

S. Biffl, M. Halling

Abstract—In this paper we use the value chain concept,
which links the level of value of the final product to the fitness of
working products, for planning inspection activities. Following
this value chain an inspection tackles the risk of a lower level of
value due to defects in a working product from two sides: In-
spection lowers the frequency of loss with removal of defects
and the size of potential loss with a focus on defects that have
high impact on the value chain. Thus it is important to focus
inspection activities on working products and potential defects,
which a) would have serious impact on the level of value of the
final system, if they go undetected; and b) would be much more
costly to remove during later stages of development.

We apply the framework to a simple example project to dem-
onstrate the main concepts of inspection benefits and discuss
how inspection costs and benefits can be compared for overall
evaluation of inspection utility.

Index Terms—Software inspection, value chain, conditionally

earned value, risk, uncertainty.

I. INTRODUCTION
Project management is responsible for managing stake-

holders’ values during the course of a software development
project: After the elicitation and ranking of success-critical
stakeholders’ objectives for the level of value in the finished
system (e.g. with the EasyWinWin process [5]), the actual
creation of these values has to be tracked during the project.
We assume a rational development plan based on prioritized
target levels of value to contain a value chain, which links the
working products in the plan to reaching the planned levels
of value for the final product (e.g. regarding the level of ac-
tual functionality and quality of the final system). This value
chain enables project participants to assess whether a work-
ing product (any document that is created during the devel-
opment process) supports the development towards a particu-
lar planned level of value (under certain assumptions regard-
ing further development activities and interface contracts
with other working products).

The risk of defects to prevent reaching the planned level of
value for the project and specific development activities can
be determined and managed with an appropriate risk man-
agement method, e.g. Riskit [11].

Inspection is an instrument for risk management to deter-

mine product quality and mitigate risks from potential de-
fects. The use of inspection should be planned and evaluated
in an economic context of project and organizational goals.
In a project plan the use of quality assurance activities should
be justified with economic considerations, which support the
choice of activities, e.g. using inspection of requirements
rather than a larger amount of testing later on.

As inspection is an effective but resource-intensive ap-
proach to find defects, it is usually not cost-effective or may
be even impossible to inspect all working products exten-
sively. Information from risk analysis and the project value
chain can be used to prioritize which working products to
inspect to what extent.

Inspection with the support of a value chain and risk man-
agement can provide important benefits to project manage-
ment and developers:
- Saved rework. Finding major defects saves potentially
more costly rework and reduces the size and frequency for
the risk of reduced levels of value in the target product.
- Conditionally earned value. Based on the value chain we
introduce the concept of ‘conditionally earned value’ for each
working product regarding its support for the target level of
value in the final product. Earned value is a positive feedback
for developers.
- Reduction of planning uncertainty. Inspection is a way to
get feedback on the quality of key working products early in
the development process: The information from inspection
helps project management to assess risks from the working
product under inspection, which reduces uncertainty on
product quality and development process and thus aids pro-
ject predictability.

These benefits address different aspects of software pro-
jects and require different measures for their quantification,
while inspection costs are usually measured in person hours
[4] or their monetary equivalent. For cost-benefit evaluation
of inspection costs must be compared to benefits, which gets
more complicated, if they are measured in different units.

In this paper we present an initial comprehensive frame-
work, which extends a model presented in [4], to evaluate the
impact of an inspection on the project including the above-
mentioned benefit dimensions and a range of cost factors.
Based on such an integrated framework for the evaluation of
an inspection process, further work can develop models to
optimize inspection process planning regarding two key
questions of the project manager for inspection planning: a)
How much inspection should be used at a given point in the
project plan, and b), if inspection is used at a given point,
which inspection design is likely to be most cost-effective?

A Value-Based Framework for the Cost-Benefit
Evaluation of Software Inspection Processes

Stefan Biffl is currently with the Fraunhofer Institute for Experimental
Software Engineering, Sauerwiesen 6, D-67661 Kaiserlautern, Germany; on
sabbatical leave from the Vienna University of Technology, Austria,
(e-mail: Stefan.Biffl@tuwien.ac.at).

Michael Halling is with the Institute for Software Technology at Vienna
University of Technology, Karlsplatz 13, A-1040 Vienna, Austria and with
the Systems Engineering & Automation department at Johannes Kepler
University Linz, Altenbergerstr. 69, A-4040 Linz(e-mail:
halling@swt.tuwien.ac.at).

The rest of the paper is structured as follows: Section II
presents a technical and organizational framework for inspec-
tion process evaluation. Section III introduces an economic
framework for cost-benefit evaluation of inspection activities
illustrated with a practical project example. Section IV sum-
marizes the concepts on inspection cost and benefit presented
and suggests further work.

II. EVALUATING THE INSPECTION PROCESS
The traditional inspection process basically consists of the

steps planning, individual defect detection, defect collection,
and rework [12]. Figure 1 shows the process of inspection at
a particular point in time during a software development pro-
ject, e.g. inspection after development of the requirements
specification.

The overall inspection process consists of 6 sub-processes,
which are executed in sequence (1-6). The large box contains
processes 1 and 6, which decide on whether to use inspection
at all at this point (process 1) and on what further quality
assurance (QA) activities to schedule for further development
(process 6), depending on the feedback from inspection on
the quality of the inspected product. Processes 1 and 2 de-
termine the economical and organizational context of inspec-
tion, processes 3 and 4 carry out the inspection with individ-
ual defect detection and defect collection, processes 5 and 6
evaluate inspection quality and product quality.

In this paper we focus on evaluating inspections (processes
5 and 6) based on an economic cost-benefit model. In gen-
eral, inspection is useful if it is feasible and more cost-
effective than other quality assurance approaches in the pro-
ject to find important potential defects in the working prod-
uct. An important advantage of the inspection technique is its
applicability to early life-cycle documents, like requirements
specification and design documents, since ensuring the qual-
ity of working products offers better leverage in early stages
of the project (see also [11]).

Q-plan,
economic model

Defect
detection

goals

Project plan, planning quality levels

List of defects
to correct

Product
quality estim.

Inspection
object

Inspection
resources

Quality Management (QM) in the project

Inspection management

Report to
general QM

Decision on QA
activities

Inspection plan,
reading tech.

Defect analysis,
content estim.

Defect detection Defect collection

Input from
general QM

1.

2.

3. 4.

5.

6.

Figure 1: A hierarchical, technical view on software inspection in a project
stage [3].

For a more rational discussion of the value of an inspection
the following subsections introduce the notion of “defect
potential” as starting point for a value/risk-based decision on
the schedule/budget of quality assurance activities in a pro-
ject context; and parameters of defect detection activities and
their relationships to the effectiveness and efficiency of an
inspection design. These technical dimensions of software
inspection are important inputs to reasoning on the value of

an inspection.

A. Defect Potential – Source of Risk for System Value
We view the software development process as a chain of

sub-processes with the aim of creating final products or ser-
vices, which provide pre-defined levels of value to stake-
holders. The value chain for a particular value item in the
target system is a set of conditions, which are to be fulfilled
to reach a certain level of value. These conditions are deter-
mined during the definition of the requirements and refined
and transformed for working products in the course of devel-
opment.

While the development process creates value it also creates
progressively more complex products, in which the entropy
usually increases, e.g. spread from defects introduced at the
requirements or design stage, unless quality assurance activi-
ties like inspection or testing are applied which help to re-
move defects and thus reduce unnecessary entropy1.

However, as quality assurance in general and inspection in
particular is costly, not all working products can usually be
checked with the same care and therefore a prioritization
must be made. We suggest using information from project
risk analysis for this purpose. For risk management, e.g. with
the RiskIt approach [11], the chain of products and processes,
which work towards creating the final product, has some un-
certainty of succeeding. The risk is to lose some of the ex-
pected level of value of the final system.

The RiskIt framework [11] defines a comprehensive quali-
tative model to visualize, formalize, identify, and manage
risk scenarios. A rather quantitative approach to risk is repre-
sented by the Risk Exposure measure, which is defined as the
product of the size of a loss and the probability that this loss
occurs [6]. The notion of defect potential can be easily inte-
grated with both approaches.

In the RiskIt framework, defect potential can be viewed as
a parameter in risk management on project level, which de-
scribes the possible impact of potential defects in a product
(part) on the development results, i.e. the utility of success-
critical stakeholders. For major defect potential this implies
first, that the product must be important for the final result,
and second, that also the potential defects suspected in the
product must be a major threat to the value of the final result.
In the Risk Exposure context, defect potential in a similar
way depends on the size of the potential loss (i.e. the impact
of the working product on the final value of the project) and
the probability of this loss (i.e. the defect density of the
working product).

Therefore the context of risk exposure provides a basic
guideline for deciding on whether a product qualifies to be
important enough for inspection. In a well-structured pro-
ject/system plan there are rather few working products on the
value chain to create a certain part of the overall system
value. In this case only these few products have to be

1 Note that development activities can also be used for quality assurance,

if they provide a different view on a development product and are used ac-
cordingly (see also [1] where inspection uses design activities to examine the
consistency of a requirements specification).

checked for defects and the risk of loosing the value can be
contained. For very tightly coupled complex systems the high
number of components, which have to work together to pro-
vide the overall system value, may preclude the capability to
show that a level of service is supported with a set of work-
ing products (e.g. functionality or performance features).

In practice the first aspect of defect potential, i.e. the
document’s importance for the project’s total value, is often
fairly straightforward to assess and mainly depends on the
specific project situation and development process. The sec-
ond aspect of defect potential is more difficult to assess a
priori because usually the project manager does not know the
number and type of defects within a working product before
inspection, but has to estimate the defect density.

This defect density estimate should reflect the project
manager’s assumptions on the document complexity, the
document author’s qualification, and the general risk attitude
towards the project outcome. In practice case studies with
and without inspection can provide data on defect densities in
typical working products and the overall impact of defined
classes of defects on development results.

We want to consider a project example throughout the pa-
per to explain our concepts and approaches. The example
project is a web-based legal information system: Main value
for the client is to provide a sophisticated query engine for a
large amount of legal documents stored in a database. Of
course, the product must provide appropriate viewing and
printing facilities and a state-of-the-art user interface. We
follow a standard software engineering process with re-
quirements specification, design, implementation and testing
stages. Due to a limited amount of resources for quality as-
surance we cannot verify the quality for all working products
and must therefore assess the defect potential of working
products for prioritization.

We use the RiskIt framework for risk management and
identify two major risks for reduced client utility: 1. Not rep-
resenting the data appropriately and 2. Not providing suffi-
ciently sophisticated search functionality. Therefore we iden-
tify working products that are important in this context and
find at the requirements stage two important documents: The
data representation and the query engine requirements.

From past project experience we know that the authors are
familiar with the project context. While the specification of
the sophisticated search functionality is complex and exten-
sive (we assume a defect density of 3 to 5 defects per page),
the data representation is well established and evaluated from
former projects. Therefore we assign the highest defect po-
tential to the requirements specification of the query engine,
which is accordingly selected for inspection.

B. Inspection Process Designs
Apart from the prioritization of working products the de-

fect potential assessment discussed in the previous section
determines an inspection goal with respect to defect types in
a document. Therefore project managers must select a spe-
cific inspection process design that fits the inspection goal in
general.

Important parameters for the effectiveness and the effi-
ciency of a particular inspection design are the number and
sequence of process steps (e.g. individual defect detection,
team meeting, rework), the team size, defect detection tech-
niques applied, and the capabilities of the inspectors in the
team to fulfill their roles. As far as defect detection tech-
niques are concerned, state-of-the-art defect detection tech-
niques, like checklists [8] or reading techniques [1][12] can
look for a range of defect types, which may be present in a
particular type of product.

As we outlined above, for development products of typical
size and complexity we assume that only a limited number of
quality assurance checks can be executed exhaustively for all
parts of the product. Therefore some working products or
even parts of working products are selected for inspection
based on their defect potential. Then an appropriate inspec-
tion design must be selected in order to achieve the inspec-
tion goal of removing certain critical target defect types from
the selected working products effectively. Accordingly the
technical dimension of defect detection process design influ-
ences the total value contribution of an inspection considera-
bly.

Another aspect of inspection design is the relationship to
inspection costs: different inspection designs of course in-
duce different costs. Therefore it is important to determine
the inspection design, which fulfills the specified inspection
goals with minimal costs.

In practice a project manager can select an appropriate in-
spection design from past project experience or published
empirical data. There are a number of reports on experiments
with different inspection designs, defect detection techniques,
and team sizes [1][2][8][12]. From these reports the effec-
tiveness and efficiency of different inspection process de-
signs with respect to different document types and other in-
fluencing variables can be assessed. The project manager can
the use this data from such experiments or from appropriate
local assessments at a company to evaluate the effectiveness
of hypothetical inspection designs (see e.g. [2]) and deter-
mine the appropriate design for his particular context.

Continuing the example from the previous section the pro-
ject manager’s goal is to inspect the query engine require-
ments document in order to guarantee that the final product
provides appropriate searching functionality. Suppose further
that the project manager can assign at most 4 developers to
inspection for a maximal duration of 2 days. As far as defect
detection techniques are concerned both checklists [8] and
perspective-based reading [1] are possible, as all developers
have received appropriate training before. As the project
manager estimates the requirements document to have a large
defect potential, he decides to chose the following inspection
process design: take all 4 developers; inspection duration
equals two days; one inspector uses a checklist and the re-
maining 3 inspectors apply 3 different perspectives [12]. As
empirical data indicates that meetings are inefficient he fur-
ther decides to skip the inspection meeting.

III. AN ECONOMIC FRAMEWORK FOR SOFTWARE INSPECTION
Often software engineering and quality assurance of soft-

ware development focus on technical processes. However,
software development is a very competitive business and
therefore project and quality managers have to make deci-
sions on a technical and especially on an economic basis. In
this paper we see inspection as an investment into quality
assurance, which should yield a positive contribution to the
overall net gain of the project. If this is not the case then in-
spections should not be done. A major challenge in this con-
text is to adequately measure inspection benefits and costs.

Figure 2 shows the relationships between the previously
discussed technical views on defect potential and the defect
detection process on one hand and the corresponding eco-
nomic notion of costs and benefits, which enable the eco-
nomic evaluation of inspection processes on the other hand.

The assessment of defect potential determines the docu-
ments to be inspected influencing the inspection costs mainly
through document size and importance. Furthermore it has an
impact on the selection of the inspection process as it pro-
vides information on target defects. The benefit from inspect-
ing a document with a large defect potential is the removal of
defects and a related information gain.

The inspection process is a major determinant of inspec-
tion costs through different efforts for defect detection tech-
niques and team sizes.

Inspection
Process DesignDefect Potential

CostBenefit

Def. Det.
Effort

Information
Gain

Size
Impact

Focus Def. Det.

Found
Defects

Figure 2: Framework overview and relationships.

A. Model Assumptions
For the following cost-benefit discussion certain assump-

tions are important in order to facilitate the presented con-
cepts:
- We discuss the inspection benefits and costs from the
viewpoint of the project manager responsible for the devel-
opment of the project.
- We assume that inspecting a document with an appropriate
focus is deterministic and yields the goals expected by the
project manager (we ignore uncertainty from inspection).
That means we view inspection as an investment possibility
with certain costs and certain future benefits. Of course, in
practice inspection uncertainty is a real problem, but its dis-
cussion exceeds the scope of this paper.
- We assume that the project manager has the power, ability,
and environment to remove any detected quality deficiencies
after inspection. That means, we ignore cases where the pro-
ject manager and his team are unable to complete a project.
- We assume that the project manager has limited resources
for inspection in the document. That means, he cannot simply

buy additional resources for additional inspections. We focus
on the case where the project manager has to optimally use a
limited amount of resources for quality management.

These assumptions simplify aspects of project reality to
enable us to describe our approach to cost-benefit analysis in
an understandable way. Of course, we know that they do not
represent the situation in practice. However, we think that
they adequately model reality for our purposes in this work.
Further work in this area must then relax the most stringent
assumptions and adjust the base model in an appropriate way.

B. Benefits of Inspection
The benefit framework models the potential benefits of in-

specting a working product during software development.
From a technical point of view, software inspections find
defects early, so they can be removed from the working
product, which reduces system entropy and the spreading of
defects to other working products.

Table 1 summarizes the main benefits associated with
software inspection of software development products. It
provides a short description and information on the required
context and the unit of measure. The required context deter-
mines additional information that must be available in order
to quantify the benefit. The unit of measures indicates how
the benefit is usually measured.

TABLE 1: SOFTWARE INSPECTION BENEFITS.

Name Description Required Con-
text Unit

Saved Rework
Early removal of
defects reduces
rework later on

Defect Classi-
fication Person Hours

Conditionally
Earned
Value

Conditional
assessment of
achieved value
level

Working prod-
uct prioritiza-
tion; set of
conditions

Percentage of
project value (in
monetary units)
completed.

Reduction of
Planning Un-

certainty

Variability of
uncertain project
variables is
reduced

Risk Frame-
work; System
Interdependen-
cies

Variability in
Percentage of
base project
variable.

In addition to the benefits mentioned in table 1 a fourth

category of benefits often enters discussion: Soft inspection
benefits, which denote potential benefits from improved
communication and teaching of system and domain informa-
tion in the development team. This benefit is hard to quan-
tify; further, if communication and teaching are important in
the project, they should be provided, but not necessarily as
part of an inspection. Thus we exclude soft issues from fur-
ther analysis.

In the following we are going to explain and discuss the
different benefits summarized in table 1 in more detail.

1) Saved Rework

The first, most obvious and often discussed benefit is
Saved Rework from the early removal of defects. We meas-
ure this benefit in working hours saved. A prerequisite for
calculating the saved rework is a defect classification that
determines the severity of a detected and removed defect.

In this context defect severity measures the amount of re-

work caused by a defect of a certain severity level, if it is not
removed early during inspection, but later on during the test-
ing phase or operation. Defect severity may vary with the
development phase in which the defect would have surfaced.
The number of defect severity classes should follow the ra-
tionale to use enough defects classes to allow expressing the
magnitude of impact they have on development, while
restricting the number of defect classes to a variety that can
readily be understood, used, and retained by an inspector
who has to classify defects.

The benefit differences between the defect severity levels
should be in a range that helps inspectors and managers to
consistently assign a defect to a severity level, e.g., benefits
of neighboring classes should differ at least by a factor of 2.

There are several approaches to determine the benefit for a
defect of a given severity class [4].
- The simplest approach is to assign each defect class a sin-
gle benefit value.
- Another approach is to assume for each class a probability
distribution of benefits. The expected benefit for a given de-
fect is determined from this benefit distribution.
- A more sophisticated approach includes estimates on the
benefit for several development phases, e.g., an early phase,
where the impact of a defect is rather low (e.g., in-house de-
sign). While in a later phase the impact is much higher, since
more rework is necessary and more people are involved (e.g.,
operation at the customer).

Continuing our example, the web-based legal information
project, suppose that an inspection was done and that all de-
fects detected during inspection were classified using a 2
level severity classification. Based on past project experience
or empirical studies the project manager assigns certain val-
ues of saved rework benefit to each severity level. Suppose
that finding a major defect saves on average 8 hours and
finding a minor defect saves on average 1 hour of rework [8].
In total 50 minor and 20 major defects were found during
inspection, yielding a total saved rework benefit of
50*1+20*8=210 person hours.

2) Conditionally Earned Value

In general, an important benefit of inspecting a document
is the associated information gain for the project manager.
However, this information gain is in some sense multidimen-
sional and therefore we define two different benefit factors to
deal with it.

The Conditionally Earned Value benefit factor covers the
information gain related to the quality of a specific, inspected
working product. Every working product adds a certain con-
tribution to the total value of the software product developed
for the client. The ideal case would be to inspect and fully
quality assure every working product. In this case the project
manager would have full information on the project status.
Assuming that he can take appropriate actions to remove any
quality deficiencies, he could successfully complete the pro-
ject.

In practice, however, projects have to deal with scarce re-
sources and therefore this value maximizing approach is not

realizable. A reasonable approach to deal with this problem is
to prioritize working products with respect to their potential
value for the total project. The most important artifacts can
then be inspected (see section II.A on defect potential for
details on the prioritization).

Each inspection of such an important working product
adds earned project value conditional on the defect potential
of:
- Other working products on the same development stage
and their influence on the inspected document.
- Working products in later development stages.

Before inspection the quality of a specific working product
can in general be only assessed based on general context in-
formation, e.g. the credibility and knowledge of the authors.
However, the project manager can usually not be sure
whether the product actually delivers its designated value or
not.

Now assume that in the case of the web-based legal infor-
mation system the project manager faces the following prob-
ability matrix with respect to final product value (see table
2). This matrix shows the different components of the prod-
uct and how much they add to the total client value (first col-
umn). From this you can see that the searching functionality
represents the most important system part. The first row
shows the three development stages where inspection could
be possibly done and how much of end value is created in
each phase. Now multiplying each row probability with the
appropriate column probability completes the matrix in table
2.

Each percentage value in the shaded area indicates the per-
centage of total value created in this situation conditional on
the assumption that everything else (on the same and later
development stages) works fine. However, if the project
manager does not verify the quality of a working product in a
specific situation he cannot be sure that the value in this
situation is really earned.

In our example the project manager has done an inspection
of the query engine specification and therefore the condition-
ally earned value is 28% of the total project value2.

TABLE 2: DISTRIBUTION OF FINAL PROJECT VALUE ON WORKING PRODUCTS.

System Part / Develop-
ment Process

Specification
(40%)

Design
(30%)

Implementation
(30%)

Graphical
Representation (5%) 2% 1.5% 1.5%

Viewing and
Printing (25%) 10% 7.5% 7.5%

Searching (70%) 28% 21% 21%

3) Reduction of Planning Uncertainty
The benefit from ‘Reduction of Planning Uncertainty’ or

‘Better Predictability’ represents another dimension of in-
formation gain for the project manager from inspection. Con-

2 Note that the above example is an extreme simplification of the deriva-

tion of the conditionally earned value. In further work we will focus on
applying a Bayesian probability framework to this problem in order to ap-
propriately measure the information gain due to inspecting a working prod-
uct. However, the simple example is sufficient to show the intuition behind
the concept of conditionally earned value.

trary to the previous benefit, it does not focus on the already
created conditional value but on the reduction of project risk,
which translates to project planning uncertainty. In practice
every project plan faces a large amount of uncertainty result-
ing in deviations from the envisioned project path. This un-
certainty usually involves cost, schedule, and quality plans.
The quality uncertainty is obviously reduced by inspecting
working products.

At project initiation the project manager can only rely on
past experience for an initial project plan. Figure 3 shows a
simplified illustration for the narrowing range of uncertainty
of a variable like effort or functionality (y-axis) over the
course of several project stages (x-axis). With each project
stage the probable range of the variable values diminishes
(see three possible paths) until the value in the end is fixed.

With appropriate information at an early stage of devel-
opment, see e.g. the three fat points at the requirements stage,
project control is relatively easy and flexible, while the fat
points on the three paths (without specific action from project
management) in later stages are much further apart (ellipses
get more spread out), and thus harder to change to a more
favorable path.

Project
Inception

Project
Requirements

Project
Design

Project
Implementation

Project
FInish

Estimate
Range

Maximum

Minimum

3 Possible
Outcomes

Figure 3: Information Gain for Project Planning.

Thus one benefit of inspecting a working product is a re-
sulting reduction of variability of project variables, e.g. cost,
schedule and quality plans.

A risk framework including system interdependencies and
relationships represents the required context for this benefit.
In this sense inspections represent a way of risk reduction
and monitoring providing the project manager with informa-
tion to get project estimates closer to the true value at an ear-
lier time than without inspection.

Suppose that the project manager of the web-based legal
information system considers a project cost variability of
20% of the expected total costs. After the inspection of the
query engine specification he can compare the costs for cre-
ating the product with his estimated costs. Furthermore he
can consider the working product’s quality and the necessary
effort to fix all detected defects. The project manager can use
this information to adjust his project plans and to reduce
variability. Suppose that the query engine specification took

5% more effort than planned and that after inspection there is
another 10% of originally planned effort required to remove
all defects. Based on this information, the project manager
can assess that his original project cost estimates were too
optimistic because it was not possible to create a working
product with the required quality in the planned time. Based
on this conclusion he can increase the expected total costs for
the project and remove some uncertainty because he knows
at least that the project will most probably not end in the
lower cost range.

C. Costs of Inspection
In the previous section we presented various benefits asso-

ciated to software inspection and also discussed that project
managers must calculate and monitor project costs. Therefore
for actually deciding whether and how to inspect, inspection
cost factors must be taken into consideration as well.

As far as inspection costs are concerned, we basically dis-
tinguish direct and indirect costs [4]. While direct costs are
directly related to the inspection process (e.g. inspection
preparation, inspection meeting), indirect costs are only
causally related to inspection but cannot be directly attributed
to the software inspection process (e.g. project delay, slower
project progress).

The determination and quantification of indirect costs is in
general very difficult and depends on various project and
company variables, e.g. software development process
model, project pressure, project-planning approach. There-
fore we suggest using a qualitative model in order to consider
them.

The direct costs are in most cases variable costs, meaning
that they change from inspection run to inspection run. We
measure direct costs in person hours, which in our opinion is
the relevant and appropriate unit. In practice person hours
can simply be transformed into monetary units by consider-
ing the appropriate wage costs attributed to involved employ-
ees.

In general, the variable direct costs depend on the com-
plexity and quality of the inspected document (i.e. how many
defects are there to be found with which effort) and the de-
fect detection process (i.e. how do inspectors detect defects).
It is important not to forget the cost factor of removing de-
fects detected during inspection.

As outlined in the section on inspection process design, the
project manager of the web-based legal information system
has chosen to allow 4 inspectors to inspect for two days. Now
assume that these developers were only inspecting in these
two days, then the direct costs of defect detection are 4 (team
size)*8 (hours per day)*2 (number of days) = 64 person
hours. Then we have to add costs for removing the defects
(remember that we assumed 50 minor and 20 major defects)
where we expect to need 5 hours for a major defect and 0.5
hours for a minor defect (this totals 50*0.5 + 20*5 = 125
person hours). Finally we add 21 person hours for inspection
planning, management and evaluation. Therefore the total
direct inspection costs are 210 person hours. In this simple
example we ignore indirect costs.

D. Cost-Benefit Evaluation Approaches
In the previous sections we discussed benefits and costs of

software inspection. This section presents a framework for
combining benefits and costs to evaluate inspection from an
economic point of view. Of course, software inspection can
follow different goals like to cover a particular defect poten-
tial (document coverage), or to find as many defects as pos-
sible or to optimize inspection net gain. However each of
these goals only considers a subset of available inspection
benefits. Therefore we want to present a comprehensive
framework that integrates all benefit and cost aspects. The
challenge in this context is to relate the different benefit and
cost factors to each other.

Our approach is to define the project utility, i.e. the utility
of the project manager or the software developing company,
respectively. This utility function must fulfill the following
requirements in order to be a rational utility function:
- Monotonically increasing with the product value for the
client: ensuring that the developed product satisfies client
needs increases the project utility.
- Monotonically decreasing with rising project risk: If the
project suffers from large potential risk, the project man-
ager’s risk is reduced.
- Monotonically decreasing with rising project costs: obvi-
ously the project utility is reduced by project costs.

Table 3 summarizes the variables required to derive an ex-
emplary project utility function, which is denominated in
monetary units (i.e. all variables are denominated in mone-
tary units).

TABLE 3: VARIABLES OF COST-BENEFIT EVALUATION APPROACH
Variable Description

U Project Utility
p Conditionally Earned Value in percent of the total value

TV Fair price determined with the client for the Total Value
TC Total Estimated Project Costs (including total inspection costs)
SR Saved Rework in monetary units
k Risk Based Discount Rate

Based on the assumptions presented in section III.A, we

propose the following utility function, as it satisfies the above
requirements for the project utility and can be interpreted as a
Net-Present-Value-oriented approach [7]. Note, that for equa-
tion 1, the most important assumption is that the inspection
process quality is known a priori, meaning that we exclude
any uncertainty from the inspection process.

TC
k

SRTVpU −
+

+⋅=
1

 (eqn. 1)

The numerator of this utility function describes the condi-

tionally earned project gain, i.e. project benefit minus project
costs, in monetary units based on the current project status.
The project benefits are the conditionally earned value and
the saved rework appropriately transformed into monetary
units in the project context. The project costs are the ex-
pected total project costs including inspection costs.

In order to measure the benefits and costs of project uncer-

tainty we define the variable k, which represents a risk-
adjusted discount rate in the range of 0% to 100%. If there is
no uncertainty in the project then k has a value of 0%, if there
is much uncertainty k has a value of 100% (basically it would
be possible to allow for unlimited k). As the project benefits
are conditional on further development and are going to be
realized in the future, it is appropriate to discount them (i.e.
divide them by 1+k). Harrison et al. [10] present a similar
way to quantify the benefit of better project predictability due
to process improvement. They argue that the discount factor
k can be motivated from the capital asset pricing model
(CAPM). We follow this approach, as the general idea of
discounting uncertain future benefits is reasonable, however,
we doubt in our context the simple applicability of concepts
like the CAPM, which are well-established in finance, and
therefore prefer to base our evaluation approach on utility
theory.

This project utility is defined in terms of economic vari-
ables. However, the technical aspects of software inspection,
i.e. defect potential of working products and different inspec-
tion designs, are all appropriately taken into consideration.
Variable p covers the inspected document’s defect potential,
variable SR depends on the inspected document’s defect den-
sity and variable TC is influenced by the inspection process
design. The following simple example shows how the results
from previous sections are combined and used to derive the
project utility.

Consider the web-based legal information system as an ex-
ample. In order to evaluate the benefit of inspection we com-
pare the situation with and without inspection to each other.
Suppose that before doing the software inspection the project
manager faces the following project variables: we normalized
the total project value and expected total project cost without
inspection equal to 1 (TV=TC=1); the risk-adjusted discount
rate equals 20% based on the experience and expertise of the
project team. Furthermore we need an a priori probability for
the earned value after the requirements phase, which we set
equal to 20%. Then the project utility is [(0.20*1)/1.20-1],
which is equal to –0.83.

If we now consider the situation with inspection then the
following variables change: the total project costs are in-
creased by 210 person hours; the saved rework benefit also
amounts to 210 person hours; the conditionally earned value
probability equals 28% and the risk-adjusted discount rate is
reduced to 15%. Note, that we further assume that the bene-
fits from saved rework and the inspection costs offset. There-
fore the project utility with inspection is as follows:
[(0.28*1)/1.15-1]= –0.75.

In both situations the utility is negative which is quite un-
derstandable as the conditionally earned benefit is rather low
after the requirements stage. However, the project utility with
inspection is higher than the utility without inspection. That
is the case even though the saved rework benefits and the
inspection costs just offset, which is a rather conservative
example. See for example the report based of an empirical
study [4], where saved rework on average more than offset
inspection costs even with conservative benefit assumptions.

Before we conclude our cost-benefit evaluation, it is im-
portant to point out that the presented utility function is just
one possibility and a very important aspect of further work in
this area is to establish a well-founded utility theory for
stakeholders participating in the software development proc-
ess. Therefore we view this framework as a first approxima-
tion for a functional relationship that can be used in the fu-
ture for optimization and decision-making. Basically it offers
the possibility to either maximize project utility with respect
to product value or with respect to risk reduction.

IV. SUMMARY AND FURTHER WORK
In this paper we introduced a framework to evaluate the

cost-benefit of an inspection process, which is based on the
value of a software system and its parts, for more rational
approaches to inspection planning. The approach presented is
not operational in the sense that it does not provide practical
guidelines on how to optimize inspections. The main contri-
bution of this analysis to inspection research is that it pre-
sents a simplified but in our opinion illustrative model of
inspection benefits and costs that allows for qualitative
evaluation of inspection processes.

We assume that a rational project plan contains a value
chain, which links the level of value of the final product to
the fitness of working products, for planning inspection ac-
tivities. Following this value chain an inspection tackles the
risk of a lower level of value from defects in the working
product from two sides: Inspection lowers the frequency of
risk with removal of defects and the size of potential loss
through a focus on defects with high impact on the value
chain.

Thus it is important to focus inspection activities on work-
ing products and potential defects, which a) would have seri-
ous impact on the level of value of the target system, if they
go undetected; and b) would be much more costly to remove
later during development.

This paper discussed costs and benefits, namely saved re-
work, conditionally earned value, and reduction of planning
uncertainty, to evaluate the cost-benefit of an inspection
process with a project example.

The concept of the ‘conditionally earned value’ of a work-
ing product to support a certain level of value is helpful to
determine the value of inspecting a good-quality product,
where only little benefit can come from finding defects. The
concept is by itself interesting as it expresses a paradigm shift
from finding defects to showing value of a working product
in the value chain with explicit consideration of benefits of a
system under development and not only defect count. This
positive view is well-suited to motivate developers to ac-
tively take part in quality assurance.

The approaches presented in this paper, the value chain
and the economic framework for inspection, provide added
value from inspection for project managers and developers as
they help to make inspection better planable in the project
context and support project control.

Using this rather complex model compared to “simple”
guesses enables more accurate evaluation of inspection runs.

Actually, simple evaluation estimates can only be based on
defects reported and effort spent during inspection, i.e. meas-
ures that are easily observed after inspection. However, these
simple evaluation measures do not adequately describe in-
spection benefits and ignore less obvious but most important
benefits, like conditionally added value and improved pre-
dictability. In order to further motivate application of inspec-
tions in practice we think that it is important to qualitatively
assess the different dimensions of inspection costs and bene-
fits. Of course, usage of our model in practice suffers from
problems of estimating certain model parameters for the
value chain and the project predictability. However, expert
opinion, historic data, company standards or Monte Carlo
simulation of parameter values can be used to estimate these
parameters.

Therefore further work in this direction will focus on pro-
viding practical approaches to estimate model parameters and
to develop models to optimize inspection process planning.
There are two main questions the project manager has to de-
cide for inspection planning:
- Which working products should be inspected at what point
during development? How much inspection is enough for
these working products?
- Which inspection approach is likely to be most effective in
the particular development situation?

Next steps are to conduct empirical investigations on in-
spection which consider project context of inspection as well
as assumptions on spreading of defects and increase of re-
work effort under ‘usual’ development conditions and the
effectiveness range of inspection designs in a range of given
circumstances.

Based on empirical data from these investigations as well
as expert opinion, historical data, and assessments from simi-
lar local projects (related work, experiments in literature,
industry information from literature) a long-term goal can be
to provide models for the simulation of inspection in order to
determine important factors for inspection effectiveness for
given context parameters.

ACKNOWLEDGEMENTS
Michael Halling has been supported by the Austrian Sci-

ence Fund, Grant P-14128-COSIMIS. Stefan Biffl has been
supported in part under the Austrian Science Fund, Grant J-
1948-INF.

REFERENCES
[1] Basili V., Green S., Laitenberger O., Lanubile F., Shull

F., Soerumgaard S., and Zelkowitz M., “The Empirical
Investigation of Perspective-Based Reading”, Empirical
Software Engineering: An International Journal, vol. 1,
no. 2, 1996, pp. 133-164.

[2] Biffl St. and Gutjahr W., “Influence of Team Size and
Defect Detection Methods on Inspection Effectiveness”,
Proc. of IEEE Int. Software Metrics Symposium, Lon-
don, April 2001.

[3] Biffl St., “Hierarchical Economic Planning of the
Inspection Process”, Proc. of the 3rd Int. Workshop on

Economics-Driven Software Engineering Research
(EDSER-3) at the Int. Conf. on Software Engineering,
Toronto, Canada, Comp. Soc. Press, May 2001.

[4] Biffl St., Freimut B., and Laitenberger O., “Investigating
the Cost-Effectiveness of Reinspections in Software De-
velopment”, Proc. of Int. Conf. on Software Engineer-
ing, Toronto, Canada, Comp. Soc. Press, May 2001.

[5] Boehm B., Grünbacher P., and Briggs R., “Developing
Groupware for Requirements Negotiation”, IEEE Soft-
ware May/June 2001, p. 46-55.

[6] Boehm B. and Port D., “Risk-Based Strategic Software
Design: How Much COTS Evaluation is Enough?”,
Proc. of the 3rd Int. Workshop on Economics-Driven
Software Engineering Research (EDSER-3) at the Int.
Conf. on Software Engineering, Toronto, Canada, Comp.
Soc. Press, May 2001.

[7] Brealey R. and Myers S., “Principles of Corporate Fi-
nance”, 5th Edition, McGraw-Hill, 1996.

[8] Gilb T. and Graham D., “Software Inspection”, Addi-
son-Wesley, 1993.

[9] Halling M. and Biffl St., (2001) „Using Reading Tech-
niques to Focus Inspection Performance”, Proc. Euromi-
cro 2001 Workshop on Software Product and Process
Improvement, Warsaw, IEEE Comp. Soc. Press, Sept.
2001.

[10] Harrison W., Settle J., and Raffo D., “Assessing the
Value of Improved Predictability Due to Process Im-
provements”, Proc. of the 3rd Int. Workshop on Econom-
ics-Driven Software Engineering Research (EDSER-3)
at the Int. Conf. on Software Engineering, Toronto, Can-
ada, Comp. Soc. Press, May 2001.

[11] Kontio J., “The Riskit Method for Software Risk Man-
agement, Version 1.00”, Tech. Rep. CS-TR-3782, Dept.
of Comp. Sci., University of Maryland, College Park,
MD, 1997.

[12] Laitenberger O., “Cost-effective Detection of Software
Defects through Perspective-based Inspections. PhD
thesis”, University of Kaiserslautern, Germany,
www.iese.fhg.de, May 2000.

