

Abstract-- This paper describes a series of three empirical studies
devoted to the development of a rigorous approach for effective
inspections of object-oriented (OO) code. Since the time that
inspections were developed they have been shown to be powerful
defect detection strategies. However, littl e research has been done to
investigate their application to OO systems, which have very different
structural and execution models compared to procedural systems.
This suggests that inspection techniques may not be currently being
deployed to their best effect in the context of large-scale OO systems.
The studies reveal three significant issues that need to be addressed -
the identification of chunks of code to be inspected, the order in
which the code is read, and the resolution of frequent non local
references. The sequence of experiments builds up a complement of
three techniques: one based on a checklist, one focussed on
constructing abstract specifications, and the last centred on the route
that a use-case takes through a system. It is demonstrated that the
checklist is the most effective approach but that the other techniques
also have strengths and so for the best results in a practical situation a
combination of techniques is recommended.

Index Terms--Object-Oriented, Code Inspection, Code Review,
Empirical Methods.

1 INTRODUCTION

INCE their inception over twenty-five years ago,
inspections have become established as an effective and

eff icient means of detecting defects. This has been determined
by a number of controlled experiments and a wealth of
industrial case studies, and from their beginnings as code-
based techniques, inspections are now applied to a wide range
of document types from requirements and designs through to
test plans. Over the years both the application of the technique
and its supporting materials have been refined and honed and
there is active interest in continually developing the concept.
In spite of their broad application, there is a significant lack of
information indicating how inspections should be applied to
object-oriented (OO) code. Inspections were developed when
the procedural programming paradigm was dominant, but the
last ten years have seen the OO paradigm growing in influence
and use - particularly since the introduction of C++ and Java.

This lack of guidance on how to apply inspections to OO
code is disturbing. Object-oriented and procedural languages
are different (admittedly, some more different than others), not
only in their syntax but in a number of more profound ways -
the encapsulation of data and associated functionality, the
common use of inheritance, and the concepts of polymorphism

• All authors are with the Department of Computer Science, University of
Strathclyde, Livingstone Tower, Glasgow G1 1XH, Scotland, UK.
E-mail: { apd, marc, murray} @cs.strath.ac.uk

and dynamic binding - to name but a few. These factors
influence the way that modules (classes) are created in OO
systems, which in turn influences the way that OO systems are
structured and execute. Failure to adapt to this paradigm may
inhibit the effective application of inspections to large-scale
OO systems. Not only does the inspection technique need to
adapt to accommodate the OO paradigm, but the wider process
needs to be modified as the criteria for choosing "chunks" of
material to be inspected must also change.

This paper reports the results of a long-term empirical
investigation into the development of a strategy for OO code
inspection. The study is based around three controlled
experiments that have served to build up a rigorous OO code
inspection technique. The first experiment focussed on raising
potential problems and issues with OO inspections and
identified the characteristics of "hard to find" defects. From
this experiment, three significant issues were identified that are
arguably crucial in order to make OO inspections practical for
large-scale systems. These were: chunking (the mechanisms
whereby a piece of code is selected for inspection), reading
strategy (the order in which the code is read), and
delocalisation (how inspections address the frequent references
that OO code makes to parts of the system that are not part of
the current inspection focus). As a result of this, a systematic
abstraction-driven inspection technique was developed and
evaluated with the second experiment. The results from this in
turn lead to the development and empirical evaluation of two
further techniques - one based on a checklist and the other
based on use-cases - along with a refinement of the first
systematic strategy, and it is the work carried out for the most
recent evaluation that constitutes the majority of this paper.
The rest of this paper consists of brief summaries of the first
two studies (full details can be found in [3, 4]) followed by an
analysis of the most recent study.

2 EMPIRICAL STUDIES

All three studies took place in a University environment
using 3rd year honours Computer Science students who had at
least two years programming experience (primarily Java in the
second and third studies, and a mixture of Java and C++ in the
first study). The inspectors all had brief prior experience of
requirements inspection but not code inspection. The focus of
all three studies was individual code inspection (although the
third study did involve a group element as well) and all
involved inspecting Java code at rate comparable to published
industrial rates (~100 lines of code per hour in a 1.5-2.0 hr

Practical Code Inspection for Object-
Oriented Systems

Alastair Dunsmore, Marc Roper, and Murray Wood

S

session). Lectures and training in the techniques being
evaluated were provided.

A threat to the validity of the studies exists concerning
subjects used (3rd year computer science students) as they may
not be representative of the general software engineering
population (as they lack experience and maturity). This aspect
was limited due to available resources.

2.1 Study 1

This first study involved 47 subjects using an ad-hoc
inspection technique and was intended as an initial information
gathering exercise into the issues related to inspecting OO
code. The aim of the first study was to investigate the
characteristics of defects that inspectors found diff icult to
detect. The defects were a mixture of naturally occurring and
seeded based on information gathered from the literature. For
each defect a series of characteristic keywords was compiled
reflecting key features associated with the defect. Table 1
shows the defects, ordered by their discovery rate, together
with their keyword characteristics (column 1).

During analysis of this information it was discovered that
many of defects had characteristics that required some aspect
of understanding outside the class under inspection to fully
comprehend the defect (those with asterisks under their
number in the top row). We termed this characteristic
‘delocalisation’ after Soloway’s description of delocalised

plans in program comprehension [9] - “… code for one
conceptualised plan is distributed non-contiguously in a
program” . Soloway suggests that such ‘plans’ are diff icult to
understand because only fragments are seen at a time and the
reader has to make guesses based on what is locally apparent.

In Table 1 the characteristics judged to be associated with
delocalisation appear in the top six rows plus locality ‘class’ or
‘system’. Notice how these characteristics cluster to the right
of the table – the harder to find defects.

On consideration it becomes apparent that this
delocalisation is a fundamental characteristic OO code. Key
features of OO code – inheritance, dynamic binding,
polymorphism, small methods and class libraries – distribute
closely related information throughout the code. This can
mean that the information required to understand one line of
code, a method, or even a class is not wholly contained within
the code under inspection, but is spread through other
methods, classes, systems or libraries. (It should be noted that
this problem may exist to a lesser extent in modularised
procedural code).

A review of related literature, particularly the maintenance
literature, revealed that a number of authors had already
identified this feature of OO code (but not in an inspection
context). Furthermore, a small -scale survey of professionals
who had inspected OO code provided supporting evidence for
this finding, from a larger-scale, industrial perspective [2].

To ill ustrate the concept of delocalised information consider
the isRegistered method in Figure 1. When reading the
method, the inspector needs to be aware of the delocalisation
that exists within it. In this example, some of the delocalisation
issues are:

• Uses Vector method elementAt(int) – what does
this do and what type does it return?

8A
*

9A 1A 7B
*

5A 1B 4B 8B 2B 5B 6B
*

3A 4A
*

7A
*

9B
*

3B 6A
*

2A 10A
*

10B
*

Use of class library x x x x
Inheritance/
implementation

x x

Wrong message x x x x
Diagram mismatch x x x x
Wrong object x
Override x x
Data flow Error x x x x x x
Instance variable misuse x x x
Locali ty (m, c, s) s m m s s m s m m m m m s s s m s c s s
Domain Knowledge x x
Method size (s, m, l) - m s s m l m s l m m l m m - m - l m m
Algorithm/computation x x x x x x x
Omission x x x x
Commission x x x x x x x x x x x x x x x x
% Discovered 100 100 94 91 89 87 87 83 74 74 74 67 50 50 48 48 42 33 0 0

Notes:

Defects ordered from left, starting with easiest to find
Locality – method (m), class (c), system (s)
Method size – 0-4 (s), 5-10 (m), 11+ (l)

Table 1 – Defects (columns) described by their features

public boolean isRegistered(String e)
{
 boolean found = false;
 for (int i=0; i< theUsers.size() & !found; i++)
 if ((((Person)theUsers.elementAt(i)).getEmail()).equals(e))
 found = false;
 return found;
}

Figure 1 - Java code for isRegistered method

• Uses Person method getEmail() – what does this
do and what type does it return?

• Uses method equals(String) associated with result
of Person.getEmail(). Is this defined or is it
inherited from Object?

This situation is by no means unusual, as OO programming
is based around such message passing and the use of other
classes and class libraries.

This study suggested that for inspections to be practical and
effective for large-scale OO systems, OO code techniques and
aids need to be developed that specifically address
delocalisation. In particular the following issues must
addressed:

(1) Chunking - The many dependencies and links between
classes make it very diff icult to isolate even one or two
classes for inspection, and delocalisation complicates
this further. How you partition the code for inspection
defines what an inspector gets to inspect. It may be that
partitioning is not restricted to units of compilation (e.g.
classes), but may be carried out in an orthogonal
manner, e.g. using slicing. Two issues in this respect
need to be addressed: (1) the identification of suitable
chunks of code to inspect, and (2) decide how to break
the chunk free of the rest of the system, minimising the
number of dependencies and the amount of
delocalisation.

(2) Reading Strategy - How should OO code be read,
especially if systematically reading and understanding
all the code and its dependencies is impractical? Is
there a reading strategy that could help inspectors deal
with delocalisation? Can checklists or Perspective-
Based Reading Techniques (PBR) [1] be modified to
address delocalisation or are new reading strategies
required?

(3) Localising the delocalisation - A way has to be found to
effectively abstract the delocalised information for the
inspector, providing the benefits of systematic reading
without the unrealistic requirement that everything is
read.

2.2 Study 2

The second study involved 64 subjects and followed up on
the findings of the first study by exploring a code reading
technique that was specifically developed to address the issues
of delocalisation and reading strategy. The basic idea for the
technique came from that of Stepwise Abstraction [8]. The
following describes the basic approach for the technique:

• Interdependencies (couplings) within the whole system
are analysed and those classes with least dependencies
are inspected first.

• Methods within classes are analysed and those methods
with least dependencies are inspected first.

• Classes and methods are inspected using an abstraction
driven reading strategy. This involves reverse

engineering an abstract specification for each method.
This abstract specification may then be used both to
support comparisons with the class specification, and also
to support inspections which make subsequent reference
to a previously inspected method.

• During inspection any references to external classes must
be traced and understood. This may involve reading
other methods, documentation, or previously created
abstractions. This understanding is necessary to correctly
specify each method.

• As the inspection of the overall system proceeds, more
and more of the classes will already have abstract
specifications. This should limit the need to spend time
understanding other classes during future inspections.

To develop the abstract specification, a deep understanding
of each method is required. All aspects of the method should
be systematically read and understood. All li nks to other
classes should be understood. Development of this deep
understanding may help create ‘ the big picture’ and reveal
more of the hard to find defects.

The abstract specification for each method should identify
any changes of state and outputs in terms of inputs and prior
state. The specification should be:

• brief (as short as possible while capturing all aspects of
the method)

• declarative (describe what the method does, not how it
does it) and

• complete (cover all aspects of method’s functionality
including that derived from references to other classes).

This second experiment compared the defect detecting
capabilit y of the systematic abstraction-based approach with a
basic ad-hoc approach. Care was taken to seed an equal
mixture of delocalised and non-delocalised defects. The main
finding was that there was no significant difference between
the systematic technique and the ad-hoc technique in terms of
the average number of defects discovered, although there was
a small improvement using the systematic approach. Using
data gathered on the process followed by inspectors in reading
the code it seems that ad-hoc inspectors performed two or
three passes of the code building up their understanding
whereas the systematic inspectors performed only one, or at
most two, slower passes through the code.

Further analysis did uncover some potential benefits of the
systematic approach:

a) Some defects remained completely undetected by any
inspector using the ad-hoc technique, but this was not the
case for the systematic approach. Although no group
component (collation of defects) was carried out, the fact
that the systematic technique found all defects might
suggest that the group component would be more
successful.

b) The systematic approach produced abstractions for every
method as a by-product of the approach. It is intended

that these abstract specifications can be used in future
inspections to save the inspector, or other inspectors, the
effort of reading the class or method again when another
class makes a delocalised reference to that class.

c) There was anecdotal evidence from the subjects’
questionnaires that the task of creating abstract
specifications encouraged a greater understanding of the
code under inspection.

d) The systematic approach provides an ordering for the
reading strategy to deal with the delocalised, distributed
nature of OO software. Again the questionnaire data
suggested that inspectors appreciated the rigour imposed
by this ordering. Without such an ordering it is possible
that inspectors may ‘wander off’ into the rest of the
system chasing a thorough understanding but, without
great care, there is a danger that they may lose their train
of thought.

Finally, in this second study, there was further evidence that
the delocalised defects were more diff icult to discover than the
localised defects.

One potential weakness of the systematic strategy (or any
sequential reading strategy) may be that it is based on a static
view of the code. Specifically, the inspectors are encouraged
to read the code in a linear order (where that order is such that,
as far as possible, dependencies are read before they are used).
However the dynamic view of OO code is quite different from
the static view. As Gamma et al. [5] state “ In fact, the two
structures [run-time and compile-time] are largely
independent. Trying to understand one from the other is like
trying to understand the dynamism of living ecosystems from
the static taxonomy of plants and animals, and vice-versa.”

These findings suggest that the systematic approach offers
a number of benefits: a rigorous reading strategy, potential to
help address delocalisation through abstract specifications,
potential to encourage deeper understanding and to discover
different defects from an ad-hoc approach. On the other hand
the systematic approach doesn’ t seem to address adequately
the highly dynamic nature of OO software and was found to be
more time consuming.

The main findings from these first two studies were that
delocalisation and the difference between the static and the
dynamic views seem very real problems for the practical
application of software inspection to industrial-strength, OO
code.

2.3 Study 3

Following on from the second study, the third focused on a
selection of reading techniques for OO code - systematic,
checklist, and a use-case based reading technique. What
follows are brief descriptions of each of these reading
techniques, followed by the results of an experiment to
evaluate the techniques.

2.3.1 Systematic

The systematic, abstraction driven technique used in the
second study was re-used with some alterations, based upon
feedback and observations. Instructions given to the
inspectors were made clearer and more specific. Inspectors
were also given more experience of the technique (via more
training and examples). The information that inspectors had to
write on their abstraction sheets was reduced (helping to speed
up the process).

For each class:
Feature Question

1 Inheritance Is all i nheritance required by the design implemented in the class?
2 Is the inheritance appropriate?
3 Class Constructor Are all i nstance variables initialised with meaningful values?
4 If a call to super is required in the constructor, is it present?

 For each method:
5 Data Referencing Are all parameters used within a method?

…

14 Method Behaviour Are all assignments and state changes made correctly?
15 For each return statement, is the value returned and its type correct?
16 Does the method match the specification?

For each class:
17 Method Overr iding If inherited methods need to behave differently, are they overridden?
18 Are all uses of method overriding correct?

Table 2 - Par t of the Checklist

2.3.2 Checklist

Checklists are a straightforward and commonly used
technique to help with individual code inspection. Checklists
are based upon a series of specific questions that are intended
to focus the inspector’s attention towards common sources of
defects. The questions in a checklist are there to guide the
inspector through the document under inspection and should
be phrased in such a way that if the answer is No, then a
potential defect has been discovered. The checklist should be
based on historical data [6, 7] and should not be a general
checklist obtained from elsewhere as they can lose their
relevance.

The checklist was developed from the experience gained in
the two previous studies. It takes into account the structure of
OO code and is ordered in such a way that supports inspectors
in building up a thorough understanding of the code. The
questions in the checklist are grouped into three sections:

1. Class - this section is concerned with inheritance and
constructor issues.

2. Method - the middle section deals with issues
surrounding methods, e.g. data referencing, object
messaging and referencing, selection and iteration, and
method behaviour.

3. Class - the final section deals with issues surrounding
method overriding – these final class questions appear
at the end of the checklist since the answers should be
easier to find with an understanding of all the methods
in the class.

Part of the final checklist can be seen in Table 2. The
following describes the basic approach for the checklist
technique:

• Interdependencies (coupling) within the code under
inspection are analysed and those classes with least
dependencies are inspected first.

• The checklist contains two components – one highlights
possible features of the code to concentrate on, the other

provides questions to help identify defects for that
feature.

Inspectors were told to begin by first applying the questions
in the first class section of the checklist. Once completed,
inspectors should move on to applying all the questions in the
method section of the checklist to all the methods in the class,
including constructors. Finally, once all methods in the class
have been inspected, the questions in the second class section
at the bottom of the checklist should be applied. This process
is repeated for each class under inspection.

2.3.3 Use-case

The use-case reading technique attempts to address the
dynamic nature of OO systems. The aim of the technique is to
check that each object is capable of responding correctly to all
the possible ways in which it might be used. Is it a good citizen
of the system? More precisely, with respect to the use cases in
which the object participates, to verify that:

- the correct methods are being called
- the decisions and state changes made within each

method are correct and consistent

The basic approach is to devise a number of scenarios from
the use-case and examine how the class under inspection deals
with these scenarios. Defects are discovered by noticing
missing/incorrect methods, erroneous state changes etc. The
principle behind the technique is that it forces the inspector to
consider the context in which an object is used. This is in
contrast to both the systematic and checklist approaches that
consider a class in a more general context. The technique is
intended to be complementary to other reading approaches, as
it is likely that some parts of a class will not be checked
(because they are not involved in that particular use-case).

To apply the technique, inspectors take each use-case in turn
and devise a series of brief scenarios based on the
preconditions, success and failure conditions, and the
exceptions found in the use-case. A sequence diagram is used
to guide them through the interactions that scenarios have with

Pr imary Actor : Customer
Goal: Cancel seat booking previously made.
Preconditions: Person has already booked seat(s) and flight must leave tomorrow at the

earliest.
Success Condition: Seat booking is successfully cancelled and 50% refund on cost is made.
Failure Condition: -
Tr igger: Customer asks to cancel booking.
Notes: Information returned to operator (credit card no. and amount to refund) and is

dealt with off- line.
Exceptions: Booking could not be found or flight date is earlier than tomorrow.
Steps: 1. Get booking reference(s) to be cancelled from customer

2. Cancel bookings
3. Make 50% refunds

Table 3 - Use-case for Cancel Booking

the code under inspection. This requires that inspectors
become famili ar with the code under inspection, identify the
state of the system that would cause this particular scenario to
occur, identify the expected change of state and outputs from
the class(es) under inspection as a result of the scenario, and to
follow the scenario through the sequence diagram by tracing
the message calls between objects.

If a class under inspection is encountered, inspectors verify
that the expected methods are being called to support the
scenario. When a method in the class under inspection is
called any decisions and state changes that are made are
verified to check that they are correct and consistent with
respect to the scenario. While doing this, notes are made

concerning any state changes and outputs. While inspecting a
method, any method calls that are made are followed to verify
that the correct ones are being called. If the method called is
in the class under inspection, the call i s followed and the
method read, otherwise the inspector returns to following the
sequence diagram.

Once through the scenario the final and predicated
state/outputs are compared. If a difference exists between the
two, then locate the source of the inconsistency and highlight
as a candidate defect.

The following brief example highlights some of the
concepts involved. Given the use-case shown in Table 3, the
possible scenarios are:

Inspection Technique
Checklist Systematic Use-case

Number of subjects 23 23 23
Defects (out of 14): Mean 7.3043 6.1739 5.7391

Std. Deviation 2.4943 2.2290 2.3973
Std. Error .5201 .4648 .4999
Minimum 2 3 2
Maximum 11 10 10

False Positives: Mean 3.4348 3.2174 2.8696
Std. Deviation 2.6939 2.8116 1.9841

Std. Error .5617 .5863 .4137
Minimum 0 0 0
Maximum 12 10 7

Inspection Time: Mean 72.1739 77.0000 81.9130
Std. Deviation 12.9568 9.7933 9.2830

Table 4 – Summary of experiment results for Study 3

Figure 2 – Sequence diagram for Cancel Booking Use-case

1. Seat booking successfully cancelled
2. No such booking held in the system
3. Flight has departed or departs today

The class being inspected is the PlaneCalender class.
Looking at the sequence diagram in Figure 2, the only method
called in the class under inspection is
isEarlierThanTomorrow().

The anticipated state changes or outputs in relation to the
developed scenarios are then noted:

1. No state changes, method should return false
2. No interaction expected
3. No state changes, method should return true

Finally, the code has to be inspected to verify whether the
actual outcomes/state changes match those anticipated.

2.3.4 Results of Study 3

The third experiment compared the defect detection
capabilit y of the three reading techniques. Just over half of the
defects seeded in the code (eight out of fourteen) were
delocalised in nature. Table 4 presents a summary of the
results from the third study.

Figure 3 shows the defect detection rates for each of the
three reading techniques. Inspectors using the checklist
technique appear to find more defects and at a quicker rate,
although performance levels drop off sharply after the first 60
minutes. The defect detection rates of the systematic and use-
case inspectors appear to be fairly similar to each other, with
systematic inspectors’ performance levelli ng off towards the
end of the 90 minutes. Use-case inspectors performance
appears to be levelli ng off , but not to the same degree.

It would be expected that systematic inspectors would not
have the quick detection rate of checklist inspectors since, as
part of their technique, they are encouraged to fully understand
the code and have to generate as a result of their understanding
method abstractions, which can take time. Similarly, use-case
inspectors have to generate scenarios from a use-case, and then
using sequence diagrams, inspect the code (in a different order
to other techniques).

Time (in minutes)

9080706050403020100

A
ve

ra
ge

 n
um

be
r

of
 d

ef
ec

ts
 fo

un
d

8

7

6

5

4

3

2

1

0

Checkli st

Systematic

Use-Case

Figure 3 – Defect response rates

Comparison of Techniques

0
10
20
30
40
50
60
70
80
90

100

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

Defect

P
er

ce
n

ta
g

e
re

sp
o

n
se

Checklist Systematic Use-case

Figure 4 – All response rates for each defect

 Delocalised defects

For 3 techniques
Chi-Square 4.871
Df 2
Asymp. Sig. 0.088

Table 5 – Results of Kruskal-Walli s test

Due to the nature of the results it was not possible to apply
parametric statistical tests, instead the Kruskal-Walli s test was
used to determine whether the defect results for the three
techniques were significantly different. The results generated
by the software package SPSS are in Table 5. For 2 degrees of
freedom, a chi-square result of 4.871 was generated. This
results in a significant result at the 10% level (chi-square result
> 4.6), but not at the 5% level (chi-square result would have to
be > 5.99). There is a significant difference between the
defect detection capabilit y of the three reading techniques, but
only at the 10% level of significance.

Further statistical tests showed that there was no significant
difference between the three reading techniques in the number
of false positives generated by inspectors.

Figure 4 shows the comparative effectiveness in defect
detection for each of the three reading techniques. Those
defect numbers along the bottom surrounded by a box are
defects with delocalised characteristics. The checklist
technique consistently appears to perform well . It should be
noted that one defect (defect 10) was not found by any
inspectors using any of the reading techniques. It was also
noticed that defects involving some form of omission appear
diff icult to find (defects 6, 13 and 14). All the reading
techniques have strong points, and there is not one dominant
technique. This suggests a complimentary approach would
work best, but more examination of the results is required.

Figure 5 shows three graphs, one for each technique. It
represents the same information in Figure 4, but makes it
easier to see the effect of each inspection technique on the

delocalised defects. It is noticeable that the systematic
technique appears to have detected the most delocalised
defects with a response rate > 60%.

In conclusion, the initial results from the third study show
that the delocalised defects are spread over the range of
responses, suggesting that the techniques are having some
effect, but that more analysis and experimentation is required
to investigate more fully the strengths and weakness of the
techniques.

3 CONCLUSIONS

This series of studies suggests that traditional reading
techniques may not be appropriate in practice for effective
inspection of large OO systems. There is evidence from these
studies, and from the literature, that the key features of object-
orientation can lead to problems of 'delocalisation' - having to
understand related software that is not currently under
inspection - and also require a deeper understanding of the
dynamic view, as well as the static. In practice new methods of
'chunking', reading, and 'localising the delocalisation' seem to
be required.

The studies explored the use of a systematic, abstraction-
driven strategy, a specially created checklist and use-case
driven strategy in an attempt to address some of these issues.
There is some evidence to suggest that these techniques may
be more effective in dealing with these problems:

• the delocalised defects were more evenly distributed
within the range of easy and hard to find defects

Checklist

0
10
20
30
40
50
60
70
80
90

100

D12 D4 D8 D2 D9 D11 D1 D5 D7 D14 D13 D6 D3 D10

Defects

P
er

ce
n

ta
g

e
re

sp
o

n
se

Systematic

0
10
20
30
40
50
60
70
80
90

100

D4 D11 D12 D5 D9 D7 D2 D1 D13 D8 D14 D3 D6 D10

Defects

P
er

ce
nt

ag
e

R
es

po
ns

e

Use-case

0
10
20
30
40
50
60
70
80
90

100

D4 D12 D2 D5 D11 D1 D6 D9 D7 D14 D8 D13 D3 D10

Defects

P
er

ce
n

ta
g

e
re

sp
o

n
se

Figure 5 - Response rates spli t by technique

 - Delocalised
 defects

• all the techniques seem to have some strengths in terms of
finding different kinds of defects

• the abstractions developed as a side-effect of the
systematic approach may be used in future inspections
providing an alternative source of documentation and
thereby contributing to the localisation of the
delocalisation.

If time and resources are an issue and there is a well -
developed repository of historical defect data then it maybe
that tailored checklists provide the most eff icient, practical
approach. However, our belief is that, in practice, a
combination of two or more techniques, perhaps incorporating
further refinements of the systematic-abstraction and use-case
based approaches, is most likely to provide the complementary
views necessary to cope with both recurring defect types and
the inevitable new, subtle defects which require deeper
insights. This is part of ongoing research that still requires
further analysis, experimentation and industrial confirmation.

REFERENCES

[1] V.R. Basili , S. Green, O. Laitenberger, F. Lanubile,
F. Shull , S. Sørumgård, and M.V. Zelkowitz, “The
Empirical Investigation of Perspective-Based
Reading” , Empirical Software Engineering: An
International Journal, 1(2), pp. 133-164, 1996.

[2] A. Dunsmore, “Survey of Object-Oriented Defect
Detection Approaches and Experiences in Industry” ,
Technical Report – EFoCS-36-2000, Computer
Science Department, Strathclyde University, August
2000.

[3] A. Dunsmore, M. Roper, and M. Wood, “Object-
Oriented Inspection in the Face of Delocalisation” ,
appeared in Proceedings of the 22nd International
Conference on Software Engineering 2000, pp. 467-
476, June 2000.

[4] A. Dunsmore, M. Roper, and M. Wood, “Systematic
Object-Oriented Inspection – An Empirical Study” ,
appeared in Proceedings of the 23rd International
Conference on Software Engineering 2001, pp. 135-
144, May 2001.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
“Design Patterns” , Addison-Wesley, 1994.

[6] T. Gilb and D. Graham, “Software Inspection” ,
Addison-Wesley, 1993.

[7] W. H. Humphrey, “ A Discipline for Software
Engineering” , Addison-Wesley, 1995.

[8] R. Linger, H. Mill s, and B. Witt, “Structured
Programming: Theory and Practice” , Addison-
Wesley, 1979.

[9] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R.
Lampert, “Designing Documentation to Compensate
for Delocalised Plans” , Communications of the ACM,
31(11), pp. 1259-1267, 1988.

