On Inspection and Verification of Software With

Timing Requirements
Jia Xu

Abstract— Many current practices in writing real-time
software make it extremely hard, if not impossible, to verify
that the resulting software satisfies given timing require-
ments. However, if certain restrictions are imposed on the
software structure, inspection of the software for timing is
much easier. We discuss procedures applying the restric-
tions that greatly simplify the task of inspecting software
with timing requirements.

Keywords— Software inspection, verification, timing re-
quirements, current practices, complexity, restrictions, soft-
ware structure, pre-run-time scheduling.

I. INTRODUCTION

ORE and more infrastructure of the world is becom-

ing dependent on computer systems that have timing
requirements. Communications, transportation, medicine,
energy, finance, defense, are all increasingly involving pro-
cesses and activities that require increasingly precise ob-
servance of timing constraints. One likely reason for this
unrelenting trend towards real-time synchronization and
coordination, is that tighter synchronization and coordina-
tion of processes and activities, generally result in higher
efficiency, throughput and productivity. A global reference
is needed, if a large number of different processes and ac-
tivities are to be coordinated and synchronized on a global
basis. Time provides such a global reference. Real-time
software is often required to handle the coordination and
synchronization of many different processes and activities.
This seem to be one of the reasons why real-time and em-
bedded software that must observe timing constraints are
experiencing explosive growth.

In contrast, there is a conspicious lack of effective meth-
ods and tools for verifying timing properties of software,
despite an increasingly pressing need for such methods and
tools.

What is the main reason for this apparent difficulty in
developing effective methods and tools for verifying tim-
ing properties of software? The problem is the complexity
of software, especially nonterminating concurrent software,
and the complexity of such software’s possible timing be-
haviours.

Timing requirements and constraints in concurrent, real-
time software pose special problems for software inspection
and verification. The basic premise of any software inspec-
tion or verification method, is that it should be able to
cover all the possible cases of the software’s behaviour.
Taking into account timing parameters and constraints

Current address: Department of Computer Science, York Univer-
sity, 4700 Keele Street, North York, Ontario M3J 1P3, Canada.

This work was partially supported by a Natural Sciences and En-
gineering Council of Canada grant.

adds a whole new dimension to the solution space. The
number of different possible interleaving and/or concur-
rent execution sequences of multiple threads of software
processes and activities that need to be considered when
timing constraints are included, may increase exponentially
as a function of the size of the software, and may result in
an explosion of the number of different cases that needs to
be examined. This may make it exceedingly difficult to use
verification and inspection techniques that systematically
examine all the possible cases of program behaviour.

Examples of proposed formal methods for real-time sys-
tems, include, amongst others, timed automata [2], timed
transition systems/temporal logic [7] [13] [8], Modecharts
[9], theorem proving techniques using PVS to analyse
real-time scheduling protocols [6]. The common difficulty
of applying these methods to actual real-time software
(as opposed to simplified high level abstractions of algo-
rithms/protocols which are only approximations of the ac-
tual software and which do not take into account all the
implementation details that may affect timing) is the ex-
ponential blowup in complexity. As discussed in [2], in
any precise model that attempts to capture all the possi-
ble cases of software behaviour, the complexity is propor-
tional to the number of states in the global timed structure
describing the software implementation. If no restriction
is imposed on the software structure, then the number of
states is exponential in the number of system components,
making it impractical to apply these methods to cover all
the possible states corresponding to large scale complex
real-time software’s overwhelmingly large number of possi-
ble timing behaviours.

II. IMPOSING RESTRICTIONS ON SOFTWARE
STRUCTURE TO REDUCE COMPLEXITY

If the problem is the complexity of software and its over-
whelmingly large number of possible timing behaviours,
then what can be done? The most apparent answer would
be to find ways to reduce that complexity.

Perhaps a parallel can be drawn between the problem
of constructing software that is in general easier to under-
stand, prove correct, and maintain; and the problem of
inspecting and verifying the timing of real-time software.

Some of the most significant progress and most enduring
results in software engineering were achieved through im-
posing restrictions on software structure. Information hid-
ing, the idea of abstract interfaces, the idea of hierarchical
structuring and modular decomposition [13], [14]; the ideas
of structured programming [5], and organizing concurrent
software as a set of cooperating sequential processes [4], are
examples.



People came to understand the importance of imposing
restrictions on software structure.

- Without appropriate structure, the interactions be-
tween code sections are unrestricted. Any part of the pro-
gram could cause a serious failure.

- Without appropriate structure, the software becomes
a sea of details, and it becomes extremely difficult to be
convinced that that sea of details fits together to achieve
the required functionality.

- Without appropriate structure, it is far less likely that
an inspection method would be effective in verifying a com-
plex software’s properties through “divide and conquer”
[15]. Spaghetti code will make it difficult to decompose the
code in a way such that each partition of the code could
be studied independently of the rest of the code.

- Without putting restrictions on the ways in which con-
current processes interact and communicate, race condi-
tions occur in which the outcome of the execution depends
on the particular order in which access to shared data takes
place.

The same general principle, imposing restrictions on soft-
ware structure to reduce complexity, seems also to be the
key to constructing software so that timing properties can
be easily inspected and verified.

Software with hard timing requirements should be de-
signed using a systematic approach to make their timing
properties verifiable and easy to inspect. There will prob-
ably never exist a general method or tool that can verify
the timing properties of any arbitrary piece of software, just
like it is unlikely that general methods or tools will prove
effective in verifying properties of a badly structured pro-
gram consisting of “spaghetti” code woven together with
”goto” statements.

III. CURRENT PRACTICES IN THE DESIGN OF
REAL-TIME SOFTWARE THAT MAKE IT
DIFFICULT TO INSPECT AND VERIFY
TIMING PROPERTIES

In the following, we mention current practices in the de-
sign of real-time nonterminating and concurrent software
that make it more difficult to verify and inspect timing
properties, very much like the unrestricted use of “goto”
statements destroy the structure of regular programs and
make it more difficult to inspect and verify their properties.

(a) Complex synchronization mechanisms are used in
order to prevent simultaneous access to shared resources.
These synchronization mechanisms often use queueing con-
structs where queueing policies such as FIFO and blocking
can make the timing behaviour unpredictable.

(b) Real-time processes not only execute at random
times; they are often allowed to preempt other processes at
random points in time. Not only the context switch times
vary, but it also results in a huge increase in the number of
different possible execution interleaving sequences, many
of which may have unpredictable effects on timing.

(c¢) The execution of run-time schedulers and other oper-
ating system processes such as interrupt handling routines

with complex behaviours (and often with the highest prior-
ities) interleave with the execution of real-time application
processes, affecting the timing of the application processes
in subtle and unpredictable ways.

(d) When many additional constraints are required by
the application, such as precedence constraints, release
times that are not equal to the beginning of their periods,
low jitter requirements, etc., are added to the timing con-
straints, because current run-time scheduling algorithms
and mechanisms are unable to solve such problems, prac-
titioners use ad hoc run-time methods to try to satisfy the
additional constraints. These ad hoc run-time methods
tend to affect timing in highly unpredictable ways.

(e) Priorities are used to try to deal with every kind
of requirement [17]. The priority assignments often con-
flict with other application requirements. In practice, task
priorities are rarely application requirements, but are used
instead as the primary means for trying to meet timing con-
straints. These priorities frequently change, which greatly
complicates the timing analysis.

(f) Task blocking is used to handle concurrent resource
contention, which, in addition to making the timing unpre-
dictable, may result in deadlocks.

Even in fairly simple systems in which a few of the above
practices are used, inspecting software with timing con-
straints can still be a very daunting task. For example, in
one study fixed priority scheduling was implemented using
priority queues, where tasks were moved between queues
by a scheduler that was ran at regular intervals by a timer
interrupt. It had been observed that, because the clock in-
terrupt handler had a priority greater than any application
task, even a high priority task could suffer long delays while
lower priority tasks were moved from one queue to another.
Accurately predicting the scheduler overhead proved to be
an extraordinarily complicated task, even though the sys-
tem was very simple, with a total of only 20 tasks, where
tasks did not have critical sections, priorities do not change,
and the authors of the study are considered to be among
the world’s foremost authorities on priority scheduling [3].

When the above current practices are used in combina-
tion with each other, the high complexity of the interac-
tions between the different entities, and the sheer number
of different possible combinations of those interactions, sig-
nificantly increase the chances that some important cases
will be overlooked in the inspection process.

If some of the world’s top experts on priority schedul-
ing have such difficulty predicting the timing behaviour of
such a small and limited system, it would indeed be very
difficult for most people to be able to inspect and accu-
rately verify the timing behaviour of large scale, complex,
nonterminating, and concurrent software written using the
current practices just described.



IV. RESTRICTIONS ON SOFTWARE
STRUCTURE THAT WILL SIMPLIFY
INSPECTION AND VERIFICATION OF
TIMING

We have observed from experience that the following set
of restrictions on software structure will simplify inspection
and verification for timing.

(1) The software is structured as a set of cooperating se-
quential processes.

(2) Each process is divided into a sequence of segments,
according to exclusion relations' and precedence relations?
defined on the process segments.

(3) The number (Norgering) of different possible relative
orderings of the run-time process segment executions in
each Least Common Multiple of the periods of the set of
periodic processes (including asynchronous processes that
are translated to periodic processes) in each system mode is
a relatively small constant in relation to the number of pro-
cess segments. That is, the value Nyygering should largely
be independent of the number of process segments; the
value Nordering Should not increase greatly when the num-

ber of process segments grows?.

If the above restrictions on software structure are satis-
fied, then the inspection and verification of timing will be
simplified because:

(a) The number of different cases of timing of the soft-
ware that needs to be inspected to verify that all timing
constraints will be satisfied is O(Norgering) in the worst
case.

(b) The number of different cases of timing of the soft-
ware that needs to be inspected to verify that all exclu-
sion relations and precedence relations will be satisfied is
O(Nordering) in the worst case.

(¢) The number of different cases of timing of the soft-
ware that needs to be inspected to verify that deadlock will
not happen is O(Norgering) in the worst case.

It should not be hard to see that each of the current
practices mentioned in the previous section do not satisfy
the restrictions above.

Applying the restrictions should significantly reduce the
number of different states in the global timed structure

LA process segment % is said to ezclude another process segment
7 if no execution of j can occur between the time that ¢ starts its
computation and the time that ¢ completes its computation. Exclu-
sion relations may exist between process segments when some process
segments must prevent simultaneous access to shared resources such
as data and I/O devices by other process segments.

2A process segment i is said to precede another process segment
j if j can only start execution after ¢ has completed its computa-
tion. Precedence relations may exist between process segments when
some process segments require information that is produced by other
process segments.

3This also implies that Nordering should not increase greatly when
aperiodic processes are translated into periodic processes.

describing the software implementation, and should help
in preventing the kind of blowup in complexity which in
the past has been one of the main obstacles to applying
formal methods to model and verify timing properties of
software mentioned near the end of the first section of this

paper.

V. A PROCEDURE FOR STRUCTURING

REAL-TIME SOFTWARE THAT WILL
SIMPLIFY INSPECTION AND
VERIFICATION OF TIMING

Below we describe a procedure, which we call pre-run-
time scheduling, for structuring real-time software, which
will simplify inspection and verification of timing, because
the procedure satisfies the restrictions listed in Section 4.

Without loss of generality, suppose that the software we
wish to inspect for timing consists of a set of sequential pro-
grams. Some of the programs are to be executed periodi-
cally, once in each period of time. Some of the programs are
to be executed in response to asynchronous events. Assume
also that for each periodic program we are given the earli-
est time that it can start its computation, called its release
time; the deadline by which it must finish its computation;
its worst-case computation time; and its period. For each
asynchronous program we are given its worst-case compu-
tation time, its deadline, and the minimum time between
two consecutive requests. Furthermore, suppose there may
exist some sections of some programs that are required to
precede a given set of sections in other programs. This
may happen when there is a producer-consumer relation-
ship between the two sections. There also may exist some
sections of some programs that exclude a given set of sec-
tions of other programs, i.e., once a section has started its
computation it cannot be preempted by any section in the
set that it excludes. This may happen when the two sec-
tions read and write common data. Also suppose that we
know the computation time and start time of each program
section relative to the beginning of the program containing
that section.

The procedure consists of the following steps:

(1) Organize the sequential programs as a set of sequen-
tial processes to be scheduled before run-time.

(2) Divide each process into process segments according
to the precedence and exclusion relations defined on the
pairs of program sections.

(3) Calculate the release time and deadline for each seg-
ment.

(4) Translate asynchronous segments into periodic seg-
ments using the algorithm in [11] [12].

(5) Compute off-line a schedule, called a pre-run-time
schedule for the entire set of periodic segments, including
new periodic segments translated from asynchronous seg-
ments, occurring within a time period that is equal to the



least common multiple?* of all periodic segments, which sat-
isfies all the release time, deadline, precedence, and exclu-
sion relations [21] [20] [18] [19].

(6) At run-time schedule all the periodic segments in ac-
cordance with the previously computed schedule.

By following this procedure, all the restrictions in the
previous section are easily satisfied. This makes it very
easy to inspect the timing behaviour of all the processes,
and verify that all the timing requirements will be satisfied.
(See Fig. 1 for an example of a pre-run-time schedule)

dB dc dD dE dA
ATB D rc TE
A y
B [DlA] C E A .
01 41 51 60 90100 140 161

Fig. 1. A pre-run-time schedule for the 5 process segments A, B, C,
D, E, that satisfies the timing constraints: 74 = 0,c4 = 30,ds =
161;rg = 11,cg = 30,dg = 51; ro = 60,cc = 10,dc = 90;rp =
41,¢p = 10, dp = 100;7g = 90,cg = 50,dg = 140; and satisfies the
precedence relations: B PRECEDES D; and satisfies the exclusion
relations: A EXCLUDES D, A EXCLUDES B, B EXCLUDES C, C
EXCLUDES E, C EXCLUDES D, D EXCLUDES E.

(a) Instead of having to exhaustively analyze and inspect
a huge number of different possible interleaving/concurrent
task execution sequences, with a pre-run-time scheduling
approach, one only needs to inspect one single pre-run-time
schedule each time.

(b) In each pre-run-time schedule, the interleav-
ing/concurrent task execution sequence is statically and
visually laid out in one straight line of code. This makes it
easy to verify, by straightforward visual inspection of the
pre-run-time schedule, that all the timing constraints such
as release times and deadlines, periods, low jitter require-
ments, etc., are met by the execution sequence.

(¢) Instead of using complex, unpredictable run-time
synchronization mechanisms to prevent simultaneous ac-
cess to shared data, the pre-run-time scheduling approach
prevents simultaneous access to shared data simply by con-
structing pre-run-time schedules in which critical sections
that exclusion each other do not overlap in the schedule.
This makes it easy to verify, by straightforward visual in-
spection of the pre-run-time schedule, that requirements
such as exclusion relations and precedence relations be-
tween code segments of real-time tasks, are met by the
execution sequence.

(d) Instead of having to assume that context switches
can happen at any time, it is easy to verify, by straightfor-
ward visual inspection of the pre-run-time schedule, exactly
when, where and how many context switches may happen.

4When the process periods are relatively prime, the Least Common
Multiple (LCM) of the process periods and the length of the pre-run-
time schedule may become inconveniently long. However, in practice,
one often has the flexibility to adjust the period lengths in order to
obtain a satisfactory length of the LCM of the process periods. While
this may result in some reduction in the processor utilization, the
reduction should be insignificant when compared to the decrease in
processor utilization with priority scheduling.

(e) In a pre-run-time schedule, there is no possibility of
task deadlocks occurring.

(f) With a pre-run-time scheduling approach, one can
switch processor execution from one process to another
through very simple mechanisms such as procedure calls,
or simply by catenating code when no context needs to be
saved or restored, which simplifies the timing analysis.

(g) With a pre-run-time scheduling approach, an auto-
mated pre-run-time scheduler can help automate and speed
up important parts of the inspection process. Whenever a
program needs to be modified, a new pre-run-time sched-
ule can be automatically and quickly generated, allowing
one to quickly learn whether any timing requirements are
affected by the modifications.

(h) With a pre-run-time scheduling approach, a “divide-
and-conquer” approach can be applied. By a simple visual
inspection of the pre-run-time schedule to identify which
group of tasks form a continuous utilization of a proces-
sor, one can easily draw conclusions regarding which tasks’
timing characteristics affect which other tasks’ timing char-
acteristics. For example, if a task misses its deadline in the
pre-run-time schedule, the schedule allows one to immedi-
ately focus attention on those tasks whose timing charac-
teristics, if changed, may allow that task to meet its dead-
line, while ignoring those tasks that will have no impact on
the task in question.

(i) Pre-run-time scheduling can make it easier to imple-
ment a relatively constant “loop time” for control systems
software, making it easier to implement and verify timing
properties that span longer durations by making use of the
loop time; and it can also help to reduce jitter in the out-
put and guarantee constant sampling times for inputs both
of which can be critical to guarantee stability of feedback
control systems.

(j) Because in each pre-run-time schedule, the interleav-
ing/concurrent task execution sequence is statically laid
out in one straight line of code, the number of different
states in the global timed structure describing the software
implementation should be significantly reduced, and this
should simplify the use of formal methods to verify timing
properties.

The pre-run-time scheduling approach has numerous
other important advantages, including:
(i) ability to effectively handle complex constraints and de-
pendencies;
(ii) lower run-time overhead,;
(iii) higher processor utilization, etc.

Since we are mainly concerned with inspecting and veri-
fying the software’s timing behaviour, readers are directed
to [17] for a more detailed discussion on the other ad-
vantages of the pre-run-time scheduling approach not dis-
cussed in this paper. For another example of a procedure
using the pre-run-time scheduling approach that can han-
dle many different types of processes, while satisfying the
restrictions listed in Section 4, see [16].

In addition to pre-run-time scheduling, there exist other
important aspects of good modular design (e.g. clean in-



terfaces to parts of the system that implement timers) that
can simplify both inspection and verification, which we
plan to discuss in a future version of this paper.

VI. SUMMARY

Many current practices in writing real-time software
make it extremely hard, if not impossible, to verify that
the resulting software satisfies given timing requirements.
However, if certain restrictions are imposed on the software
structure, inspection of the software for timing is much eas-
ier. We discuss procedures applying the restrictions that
greatly simplify the task of inspecting software with timing
requirements.

VII. APPENDIX: DISCUSSION ON PERCEIVED
DISADVANTAGES OF THE PROPOSED
METHOD.

Some people may have the perception that pre-run-time
scheduling is less flexible, requires more effort to design,
and requires more execution time, compared with alterna-
tives, mainly priority scheduling schemes. In the following
we shall provide reasons for which we believe that these
perceptions are mostly misconceptions.

1. There is a perception that once the process segments
have been scheduled into a pre-run-time schedule, then it
will be difficult to modify the system to meet new require-
ments, making the system inflexible and requiring more
design effort. This perception was actually created in the
past when the earlier and more primitive form of pre-run-
time schedules - cyclic executives, were constructed com-
pletely by hand because of a lack of suitable algorithms to
automate the task. Once the cyclic executive schedule was
generated, because of the difficulty of the task of reschedul-
ing the processes to obtain a new cyclic executive schedule,
whenever changes to the system were required, system de-
signers would directly modify the cyclic executive schedule,
causing the original processes’ logical structure to be lost
in the schedule after a few modifications, making it very
difficult to understand and very difficult to further modify
the system, resulting in a system described as “fragile” by
designers.

With the availability of more recently developed pre-run-
time scheduling algorithms [21] [20] [18] [19], real-time sys-
tems can be built using a different approach. The task
of constructing pre-run-time schedules can now be com-
pletely automated using the pre-run-time scheduling algo-
rithms. This allows the designer to always maintain the
system structure in two distinct but corresponding levels -
a higher logical level consisting of the original cooperating
sequential processes and the various logical constraints in-
cluding timing constraints defined on those processes; and
a lower implementation level consisting of the pre-run-time
schedule, that is, the execution ordering of those processes.
Whenever changes to the system are required, instead of
directly altering the pre-run-time schedule at the lower im-
plementation level, the designer modifies the original co-
operating sequential processes at the higher logical level,

using the higher level knowledge about the logical struc-
ture of the processes and the logical constraints on them.
After the modifications on the processes have been com-
pleted, the designer can use the pre-run-time scheduling
algorithms to automatically reschedule the modified pro-
cesses and segments, to obtain a new pre-run-time sched-
ule. This allows designers to always keep intact any desired
logical properties in the original process structures that are
useful for understanding, maintaining and reasoning about
the properties and correctness of the programs, and use
those logical properties to continue to make further mod-
ifications or add new features/processes to the system at
the higher logical level.

2. One of the reasons for which we believe that the pre-
run-time scheduling approach actually provides more flex-
ibility than the priority scheduling approach, is that with
the priority scheduling approach, the execution orderings
of processes are constrained by the rigid hierarchy of prior-
ities that are imposed on processes, whereas with the pre-
run-time scheduling approach, there is no such constraint
— the system designer can switch from any pre-run-time
schedule to any other pre-run-time schedule in any stage
of the software’s development. Here are a few examples.

(a) It has been frequently claimed that the priority
scheduling approach has superior “stability” compared
with other approaches, because “essential” processes can
be assigned high priorities in order to ensure that they meet
their deadlines in transient system overload situations [10].
The Rate Monotonic Scheduling approach assigns higher
priorities to processes with shorter periods, because it has
been proved that, if processes with longer periods are as-
signed higher priorities, then the schedulability of the whole
system will be severely reduced. However, essential pro-
cesses may not have short periods. While suggestions like
cutting essential processes into smaller processes that are
treated as processes with short periods have been made®,
these suggestions not only increase run-time overhead, but
also add new artificial constraints to the problem, which
increase the complexity and reduce the schedulability of
the whole system. In real-time applications, under differ-
ent circumstances, different sequences of process execution
may be required, and sometimes different sets of processes
become “essential.” This is a problem which cannot eas-
ily be solved by assigning a rigid hierarchy of priorities to
processes.

A pre-run-time scheduling approach can guarantee essen-
tial processes just as well, or better, than a priority schedul-
ing approach. When using the pre-run-time scheduling ap-
proach, in the case of system overload, an alternative pre-
run-time schedule which only includes the set of processes
that are considered to be essential under the particular cir-
cumstances can be executed. As pre-run-time schedules

5A similar suggestion is described in [10] that suggests assigning
high priorities to processes with low-jitter requirements. The diffi-
culty is similar: processes with low jitter requirements may not have
short periods.



can be carefully designed before run-time, the designer has
the flexibility to take into account many different possible
scenarios in overload situations, and tailor different strate-
gies in alternative schedules to deal with each of them.

(b) A frequently mentioned example of the “flexibility”
of the priority scheduling approach, is the fact that there
exists a schedulability analysis for the priority scheduling
approach that is based only on knowledge of the total pro-
cessor utilization of the task set. This is supposed to pro-
vide more flexibility because “determining the schedulabil-
ity of a system when an additional task is added requires
recomputing only the total schedulability bound and de-
termining whether the new utilization caused by the addi-
tional functionality causes the new bound to be exceeded
[10].”

What is perhaps less well known about processor utiliza-
tion based schedulability analyses, is the fact that the use
of such analyses may cause the system designer to under-
utilize the system’s capacity. Processor utilization based
analyses are invariably pessimistic; they give sufficient but
not necessary conditions for schedulability. In other words,
if one were to rely on the schedulability analysis, one may
be forced to conclude that the fixed priority scheduling al-
gorithm cannot be used, and take measures that further
reduce the processor utilization in order to meet the pro-
cessor utilization conditions provided by the schedulability
analysis, even in the simplest of cases where the fixed pri-
ority scheduling algorithm may have been able to schedule
the processes under the original conditions (for a detailed
example, see [17]).

It has also been claimed that, with a pre-run-time
scheduling approach, it is more difficult to handle asyn-
chronous processes when compared with using priority
scheduling schemes [10] [1]6.

In [17], we provided an example in which the reverse
is true. The example shows that, with a pre-run-time
scheduling approach, once the pre-run-time schedule has
been determined for all the periodic processes, the run-
time scheduler can use this knowledge to achieve higher
schedulability by scheduling asynchronous processes more
efficiently, e.g., it would be possible to completely avoid
blocking of a periodic process with a shorter deadline by
an asynchronous process with a longer deadline.

In contrast, real-time system designers using the pre-run-

6Tn [10], where a particularly rigid version of a pre-run-time schedul-
ing approach, the cyclic executive, was applied to an example prob-
lem, in order to show the difficulties in applying the cyclic executive,
the author did not illustrate how the fixed priority executive could
solve the same example scheduling problem. The fixed priority execu-
tive will have an equal or even greater difficulty in handling that same
example problem. In the other paper [1] which attempts to show that
a priority scheduling approach can solve an example problem that was
given in one of our papers, the example problem parameters in our
paper [21] were changed. If the original problem parameters in our
paper were used, the proposed solution would fail. In addition, the
proposed solution used offsets for which apparently no algorithm was
given that can systematically compute those offsets.

time scheduling approach have the freedom to use any op-
timal scheduling algorithm to construct new pre-run-time
schedules that include new processes and add new function-
ality to the system. Performing modifications to the system
on-line is also not difficult. One can easily insert code in
pre-run-time schedules that, when activated by an exter-
nal signal, will cause processor execution to switch from a
previously designed pre-run-time schedule to a newly de-
signed pre-run-time schedule during run-time. The system
designer is not constrained to use a rigid hierarchy of pro-
cess priorities, and has more flexibility in designing new
pre-run-time schedules to meet changing requirements.

3. It is noted here that sometimes one can achieve
higher processor utilization if certain asynchrounous pro-
cesses with very short deadlines and computation times
and long interarrival times are not translated into periodic
processes but are kept asynchonous. A complete proce-
dure for doing this, which can be completely automated,
is described in [16]. First the procedure determines which
asynchronous processes should be translated into periodic
processes and which should remain asynchronous based
on their respective processor utilizations. Then the pro-
cedure reserves processor capacity for processes that are
kept asynchronous in the pre-run-time schedule by adding
their computation times to the computation times of the
periodic processes that have longer deadlines, and allow-
ing those asynchronous processes with very short deadlines
to preempt the periodic processes with longer deadlines at
run-time. A small run-time scheduler is used for this pur-
pose. With this approach, one would always achieve higher
processor utilization compared with any priority scheduling
scheme. At the same time, since in most real-time applica-
tions the number of asynchronous processes with very short
deadlines is normally very small, the complexity will not be
significantly increased with this approach and it will still be
possible to effectively inspect and verify timing properties
of the software.

VIII. ACKNOWLEDGEMENTS

The author wishes to thank the reviewers for numerous
thoughtful comments and helpful suggestions on how to
improve this paper. In particular, thoughtful comments
from one of the referees, have been incorporated into item
(i) and (j) and the last paragraph of section 5 of the paper.

REFERENCES

[1] N. Audsley, K. Tindell and A. Burns, “The end of the line for
static cyclic scheduling,” Proc. Fifth Euromicro Workshop on
Real-Time Systems, 36-41, 1993.

[2] R. Alur, D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, 126, 1994, 183-235.

[3] A. Burns, K. Tindell, and A. Wellings, “Effective analysis for en-
gineering real-time fixed priority schedulers,” IEEE Trans. Soft-
ware Eng., 21, 1995, 475-480.

[4] E.W. Dijkstra, “Cooperating Sequential Processes.” In Program-
ming Languages, F. Genuys, Ed. Academic Press, 1968, 43-112.

[5] E. W. Dijkstra, “Structured Programming”, in Software Engi-
neering Techniques, J. N. Buxton and B. Randell, Ed. Brussels,
Belgium; NATO Sci. Affairs Div. 1970, 84-87.

[6] B. Dutertre, ”Formal analysis of the priority ceiling protocol,”



IEEE Real-Time Systems Symposium, Orlando, FL, pp. 151-160,
Nov. 2000.

[7] E. A. Emerson, and E. M. Clarke, “Using branching time tem-
poral logic to synthesize synchronization skeletons,” Science of
Computer Programming, vol. 2, 241-266, 1982.

[8] T. Henzinger, Z. Manna, and A. Pneuli, “Temporal proof method-
ologies for real-time systems,” Proc. 18th ACM Symp. on Prin-
ciples of Programming Languages, 353-366, 1991.

[9] F. Jahanian and A. Mok, “A graph-theoretical approach for tim-
ing analysis and its implementation,” IEEE Trans. on Comput-
ers, vol. 36, pp. 961-975, 1987.

[10] C. D. Locke, “Software architecture for hard real-time applica-
tions: cyclic executives vs. fixed priority executives,” Journal of
Real-Time Systems, 4, 37-53, 1992.

[11] A. K. Mok, “Fundamental Design Problems of Distributed Sys-
tems for the Hard-Real-Time Environment”, Ph.D Thesis, De-
partment of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts,
May 1983.

[12] A. K. Mok, “The design of real-time programming systems based
on process models”, in Proc. IEEE Real-Time Systems Sympo-
stum, pp- 5-17, Dec. 1984.

[13] J. Ostroff, “Temporal Logic of Real-Time Systems,” Research
Studies Press, 1990.

[14] D. L. Parnas, “On the criteria used in decomposing systems into
modules,” Commun. ACM, vol. 15, pp. 1053-1058, Dec. 1972.
[15] D.L. Parnas, “Inspection of Safety Critical Software using Func-
tion Tables”, Proc. IFIP World Congress 1994, vol. 3, August

1994.

[16] J. Xu and Kam-yiu Lam, “Integrating run-time scheduling
and pre-run-time scheduling of real-time processes.” Proc. 23rd
IFAC/IFIP Workshop on Real-Time Programming, Shantou,
China, June 1998.

[17] J. Xu and D. L. Parnas, “Fixed priority scheduling versus pre-
run-time scheduling.” Real-Time Systems, 18, pp. 7-23, Jan. 2000.

[18] J. Xu and D.L. Parnas, “On Satisfying Timing Constraints in
Hard-Real-Time Systems.” [IEEFE Trans. on Software Engineer-
ing, vol. 19, pp. 1-17, Jan. 1993.

[19] J. Xu, “Multiprocessor scheduling of processes with release
times, deadlines, precedence, and exclusion relations,” IFEE
Trans. on Software Engineering, vol. 19, Feb. 1993.

[20] J. Xu and D.L. Parnas, “Pre-run-time scheduling of processes
with exclusion relations on nested or overlapping critical sec-
tions.” Proc. Eleventh Annual IEEE International Phoeniz Con-
ference on Computers and Communications (IPCCC-92), Scotts-
dale, Arizona, April 1-3, 1992.

[21] J. Xu and D. L. Parnas, “Scheduling processes with release
times, deadlines, precedence, and exclusion relations,” IFEFE
Trans. on Software Engineering, vol. 16, pp. 360-369, Mar. 1990.
Reprinted in “Advances in Real-Time Systems,” edited by J. A.
Stankovic, and K. Ramamrithan, IEEE Computer Society Press,
pp. 140-149, 1993.



