The systematic Adaptation of Perspective-based
Inspections to Software Development Projects

Oliver Laitenberger, Kirstin Kohler

Abstract— Software inspection is an established approach for
detecting and removing defects immediately after software
documents are created. However, the advance of software
technologies, processes, and methods, such as the widespread
adoption of object-orientation, raises new problems regarding
software quality assurance with inspections. An important one is the
question of how developers can perform the individual defect
detection activity of an inspection in a systematic manner. Recent
results suggest the use of scenario-based reading techniques for this
purpose. Among the existing scenario-based techniques the
perspective-based reading technique is particularly promising, since
it can be used in a cost-effective manner for the systematic defect
detection in various document types. Cost-effectiveness benefits,
however, are only feasible if the technique is appropriately tailored to
the characteristics of the software development project. The goal of
this paper is to present a systematic process on how to perform the
tailoring. An example is detailed to illustrate the process. Following
the process described in this paper allows practitioners to upgrade
their existing inspection approach with a more systematic reading
technique, that is, to implement and perform perspective-based
inspections. The benefits are more rigorous inspections with an
improvement of inspection cost-€effectiveness.

Index Terms—Software Inspection, Reading Technologies,
Perspective-based Reading

1. INTRODUCTION

Software inspection® is an approach that allows the
detection and removal of defects immediately after
software documents are created. Since the seminal introduction
of the generic notion of inspection to the software domain in
the early 1970s [8], it has evolved into one of the most cost-
effective methods for early defect detection and removal. Its
proponents claim that inspections can lead to the detection and
correction of anywhere between 50 and 90 percent of defects
[6] [10]. Moreover, rework costs can be reduced considerably,
since defects are typically found directly after they were
introduced. In addition to these quantitative benefits,
inspections also expose qualitative ones. An example is the
fact that early defect detection and removal improve the
predictability of software projects and help project managers
stay within schedule, since problems are unveiled throughout
the early development phases. Costly rework cycles at the end

¢ O. Laitenberger and K. Kohler are with the Fraunhofer Institute for
Experimental ~ Software Engineering, Sauerwiesen 6, D-67661
Kaiserslautern, Germany
E-mail: {Oliver.Laitenberger, Kirstin.Kohler} @iese.fhg.de
1 In this paper, we use “software inspection” as an umbrella term for non-
execution based quality assurance procedures. It includes, for example,
Formal Technical Reviews (FTR), but excludes management or team
meetings.

of the development or maintenance project are therefore
avoided. Another example is the learning effect of inspection
participants that helps developers prevent defects in
subsequent development phases. In this way, inspections help
turning the defect detection into a defect prevention process
[10].

A software inspection involves activities in which qualified
personnel determine whether software documents are of
sufficient quality for subsequent development activities. It
usually consists of several steps including planning, defect
detection, defect collection, and defect correction. An
inspection organizer is responsible for planning. The defect
detection and defect collection activities can be performed
either by inspectors (i.e., developers) individually, or in a
group meeting. Recent empirical findings reveal that the
synergy effect of inspection meetings is rather low in terms of
defects detected detected [12] [22] [26]. Therefore, defect
detection should be considered an individual rather than a
group activity. Defect collection, on the other hand, is often
performed in a team meeting (i.e., an inspection meeting). The
main goals of the team meeting are to agree on anomalies that
inspectors have detected individually, to eliminate false
positives, and to specify the defects for correction. An
inspection usually ends with the correction of the documented
defects by the author. Figure 1 illustrates the various phases.
More information about the process, products, and roles of an
inspection can be found in [14].

Software
Documerts
A "
Form
organizet Planning
e
)) i
!l’
;
. 3
moderator EDH?'”
repeser [i
authar Cellection
[/ e

- Activities ﬂ

Software
Products Inspection

Comested
Softuars
Documerts,

Fig.1. The Software Inspection Process (Roles, Activities, and
Products)

In existing inspection implementations the inspection results
in the form of defects detected highly depend on human
factors, such as the experience of inspectors and context
criteria, such as the amount of preparation effort available.
Both, the human dependency and the costs associated with
inspections are primary reasons of practitioners for not
adopting inspection technology on a larger scale. The many
benefits of inspections, such as early defect detection and
defect cost reduction, are often not considered in this
discussion. Even if these benefits are taken into account,
practitioners often argue that only minor defects, such as
spelling mistakes, are detected. Major ones that have a
significant impact on the quality of the system are only
detected in later development phases, testing, or system usage.
And this can really be the case if either very junior people will
be involved in the inspection for learning purposes or if there
is a shift in the development technology (e.g., moving to
object-orientation). Since in both cases developers are
unfamiliar with the artifacts, typical sources of defects,
standards, guidelines, and other important context criteria, they
do not know what to look for and how to perform the required
quality checks in an inspection. Without any technical
guidance or support, they are therefore not in the position to
detect defects beyond trivial ones. But even for experienced
developers, the inspection results are sometimes questionable
for two reasons. First without any technical support, each
inspection participant may look for the same defects or check
the same quality attributes. Other, equally important quality
attributes may get too little attention. As a consequence defects
slip through the inspection process and propagate to later
phases where their detection and correction costs escalate.
Second, today’s software artifacts can be very large. Without
any guidance on what to check, most of the inspectors often
perform their scrutiny sequentially. They start their checking
activity at the beginning of document and read through the
document page after page. However, because of fatigue and
boredom effects the pages at the beginning of the artifact are
getting much more inspector attention than the pages at the end
of it. These effects are illustrated in the following figure that
characterizes the attention level as a function of the size of the
artifact inspected:

A

Attention Level

Size of the Artifact

Fig.2. The Relationship between Attention Level and the
Size of the Artifact inspected

According to Figure 2, all inspectors spend proportionally
more effort for checking quality properties at the beginning of
the artifact than at the end of it. As a consequence, the
probability that a defect at or near the end of the artifact is
actually detected is lower than for a defect at the beginning of
the artifact. Hence, a better strategy would be to assure that all
information in the artifact gets about the same level of
attention from inspectors (i.e., that the effort density is about
the same for almost every piece of information in the
document).

To address most of these problems, Victor Basili proposed
scenario-based reading [5]. The basic idea of a scenario-based
reading technique is the use of so-called scenarios that allow
inspectors to share the defect detection workload and at the
same time offer more procedural support for inspectors (to
alleviate the impact of human factors on inspection results). In
the context of this work, a reading scenario is defined as an
algorithmic guideline for the inspector that describes how to
go about finding the required information in a software
artifact, as well as what that information should look like. A
scenario can therefore be regarded as the vehicle for individual
defect detection in inspections.

Several examples for scenario-based reading techniques
have been suggested so far [4][23][25]. Among them,
perspective-based reading (PBR) is particularly promising
[4][13]. The idea behind this technique is to let inspectors read
the software document(s) from particular stakeholder
viewpoints. For each of these viewpoints either one or multiple
scenarios are defined. Each scenario provides a specific focus
onto the artifact and the inspectors follow the scenario
throughout their scrutiny. The success of the PBR approach
has already been demonstrated in number of different
empirical studies [4][23][25]. These studies have also showed
that tailoring of PBR to project specifics and context
characteristics is required to be most cost-effective. However,
little information is currently available for practitioners on how
to tailor it. This gap needs to be closed to broaden the
applicability of the technique and to ensure its scalability to
different project situations.

An initial step in this direction has already been described in
[17]. However, we believe that the description is not detailed
enough for practitioners to be directly applicable. This paper
therefore details a full flavoured process for the systematic
adaptation of the perspective-based reading techniques to the
particuliarities of a software project after introducing the basic
principles of scenario-based reading techniques and PBR. The
process helps practitioners develop PBR scenario with which
they can update their existing inspection implementation, that
is, to implement perspective-based inspections. The process
therefore ensures a smooth transition to a more rigorous
scrutiny in an inspection with its positive impact on inspection
cost-effectiveness.

The paper is structured as follows: Chapter 2 describes the
essential elements of scenario-based reading techniques.
Chapter 3 presents details of perspective-based reading.

Chapter 4 illustrates the process for the development and
improvement of perspective-based reading scenarios. Chapter
5 finally concludes.

2. SCENARIO-BASED READING TECHNIQUES

2.1. Basic Idea behind Scenario-based Reading

Although reading is fundamentally about recognizing and
understanding words, sentences, and graphics, people read in
different ways and for different reasons. To understand
different kinds of reading, it is useful to characterize reading
along two dimensions: the nature of engagement with a
document and the breadth of the activity across documents.
The educator Mortimer J. Adler [2] describes the engagement
with a document as varying from active to passive. Active
reading combines reading with critical thinking, learning, and
decision making, whereas passive reading is less careful and
requires less effort. Active reading tends to involve writing,
especially note-taking and annotation, while this is often not
the case for passive reading. The second dimension - breadth
across documents- varies with each reader and each type of
reading. Reading a single document involves bookmarking and
navigating, whereas reading multiple documents involves
sorting, filing, and navigating. In the software domain, most
existing reading approaches or techniques, such as ad-hoc (i.e.,
no reading support) or checklist-based reading [10] (i.e., a set
of questions to answer throughout or after the scrutiny) , can
be characterized as passive reading with a focus on at least two
documents.

Active reading of multiple documents, such as suggested by
Parnas and Weiss [20] [21], is important for the defect
detection activity in software inspections. In our opinion,
active reading of multiple documents is the vehicle for
understanding information about a software entity. In cognitive
science, understanding is often characterized as the
construction of a mental model that represents the objects and
semantic relations in a text. Hence, cost-effective reading
techniques for defect detection in inspection must assist
inspectors in the construction of their mental models by
strengthening factors that support this process and by
weakening those that impede it.

Two factors, in particular, are crucial in this respect:
coherence as a positive influence on understanding and
cognitive overhead as a negative one. A document is coherent
if an inspector can construct a mental model from it that
corresponds to facts and relations in a possible world.
Cognitive overhead, on the other hand, is information that is
unnecessary for understanding. A reading technique for the
purpose of defect detection should therefore support the
construction of a mental model and, at the same time, avoid
cognitive overhead of inspectors.

The mechanism to achieve this goal is to focus the attention
of inspectors to specific information in the document that is
crucial for their understanding. The scenario-based reading
techniques take advantage of this mechanism and, thus,

influence both of these factors in the desired direction. A
reading scenario supports the construction of a mental model
by actively guiding people to construct artifacts while reading
and, at the same time, avoids cognitive overhead by pointing
inspectors to the relevant, limited set of information. In this
way an inspector gets guidance in the construction of his or her
mental model. The problem of cognitive overhead is
alleviated, since the inspector does not have to understand
each and every detail in the document. The concrete
implementation of this idea becomes transparent after
explaining the structure of the reading scenarios.

2.2. Structure of a Reading Scenario

To ensure that each inspector is following a specific reading
approach, the scenario-based techniques provide guidance for
an inspector in the form of scenarios [5][13][25]. A scenario
explains how to read and examine the information in the
documentation. In a sense, it provides algorithmic guidelines
on how inspectors ought to proceed while reading. The
guidelines in the scenario include procedures for extracting the
information as well as procedures for examining the extracted
information. The scenario itself consists of three major
sections: introduction, instructions, and questions (Figure 3).

Scenario

Introduction

Instruction

Questions

Fig.3. Generic Structure of a Reading Scenario for
Perspective-based Reading

e The introduction part describes the quality
attributes most relevant for the scrutiny of the
inspector. It also includes a short description of the
role or perspective taken by the inspector
throughout the defect detection activity.

e The instructions describe activities about what kind
of documents an inspector is to use, how to read
the documents, and how to extract and examine the
appropriate information from them. While
identifying, reading, and extracting information,
inspectors may already detect some defects.
However, an inspector is to follow the instructions
for three reasons. First, instructions help an
inspector decompose large documents into smaller

parts. This is crucial because people cannot easily
understand large documents. Understanding
involves the assignment of meaning to a particular
document or parts of it. It is a necessary
prerequisite for detecting major defects, which are
often the expensive ones to remove if detected in
later development phases. Second, the instructions
require an inspector to actively work with the
documents. This ensures that an inspector is well
prepared for the following inspection activities,
such as the inspection meeting. Finally, the
instructions help an inspector focus his or her
attention on the information that is relevant for one
particular stakeholder. This avoids swamping
inspectors with unnecessary details and alleviates
the problem with cognitive overhead.

e Questions at the end of the scenario ask if the
examined information fulfills a set of given quality
factors. Once an inspector has achieved an
understanding, he or she can examine and judge on
a solid basis whether the information as described
fulfils the required quality factors. For making this
judgement, a set of questions focuses the attention
of an inspector on specific aspects of the
information, which can be competently answered
because of the understanding attained. In this way,
the instructions put the inspectors in the position to
make informed decisions while answering the
guestions.

3. THE PERSPECTIVE-BASED READING TECHNIQUE

Perspective-based reading represents an specific
instantiation of the scenario-based reading techniques. The
main idea behind the perspective-based reading technique is
that a software product should be inspected from the
perspective of different stakeholders [4] [7] [13]. The rationale
is that there is no single monolithic definition of software
quality, and little general agreement about how to define any
of the key quality properties, such as correctness,
maintainability, or testability. Therefore, inspectors of an
inspection team have to check software quality as well as the
software quality factors of a software artifact from different
perspectives. The perspectives mainly depend upon the roles
people have within the software development or maintenance
process.

Figure 4 illustrates the idea of reading a document from
multiple perspectives. There, a given document is read from
the perspective of a designer, tester, and user.

For each perspective, either one or multiple scenarios are
defined, consisting of repeatable activities an inspector has to
perform, and questions an inspector has to answer. The
activities are typical for the role within the software
development or maintenance process, and help an inspector
increase his or her understanding of the software document
from the particular perspective.

&
o

Document

|
M

User

Designer \

Fig.4. Reading a Document from Multiple Perspectives

For example, designing test cases is a typical activity
performed by a tester. Therefore, an inspector reading from the
perspective of a tester may have to think about designing test
cases to gain an understanding of the software product from
the tester's point of view. Instructions guide the scrutiny of the
document. Once understanding is achieved, questions about an
activity or questions about the result of an activity can help an
inspector identify defects. An example of a perspective-based
scenario is presented later on.

Reading a document from different perspectives is not a
completely new idea. It was seeded in early articles on
software inspection, but never worked out in detail. Fagan [8]
reports that the real tester should inspect the piece of code.
Fowler [9] suggests that each inspection participant should
take a particular point of view when examining the work
product. Graden et al. [11] state that each inspector must
denote the perspective (customer, requirements, design, test,
maintenance) by which they have evaluated the deliverable.
However, if the stakeholders are available for the inspection,
but inexperienced, they do not know what to look for and how
to perform the scrutiny. In this situation, the PBR technique
prevents defect slippage to later phases by providing concrete
reading guidance for the specific stakeholders.

So far, the perspective-based reading technique has been
applied to inspecting requirements documents [4], object-
oriented design models [17], and code documents [15][16].
Moreover, it has been tailored to the Rational Unified Process
[18] and component-based development [3]. However, there is
no detailed description of how to set up the various scenarios.
Practitioners, however, require this kind of information, since
the full advantage of PBR can only be observed if the
technique is adequately tailored to the project specifics.

4. A PROCESS FOR PBR SCENARIO DEVELOPMENT

The success of a scenario-based reading technique, such as
perspective-based reading, relies on the ability of software
engineers not only to follow existing scenarios, but to create
new ones that fit in the development environment. In addition,
the creation of new scenarios may be necessary because of the
need to accommodate new types of documents, new defect
categories, new stakeholders, or a new development paradigm.

Because of the fact that most of these characteristics are
specific to development projects, the scenarios often have to
be written from scratch before they can be reused in many
projects of an organization. This requires activities (i.e., a
process) that can be easily followed and results in the required
scenarios.

4.1. Process Description

The process consists of several vital steps to come up with
an initial set of PBR scenarios. Part of the process is the use of
available stakeholder expertise and human capital in the
specific project or organization. Hence, in addition to the
description of each step, we provide questions the scenario
developer might use for interviewing the various stakeholders
to get the crucial information for scenario creation. In some
cases we also give guidelines for the evaluating the results of
the activities based on our experiences.

Figure 5 outlines the process for scenario development.

1. Determine document to be
inspected

2. Specify stakeholders for the
document type

!

3. Create table with mapping of
stakeholders to documents

l

4. ldentify stakeholders/roles to
be used to create scenarios

3

5. Set up Introduction part of
the scenario

6. Set up Instruction part of the
scenario

7. Set up Question part of the
scenario

8. Create (if needed)
documentation needed for the
Instructions

Fig.5. The Scenario Development Process

1) Determine document to be inspected
In the process of scenario creation, the initial step is
to determine the kind of information that needs to be
inspected and the kind of documentation that is
currently available for the information. An answer to
these questions largely depends on the nature of the
underlying development method. A product model
of the development process might support the
definition of an appropriate set of information and
documentation to be inspected. In function-oriented

2)

3)

development methods, the information typically
relate to systems, subsystems, modules, or functions.
The documentation typically involve requirements,
design, or code documents. In object-oriented
development approaches, information relates to
classes, objects, and operations (i.e., methods) as
well as systems, subsystems, and modules. In this
case the documentation typically involve a set of
(graphical) analysis and design models together with
their textual description.

Specify stakeholders for the document type

The different stakeholders that have a vested interest
in the information under inspection need to be
specified. As a starting point, the scenario developer
may look at stakeholders that have a particular role
in the software development process. Each role that
contributes to the creation of the document, or uses
(reads or changes) it as part of his/her work might be
used as role for one scenario. For example, assume
the document to be inspected is a requirements
document. Throughout the development process the
requirements engineer creates this document (i.e.,
documents the information on the expected
functionality of a software system), the tester uses
the information to generate test cases or run tests, the
designer reads it to create the design, and the
customer verifies whether the document describes all
desired functionality. In this example there are at
least four stakeholder roles, which might serve as an
input for the creation of reading scenarios. Each of
these roles has its own requirements in terms of
quality and, therefore, has a different view on the
document type and information. If a particular
document is not of interest to any stakeholder, its
value to the overall software development process is
questionable. Helpful questions to identify all
perspectives/roles are the following:

- Who reads this document?

- Who writes (part of) this document?

- Who decides upon the content of the document?

- Who has a special interest in the document?

Create table with mapping of stakeholders to
documents

The scenario developer identifies which of the roles
need information from which document. In doing so,
the scenario developer determines the information
content of the document and identifies which part of
the document and what kind of information in the
document is most important for a particular
stakeholder (e.g., to perform his or her role in the
software development process). In many
environments, the various document types, their
contents and stakeholders’ roles are included in the
description of the software development process
(i.e., the process documentation). The relationship

4.)

5)

6.)

between document types and stakeholder roles can

be best characterized and captured in a tabular

format.

Identify stakeholders/roles to be used to create

scenarios

The scenario developer has to decide which of the

identified roles should be used to create scenarios.

The table resulting from step 3 may help identify the

set of perspectives that provides full coverage of the

information. It might make sense to exclude roles

that have a very similar view on the document (such

as a black-box and a white-box tester).

Each of the scenarios to be defined should have a

title that specifies the type of documentation to be

inspected and the name of the role the scenario is

based on. The name of the role should reflect a role

name that is well known in the environment. The

names are often included in the process model.

Set up introduction part of the scenario

For each of the scenarios the introductory part needs

to be described. The scenario developer should

name the role title for the chosen perspective. In

addition the main goal and tasks of a person with

that role have to be stated.

Helpful questions to define and describe the

introduction are:

- What is the main task of a person having that role?

- What is the main interest of that role?

- What is the measure of success?

- When has she/he done a good job?

- Which quality aspect is this person most interested
in?

The introduction should not be longer than 2-3

sentences.

Set up instruction part of the scenario

In the next step the instruction part of the scenario

has to be set up. The scenario developer describes

the activities the stakeholder usually performs with

the information in the documentation. The activities

have to be phrased in a way that makes inspectors

document the extracted and examined information

(e.g., marking them with a colored pen or writing

parts of the information down) and thereby force the

instructor to actively work with the document under

inspection.

Helpful questions are the following:

- What are the parts of the document the stakeholder
is interested in?

- How does he/she find this information?

- In what section, picture, diagram, ...
find the information?

- What tasks do the person perform with that
information?

- How does he/she perform that task?

- What documentation is he/she creating as part of

can he/she

that task?

The instruction part should not be longer than a
page.

7) Set up question part of the scenario
The next step in defining a scenario is to set up the
questions an inspector is to answer based on the
extracted information and the understanding of the
information he or she has achieved. Characteristics
of typical problems in a particular environment,
exemplified by defect distributions, are useful
information for developing the questions, since they
are often typical representatives of problems in an
environment. However, only those questions are to
be included in a scenario that an inspector can
answer with the understanding he or she can achieve
based on the extracted information. While closed
questions (i.e., questions with a yes/no answers
should be used to check specific scenario results or
quality aspects, open questions should trigger further
defect scrutiny. The question part should not contain
more than 7+/-2 questions [19].

8.) Create (if needed) documentation needed for the
instructions
Finally all documents needed in order to perform the
activities specified in the instruction part have to be
created. This might for example include use case
templates if the inspector has to create use-cases.
These documents will be given to the inspectors
together with the scenarios.

The granularity of the instruction part should have
enough detail for an inspector to follow the given
instructions in a step-by-step manner. This captures the
information and quality attributes the inspectors have
checked. If defects slip through the inspection process, this
information can be analyzed to improve the scenarios.
Hence, it becomes transparent how the inspectors achieved
the results of the defect detection activity.

Both, the level of granularity and specificity depend on
the knowledge of the inspectors. Junior inspectors require
more precise and detailed instructions on how to perform
the required checks than senior ones. For the latter the
question part of a scenario may be more important, since
they are already familiar with the activities of a specific
perspective. For some perspectives it might be difficult to
describe activities as part of a scenario that are small enough
to be fully completed within the scope of the inspection. For
example an inspector reading a requirements document from
the perspective of an architect cannot define the entire
architecture in its full detail. Hence, an adequate level of
abstraction for the activity has to be chosen. In the example
presented later on, the architect should not develop the
entire architecture, but identify the main components of the
system.

The instruction part of the scenario also allows the
integration of more formal approaches for checking the

quality of information described in a document. The
scenario-based approach therefore allows a smooth
adaptation of formal techniques in inspection practice.

In different companies, we experienced very different
capabilities of people to create scenarios. According to
their maturity, scenario development required from half an
hour to one day of effort. In general we observed, that it is
much easier to create scenarios if the process of an
organization is well defined with all responsibilities, roles,
activities and documents. In a way, the development of
scenarios has much in common with describing the
development process. If an organization does not have a
well-defined process, scenario creation might be conducted
in a kind of workshop with all stakeholders. Such a
workshop facilitates the creation of a common
understanding within the team and at the same time
increases the acceptance of the scenarios within the team.

4.2. Example of the Scenario Development Process

We consider it important to provide an example to
demonstrate the process of deriving a scenario. For this
purpose, we use an object-oriented development process
(i.e. Fusion). Our main goal is to demonstrate the feasibility
of the development approach in the context of a specific
inspection situation. Although we describe in detail how to
develop the scenario for this situation, the scenario itself is
more generic in the sense that it can be used for other
inspections of the same type of information and
documentation. The numbers used to explain the example
reflect the numbers used in the process description of the
previous section.

1. The first task in setting up a perspective-based reading
scenario is to define precisely the information and the
documentation that will be the subject of the inspection.
In this example, it is the description of a system
operation (i.e. the "validation_result" operation of a
check out point of sales subsystem). The documentation
of the operation includes an operation schemata, class
diagrams, collaboration diagrams, and operation
pseudocode. The following Figures 6 to 9 present
examples of the diagram types for which scenarios can
be developed. It is important to mention that the
scenarios are specific to the diagram type and not to the
information described in the diagrams.

2. The next step is to define the stakeholders that have an
interest in the quality of the information in the
documents, and thus represent a perspective from which
to inspect it. Any person, or role, which is in some way
affected by the information's quality, however remote,
can serve as the basis of an inspection perspective. In
this example we will consider the typical stakeholders
used in perspective-based inspection, which are defined
in terms of the roles in the development process.

Operation: validation_result
Description: Completes a payment by credit card
Reads: supplied walid : Boolean, supplied credit @ integer
Changes:
Sends: display:{invalid, insufficient_credit}, till {open}
database (completed_sale}
Assum es:
Result: if valid = true then
if credit > bill.total then
the message completed _sale(bill) has been sent to the database
the message open has been sent to till
else
the message insufficient_credit has been sent to display
else
the message invalid has been zent to display

Fig.6. Operation Schemata

1.r 0.
l—‘ Product_Description ’7

Bill displays &

sum: Integer

0.s j) |
& displays —
Payment e Display
prints 0 1

1 0.r

Printer

stores =
Database | 0

siores &

1

Fig.7. Operation Schemata

walidation_resut (valid

‘ walic] 1 total = get_totdl - Integer
Boolean, credt : Integer)) el # !
—»

— <Eil

—>
[sufficient_credit] 3 open

[sufficient_credt p: PCS Controller Tl Inetece
T completed_sale (b Bill
-+ [nvalid]1: invaid
—»
—>»
da Datzbase Interface (nsuficit_cred] gl Inefece

2 nsufficient_credt

Fig.8. Collaboration Diagram

aperation PO Systewn: vafidation_result fvalid : Baolean, credit : Integer)
ifvalid = true then
get the total from the Lill
ifcradit = billintal then
tell the dutabase inferface 2 send the bill fo the dafabase
tell the il interface to apen the &1
elae if eradit = billsotal dhen
tell the intorface chaplyy to display insufficient_credhit message
el
tell the interface display to digplay the card tnvalid message

Fig.9. Operation Pseudocode

3. Hence, the stakeholders we could consider are
requirements engineer, designer, tester, and maintainer.

Although the list of stakeholders is not exhaustive, it
serves to illustrate the approach.

TABLE I
RELATIONSHIP BETWEEN DOCUMENT TYPES AND ROLES
Require- Designer | Tester Maintainer
ments
Engineer
Operation v v v
Schema
Class v
Diagram
Collaboration v v
Diagram
Operation v v v
Pseudocode

Table 1 demonstrates that some perspectives only
check the quality among analysis documents while
others check the mapping between analysis and design
documents. This does not represent a clean separation
between horizontal reading (i.e., checking the quality of
models on one level of development) and vertical
reading (i.e., checking the quality of models between
levels of development). It rather demonstrates the
coverage that can be achieved by selecting relevant
perspectives.

In this example, we select the designer to illustrate the
next steps.

We set up the introductory part of the scenario as
follows:

" Assume you are inspecting a system operation from
the perspective of a a designer. The main task of a
designer is to describe how the operation meets its
responsibilities in terms of interactions between
objects. High quality is determined by correctness of
the design with respect to the specification, and the
satisfaction of performance goals.”

The next step is to identify the instruction part:

”Locate the collaboration diagram, the pseudocode
description and the schema for the operation. For
each possible outcome of the postcondition, ensure
that the appropriate messages are dispatched
between the appropriate objects to achieve the
desired goal. Mark the outcome as well as the
message with a colored pen. Check that the outcomes
and the messages described in the pseudocode and
the collaboration diagram are consistent.”

The question part of the scenario include the
following ones:
1. For every message defined in the operation
schema, is there a corresponding message sent in
the collaboration diagram?

2. For every attribute that is changed in the
operation schema, is an appropriate message sent
to the corresponding object in the collaboration
diagram?

3. Are there any discrepancies between the
algorithms defined in the collaboration diagram
and the pseudocode description?

4. Are the initial conditions for starting up a
function clear and correct?

5. Are the effects of a function specified under
all possible circumstances?

7. For this scenario no additional documents need to be
crested.
Figure 10 present the complete scenario for reading the
documentation of a system operation from the perspective of a
designer.

Designer Scenario for the System Operation

Introduction:

Assume you are inspecting a system operation from the
perspective of a designer. The main task of a designer is to
describe how the operation meets its responsibilities in terms
of interactions between objects. High quality is determined by
correctness of the design with respect to the specification, and
the satisfaction of performance goals.

Instruction:

Locate the collaboration diagram, the pseudocode description
and the schema for the operation. For each possible outcome
of the postcondition, ensure that the appropriate messages are
dispatched between the appropriate objects to achieve the
desired goal. Mark the outcome as well as the message with a
colored pen. Check that the outcomes and the messages
described in the pseudocode and the collaboration diagram
are consistent.

Questions:

1. For every message defined in the operation schema,
is there a corresponding message sent in the
collaboration diagram?

2. For every attribute that is changed in the operation
schema, is an appropriate meSsage sent to the
corresponding object in the collaboration diagram?

3. Are there any discrepancies between the algorithms
defined in the collaboration diagram and the
pseudocode description?

4. Are the initial conditions for starting up a function
clear and correct?

5. Arethe effects of a function specified under all
possible circumstances?

Fig.10. Scenario for Reading the Documentation of a
System Operation from the Designer’s Perspective

8. For this scenario no additional forms and templates
need to be developed for the defect scrutiny. The
inspectors only need a standard form for documenting
the defects detected. Examples of this kind of form
can be found in [11].

4.3. Scenario Improvement

After the development of the reading scenarios the
experiences of using them in the inspection process are a
major source of information for their improvement. In addition
quantitative information about the inspection process also
indicates improvement opportunities for the defect detection
activity. The improvements may be characterized and
described according to the following dimensions:

. Number of Perspectives
To determine and optimize the number of perspectives,
the scenario developer needs to analyze the collected
inspection data. In particular he or she needs to analyze
the defect slippage, i.e., those defects that were not
detected throughout an inspection. This situation can
occur if important quality attributes for a specific group
of stakeholders were omitted. The solution to this issue
is an additional stakeholder perspective in an
inspection. A rigorous defect inspection data analysis
may also reveal that the quality checks of a particular
perspective are already included in other ones. In this
case, this particular perspective does not reveal a
benefit to the inspection team results and , thus, can be
omitted.

. Number of Scenarios
In some cases the scope of the required activities for a
single perspective may be too effort consuming for a
single scenario. A larger than usual preparation effort
for inspectors applying this scenario may indicate the
Situation. As a consequence the inspector may be
overwhelmed with too many information and quality
checks. Defects may therefore be not detected although
covered by a particular scenario. A solution to this issue
is to set up two scenarios that involve different
activities for a particular stakeholder perspective. Each
of these scenarios can be given to different inspectors
to avoid overloading.

. Level of Specificity
It may be necessary to change the level of specificity of
the scenarios and provide a more or less detailed
description of the activities. The necessity can be
determined by interviewing the inspectors that work
with the various scenarios. The feedback throughout the
interviews can also be used to guide the scenario
improvement.

. Level of Abstraction
The chunk of information that an inspector needs to
check may be too large. An indication for this is the
amount of preparation effort each inspector spends. In
this case it may be better to create a second scenario to
split the work among inspectors.

. Experience of Inspectors
Throughout the development project, the inspectors
become increasingly familiar with the different
scenarios. This may justify a change in the description
of activities. Interviews with the inspectors help

determine this situation and drive scenario
improvement.
. New Problems in the Environment

New issues, such as new defect classes, may pop up in
the specific environment or new findings in the
environment can make it necessary to change the
scenario description (i.e., either the activities, the
questions, or both). This depends on the specific
situation and is related to the topic of software process
improvement.
. Coverage

A measurement program for inspections may reveal that
some defects slip through the inspection process.
Defect causal analysis can be used to refine the
scenarios in a way that help inspectors detect these
defects. This helps avoid future defect slippage.

All these dimensions with their suggestions help improve
the PBR scenarios. Scenario improvement directly impacts
inspection defect detection effectiveness and, thus, the cost of
defects in a particular project or organization.

5. CONCLUSION

Software inspections belong to the most cost-effective
methods for quality improvement and cost reduction. Despite
their many benefits, they are not used on a broad basis in the
software industry. Part of the problem is the human nature of
inspections as well as their costs. Scenario-based reading
techniques have been suggested to alleviate this problems.
Several scenario-based reading techniques, such as the
perspective-based reading technique have already been
described and their benefits have been empirically validated.

Given the body of evidence demonstrating the cost-
effectiveness of scenario-based reading in general and
perspective-based reading in particular, one might have
expected more comprehensive support on how to adapt this
technique to project characteristics. However, this is rarely the
case. This paper has filled this gap and presented a detailed
process for tailoring perspective-based inspections to project
specificities.

The process allows practitioners to develop an initial set of
perspective-based reading scenarios and upgrade their existing
inspection implementation with a more rigorous defect
detection technique (i.e., to implement the perspective-based
inspection approach). In this way, practitioners can leverage
and amplify the cost-effectiveness of their inspections. This
effect has already been demonstrated in a number of empirical
studies. More information can be found at
http:\\Www.iese.fhg.de\Inspections .

REFERENCES

(1

(2

(3]

(4

(5]
(6]

(7

(8l
(9
(10

(11]

[12]

[13]

[14]

(19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Ackerman, A. F., Buchwald, L. S., and Lewsky, F. H., 1989. Software
Inspections: An Effective Verification Process. IEEE Software, 6(3):
31-36.

Adler, M.J., van Doren C., How to Read a Book, Simon and Schuster,
New York 1972.

Atkinson, C., Bayer, J., Bunse C., Kamsties, K., Laitenberger, O., Laqua
R., Muthig, D., Paech, B., Wiist, J., Zettel, J., Product Line Engineering
with the UML, Addison-Wesley Publishing Company, To appear in
2001.

Basili, V., Green, S., Laitenberger, O., Lanubile, F., Shull, F,
Sorumgard, S., and Zelkowitz, M., 1996. The Empirical Investigation of
Perspective-based Reading. Journal of Empirical Software Engineering,
2(1):133-164.

Basili, V. R., 1997. Evolving and Packaging Reading Technologies.
Journal of Systems and Software, 38(1).

Briand, L., EI-Emam, K., Fussbroich, T., and Laitenberger, O., 1998.
Using Simulation to Build Inspection Efficiency Benchmarks for
Development Projects. Proceedings of the 20th International Conference
on Software Engineering, pages 340-349.

Briand, L. C., Freimut, B.G., Klein, B., Laitenberger, O., and Ruhe,
G., 1998, Quality Assurance Technologies for the EURO Conversion -
Industrial Experience at Allianz Life Assurance, in 2nd International
Software Quality Week Europe, Brussels, Belgium.

Fagan, M. E., 1976. Design and Code Inspections to Reduce Errors in
Program Development. IBM Systems Journal, 15(3):182-211.

Fowler, P. J., 1986. In-process Inspections of Workproducts at AT&T.
AT&T Technical Journal, 65(2):102-112.

Gilb, T. and Graham, D., 1993. Software Inspection. Addison-Wesley
Publishing Company.

Graden, M. E., Horsley, P. S., and Pingel, T. C., 1986. The Effects of
Software Inspections on a major Telecommunications-project. AT&T
Technical Journal, 65(3):32-40..

Johnson, P.M., Tjahjono, D., 1998, Does Every Inspection Really Need
a Meeting, Journal of Empirical Software Engineering, vol. 3, no. 1, pp.
9-35.

Laitenberger, O., Cost-Effective Detection of Software Defects through
Perspective-based Inspections, PhD-Thesis, University of
Kaiserslautern, ISBN 3-8167-5583-6, 2000.

Laitenberger, O. and DeBaud, J.-M., A Survey of Work in Software
Inspections, Journal of Systems and Software, vol. 50, no. 1., 2000.
Laitenberger, O. and DeBaud, J.-M., 1997. Perspective-based Reading
of Code Documents at Robert Bosch GmbH. Information and Software
Technology, 39:781-791.

Laitenberger, O., El Emam, K., and Harbich, T., 2001, An Internally
Replicated Quasi-Experimental Comparison of Checklist and
Perspective-based Reading of Code Documents. IEEE Transactions on
Software Engineering, 2001.

Laitenberger, O., Atkinson, C., 1999, Generalizing Perspective-based
Inspection to handle Object-Oriented Development Artifacts, in
Proceedings of the International Conference of Software Engineering.
Laitenberger, O., Kohler, K. Atkinson, C., Architecture-centric
Inspection for the Unified Development Process (UP), Proceedings of
the European Conference on Software Testing, Analysis and Review,
2000

Miller, G.A., 1956, The magical number seven, plus or minus two: some
limits on the capacity for processing information. The Psychological
Review, 63(2):81-97.

Parnas, D. L., 1987. Active Design Reviews: Principles and Practice.
Journal of Systems and Software, 7:259-265.

Parnas, D. L. and Weiss, D., 1985. Active Design Reviews: Principles
and Practices. Proceedings of the 8th International Conference on
Software Engineering, pages 132-136. Also Available as NRL Report
8927, 18 November 1985.

Porter, A. A. and Johnson, P. M., 1997. Assessing Software Review
Meetings: Results of a Comparative Analysis of Two Experimental
Studies. IEEE Transactions on Software Engineering, 23(3):129-144.
Porter, A.A., Votta, L., 1998. Comparing Detection Methods for
Software Requirements Inspection: A Replication using Professional
Subjects, , Journal of Empirical Software Engineering, vol. 3, no. 4, pp.
355-378.

[24]

[29]

[26]

10

Porter, A. A., Votta, L. G., and Basili, V. R., 1995. Comparing
Detection Methods for Software Requirements Inspections: A
Replicated Experiment. IEEE Transactions on Software Engineering,
21(6):563-575.

Travassos, G., Shull, F., Fredericks, M., and Basili, V.R., 1999.
Detecting defects in object oriented designs: Using reading techniques
to increase software quality. In the Conference on Object-oriented
Programming Systems, Languages & Applications (OOPSLA).

Votta, L. G., 1993. Does Every Inspection Need a Meeting? ACM
Software Eng. Notes, 18(5):107-114.

