Pradica Code Inspedionfor Objed-
Oriented Systems

Alastair Dunsmore, Marc Roper, and Murray Wood

Abstract-- This paper describes a series of three enpiricd studies
devoted to the development of a rigorous approach for effedive
inspedions of objed-oriented (OO) code. Since the time that
inspedions were developed they have been shown to be powerful
defed detedion strategies. However, littl e reseach has been dore to
investigate their applicationto OO systems, which have very different
structural and exeaution models compared to procedural systems.
This suggests that inspedion techniques may not be arrrently being
deployed to their best effed in the cntext of large-scde OO systems.
The studies reved threesignificant issues that need to be aldressd -
the identificaion d churks of code to be inspeded, the order in
which the mde is real, and the resolution d frequent non locd
references. The sequence of experiments builds up a mmplement of
three techniques. one based on a dedlist, one focused on
constructing abstrad spedfications, and the last centred onthe route
that a use-case takes through a system. It is demonstrated that the
chedlist is the most effedive gproach bu that the other techniques
aso have strengths and so for the best resultsin a pradicd situation a
combination d techniques is recommended.

Index Terms--Objed-Oriented, Code Inspedion, Code Review,
Empiricd Methods.

1 INTRODUCTION

INCE their inception over twenty-five yeas ago,
inspedions have bemme established as an effedive and
efficient means of deteding defeds. This has been determined
by a number of controlled experiments and a wedth of
industrial case studies, and from their beginnings as code-
based techniques, inspedions are now applied to a wide range
of document types from requirements and designs through to
test plans. Over the yeas bath the application of the technique
and its sipparting materials have been refined and honed and
there is adive interest in continualy developing the concept.
In spite of their broad applicaion, there is a significant ladk of
information indicating how inspedions sould be gplied to
objed-oriented (OO) code. Inspedions were developed when
the procedural programming paradigm was dominant, but the
last ten yeas have seen the OO paradigm growing in influence
and use - particularly sincethe introduction of C++ and Java.
This ladk of guidance on how to apply inspedions to OO
code is disturbing. Objed-oriented and procedura languages
are different (admittedly, some more different than others), not
only in their syntax but in a number of more profound ways -
the encgpsulation of data axd aswociated functiondlity, the
common wse of inheritance, and the cncepts of polymorphism

. All authors are with the Department of Computer Science, University of
Strathclyde, Livingstone Tower, Glasgow G1 1XH, Scotland, UK.
E-mail: {apd, marc, murray} @cs.strath.acuk

and dynamic binding - to name but a few. These fadors
influence the way that modules (classs) are aeded in OO
systems, which in turn influences the way that OO systems are
structured and exeaute. Fail ure to adapt to this paradigm may
inhibit the dfedive gplicdion of inspedions to large-scde
OO systems. Not only does the inspedion technique nedl to
adapt to acommodate the OO paradigm, but the wider process
needs to be modified as the aiteria for choosing "chunks® of
material to be inspeded must also change.

This paper reports the results of a longterm empiricd
investigation into the development of a strategy for OO code
inspedion. The study is based around three ntrolled
experiments that have served to build up a rigorous OO code
inspedion technique. The first experiment focussed on raising
potential problems and issues with OO inspedions and
identified the charaderistics of "hard to find" defeds. From
this experiment, threesignificant issues were identified that are
arguably crucial in order to make OO inspedions pradicd for
large-scde systems. These were: chunkng (the mecdhanisms
whereby a piece of code is sleded for inspedion), realing
strategy (the order in which the de is real), and
delocdi sation (how inspedions addressthe frequent references
that OO code makes to parts of the system that are not part of
the aurrent inspedion focus). As a result of this, a systematic
abstradion-driven inspedion technique was developed and
evaluated with the seaond experiment. The results from thisin
turn lea to the development and empiricd evaluation of two
further techniques - one based on a dedlist and the other
based on use-cases - along with a refinement of the first
systematic strategy, and it is the work caried out for the most
recent evaluation that constitutes the majority of this paper.
The rest of this paper consists of brief summaries of the first
two studies (full details can be found in [3, 4]) followed by an
analysis of the most recent study.

2 EMPIRICAL STUDIES

All three studies took placein a University environment
using 3“ year honours Computer Science students who had at
least two yeas programming experience (primarily Javain the
seoond and third studies, and a mixture of Java and C++ in the
first study). The inspedors al had brief prior experience of
reguirements inspedion but not code inspedion. The focus of
al three studies was individual code inspedion (although the
third study did involve a group element as well) and all
involved inspeding Java @mde & rate comparable to published
industrial rates (~100 lines of code per hour in a 1.5-2.0 hr



8A 9A 1A 78 5A 1B 4B 8B 2B 5B 6B 3A 4A 7A 9B 3B 6A 2A }m }05
* * * * * * *
Use of classlibrary X X X X
Inheritance/ X X
implementation
Wrong message X X X X
Diagram mismatch X X X X
Wrong objed X
Override X X
Data flow Error X X X X X X
Instance variable misuse X X X
Locality (m, ¢, 5) s m | m s s | m s m|m|m|m|m 5 s s | m s c s |s
Domain Knowledge X X
Method size(s, m, I) - m S S m | m S | m m | m m m | m | m
Algorithm/computation X X X X X X X
Omisgon X X X X
Commisson X X X X X X X X X X X X X X X | x
% Discovered 100 | 100 | 94 | o1 89 87 87 | 83 74 | 74 74 | 67 50 50 | 48 | 48 | 42 33 0 0
Notes:

Defects ordered from left, starting with easiest to find
Locdity — method (m), class(c), system (s)
Method size— 0-4 (s). 5-10 (m). 11+ (D

Table 1 —Defeds (columns) described by their features

sesgon). Ledures and training in the tedhniques being
evaluated were provided.

A threa to the validity of the studies exists concerning
subjeds used (3 yea computer science students) as they may
not be representative of the general software engineaing
population (as they ladk experience and maturity). This asped
was limited due to avail able resources.

21 Study 1

This first study involved 47 subjeds using an ad-hoc
inspedion technique and was intended as an initia information
gathering exercise into the isaues related to inspeding OO
code. The dam of the first study was to investigate the
charaderistics of defeds that inspedors found dfficult to
deted. The defeds were amixture of naturally occurring and
seeded based on information gathered from the literature. For
ead defed a series of charaderistic keywords was compil ed
refleding key feaures associated with the defed. Table 1
shows the defeds, ordered by their discovery rate, together
with their keyword charaderistics (column 1).

During analysis of this information it was discovered that
many of defeds had charaderistics that required some asped
of understanding outside the dass under inspedion to fully
comprehend the defed (those with asterisks under their
number in the top row). We termed this charaderistic
‘delocdisation’ after Soloway’s description of delocdised

public boolean isRegistered(String e)

boolean found = false;
for (int i=0; i< theUsers.size() & !found; i++)
if ((((Person)theUsers.elementAt(i)).getEmail()).equals(e))
found = false;
return found;

}
Figure 1 - Javacode for isRegistered method

plans in program comprehension [9] - “... code for one
conceptualised plan is distributed noncortiguowsly in a
program’. Soloway suggests that such ‘plans are difficult to
understand because only fragments are seen at a time and the
reader has to make guesses based on what is locdly apparent.

In Table 1 the characderistics judged to be aswociated with
delocdi sation appea in the top six rows plus locdity ‘class or
‘system’. Notice how these dharaderistics cluster to the right
of the table — the harder to find defeds.

On consideration it becomes apparent that this
delocdisation is a fundamental charaderistic OO code. Key
feaures of OO code — inheritance dynamic binding,
polymorphism, small methods and class libraries — distribute
closely related information throughout the mde. This can
mean that the information required to understand one line of
code, a method, or even a dassis not wholly contained within
the mde under inspedion, but is gpreal through other
methods, classes, systems or libraries. (It should be noted that
this problem may exist to a les®r extent in modularised
procedural code).

A review of related literature, particularly the maintenance
literature, reveded that a number of authors had already
identified this feaure of OO code (but not in an inspedion
context). Furthermore, a small-scde survey of profesgonals
who had inspeded OO code provided supparting evidence for
thisfinding, from alarger-scde, industrial perspedive [2].

To ill ustrate the concept of delocdised information consider
the i sRegi st er ed method in Figure 1. When reading the
method, the inspedor neeads to be awvare of the delocdisation
that exists within it. In this example, some of the delocdli sation
isdesare:

* UsesVect or method el enent At (i nt) —what does
this do and what type doesit return?



e Uses Per son method get Ermai | () — what does this
do and what type doesit return?

* Uses method equal s(Stri ng) associated with result
of Person.getEmail (). Is this defined o is it
inherited from Obj ect ?

This stuation is by no means unusual, as OO programming
is based around such message passng and the use of other
clases and classlibraries.

This gudy suggested that for inspedions to be pradicd and
effedive for large-scde OO systems, OO code techniques and

aids need to be developed that spedficdly address
delocdisation. In particular the following isues must
addres=d:

(1) Chunking - The many dependencies and links between
classees make it very difficult to isolate even one or two
classes for inspedion, and delocdisation complicaes
this further. How you partition the ade for inspedion
defines what an inspedor gets to insped. It may be that
partitioningis not restricted to units of compil ation (e.g.
classs), but may be caried out in an orthogonal
manner, e.g. using dlicing. Two issues in this resped
need to be addressed: (1) the identification of suitable
chunks of code to insped, and (2) dedde how to break
the chunkfreeof the rest of the system, minimising the
number of dependencies and the amount of
delocdli sation.

(2) Reding Strategy - How should OO code be rea,
espedaly if systematicdly reading and understanding
al the wde ad its dependencies is impradicd? Is
there areading strategy that could help inspedors ded
with delocdisation? Can chedlists or Perspedive-
Based Realing Tedhniques (PBR) [1] be modified to
address delocdisation or are new realing strategies
required?

(3) Locdisingthe delocdisation - A way hasto be found to
effedivdy abstrad the delocdised information for the
inspedor, providing the benefits of systematic reading
without the urredistic requirement that eveything is
read.

2.2 Study 2

The second study involved 64 subjeds and followed up on
the findings of the first study by exploring a wde reading
tedhnique that was pedficaly developed to addressthe issues
of delocdisation and realing strategy. The basic ideafor the
technique came from that of Stepwise Abstradion [8]. The
foll owing describes the basic gpproacdh for the technique:

* Interdependencies (couplings) within the whole system
are analysed and those dases with least dependencies
areinspeded first.

« Methods within classs are analysed and those methods
with least dependencies are inspeded first.

e Classes and methods are inspeded using an abstradion
driven realing strategy. This involves reverse

engineaing an abstrad spedficaion for eady method.
This abstrad spedfication may then be used bah to
suppart comparisons with the dass pedficaion, and also
to suppart inspedions which make subsequent reference
to apreviously inspeded method.

» Duringinspedion any references to external classes must
be tracad and understood This may involve reading
other methods, documentation, or previously creaed
abstradions. Thisunderstanding is necessary to corredly
spedfy eat method.

» As the inspedion of the overall system proceeals, more
and more of the dasss will aready have &strad
spedfications. This ould limit the need to spend time
understanding other classes during future inspedions.

To develop the @strad spedfication, a degp understanding
of eat method is required. All aspeds of the method should
be systematicdly read and understood All links to aher
clases dould be understood Development of this dee
understanding may help creae ‘the big picture’ and reved
more of the hard to find defeds.

The astrad spedficaion for ead method should identify
any changes of state and outputs in terms of inputs and prior
state. The spedfication should be:

 brief (as dort as possble while caturing al aspeds of
the method)

» dedarative (describe what the method daes, not how it
doesit) and

» complete (cover all aspeds of method's functionality
including that derived from referencesto ather classes).

This ®ond experiment compared the defed deteding
cgpability of the systematic abstradion-based approach with a
basic ad-hoc gpproach. Care was taken to seed an equa
mixture of delocdised and non-delocdised defeds. The main
finding was that there was no significant difference between
the systematic technique and the al-hoc technique in terms of
the average number of defeds discovered, although there was
a small improvement using the systematic goproach. Using
data gathered on the processfollowed by inspedorsin reading
the mde it seems that ad-hoc inspedors performed two or
three passes of the de building W their understanding
whereas the systematic inspedors performed only one, or at
most two, slower passes throughthe mde.

Further analysis did uncover some potential benefits of the
systematic gpproach:

a) Some defeds remained completely undeteded by any
inspedor using the al-hoc technique, but this was not the
case for the systematic gpproach. Although ro group
component (collation of defeds) was caried out, the fadt
that the systematic technique found al defeds might
suggest that the group component would be more
succesdul.

b) The systematic goproach produced abstradions for every
method as a by-product of the gproacd. It is intended



For each class

Feature Question

Inheritance

Isall inheritancerequired by the designimplemented in the dass?

Isthe inheritance gpropriate?

ClassConstructor

Are dl instance variables initi ali sed with meaningful values?

AIWIN|[F

If a cdl to super isrequired in the cnstructor, isit present?

For each method:

5 | Data Referencing

Are dl parameters used within a method?

14 | Method Behaviour

Are dl assgnments and state changes made crredly?

15 For ead return statement, is the value returned and its type mrred?

16 Does the method match the spedficdion?

For each class

17 | Method Overriding

If inherited methods need to behave differently, are they overridden?

18 Are dl uses of method overriding correa?

Table 2 - Part of the Chedlist

that these astrad spedficaions can be used in future
inspedions to save the inspedor, or other inspedors, the
effort of reading the dassor method again when another
classmakes a delocdi sed referenceto that class

c) There was anedadotal evidence from the subjeds
questionnaires that the task of credaing abstrad
spedficaions encouraged a greder understanding of the
code under inspedion.

d) The systematic goproach provides an ordering for the
realing strategy to ded with the delocdised, distributed
nature of OO software. Again the questionnaire data
suggested that inspedors appredated the rigour imposed
by this ordering. Without such an ordering it is posshble
that inspedors may ‘wander off’ into the rest of the
system chasing a thorough urderstanding but, without
gred cae, there is a danger that they may lose their train
of thought.

Finaly, in this oond study, there was further evidencethat
the delocdised defeds were more difficult to discover than the
locdised defeds.

One patential weaknessof the systematic strategy (or any
sequential reading strategy) may be that it is based on a static
view of the ade. Spedficdly, the inspedors are encouraged
toread the mde in alinea order (where that order is sich that,
as far as possble, dependencies are read before they are used).
However the dynamic view of OO code is quite different from
the static view. As Gamma et al. [5] state “In fact, the two
structures  [runtime and compiletime] are largely
independent. Trying to understand ore from the other is like
trying to understand the dynamism of living ecsystems from
the static taxonamy of plants and anmals, andviceversa.”

These findings s1ggest that the systematic goproacdh offers
a number of benefits: a rigorous realing strategy, potentia to
help address delocdisation through abstrad spedficaions,
potential to encourage deeper understanding and to dscover
different defeds from an ad-hoc goproach. On the other hand
the systematic gpproadch doesn’'t sean to address adequately
the highly dynamic nature of OO software and was found to be
more time cnsuming.

The main findings from these first two studies were that
delocdisation and the difference between the static and the
dynamic views sean very red problems for the pradicd
application of software inspedion to industrial-strength, OO
code.

2.3 Study 3

Following on from the second study, the third focused on a
seledion of realing techniques for OO code - systematic,
chedlist, and a use-case based reading technique. What
follows are brief descriptions of ead of these reading
techniques, followed by the results of an experiment to
evaluate the techniques.

2.3.1 Systematic

The systematic, abstradion driven tedchnique used in the
seoond study was re-used with some dterations, based upon
feedbadk and olservations.  Instructions given to the
inspedors were made deaer and more spedfic. Inspedors
were dso given more experience of the technique (via more
training and examples). The information that inspedors had to
write on their abstradion sheds was reduced (helping to speed
up the process.



Primary Actor: Customer

Goal:

Cancd sed bodking previously made.

Preconditions:
ealiest.

Person hes already bodked sed(s) and flight must leave tomorrow at the

SuccessCondition:

Sed bodkingis siccesgully cancdled and 50% refund on cost is made.

Failure Condition: -

Trigger: Customer asksto cancd bodking.
Notes: Information returned to operator (credit card no. and amournt to refund) and is

dedt with off-line.
Exceptions: Booking could not be found or flight date is eali er than tomorrow.
Steps: 1. Get boking reference(s) to be canceled from customer

2. Cancd bodkings

3. Make 50% refunds

Table 3 - Use-case for Cancd Booking
provides questions to help identify defeds for that
2.3.2 ChecHist feaure.

Chelists are a straightforward and commonly used
technique to help with individual code inspedion. Chedlists
are based upon a series of spedfic questions that are intended
to focus the inspedor’s attention towards common sources of
defeds. The questions in a dedlist are there to guide the
inspedor through the document under inspedion and should
be phrased in such a way that if the axswer is No, then a
potential defed has been discovered. The dhedklist should be
based on historicd data [6, 7] and should not be a general
chedlist obtained from elsewhere & they can lose their
relevance

The dedlist was developed from the experience gained in
the two previous gudies. It takes into acmunt the structure of
OO code and is ordered in such a way that supparts inspedors
in building Y a thorough urderstanding of the amde. The
questions in the dhedklist are grouped into threesedions:

1. Class- this ®dion is concerned with inheritance and
constructor isaues.

2. Method - the midde sedion deds with isses
surrounding methods, e.g. data referencing, objed
messaging and referencing, seledion and iteration, and
method kehaviour.

3. Class- the final sedion deds with isales surrounding
method overriding — these final class questions appea
at the end of the chedlist since the answers dould be
easier to find with an urderstanding of al the methods
inthe dass

Part of the final chedlist can be seen in Table 2. The
following describes the basic gproach for the dedlist
technique:

 Interdependencies (coupling) within the @de under
inspedion are analysed and those dasses with least
dependencies are inspeded first.

» The dedlist contains two components — one highlights
possble features of the mde to concentrate on, the other

Inspedors were told to begin by first applying the questions
in the first class ®dion of the dedlist. Once ®mpleted,
inspedors sould move on to applying al the questions in the
method sedion of the dedlist to al the methods in the dass
including constructors. Finally, once dl methods in the dass
have been inspeded, the questions in the seand class £dion
at the bottom of the chedklist should be gplied. This process
isrepeaed for ead classunder inspedion.

2.3.3 Use-case

The use-case realing technique dtempts to address the
dynamic nature of OO systems. The am of the technique isto
ched that ead objea is cgpable of responding corredly to all
the possble waysin which it might be used. Isit a goodcitizen
of the system? More predsely, with resped to the use caesin
which the objed participates, to verify that:

- the corred methods are being cdled
- the dedsions and state danges made within ead
method are crred and consistent

The basic gpproac isto devise anumber of scenarios from
the use-case and examine how the dassunder inspedion deds
with these scenarios. Defeds are discovered by noticing
missng/incorred methods, erroneous date changes etc. The
principle behind the technique is that it forces the inspedor to
consider the cntext in which an objed is used. This is in
contrast to bah the systematic and chedlist approaches that
consider a dassin a more genera context. The technique is
intended to be complementary to ather reading approaches, as
it is likely that some parts of a dass will not be deded
(because they are not involved in that particular use-case).

To apply the technique, inspedorstake eat use-caseinturn
and devise a series of brief scenarios based on the
preconditions, success and falure onditions, and the
exceptions found in the use-case. A sequencediagram is used
to guide them throughthe interadions that scenarios have with



initial
planeSystemn

bookings

bookingCollection Booking

£

customer

bookedFlight bookedCustomer

Flight

departTime
planeCalendar

flightPlane
Plane

Customer

I
cancelBookinalhookiD) Stri I

ng
==

]
|
|
CaﬂEE|EUUk\ﬂg(DUUHD).S[ﬂﬂg |

isBookingihooklDy:boaolean

getFlightd:Flight

¥y

getDepartureTime:planeCalendal

isEarlierThanTomorrow():boolean

0
]

T

amouniToRefund{:double

getCustomer) Customer

getCreditCard():String

cancelBooking(void

cancelSeats{numofSeatsBooked Business)hoolea

Business represents whether
the seatis a business seat or
an econormy seat

b

¥
__________l:__________

rermoveBooking(yvaid

%nOf‘SeaIsEnnkEd‘Bus}neaa) boolean

n
=

U cancelBooking{nu

==

cancelBooking(hooklD):String

Called a secandtime |
if a return flight |
|
|
|

L
|
|
|
|
|
|
|

]
|
|
|
|
|
|
|
|
|
I |
| |
| |
| |
| |
| |
| |
| |
| |
| |
=
1 |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

|
|
2
I
|
|
|
|
|
|

Figure 2 —Sequencediagram for Cancd Booking Use-case

the mde under inspedion. This requires that inspedors
become familiar with the mde under inspedion, identify the
state of the system that would cause this particular scenario to
occur, identify the expeded change of state and outputs from
the clasqes) under inspedion as a result of the scenario, and to
follow the scenario through the sequence diagram by tradng
the message cdl s between objeds.

If a dassunder inspedion is encountered, inspedors verify
that the expeded methods are being cdled to suppat the
scenario. When a method in the dass under inspedion is
cdled any dedsions and state dhanges that are made ae
verified to ched that they are mrred and consistent with
resped to the scenario. While doing this, notes are made

concerning any state dnanges and outputs. While inspeding a
method, any method cdls that are made ae foll owed to verify
that the mrred ones are being cdled. If the method cdled is
in the dass under inspedion, the cdl is followed and the
method read, otherwise the inspedor returns to following the
sequence diagram.

Once through the scenario the final and predicated
state/outputs are ompared. If a difference «ists between the
two, then locate the source of the inconsistency and highlight
as a candidate defed.

The following brief example highlights me of the
concepts involved. Given the use-case shown in Table 3, the
possble scenarios are:

Inspedion Tednique
Chedlist Systematic Use-case
Number of subjeds 23 23 23
Defeds (out of 14): Mean 7.3043 6.1739 5.7391
Std. Deviation 2.4943 2.2290 2.3973
Std. Error 5201 4648 4999
Minimum 2 3 2
Maximum 11 10 10
False Positives: Mean 3.4348 3.2174 2.8696
Std. Deviation 2.6939 2.8116 1.9841
Std. Error 5617 .5863 4137
Minimum 0 0 0
Maximum 12 10 7
Inspedion Time: Mean 721739 77.0000 81.9130
Std. Deviation 12.9568 9.7933 9.2830

Table4 —Summary of experiment resultsfor Study 3



8
7- ----------------------------------------
'g [ i G ;:*":f'
(] ,/ et
Y- *
ol il At 7o
‘g AN
()] 7.
_______________________ 4 .
B y
y— 4
o 3 s —
o °T ST P TTTT T .
£ s Chedli st
PR -——
E 24 ------- ",'2:;‘ """""""""""""""
% ‘/‘," Systematic
5 7
> 4
< ol A7 Use-Case

Time (inminues)

Figure 3 —Defed response rates

1. Sea bodking succesSully canceled
2. No such bodking teld in the system
3. Flight has departed or departs today

The dassbeing inspeded is the Pl aneCal ender class
Looking at the sequence diagram in Figure 2, the only method
cdled in the dass  under inspedion is
i sEarlier ThanTonorrow().

The aticipated state changes or outputs in relation to the
developed scenarios are then noted:

1. No state changes, method should return false
2. No interadion expeded
3. No state changes, method should return true

For 3 techniques
Chi-Square 4.871

Df 2

Asymp. Sig. 0.088

Table5 —Results of Kruskal-Walli stest

Finaly, the cde has to be inspeded to verify whether the
adua outcomes/state changes match those anticipated.

2.3.4 Results of Sudy 3

The third experiment compared the defed detedion
cgpability of the threereading techniques. Just over half of the
defeds seded in the @de (eight out of fourteen) were
delocdised in reture. Table 4 presents a summary of the
results from the third study.

Figure 3 shows the defed detedion rates for eat of the
three realing techniques. Inspedors using the dedlist
technique gpea to find more defeds and at a quicker rate,
athough performance levels drop df sharply after the first 60
minutes. The defed detedion rates of the systematic and use-
case inspedors appea to be fairly similar to ead other, with
systematic inspedors performance levelling off towards the
end of the 90 minutes. Use-case inspedors performance
appeasto be levelli ng off, but not to the same degree

It would be expeded that systematic inspecors would not
have the quick detedion rate of chedlist inspedors snce, as
part of their technique, they are encouraged to fully understand
the mde and have to generate as aresult of their understanding
method abstradions, which can take time. Similarly, use-case
inspedors have to generate scenarios from a use-case, and then
using sequence diagrams, insped the cde (in a different order
to ather techniques).

Comparison of Techniques

@ Checklist @ Systematic [JUse-case | |[] Delocalised defects

, 100
2 8 |
§7o N

o 60

o 3

£ 30

S D T

S 10 -

& 0] k|

D1 D2 D4 |D5||D6 || D7| D8 |D9]|D10||D11|[D12| D13 D14

Defect

Figure 4 —All response rates for each defea



Chedklist

Percentage response

01
o4 ps b2 [po][paz] o1 | D5 " D7|D14 D13| D6 || D3 ||D10|

Defects

Percentage Response

Systematic

0
D4 Dz D1 D13 D8 D14 10

Defects

Use-case

- Delocdised

Percentage response
N
o

defeds

D4 D2 |D5 ||D11 | D1 |D6 || D9 || D7 |D14 D8 D13 DlO

Defects

Figure 5 - Response rates 9lit by technique

Due to the nature of the results it was not passble to apply
parametric statisticd tests, insteal the Kruskal-Walli s test was
used to determine whether the defed results for the three
techniques were significantly different. The results generated
by the software padkage SPSSarein Table 5. For 2 degrees of
freedom, a di-sguare result of 4.871 was generated. This
resultsin asignificant result at the 10% level (chi-sguare result
> 4.6), but not at the 5% level (chi-square result would have to
be > 5.99). There is a significant difference between the
defed detedion capability of the threereading techniques, but
only at the 10% level of significance

Further statisticd tests $rowed that there was no significant
difference between the threerealing techniques in the number
of false positives generated by inspedors.

Figue 4 shows the cmparative dfediveness in defed
detedion for ead of the three reading techniques. Those
defed numbers along the bottom surrounded by a box are
defeds with delocdised charaderisticss. The dedlist
technique mnsistently appeas to perform well. It should be
noted that one defed (defed 10) was not found by any
inspedors using any of the reading techniques. It was also
noticed that defeds involving some form of omisson appea
difficult to find (defeds 6, 13 and 14). All the reaing
techniques have strong points, and there is not one dominant
technique. This suggests a cmmplimentary approach would
work best, but more examination of the resultsis required.

Figure 5 shows three graphs, one for eat technique. It
represents the same information in Figure 4, but makes it
eaier to see the dfed of ead inspedion technique on the

delocdised defeds. It is noticedle that the systematic
technique gpeas to have deteded the most delocdised
defeds with aresponse rate > 60%.

In conclusion, the initial results from the third study show
that the delocdised defeds are spread over the range of
responses, suggesting that the techniques are having some
effed, but that more analysis and experimentation is required
to investigate more fully the strengths and wedkness of the
tedchniques.

3 CONCLUSIONS

This wries of studies suggests that traditional reading
techniques may not be gpropriate in pradice for effedive
inspedion of large OO systems. There is evidence from these
studies, and from the literature, that the key feaures of objed-
orientation can lead to problems of 'delocdisation’ - having to
understand related software that is not currently under
inspedion - and aso require a deeper understanding of the
dynamic view, as well asthe static. In pradice new methods of
‘chunking, reading, and 'locdising the delocdisation' seem to
be required.

The studies explored the use of a systematic, abstradion-
driven strategy, a spedally credaed chedlist and use-cese
driven strategy in an attempt to address ®me of these isues.
There is me evidence to suggest that these techniques may
be more dfedive in dedingwith these problems:

» the delocdised defeds were more evenly distributed
within the range of easy and hard to find defeds



« all the techniques $am to have some strengths in terms of
finding diff erent kinds of defeds

» the astradions developed as a side-effed of the
systematic goproach may be used in future inspedions
providing an dternative source of documentation and
thereby contributing to the locdisation of the
delocdisation.

If time and resources are an isue ad there is a well-
developed repaository of historicd defed data then it maybe
that tailored chedklists provide the most efficient, pradicd
approach. However, our belief is that, in pradice a
combination of two or more techniques, perhaps incorporating
further refinements of the systematic-abstradion and use-case
based approadhes, is most likely to provide the complementary
views necessary to cope with both reaurring defed types and
the inevitable new, subtle defeds which require deeper
insights. This is part of ongoing reseach that till requires
further analysis, experimentation and industrial confirmation.

REFERENCES

[1] V.R. Baslli, S. Green, O. Laitenberger, F. Lanubile,
F. Shul, S. Serumgard, and M.V. Zelkowitz, “The
Empiricd  Investigation of Perspedive-Based
Reading’, Empirical Sdtware Engineeing: An
Internationd Journal, 1(2), pp. 133164, 1996

[2] A. Dunsmore, “Survey of Objed-Oriented Defed
Detedion Approaches and Experiences in Industry”,
Tedhnicd Report — EFoCS-36-200Q Computer
Science Department, Strathclyde University, August
2000

[3] A. Dunsmore, M. Roper, and M. Wood, “Objed-
Oriented Inspedion in the Face of Delocdisation”,
appeaed in Procealings of the 22" Internationd
Conference on Sdtware Engineeing 2000 pp. 467-
476, June 2000

[4] A. Dunsmore, M. Roper, and M. Wood, “Systematic
Objea-Oriented Inspedion — An Empiricd Study”,
appeaed in Procealings of the 23° Internationd
Conference on Sdtware Engineeing 2001 pp. 135
144 May 2001

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissdes,
“Design Patterns’ , Addison-Wesley, 1994

[6] T. Gilb and D. Graham, “Sdtware Inspedion”,
Addison-Wesley, 1993

[7] W. H. Humphrey, “A Discipline for Sdtware
Engineaing’, Addison-Wesley, 1995

[8] R. Linger, H. Mills, and B. Witt, “Structured
Programning: Theory and Practice’, Addison-
Wesley, 1979

[9] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R.
Lampert, “Designing Documentation to Compensate
for Delocdised Plans’, Comrrunications of the ACM,
31(11), pp. 12591267, 1988



