancer patient incidents.  They will have heard of
problems with fly-by-wire airplanes in particular the Airbus A320.  The regulator may have heard
of the fueling machine incident at Bruce A  or of the Ariane rocket accident.  The regulator will
be concerned that software is close-coupled into potential accident chains.

When the Atomic Energy Control Board was required to make a decision on the safety of
software at Darlington it already had available a list of standard scenarios and their consequences.
Many of the scenarios required the shutdown systems to respond properly in order to limit the
consequences to acceptable values.  What we didn't know is what were the failure  modes of
software and their likelihood.  In particular we needed to know if the normal defensive strategies
of high reliability engineering such as redundancy, diverse design, design reviews, analysis and
inspection, quality assurance and testing were effective in  reducing the probability of failures.
We also didn't know how to measure the reliability of software products.
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What we discovered was that software produced with good engineering practices would certainly
be better than one without.  But we discovered that software had certain inherent characteristics
that required measures to be tailored to those characteristics.  For example, it would not be
appropriate to blindly take the engineering practices shaped by the analog engineering world to
the digital world.

Properties of software:

1) Software is a "zero" tolerance product!    Software is not  a forgiving
product: the concept of tolerance does not exist! In an analog world there is
a tolerance that allows for accepted  behavior within parameters.  A slight
deviation in a property such as thickness, chemical composition would not o
be a problem.  The engineer designing the system depends on this.  In
software an apparently slight deviation such as a ";" is replaced by a "," a
million line program can create  unpredictable and unwanted responses.

2) In an analog world there are number of principles that in effect say  "close is
close enough". But, software  does not exhibit continuity. This means that if
the behavior of software is measured by two test points that appear to be
very close to each other there is no guarantee that any intermediate points
that have not been tested will give the expected response.  In nuclear safety
when we require the licensee to do a proof pressure test of containment of
1.15x design load we expect that the structure will "work " for all pressures
up to the level and even for a fair distance beyond. In software testing is
purely anecdotal.

3) With software, water can flow "uphill"! Software does not have to adhere to
physical laws. A software simulation of an analog mechanism does not need
to obey any physical laws.  This means that there are no natural constraints
which help the designer.

When it comes to demanding high reliability, regulators look for the use of redundancy, diversity
and excess capacity.  Applied to software, redundancy is a non-starter as repeats of the same
software will simply generate the same error.  Diversity, the construction of parallel software
systems with different hardware and different software development, appears to be a viable
alternative but close examination has shown that software developers developing the products
independently correlate their errors!

Excess capacity or overrating certain components to provide high reliability has its parallel in
software by providing extra error checks, redundant code and  error correcting strategies which
while they might solve some problems will cause a more complex product to be created and
increase the analysis and testing burden.

Given the unique characteristics of software we created our approval strategy. That strategy
realized that software is a technology on the rise and had certain requisite properties that had
safety advantages that we were not prepared to forego.  The strategy  recognized that the decline
of analog control technology also had negative safety consequences.  The demands of high
reliability and the specific characteristics of software demanded that we adapt our expectations
accordingly to include this new technology.  One of our key strategies was to place "inspection"
on a rigorous, mathematical  footing.
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4. Expectations for the Inspection of Safety Critical Software

The regulator needs to see evidence on
which to base decision.  The primary
evidence is documentation, but evidence
could include witnessing of test results,
and the knowledge that other regulators
have accepted  the same product.

For safety critical components, systems
and structures the regulator wants to be
assured that a recognized engineering
process has been followed and that that
process has checks and balances along
the process trail that give reasonable
assurance that all safety requirements
have been included into the  finished
product. The managed engineering process would include standards that guide the production of
documents, standards to provide for training of staff, standards that will be used to guide testing
and commissioning. As well, standards will need to be included for harsh environment
qualification and human/machine interface design based on human factors principles.  In short, all
that is necessary for  a quality, safe product!

Regulators expect inspections to be mathematically based!  In software the devil is in the
details!  The inspection techniques must be accurate enough to examine the fine details of
programming as well as powerful enough to capture functional behavior.  The licensee needs to
build up a safety case:  this means that the inspection process must have the capability to examine
the fine detail of assembly language as well as compactly describe the behaviour of large “
chunks “ of code. The aim is always to verify correspondence with safety requirements. The
inspection process has to confirm that the software will carry out its required safety functions and
not do unintended, unsafe actions.

Mathematically based inspections are possible because a
sequence of program statements defines a mathematical
function.  This fact  can be most easily understood by starting
with a single executable line. In the example:  y = SQRT(x).
With certain preconditions, such a single statement can be
regarded as a function that transforms an initial data state into
a final data state.  The concept of a function can be expanded
from single statements to sequences of statements,
procedures or subroutines.  It is therefore possible to talk of
the program function that defines a state transition from
initial data states to final  data states provided that the
execution terminates.  These program functions are displayed
in table format.

The program function is a representation of the outputs of a
sequence of program text.  Implementation preferred details
as well as the values or expressions of local variables created
to assist the calculational process has been removed.  The
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program function improves the inspection of code by focusing on the outcome.  The usual, but
error prone, methods of code inspection by line by line reading is not needed  except to provide a
measure of code quality.

The actions predicted  by the program function can be compared to
the actions required.  In the original Darlington inspection process
systematic mathematical manipulation of both program function
tables and the requirements were carried out. The inspection
process continued until the action of output variables were shown
to be identical to the actions specified within the allowable
tolerances.

In the original Darlington approval process the entire program text
of both shutdown systems was reverse engineered and formaly
compared to the requirements document.   The process was
manually intensive and exacting.

Regulators expect  a "forward" software
development process!   Following the approval
of the original Darlington software, a period  of
formalization and standardization took place.
The document structure that evolved and that
gained consensus by the regulator, the AECB
(now the CNSC), by  the designer, AECL, and
by the utility, Ontario Power Generation is
shown here.

The new process is a forward software
development process that creates a class of
documents specifically tailored to the unique
requirements of software in computerized systems.  The documents IN and OUT describe the
behaviour of the input and output devices. The document SOF describes the behaviour of the
software that achieves what is required by the document REQ.

The four major documents describe “what”
is required. Each class of documents can
generate a series of work products in ever
increasing specificity. For example,
"underneath" the document SOF are a series
of work products. The dominant
characteristic of a work product is that it
begins with requirements from the previous
stage, transforms that requirement into an
output which is then used for the beginning
of the next stage.  The process stops when a
product is built or purchased which has thea
requisite functionality without unwanted
side effects.
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This layering process allows an informed, risk based inspection strategy to be devised.
Inspections, and the intensity of the inspection can be adjusted to the reliability of the tools that
transform input to output.  For example, in the original Darlington licensing action, the code was
handwritten based upon informal natural language specifications.  This is where we felt that
rigorous inspection was needed.  Other tools were used to transform program text into executable
code.  These tools, we felt, had a high degree of reliability - demonstrated in service - and
detailed inspection was not warranted.  These tools we checked  through the testing process.

Regulators expect continuous improvement!   Although regulators are by their very nature
conservative, regulators do not like to be caught short!  Software approval is an intensive and
expensive process. There is much software in a nuclear power generating station that could use
the benefits of well thought out inspections. Not all inspections need to be formal, mathematical
inspections. For much software there will be an overall safety advantage by increasing the
usability, availability and reliability of that application. For example, the reactor regulating
system, that controls the reactor, has not been formerly inspected.  The techniques applicable to
safety critical software are simply too intensive for this kind of application.  Nevertheless, the
overall reliability of the station could be improved if related techniques are used more widely.
Increasing the reliability of software throughout the station will be of benefit if the overall need
for the special safety systems is decreased.

Graphical languages should be investigated to see if they can decrease the level of inspection
required.  Graphical languages have the promise of combining requirements and code.

Accident records show that the human element at the level of operator and maintainer interface is
important.  Inspection techniques should be extended into this arena: getting the software correct
and then using this software correctly are complementary activities.

5. Conclusions

This paper presented  a model of regulatory software approval that has evolved over the last 15
years: first, by the licensing of the safety critical shutdown systems software at Darlington which
was completed in 1990; and second, by a period of formalization & standardization to bring
software to the level of standard as other, albeit complex, engineered components. The thrust in
the standardization process was to reach an acceptable level of maturity and remove fixation on
software as a “treat-as-something-special” submission. This permitted software components to  be
changed, maintained or replaced as other engineered components are through an approved &
managed process.

Regulators need  to have evidence & demonstrated assurance in place that safety critical  software
meets requirements and  does nothing unsafe. Regulators place heavy emphasis on testing,
comprehensive & systematic inspection,  standardized processes and qualified people. Inspection
of software is an important stepping stone in providing the evidence & confidence that the end
result will be reasonable assurance of safe operation.
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