

M. Halling, P. Grünbacher, S. Biffl

Abstract—The inspection of software products has proven to
be an effective approach to find defects. Inspecting require-
ments documents offers especially large benefits as it removes
defects very early in the development process. On the other
hand inspection is also an expensive and sometimes cumber-
some process resulting in a large amount of inspection material
that has to be sorted, searched, and consolidated. Existing in-
spection tools whose success has been empirically evaluated are
focused on code inspection and fall short for inspection needs of
early life cycle documents like requirements specifications.
Based (a) on empirical data from our experiments with paper-
based inspection of requirements documents and (b) on our
experience with groupware support for software requirements
negotiation, we have developed a concept for a groupware-
supported requirements inspection process. In this paper we
present our concept, discuss potential benefits for software re-
quirements inspection, and propose an approach for empirical
evaluation.

Index Terms—Inspection, requirements, groupware, empiri-
cal evaluation criteria.

I. INTRODUCTION
Software developers favor quality assurance approaches,

which help them to determine and improve product quality
effectively and efficiently. In the early stages of develop-
ment, work products are usually less complex than during
implementation and defects found have particularly high po-
tential to save rework effort in later stages of development.
Thus the inspection of requirements and design artifacts
promises better leverage of inspection efforts compared to
code inspection.

Major activities in the inspection process [20] are inspec-
tion planning, individual defect detection, defect collection in
a team meeting, and inspection evaluation, followed by a
rework based on the found defects:

The planning of the inspection process has to consider the
potential effectiveness and efficiency of different inspection
designs in a given project context. The inspection manager
plans – according to the overall project plan – the products
that should get inspected, the size of the inspection team, and

the defect detection aids to be used. An important assumption
for this planning is the effect an inspection process design
will have on development, e.g., the delay caused by locking
work products or development resources used for inspection.

Inspection evaluation determines the actual effectiveness
of an inspection activity based on an estimate of the total
number of defects (in a certain defect class) in the product
under inspection. This evaluation is usually done after finish-
ing all defect detection activities, but could also help to
monitor individual steps during a defect detection process.

During individual defect detection each inspector uses a
defect detection technique to look for specific classes of de-
fects in a defined part of the inspected product [1]. This focus
helps to make individual inspectors more effective than unfo-
cused reading of an entire document. The defect lists pro-
duced by individual inspectors are input to the defect collec-
tion activity.

During defect collection the author, and sometimes the in-
spection manager, compile a common team defect list for
rework. This activity is usually conducted as an inspection
meeting. The meeting provides a forum for inspectors to dis-
cuss open issues, which could not be resolved individually.
Furthermore, performance data on the inspection (e.g., effort,
duration, number of defects found in certain defect classes) is
gathered for the evaluation of the overall process.

Empirical studies on paper-based inspections
[3][12][15][19] show that inspections are an effective
approach to find defects in software products. But these stud-
ies also demonstrate that a purely paper-based approach is
very expensive and critical needs of inspectors and inspection
management are hard to meet with paper as the major means
of communication:

- Typically a lot of paper, e.g., versions of the inspected
documents, stacks of defect reports and inspection notes, has
to be sorted, searched, and consolidated. This tends to be a
time-consuming, error-prone, and tedious activity.

- As important management information is scattered across
the paper documents, an in-depth evaluation can be made
only after the inspection, which does not allow in-process
inspection control.

- The effort involved in paper-based communication
increases the cycle time of an inspection, which makes
flexible approaches with several inspection cycles infeasible
due to cost constraints.

In this paper we suggest to represent all documents used or
created during an inspection in an electronic format, that
explicitly represents the semantic structure of the document
to be inspected, and allows automating some inspection ac-

Groupware Support for
Software Requirements Inspection

Michael Halling is with the Institute for Software Technology at Vienna
University of Technology, Karlsplatz 13, A-1040 Vienna, Austria and with
the Systems Engineering & Automation department at Johannes Kepler
University Linz, Altenbergerstr. 69, A-4040 Linz(e-mail:
halling@swt.tuwien.ac.at).

Paul Grünbacher is with the Systems Engineering & Automation depart-
ment at the Johannes Kepler University Linz, Altenbergerstr. 69, A-4040
Linz, Austria, (e-mail: pg@sea.uni-linz.ac.at).

Stefan Biffl is currently with the Fraunhofer Institute for Experimental
Software Engineering, Sauerwiesen 6, D-67661 Kaiserlautern, Germany; on
sabbatical leave from the Vienna University of Technology, Austria,
(e-mail: Stefan.Biffl@tuwien.ac.at).

tivities. We expect the following benefits from tool support
of inspection activities:
1) Improved handling of shared documents.

- We aim at reducing communication overhead through
shared electronic documents instead of paper copies, which
allows inspection management to get more accurate and
timely feedback on the actual status of inspection tasks as
well as faster feedback on product and inspection quality.

- Faster delegation and feedback cycles with more flexible
collaboration processes will allow better support for inspec-
tion management.

- Electronic communication of defects and annotated
documents, as well as support for both synchronous and
asynchronous work will accelerate the inspection cycle.
2) More efficient communication and defect collection in the

inspection team.
- From semantically structuring the inspected documents

we expect less effort for defect collection when to decide on
whether two defect descriptions refer to the same defect.

- We expect faster and more clear communication among
the members of the inspection team and between team mem-
bers, authors and the inspection manager.

- We also want to support joint meetings including syn-
chronous work on the inspected documents.
3) Cognitive support for individual defect detection.

- Navigation along the semantic structure of the inspection
document should provide better overview for the individual
inspector during defect detection.

- In addition there is better handling of electronic docu-
ment structure and content (i.e., annotating, searching, index-
ing, versioning).

Tool support for inspection has been empirically evaluated
for environments automating the inspection of source code
and showed similar effectiveness and efficiency as paper-
based inspections (refer to Section II and [22]). Existing tools
provide capabilities to represent electronic documents and
typically allow annotations associated to a particular line of
text. This association usually does not provide semantic in-
formation that would be important especially for early life-
cycle artifacts like requirements. Furthermore, these systems
focus on code inspections and fall short to support flexible
support of inspection process variants.

Groupware tools have been used extensively to support
collaborative processes in software engineering, e.g., re-
quirements negotiation [5][13]. The inspection process itself
is a collaborative process with a number of different roles
(i.e., authors, inspectors, inspection manager, moderator). We
thus propose a groupware concept supporting the inspection
process and techniques discussed above. Our interest is not
only the meeting activity itself, but especially individual de-
fect detection and inspection management. We focus on
supporting the individual defect detection activity with read-
ing techniques, as this activity has been found to be particu-
larly effective and provides direct input to the inspection
team meeting activity [20].

The paper is structured as follows: Section II discusses re-
lated work on tools for inspection and current shortcomings

dealing with early life-cycle documents and collaborative
aspects of inspection. We propose possibilities for extension
and alternative approaches. Section III provides the rationale,
potential benefits, and evaluation criteria for groupware-
support requirements inspection. Section IV introduces the
major four activities of our groupware-supported require-
ments inspection process. Section V summarizes the concepts
presented in the paper and provides an outlook on further
work.

II. RELATED WORK ON INSPECTION TOOLS
In this section, we briefly present a set of evaluation crite-

ria, describe the main characteristics of existing inspection
tools, and outline issues that need to be addressed. Table A1
in the appendix summarizes features of the main existing
tools based on information from a recent survey [21].

A. Inspection Management
The first group of evaluation criteria deals with inspection

management, i.e., services needed throughout the entire in-
spection process. An inspection tool should achieve a high
level of flexibility to tailor the process to a given context. So
far most existing tools were specifically developed for one
specific inspection process, e.g., SCRUTINY for the inspection
method of Bull HN Information System [7]. ASSIST, the
Asynchronous/Synchronous Software Inspection Support
Tool [22], and CSRS, the Collaborative Software Review Sys-
tem [18], offer a process definition language to tailor the tool
to any inspection process.

Another aspect of inspection management evaluates
whether a tool supports asynchronous and/or synchronous
inspections (i.e., inspection meetings). Tools that focus ex-
plicitly on asynchronous inspection processes, like WiP [16]
and CSRS, do not offer any meeting services. Other tools,
allowing for or focusing on synchronous inspections have at
least some functionality required in same-time meetings
(with the exception of ICICLE [2]). The latter group of tools
usually also provides some sort of decision support for accel-
erating the team decision-making process (e.g., polls or vot-
ing).

The last criterion summarizes inspection process evalua-
tion services. These services are based on automated data
collection facilities (e.g., defects, time stamps) that are sup-
ported by all tools in our overview. Additionally all tools
offer or at least indicate support for a posteriori evaluation of
the performance using simple statistics and summaries.

However, in-process evaluation and in-process adjustment
of the inspection process represent additional requirements
for inspection tools. This means that inspection management
should have the possibility to monitor and assess the per-
formance of current inspection activities and to change cer-
tain process parameters to improve performance. This func-
tionality is not offered by any of the surveyed tools, respec-
tively is not explicitly mentioned in any documentation.

B. Document Handling
In addition to inspection management, document handling

is a key evaluation criterion. In this context the term “docu-
ment handling” includes the types of documents supported by
the tool, the representation of the information described in
these documents, and the creation of linked annotations.

As far as document types are concerned all tools except
ASSIST are limited to plain text documents. The main reason
for this is that they were developed for source code inspec-
tions and there was no need to support different document
types. ASSIST approaches this problem by providing the pos-
sibility to define any type of browser to view and inspect
documents. The documents to be inspected are usually dis-
played in full text in the browser allowing the inspector to
attach annotations to each line or to areas of multiple lines.
Only CSRS transforms the document into a series of nodes
allowing inspectors to make annotations for each node.

C. Defect Detection Support
Finally, we want to evaluate existing tools with respect to

defect detection support, i.e., documents and services pro-
vided by the tool to facilitate defect detection. Most tools
include functionality supporting the inspector with informa-
tion from various supplementary materials, like checklists.

However, most tools do not explicitly consider documents
for more sophisticated approaches like scenario-based read-
ing techniques [20]. These techniques require additional sup-
plementary material, like process description, high-level in-
spection goals, and thus make it further necessary to provide
information specific to context and inspector role. Inspectors
should only receive information that is relevant to them de-
pending on their current position in the inspected document,
their progress in the inspection process (i.e., tasks already
fulfilled and tasks to be done) and their assigned inspector
role. As the idea of different inspector perspectives coming
from scenario-based reading techniques is rather new, none
of the investigated tools explicitly supports this approach.

D. Empirical Evaluation
The presented tools have been empirically evaluated to

varying degrees in concrete project situations. MacDonald
and Miller [21] report that in most cases there was no com-
parison to a paper-based inspection process in the same envi-
ronment. Therefore it is currently hard to assess whether and
how much the existing tools improve the performance of
inspections. However, most qualitative statements based on
these empirical evaluations point out that there is evidence
that tool-based inspection is not less effective than paper-
based inspection – actually a rather unsatisfactory result.

An existing application of a Group Support System (GSS)
for supporting the inspection meeting process [10][11] pre-
sents empirical evidence from field studies in professional
environments that a GSS can significantly increase the per-
formance and the overall contribution of inspection meetings.
The GSS in this application is mainly used as an Electronic
Meeting System. As our GSS-supported approach presented
in Section IV focuses on individual defect detection and in-
spection process management, the results from [11] comple-
ment the concepts presented in this paper.

III. RATIONALE FOR GROUPWARE-SUPPORTED
REQUIREMENTS INSPECTION

In this section we provide a motivation and argumentation
for groupware-supported requirements inspection. Our ex-
periences are based both on empirical data from experiments
with paper-based inspection of requirements docu-
ments [3][15] and on experience with employing tool support
for the negotiation of software requirements [14].

A. Paper-based Inspection of Requirements
Software inspection currently is the most effective way of

checking early life-cycle documents in practice [12]. Soft-
ware inspections represent a family of highly formalized
processes that are designed to uncover defects in software
development artifacts. While the potential benefits of inspect-
ing early life-cycle documents are higher than for code in-
spections, the same is true for the costs [20].

In our paper-based experiments [3][15] we basically fol-
lowed the traditional inspection process [8][12] comprised of
the activities planning, individual preparation, meeting, de-
fect removal, and evaluation. As mentioned before we fo-
cused on inspection of requirements documents. The re-
quirements document we used for experimentation with pa-
per-based inspection follows the Unified Process and uses
UML [9] to formalize use-cases and domain object models.
The outline of this requirements document is as follows: con-
text information in plain text, functional requirements using
use-case diagrams and descriptions, domain information via a
domain object model and data descriptions in tabular form
(see Fig. 2 in Section V as an example).

The goal of our paper-based studies was to evaluate the
performance of individual defect detection techniques
namely reading techniques. Reading techniques support in-
spectors in finding defects [1][19]. We distinguish checklist-
based and scenario-based reading. Checklist-based reading
techniques use catalogs describing potential defects in a very
general way. Inspectors are not told what to do but rather
what defect symptoms they could potentially find. In con-
trast, scenario-based reading techniques define a defect
detection process that tells inspectors what to do and assigns
certain scenarios to each inspector.

An example for scenario-based reading techniques is
called perspective-based reading, which assigns one of three
possible perspectives to an inspector: user, designer or tester.
For example, in the case of the user perspective the inspector
concentrates on verifying that the functional requirements are
consistent and that they fulfill the user requirements of the
target system. S/he extracts information from the require-
ments document, builds a use case model for abstraction, and
checks the use case model for possible problems with the
original requirements text.

Regnell et al. [24] summarize main empirical results of
scenario-based reading performance and point out that these
results are not clear. In some experiments scenario-based
reading significantly outperforms checklist-based reading, in
some experiments there is no significant difference.

In our two large-scale experiments that we conducted in an

academic environment [3][15] with team sizes varying be-
tween 5 and 6 inspectors, we found that scenario-based read-
ing helps to direct inspector effort on certain parts of a
document, and increases the detection of major defects.

For practical purposes, the benefits and costs of an inspec-
tion technique must be compared and evaluated in an eco-
nomic context [4]. While inspection benefits can be quanti-
fied as saved rework effort from later phases, inspection costs
are measured in working hours invested.

Based on our empirical studies, we identify the following
two main arguments for developing a groupware-supported
inspection process:
- Reduction of cost drivers: The two main cost drivers of
inspection are the individual defect detection effort and the
loss of inspection efficiency due to defect overlap (i.e., the
number of defects found by more than one inspector) in an
inspection team. While groupware supports reducing the ef-
fort by managing the documents and supporting the defect
detection activities, it helps to diminish the overlap by pro-
viding different levels of inspector communication.
- Control of Inspection Process: Another important finding
of our empirical studies is that inspection effort varies con-
siderably among individual inspectors. As far as individual
defect detection effort is concerned we observed values be-
tween 2 and 8 hours [3][15], but were not able to find intui-
tive inspector-specific parameters that explain these varia-
tions. These findings confirm that there is a considerable risk
of inefficient inspection runs [12], which can be reduced
through the application of the groupware-supported inspec-
tion process. Using groupware enables the inspection man-
ager to monitor and, if necessary, adjust the task allocation in
the inspection process in order to avoid clearly inefficient
inspections.

B. Groupware Support for Collaborative Processes
Our discussion above showed that automating the a re-

quirements inspection process is a challenging task:
- The process is made of activities with different characteris-
tics (e.g., individual vs. concerted efforts, distributed vs.
face-to-face meetings).
- The environment has to provide configurable access to
shared deliverables, some of them structured in a complex
manner.
- The tools have to support work techniques adopted in the
methodology, e.g., reading techniques.
- The environment needs to provide views and perspectives
for different users/roles in the process.

A groupware system for requirements inspection should
thus seamlessly support the many ways that people work
together; as individuals or in groups, co-located or geo-
graphically dispersed, synchronously or asynchronously.

Groupware is a breed of computer technology that has

emerged in the last decade targeting team productivity and
supporting groups of people engaged in a common task or
goal. Groupware technology is used widely to communicate,
cooperate, coordinate, solve problems, or to negotiate.

Within the vast number of groupware technologies Group
Support Systems (GSS) focus on supporting group decision-
making. A GSS is not just a single piece of software, but a
collection of computer-based collaborative tools (e.g., for
idea generation, idea organization, idea evaluation). A GSS
typically includes software tools for brainstorming and idea
generation, issue structuring and categorization, topic explo-
ration, issue prioritization and voting, and logging. Although
the tools appear simple to the users, their design derives from
cognitive and social research findings and from extensive
experience in the field with teams trying to accomplish
meaningful work.

More than a decade of research has shows that under cer-
tain circumstances, teams using Group Support Systems
(GSS) can save as much as 50% of their labor hours, and can
cut their project cycle times by up to 90% [23][6]. Under the
right conditions, teams using GSS can be far more productive
than teams using pen-and-paper methods.

We have decided to use a Group Support System (GSS) to
support our inspection process [3][15] for several reasons:

- A GSS provides a set of configurable groupware tools
supporting different collaborative activities for the collection,
categorization, and evaluation of artifacts.

- A GSS can be configured in a way that it supports col-
laborative activities as well as role-specific individual efforts
in a shared workspace.

- A GSS supports the concept of a meeting leader and
meeting participants with different, configurable access
rights to ease meeting management.

- A GSS can be configured to visualize, edit, and annotate
structured documents.

- The use of a GSS for collaborative software engineering
has been successfully demonstrated in related areas of soft-
ware engineering like code inspection [11] and software re-
quirements negotiation [5][6].

- A GSS provides high-level groupware building blocks
that allow rapid prototyping and delivery of collaborative
methodologies, which allows early feedback of users.

Initially we want to support existing reading techniques
that were originally designed for paper-based inspection [12].
In a next step the groupware-supported inspection process
offers the potential of designing special reading techniques
that are optimized for tool-based inspection.

IV. RESEARCH OBJECTIVES AND EVALUATION CRITERIA
Based on information presented in the previous sections,

drawbacks of existing tools and empirical evidence from ex-
perience with paper-based inspection, we want to address the
following main goals:
1) Improve inspection management with electronic inspec-

tion documents (inspection object, defect lists, feedback;
reading techniques) and improved communication among
team members.

a. Inspection managers can implement different process
designs (e.g., asynchronous/synchronous process, the amount
of allowed and supported communication) and can tailor
them to the project’s needs.

b. On-line feedback and in-process monitoring of inspec-
tion activities becomes possible. Inspection managers can
evaluate the performance of detection tasks in the current
inspection run and can readjust the process in the case of
severe problems.

c. Based on the data collection during each inspection run
(e.g., defect lists, time stamps) the inspection manager can
assess the inspection process quality, the probable document
quality, and the performance of individual inspectors.
2) Improve the handling of documents required during the

inspection process (e.g., inspected software artifact, read-
ing techniques, supplementary material).

a. The groupware tool provides a structured representation
of the inspection object according to meaningful entities in
the document. These semantic entities (e.g., functional re-
quirements, domain model objects, high-level goals) facili-
tate defect documentation, communication and matching.

b. The sharing of structured inspection results between all
team inspection members (i.e., inspector, author, inspection
management) is supported and easily possible.

c. The effort for defect, or more general annotation, collec-
tion is reduced. Similar defects are more easily identified due
to the limited number of semantic entities of the inspection

object.
3) Support individual defect detection of each inspector.

a. Context of the meaningful semantic structure of the in-
spection document aids fast navigation in the electronic ver-
sion of the document.

b. If the reading technique asks the inspector to build new
software model representations as part of inspection, an elec-
tronic tool can provide appropriate templates, which help to
prevent double work during model building and possibly to
reuse existing work.

c. The groupware tool uses available information on in-
spector role, current focus with the inspection object, and
current step of the defect detection process to point the in-
spector to the subset of information that is needed in this
situation. Therefore the groupware tool performs a filtering
task releasing the inspector from the management of all the
supplementary material available.

Based on these improvements, we expect the groupware-

supported inspection’s effectiveness (i.e., the number of de-
fects detected) and efficiency (i.e., the number of defects
found per invested hour) to perform better than the paper-
based inspection process due to the following relationships:

1. We reduce the effort required to perform certain defect
detection tasks, e.g., consistency checks between different
documents or different parts of one document, creation of
models. We further release the inspector from overhead ef-
fort like document management.

2. We reduce the overlap between individual inspectors by
allowing and supporting different levels and ways of com-
munication, e.g., each inspector’s annotations and potential
defects are ‘publicly’ observable.

We plan to conduct a controlled experiment in an aca-

demic environment to empirically evaluate the comparative
advantage of our groupware-supported inspection process to

Fig. 1: A Groupware-supported Inspection Process Framework

Defect Detection
(Inspector)

Defect Collection
(Inspector,Author,

Inspection Manager)

G r o u p w a r e S u p p o r t

Inspection Planning
and Management

Q-plan,
Economic Model
(Quality Manager)

Inspection Plan,
Reading Technique

(Inspection Manager)

Inspection
Evaluation

Decision on QA
Activities

(Quality Manager)

In Process and
A Posteriori Evaluation
(Inspection Manager)

D
oc

um
en

ts
 (I

ns
pe

ct
io

n
O

bj
ec

t,
Su

pp
le

m
en

ta
ry

 M
at

er
ia

l)

In
sp

ec
tio

n
Pr

oc
es

s
Ta

ilo
rin

g
(C

om
m

un
ic

at
io

n,
 A

sy
nc

./S
yn

c)

In
sp

ec
tio

n
Q

ua
lit

y
G

oa
ls

an
d

Ti
m

e
Sc

he
du

le

D
ef

in
e

In
sp

ec
to

r
R

ol
es

An
no

ta
tio

ns
D

ef
ec

t R
ep

or
ts

Tr
ee

 S
tru

ct
ur

e
of

 D
oc

um
en

t

C
on

te
xt

-S
en

si
tiv

e
In

fo
rm

at
io

n

C
om

m
un

ic
at

io
n

Fa
ci

lit
ie

s
In

sp
ec

tio
n

Pr
oc

es
s

G
ui

de

M
ee

tin
g

Pr
oc

es
s

Su
pp

or
t

D
ec

is
io

n
Su

pp
or

t

C
on

so
lid

at
ed

D
ef

ec
ts

C
on

so
lid

at
ed

An
no

ta
tio

ns

Au
to

m
at

ic
 D

ef
ec

t
C

ol
le

ct
io

n
Ai

d

In
sp

ec
tio

n
Pe

rfo
rm

an
ce

M
ea

su
re

s

D
oc

um
en

t Q
ua

lit
y

M
ea

su
re

s

In
sp

ec
to

r
Ev

al
ua

tio
n

traditional paper-based inspection.
As outlined in [17] the difference between students and

professionals might not be as significant as often argued in
the empirical software engineering community. As we have
experience with large controlled experiments in an academic
environment, we will use them to get first indications on how
tool-oriented and paper-oriented inspection relate to each
other.

For quality and inspection management in professional en-
vironments we expect the groupware-supported inspection
process to be an attractive option as it is based on a commer-
cially available group support system and also offers more
immediate inspection process control.

V. A GROUPWARE-SUPPORTED SOFTWARE INSPECTION
PROCESS

In this section we present the groupware-supported inspec-
tion process in detail. Fig. 1 shows the groupware-supported
inspection process framework. It shows the inspection proc-
ess activities and how they communicate with the groupware
tool, i.e., deliver input to and receive output from the group-
ware tool. In the following we discuss each process activity
and describe in detail how the groupware tool supports it. We
use the Group Support System (GSS) GroupSystems as a
platform for our realization. GroupSystems software was
developed at the University of Arizona and commercialized
by GroupSystems.com.

A. Activity 1 – Inspection Planning and Management
The Inspection Planning and Management activity pre-

pares the groupware tool for a concrete inspection run (see
Fig. 1). The inspection leader/manager is responsible for a
specific inspection run in general and in particular for this
process activity.

The inspection leader must ensure that all documents re-
quired for the inspection (e.g., requirements document as
inspection object, reading techniques, supplementary docu-
ments) are appropriately represented and configured in the
GSS tool. For an optimal support of the individual prepara-
tion phase we suggest to extract the structure of the inspec-
tion object, e.g., the requirements outline from a require-
ments document (see Fig. 2).

The GroupSystems tool partly automates this step for text
documents. Only information represented in figures and ta-
bles must be extracted either manually or semi-automatically
(depending on the data format of the requirements document)
and integrated in the document structure.

Note that there is no full text version of the requirements
document within the GSS tool, rather the contents of the
document is semantically grouped and organized in a
hierarchy of concepts. In addition the electronic full text ver-
sion of the specification document including tables and fig-
ures is available to the inspectors via external browsers.

The inspection leader must also link certain parts of the de-
fect detection techniques to nodes in the requirements hierar-
chy. This is necessary to enable context-sensitive information
for inspectors with defect detection aids and other supple-

mentary material. S/he might for example determine that a
certain set of questions of a checklist is only relevant for cer-
tain functional requirements, while another set is relevant for
the domain model. If requirements documents and defect
detection techniques have a similar structure across a com-
pany, this context-sensitive linking needs to be done only
once.

Furthermore the inspection leader has the possibility to tai-
lor the inspection process. The definition of the inspection
process includes deciding between synchronous or asynchro-
nous activities, determining the levels of communication
support and defining the concrete process steps to be fol-
lowed (e.g., synchronous inspection without meeting).

In order to enact the process definition, the inspection
manager selects the participating inspectors and assigns them
different roles and defect detection tasks with reading tech-
niques. These reading techniques can be based on a checklist
or on a set of scenarios. The inspection manager’s decision
on the concrete inspection process for a specific project situa-
tion also considers quality goals and time schedule con-
straints imposed by the project and/or quality management.

A main feature of the groupware-supported inspection
process is to support any inspection process, which enables
inspection managers to take specific project situations into
consideration and implement the “optimal” inspection proc-
ess for any particular situation (see research goal 1a in Sec-
tion IV).

Furthermore this high degree of flexibility allows changing
the inspection process during an actual inspection. This en-
ables the inspection manager to quickly react to develop-
ments and experiences gained during a specific inspection
run and to further optimize the inspection process (see re-
search goal 1.b in Section IV).

B. Activity 2 – Individual Preparation
After the inspection-planning phase, the individual prepa-

ration phase (i.e., defect detection) follows according to the
standard Fagan inspection process. A very important aspect
of tool-supported individual preparation is functionality for
document-handling. In this context the most important di-
mension is the definition of a defect location. Most existing
inspection tools (see Section II and Table A1 in the appen-
dix) provide full text in a browser and offer the possibility to
assign a reported defect or an annotation to a line of code,
some to single words and some to arbitrary lengths of text.
Assigning a reported defect to a single line in a document
might be reasonable for code documents but definitely unrea-
sonable for a requirements document where the line alone
usually has no meaning.

Therefore we view a requirements document as a struc-
tured document that can be represented as a hierarchy of con-
cepts and requirements and visualized in a tree (see Fig. 2).

Fig. 2: Structure of a sample requirements document in the group support
system (GSS) tool for outlining.

A reported defect can then be assigned to a specific node

in the requirements tree. The main advantage of this
approach is that each node contains context information and
can therefore be basically analyzed without reference to other
document parts. Another advantage of this approach is that
there are a limited number of potential defect locations that
simplify the comparison and collection of inspector annota-
tions (refer to research goal 2 in Section IV).

For the individual preparation process we suggest that in-
spectors still use a paper-based version of the requirements
document for reading. Harjumaa and Tervonen report em-
pirical evidence that reading electronic documents is less
effective than reading printed material [16]. However, if in-
spectors detect a potential defect, they can easily select the
appropriate node of the requirements tree and make an anno-
tation, i.e., a defect report or a comment, for this particular
node in the requirements tree.

As one aspect of supporting the defect detection tasks, we
suggest providing the electronic full text version of the re-
quirements document including tables and figures in an ex-
ternal browser (a plain text version can be provided in the
GSS tool). Thus allowing the inspector to automatically
search for words and phrases in the document. This is actu-
ally a very simple but powerful support for the inspection of
early life-cycle documents, like requirements documents,
where related information may be spread over multiple sec-
tions and represented in different models. Suppose an inspec-
tor reads through the functional requirements and finds a

term that is not clear in the current limited context. Now in a
plain paper-based inspection there are two possibilities. He
can either report the unclearness as a defect, which risks a
false positive, or search through the remaining document to
find a definition of the term, which is tedious and time-
consuming. If there is an electronic version available, the
inspector can simply search for the term and then determine
whether to make an annotation.

By simply providing the electronic full-text version, we
identify one way to provide the functionality to support indi-
vidual defect detection (see research goal 4 in Section IV).
However, another approach to achieve this goal is to provide
context-sensitive information to the inspector and to actively
lead the inspector through the defect detection process. With
context-sensitive information we mean that depending on the
current position of the inspector in the requirements docu-
ment, he receives information on which checks to perform
(checklist-based reading), on models to build (scenario-based
reading) or just on his general inspection goal for this section
(e.g., gather information or verify quality carefully). When
the inspector has finished the task, he informs the system of
the completion and then receives his next task.

The groupware support of the individual preparation phase
further includes the provision of communication facilities
that allow easy sharing of information among inspection
team members. This communication possibly might increase
individual inspection effectiveness and efficiency as inspec-
tors receive in-process more detailed information on the qual-
ity of the inspection object and thus can focus their effort on
those parts that require more attention. However, the inspec-
tion manager can tailor the amount of communication pro-
vided. There is a large spectrum of communication designs
available ranging from no communication at all (like in the
individual preparation phase of the standard paper-based
process) up to full communication (every inspection partici-
pant receives on-line any information and all annotations of
all other team members). An important aspect of our empiri-
cal evaluation work will focus on how different levels of
communication influence the performance of individual de-
fect detection.

C. Activity 3 – Defect Collection/Team Meeting
After the individual preparation phase the standard inspec-

tion process suggests conducting an inspection meeting to
collect and filter defect reports and to briefly discuss unclear
points and issues.

The aspect of defect collection is simplified in our ap-
proach as inspectors report annotations and defects linked to
common semantic nodes in the tree that was generated from
the inspection object (e.g., requirements tree). Therefore
there is a limited number of defect locations where each loca-
tion represents a certain semantic context. This is expected to
facilitate the collection and filtering of annotations and defect
reports. (see research goals 2b and 2c in Section IV).

In addition to collecting and filtering defect reports, in-
spection meetings should yield new defect reports due to the
exchange and brief discussion of defects found during indi-

vidual preparation. Groupware tools can very effectively
support such inspection meetings [10][11] by providing vot-
ing, discussion and decision support tools. However, a de-
tailed description of these meeting support techniques is be-
yond the scope of this paper.

However, the electronic support of meeting processes
might represent another key advantage of groupware-
supported inspection as there is empirical evidence that meet-
ings in paper-based inspections often show a poor perform-
ance [25]. Generally we suggest conducting an inspection
meeting, if inspector feedback after the individual prepara-
tion phase indicates that serious quality issues exist.

D. Activity 4 –Inspection Evaluation
A key advantage of applying the groupware-supported in-

spection process is the immediate possibility to evaluate in-
spection performance, as a large variety of data is electroni-
cally available. As far as inspection process evaluation is
concerned, we distinguish in-process and a posteriori evalua-
tion (see research goal 1b and 1c in Section IV).

In-process evaluation means that the inspection leader re-
ceives certain inspection measures (e.g., list of tasks
started/finished, effort used for certain tasks) on-line during
an inspection run, e.g., the number of annotations; the effort
spent on each defect detection activity. He can then use this
information to take appropriate actions. For example he
could decide to cancel certain defect detection activities, if no
defect reports were registered after a certain amount of time.
This fast feedback enables the inspection leader to appropri-
ately adjust the inspection process in order to ensure that the
inspection pays off in the end, e.g., reallocate tasks among
inspectors to optimize overall performance in the team.

A posteriori data analysis aims at evaluating the costs and
benefits of past inspection runs with the purpose of learning
from them and of improving effectiveness and efficiency for
further inspection runs. The most important evaluation as-
pects include:
- Document Quality: From the electronic defect lists and
annotations the project manager can assess the quality of the
inspected object. Furthermore it is possible to use different
defect content estimation techniques to further estimate the
defect potential of the document. This information can be
used to plan additional inspection cycles and to adjust the
project plan appropriately.
- Inspection Process Quality: Inspectors’ compliance with
the inspection process can be analyzed from their time-
stamped data entries. Moreover, it is possible to assess the
effectiveness of different defect detection activities.
- Inspector Performance: It is easy to assess the perform-
ance of each individual inspector. This supports inspection
management in determining especially productive inspector-
reading technique combinations.

Both in-process and a posteriori evaluation represent im-
portant foundations for empirical inspection process im-
provement. Inspection process monitoring and appropriate
process tailoring to specific project situations are important
features for increasing the acceptance of the inspection proc-

ess in practice. Using the groupware-supported inspection
process decreases on the one hand the risk of ineffective and
inefficient inspections. On the other hand, it increases the
probability of developing a highly beneficiary inspection
process optimized for the specific project situation.

VI. CONCLUSION AND FURTHER WORK
Although there is consensus that inspections are important,

especially in early development stages, and there have been
attempts to automate the inspection process, there still is a
need for integrated support for the whole inspection process.
These process activities with many collaborative elements
are so far only dealt with partially and not in an integrated
way by existing inspection tools.

In this paper we provided a concept to use a groupware
support system to address the needs of requirements inspec-
tion. In contrast to existing inspection tools, GSS technology
fits ideally for this purpose because it provides a flexible and
powerful set of tools to support the entire inspection process.
Main features and benefits of the resulting groupware sup-
ported requirements inspection process are:

1. Improved inspection management with electronic rep-
resentation of inspection documents (inspection object,
defect lists, feedback; reading techniques).
2. Improved handling of inspection documents using a
semantic structure of the inspected document for context
and navigation.
3. Tool support for reading techniques in the individual
defect detection activity.

Further work will be to evaluate the effort and potential
problems incurred when customizing a COTS GSS for the
groupware supported requirements inspection process. So far,
our tailoring experience shows that there is some initial effort
to tailor the GSS tool to the inspection process, which is
clearly less than implementing a tool from scratch. Further,
we estimate that the actual effort to prepare the previously
tailored GSS tool for an inspection run in a specific project
context will not exceed the effort to prepare a paper-based
inspection.

Based on the evaluation criteria presented in this paper we
will first replicate paper-based inspection experiments and
compare the results of teams, who follow the traditional pa-
per-based way, to teams, who use the groupware tool.

Based on these experiences we will in a second step de-
velop alternative reading techniques, which explicitly exploit
the advantages of the groupware system, and compare their
performance, to teams, who apply the current best inspection
practice with paper as medium. We will compare their effec-
tiveness and efficiency, and further the effort needed for in-
spection preparation and the overall cycle time of inspection
time.

For inspection management we will investigate the new
means for timely evaluation of inspection, which are possi-
ble, if groupware is used. Result of the investigation will be
an empirical contribution to which inspection tools work best
under certain project conditions.

ACKNOWLEDGEMENTS
This work is based on the contributions of many people:

The students and faculty involved in two paper-based inspec-
tion experiments at the Vienna University of Technology,
with 200 persons involved in each experiment. Michael Hal-
ling has been supported by the Austrian Science Fund, Grant
P-14128-COSIMIS. Stefan Biffl has been supported in part
under the Austrian Science Fund, Grant J-1948-INF.

REFERENCES
[1] Basili V., Green S., Laitenberger O., Lanubile F., Shull

F., Soerumgaard S., and Zelkowitz M., “The Empirical
Investigation of Perspective-Based Reading”, Empirical
Software Engineering: An International Journal, vol. 1,
no. 2, 1996, pp. 133-164.

[2] Bell Communications Research, “ICICLE User’s
Guide”, Bell, 1993.

[3] Biffl St., Halling M. “Software Product Improvement
with Inspection”, Proc. Of Euromicro 2000 Workshop
on Software Product and Process Improvement, Maas-
tricht, IEEE Comp. Soc. Press, Sept. 2000.

[4] Biffl St., Halling M., “A Framework for Economic Plan-
ning and Evaluation of Software Inspection Processes”,
Proc. of the Workshop on Inspection in Software Engi-
neering (WISE’01), July 2001.

[5] Boehm B., Grünbacher P., Briggs B., “Developing
Groupware for Requirements Negotiation: Lessons
Learned”, IEEE Software, May/June 2001, pp. 46-55.

[6] Briggs R.O., de Vreede G.-J., and Nunamaker J.F., Jr.,
“Thinklets: Achieving Predictable Repeatable Patterns of
Group Interaction with Group Support Systems (GSS)”,
Proc. HICSS 2001 (Hawaii Int’l Conf. System Sciences),
IEEE CS Press, Los Alamitos, Calif., 2001.

[7] Bull H. N., “Scrutiny User’s Guide”, Information Sys-
tems, Inc., U.S. Applied Research Laboratory, 1994.

[8] Fagan M., “Design and Code Inspections To Reduce
Errors In Program Development”, IBM Systems J., vol.
15, no. 3, 1976, pp. 182-211.

[9] Fowler M. and Kendall S., “UML Distilled. Applying the
Standard Object Modeling Language”, Reading, MA:
Addison Wesley Longman, 1998.

[10] Genuchten M., Cornelissen W., and Dijk C., “Supporting
Inspections With an Electronic Meeting System“, J.
MIS, vol. 14, no. 3, 1998, pp 165-178.

[11] Genuchten M., Dijk C., Scholten H., and Vogel D., “In-
dustrial Experience in Using Group Support Systems for
Software Inspections,” IEEE Software, vol. 18, no. 3,
May/June 2001, pp. 60–65.

[12] Gilb T., Graham D., “Software Inspection”, Addison-
Wesley, 1993.

[13] Grünbacher P., “Integrating Groupware and CASE Ca-
pabilities For Improved Stakeholder Involvement in Col-
laborative Requirements Engineering”, Proc. Euromicro
2000, pp. 232–239, IEEE Computer Society. ISBN 0–
7695–0780–8

[14] Grünbacher P., Briggs B., “Surfacing Tacit Knowledge
in Requirements Negotiation: Experiences using Easy-
WinWin”, Proc. Hawaii International Conference on
System Sciences, IEEE Computer Society, 2001.

[15] Halling M., Biffl St., (2001) “Using Reading Techniques
to Focus Inspection Performance”, Proc. of Euromicro
2001 Workshop on Software Product and Process Im-
provement, Warsaw, IEEE Comp. Soc. Press, Sept.
2001.

[16] Harjumaa L. and Tervonen I., “A WWW-based tool for
software inspection”, Proc. of HICSS-98, vol. 3, 1998.

[17] Höst M., Regnell B., and Wohlin C., “Using Students as
Subjects – A Comparative Study of Students and Profes-
sionals in Lead-Time Impact Assessment”, Empricial
Software Engineering, 5, p. 201-214, 2000.

[18] Johnson P.M., “An instrumented approach to improving
software quality through formal technical review”, Proc.
of the 16th International Conference on Software Engi-
neering, 1994.

[19] Laitenberger, O., “Cost-effective Detection of Software
Defects through Perspective-based Inspections”, PhD
thesis, University of Kaiserslautern, Germany,
www.iese.fhg.de, May 2000.

[20] Laitenberger O., and DeBaud J.-M., “An encompassing
life cycle centric survey of software inspection”, Journal
of Systems and Software, vol. 50, no. 1, 2000, pp. 5-31.

[21] MacDonald F., Miller J., “A Comparison of Computer
Support Systems for Software Inspection”, Automated
Software Engineering 6, 291-313, 1999.

[22] MacDonald F., “ASSIST V2.1 User Manual”, Technical
Report EfoCS-28-98, Department of Computer Science,
University of Strathclyde, 1998.

[23] Nunamaker J., Briggs R., Mittleman D., Vogel D., and
Balthazard P., “Lessons from a Dozen Years of Group
Support Systems Research: A Discussion of Lab and
Field Findings”, Journal of Management Information
Systems, Winter 1996-97, 13(3), pp.163-207.

[24] Regnell B., Runeson P., and Thelin T., “Are the perspec-
tives really different? – Further experimentation on sce-
nario-based reading of requirements”, Empirical Soft-
ware Engineering, 5, page 331-356, 2000.

[25] Votta L., “Does every Inspection need a Meeting?”,
ACM Software Eng. Notes, vol. 18, no. 5, 1993, pp. 107-
114.

APPENDIX

TABLE A1:
OVERVIEW ON THE PERFORMANCE FEATURES OF TOOLS FOR INSPECTION SUPPORT.

Functionality GSS
Inspection ASSIST [22] ICICLE [2] Scrutiny [7] WiP [16] CSRS [18] CSI / CAIS /

AISA
Inspection

Management

Inspection
Process

Asynchronous
and synchronous;
tailorable to any
inspection proc-

ess

Asynchronous
and Synchro-

nous; tailorable
to any inspec-
tion process

Synchronous;
Standard Fagan

Inspection

Synchronous;
Inspection

Method of Bull
HN Information

System

Asynchronous;
GRCM quality

model.

Asynchronous;
tailorable to any

inspection
process

Synchronous;
Asynchronous;

Humphrey
Model of In-

spection
In-Process Inspec-
tion Management Supported Not supported Not supported Not supported Not supported Not supported Not supported

Meetings

Support for elec-
tronic meetings
is a key compe-
tence of GSS.

Supported Not supported Supported Not supported Not supported Supported

Decision Support
(Polls, Voting) Supported Supported Not supported Supported Not supported Supported Supported

Defect/Data
Collection Supported Supported Supported Supported Supported Supported Supported

A Posteriori
Inspection
Evaluation

Supported Partially
supported.

Partially
supported. Supported Partially

supported. Supported Partially
supported.

Document
Handling

Document Types Any type
supported.

Any type
supported. Plain Text Plain Text Plain Text Plain Text Plain Text and

Graphics

Document
Representation

In the GSS the
document and its

information is
represented in a

tree;
Full text avail-

able using exter-
nal browsers.

Full text of
document

within an ap-
propriate
browser.

Full text of
document

within an ap-
propriate
browser.

Full text of
document

within an ap-
propriate
browser.

Full text of
document within

an appropriate
browser.

Document is
represented as a
series of nodes
with full text.

Full text of
document within

an appropriate
browser.

Linked
Annotations

Annotations of
various types can
be made for each

tree node.

Line-oriented Line-oriented Line-oriented,
Current Focus Line-oriented Annotations for

each node. Line-oriented

Defect Detection
Support

Supplementary
Documents

Checklists, sce-
narios, task de-
scriptions and

further informa-
tion is supported.

Supported;
Checklists

Supported, but
no checklists. Not supported Supported;

Checklists Not supported Supported;
Checklists

Context- and
role-specific

tasks/information
Supported Not supported. Not supported. Not supported. Not supported. Not supported. Not supported.

