
Object Oriented
Classes, Objects, Inheritance,

and Typing

By: Nicholas Merizzi
January 2005

Outline
• General Introduction

– Why the O.O. paradigm?
– Classes & Objects

• Properties, differences, Code Examples

• Design Goals
– RDD, Coupling & Cohesion, Parnas’s Principles

• Inheritance
– Single/Multiple/Interfaces/Traits/Mixins
– Types of Inheritance

• Typing
– Subtyping, Supertyping

• Prototype based O.O.
– Introduction
– Differences
– Examples

• Pros & Cons of OO programming
• Conclusion & Discussion

General Introduction

O.O Paradigm

• “The most important aspect of OOP is the creation of a
universe of largely autonomous interacting agents”

• Object-Oriented Programming (OOP) in Simula I (1962)

Classes & Objects

• Classes:
– Is a template definition of the methods and

variables in a particular kind of object.
– The static attributes/features of the object

(un-instantiated)
– Generic form of an object

• Objects:
– The dynamic attributes of a class
– All Objects are instances of a class
– Objects are what actually runs the software

Classes & Objects (cont.)

• You create a class by typing out the syntax (code)

• You create an Object at runtime by instantiating it.

• An individual representation of a class is known as an
instance

• Important to understand that two objects from the same
class can have different contents.

• A class has two conflicting roles (will come back to later):
– generator of instances (must be complete)
– unit of reuse (…yet must be small)

Properties

• State-
– The state of a component represents all the information held

within it.
– The state is NOT static and can change over time.
– Some objects do have state.
– State is associated with an object.

• Behavior-
– The behavior of a component is the set of actions that it can

perform (what it can do)
– For example on our OO polynomial class we had behaviors to

divide, multiply, and print the object on the screen.
– Behavior is associated with the class, not with an object.

Example

class polynomial {

private Vector coeff;
private Vector degree;

public polynomial() {}
public polynomial modPoly(polynomial Bx) {}
public boolean isZeroPoly() {}
public polynomial multPoly(polynomial px) {}
private void simplifyPoly() {}
public polynomial subPoly(polynomial px) {}

}

Properties of an Object

• The big 3:
– Encapsulation
– Inheritance
– Polymorphism

Encapsulation

• By definition it is the packaging of data with
methods that operate on that data.

• Encapsulation != Information Hiding
– Encapsulation facilitates, but does not guarantee,

information hiding.
– i.e. In Java you can have encapsulated data that is

not hidden at all.

Encapsulation (cont.)

• Encapsulation is a language facility, whereas
information hiding is a design principle.

• Encapsulation can occur in non-OO
environments.

• David Parnas first introduced the concept of
information hiding in 1972.
– Parnas stressed that the following should be

hidden "difficult design decisions or design
decisions which are likely to change."

Encapsulation (cont.) -Visibility

• In order to have proper Information Hiding one
should take advantage of packaging.
– Private (Ruby, C++, Java)

• Private variables are only visible from within the
same class as they are created in

– Protected(C++, Java, Ruby)
• Is visible within a class, and in sub classes, the

same package but not elsewhere
– Public (C++, Java, Ruby)

• Has global scope, and an instance can be created
from anywhere within or outside of a program

Packaging Example

class Base
def aMethod

puts "Got here"
end

private :aMethod
end

class Derived1 < Base
public :aMethod

end

class Derived2 < Base end

• So how does Ruby have one method with two
different visibilities?

Inheritance

Provides the means to share state and functionality
between classes.

•Subclass (child class)-
A class that inherits all the properties
of the parent class, and adds other properties as well.

•Superclass (parent class)-
Parent class: a class one level higher in a
class hierarchy

Inheritance

A child class can be thought of as:
1. An extension of a parent class

(larger set of properties)
2. A contraction of a parent class

(More specialized (restricted) objects)

• Different Types
Exists:
– Single Inheritance
– Interface Inheritance
– Multiple Inheritance
– Traits
– Mixins

Benefits of Inheritance

• Software reusability
• Code Sharing
• Consistency of Interface
• Software components
• Rapid prototyping
• Information Hiding

Polymorphism

• based on Greek roots that mean "many shapes.“

• Dynamic Binding allows variables to take different
types dependent on the context at a particular time.
This is called polymorphism.

“One interface, many methods”
• Two forms:

– Compile-Time (function overloading-Covered Thursday)
– Run-time

Polymorphism- Example

Provides Extensibility
Can use a subclass object wherever a
Base class object is expected.

Polymorphism- Dynamic (Late) Binding

• Binding-
Attaching a function call to a particular definition

• Dynamic Binding-
The compiler doesn’t make the decision of which class method to use.

Shape c1 = new Circle(); c1.doStuff(c);
Shape t1 = new Triangle(); t1.doStuff(t);
Shape l1 = new Line(); l1.doStuff(l);

“You’re a shape, I know you can doStuff() yourself, do it and take
care of the details correctly.”

• Java functions are automatically dynamically bounded
• C++ you use the keyword ‘virtual’

Early vs. Late Binding Graphically

Figure 1. Early Binding

Figure 2. Late Binding

Polymorphism- Dynamic (Late) Binding

Physicist nick(“Nicholas”, “nuclear structure”);
Scientist *psc = &nick;
Psc ->show_all(); vptr

Design Goals

O.O Design Goals #1

• Responsibility Driven Design (RDD)
– The most important factor when doing

OO programming is a proper design
technique that strives on allocating
responsibilities.

O.O Design Goals #2

• Cohesion
– The degree to which the responsibilities of a single component

form a meaningful unit.

• Coupling
– Describes the relationship between software components.

• We would like to have a weak coupling between
modules and a strong cohesion within modules.

O.O Design Goals #3

•Each Object has two faces

• Know how to use a component but not how it
works.

• “Black-box programming”

O.O Design Goals #3 (cont.)

Parnas’s Principles:
1. The developer of a software component must

provide the intended user with all the information
needed to make effective use of the services
provided by the component, and should provide no
other information

2. The developer of a software component must be
provided with all the information necessary to carry
out the given responsibilities assigned to the
component, and should be provided with no other
information.

Inheritance

Single Inheritance

Single Inheritance-
Data and behavior from a single superclass is available to a
child class.

• The most common type of inheritance used in (i.e.Smalltalk,
Java, and C#)

• Advantage:
– Very simple to include in ones design
– Code re-use is very simple to obtain

• Disadvantage:
– Some models cannot be accurately modeled using S.I.
– Leads to duplicate code, or inserting code in incorrect locations

Single Inheritance

–Inheritance is always transitive

More
General

More
Specific

Single Inheritance Example for Java

class C {
int a = 3;
void m () {a = a + 1;}

}

class D extends C {
int b = 4;
void n () {m (); b = b + a;}

}

D d = new D ();
C c = new C ();
d.m (); System.out.println (d.a);
d.n (); System.out.println (d.b);
c.n ();

Disadvantages of SI
class electronicDev { ... }

class dvdPlayer extends electronicDev {…}

class vcrPlayer extends electronicDev {…}

class dvdButtons extends dvdPlayer {…}

class vcrButtons extends vcrPlayer {… }

Multiple-Inheritance

• In multiple-Inheritance a class can inherit from anywhere in a a class
hierarchy

• Allowed to have more than one parent
• M.I. is available in some OO languages such as C++, and Eiffel
• More realistic framework

– i.e. A child has two parents

“Multiple inheritance is good, but there is no good way to do it.”
-A. Snyder 1987

• Advantages:
– Greater Flexibility for design

• Disadvantages:
– “Diamond Problem”
– No single base class
– Complexity (Linearization Problem)

“Diamond Problem”
abstract class Component {

abstract void printLabel();
}
class Picture extends Component {

void printLabel() {
System.out.println(“I am a Picture”);

}
}
class Button extends Component {

void printLabel() {
System.out.println(“I am a Button”);

}
}

class vcrPlay extends Button, Picture{ }

//Problem:
Component vcrPlay1 = new vcrPlay();
vcrPlay1.printLabel();

Linearization

• Options: manual resolution by the
programmer. For example:
– C++: Explicit Delegation - the `scope` resolution

operator
– Eiffel: feature renaming.

Alternative….
• Linearization-

– Automatic Resolution of ambiguity
– Is computed by merging a set of constraints or, equivalently,

topologically sorting a relation on a graph.
– The merge of several sequences is a sequence that contains

each of the elements of the input sequences.
– class precedence list (CPL)-An ordering of the most specific to

the least specific

Linearization- Dylan example
define class <grid-layout> (<object>) end class <grid-layout>;
define class <horizontal-grid> (<grid-layout>) end class <horizontal-grid>;
define class <vertical-grid> (<grid-layout>) end class <vertical-grid>;
define class <hv-grid> (<horizontal-grid>, <vertical-grid>) end class <hv-grid>;
define method starting-edge (grid :: <horizontal-grid>)
#"left“ end method starting-edge;
define method starting-edge (grid :: <vertical-grid>)
#"top“ end method starting-edge;

define class <vh-grid> (<vertical-grid>, <horizontal-grid>) end;

define class <confused-grid> (<hv-grid>, <vh-grid>) end;

What is the starting-edge
For a vh-grid? (or hv-grid)

Interfaces

• Allows one to specify what a class must do, but not tell it how to do it.

• Java’s solution to the limitations of S.I. and the problems of M.I.
– (Also used in C#)

• Interface != Abstract class
– In abstract classes you can define behavior, but only inherit one

abstract class.
– In Interfaces you cannot attach any behavior, but can implement

multiple interfaces.

• Advantages:
– Allows more flexibility then simple S.I.
– You can extend interfaces (to get new interfaces)

• Disadvantages:
– Does not allow for code re-use
– If you implement an interface you must define all of its methods

Interface Example
Interface Buttons {

void play();
void stop();
void fwd();
void rwd();

}

Class electronicDev { …}

Class dvdPlayer extends
electronicDev implements
Buttons {…}

Class vcrPlayer extends
electronicDev implements
Buttons {…}

Mixins

• It is an abstract subclass specification that may be applied to
various parent classes to extend them with the same set of
features.

• Available in Languages such as Lisp, Scala, Ruby,
Smallscript and CLOS
– Note has been ported to Java as well

• Advantages:
– Good code reuse

• Disadvantages:
– Total Ordering
– Delicate Hierarchies

Mixins Example #1

Mixins Example #2

class Point2D(xc: Int, yc: Int) {
val x = xc;
val y = yc;
// methods for manipulating Point2Ds

}
class ColoredPoint2D(u: Int, v: Int, c: String)

extends Point2D(u, v) {
var color = c;
def setColor(newCol: String): Unit = color = newCol;

}
class Point3D(xc: Int, yc: Int, zc: Int)

extends Point2D(xc, yc) {
val z = zc;
// code for manipulating Point3Ds

}
class ColoredPoint3D(xc: Int, yc: Int, zc: Int, col: String)

extends Point3D(xc, yc, zc)
with ColoredPoint2D(xc, yc, col);

Mixins Example #2 (cont.)

Point2D

ColoredPoint2D Point3D ColoredPoint3D

ColoredPoint2D

Traits

• Essentially a group of methods that serve as building blocks
for classes and are primitive units of code reuse.

• Similar to interfaces, but allows for the method to be partially
implemented.

• Similar to Classes, but not allowed to possess state. They do
not utilize specific state variables, and their methods never
directly access state variables.

• A trait provides a set of methods that implement behavior.

• Used in languages such as Scala, and smalltalk
• Advantages:

– No conflicting state
– Complements S.I. extremely well
– Less fragile as compared to Mixins
– Reduces code reuse significantly

Traits (cont.)

• Traits are used to decompose classes into
reusable building blocks

• Class inheritance is to derive a class from
another, whereas traits are to achieve greater
structure and reusability within a class
definition
– Class = State + Traits + Glue

Traits (cont.)

Example 1.
trait Similarity {

def isSimilar(x: Any): Boolean;
def isNotSimilar(x: Any): Boolean = !isSimilar(x);

}

Traits (cont.)

Principle of Substitutability

If we have two classes, say A and B, such that class B
is a subclass of class A, it should be possible to
substitute instances of class B for instances of class A
In any situation with no observable effect.

Trees Versus Forest
• Borrowing from Graph Theory:

– A tree is a connected undirected graph with no
simple circuits. (S.I.)– also called single-rooted
hierarchy trees

• In M.I. You will get multi-rooted class
hierarchies also known as a forest

Fig. 2 – Inheritance ChainFig. 1 - Inheritance Graph

Trees Versus Forest

Tree
• Pros:

– Single class hierarchy
– Standardization: Root's

functionality inherited by all
objects – all have basic
functionality

• Cons:
– Tight coupling
– larger libraries

• Examples
– Java's classes
– Smalltalk
– Objective C

Forest
• Pros:

– Many smaller hierarchies.
– Smaller libraries of

classes for application,
less coupling possible

• Cons:
– no shared functionality

among all objects

• Examples
– Java's interfaces
– C++

Typing

Typing

“A type system is a tractable syntactic method for proving the
absence of certain program behaviors by classifying phrases

according to the kinds of values they compute”
- Pierce

• A class is a property of objects, a type is a property
of variables and expressions.

• Subtype-
– A class that satisfies the principle of

substitutability.
• Subclass-

– This is constructed through inheritance and does
not have to satisfy the principle of substitutability.

Subtyping vs. inheritance

• What is the difference between subtyping
and inheritance?
– The two concepts are not the same
– Not all subclasses are subtypes
– Subtypes can be constructed without being

subclasses.
– Inheritance extends a class to yield a new family of

types.
• What links subtyping and inheritance

together?
– A subclass generates objects whose type is a

subtype of the objects generated by a superclass.

Prototype Based

Prototype Based languages

• Do not think that because you are coding in OO that
you must use classes.

• Classes are:
– Static
– Used to share methods
– Too rigid

• Prototype-based language do not distinguish between
classes and instances.

• They have only objects, which are similar to
instances.

Prototype Based languages

• i.e. JavaScript, Self, Kevo, NewtonScript,
Mica, Obliq….
– In Ruby you do “String.new” and not bother

instantiating an object with “new String()”

• In the above languages you only create
concrete objects (which are called prototypes).

• “prototype-based” ==“object-based” ==
“programming by example”

Prototype Based languages

• Analogy:
– Building an object in a class-based language

is like building a house from a plan, while
building an object in a prototype-based
language is like building a house like the
neighbors.

• Advantage: greater flexibility
• Create new objects not by instantiation but

by cloning

Prototype vs. Class based

•Prototype vs. Abstraction

•Humans can relate to prototyping better

•It’s hard to abstract or generalize all behavior ahead
of time when using the classical OO paradigm

•You cannot change the number or the type of
properties of a class after you define the class

Java
public class Employee {

public String name;
public String dept;
public Employee () {

this.name = "";
this.dept = "general";

}
}
public class Manager extends Employee {

public Employee[] reports;
public Manager () {

this.reports = new Employee[0];
}

}
public class WorkerBee extends Employee {

public String[] projects;
public WorkerBee () {

this.projects = new String[0];
}

}

JavaScript
function Employee () {

this.name = "";
this.dept = "general";

}

function Manager () {
this.reports = [];

}

Manager.prototype = new Employee;

function WorkerBee () {
this.projects = [];

}
WorkerBee.prototype = new Employee;

//create new instance
nick = new WorkerBee;

//modify properties
nick.name = “John";
nick.dept = "admin";

//add new properties
nick.bonus = 3000;

//add new property to the prototype
Employee.prototype.specialty = "none";

Java vs. JavaScript

Class-based Prototype-based
Class and instance are distinct
entities.

All objects are instances.

Define a class with a class definition;
instantiate a class with constructor
methods.

Define and create a set of objects with
constructor functions.

Create a single object with the new
operator.

Same.

Construct an object hierarchy by using
class definitions to define subclasses
of existing classes.

Construct an object hierarchy by
assigning an object as the prototype
associated with a constructor function.

Inherit properties by following the
class chain.

Inherit properties by following the
prototype chain.

Class definition specifies all properties
of all instances of a class. No way to
add properties dynamically at runtime.

Constructor function or prototype
specifies an initial set of properties. Can
add or remove properties dynamically to
individual objects or to the entire set of
objects.

In Conclusion…

O.O. Advantages

• Arguably a more intuitive programming
paradigm

• Ease of Maintenance (users benefit from
strong encapsulation capabilities)

• Integration is simplified (again due to
encapsulation)

• Increase of code reuse

O.O Disadvantages

• A new paradigm to learn.
• Confusing and mis-used terminology
• Many OO environments can be

inefficient for certain tasks.
– Cross-cutting concerns

Discussion & Questions
Slides Available at: http://www.cas.mcmaster.ca/~merizzn

Exercise#1

Which is valid in C++ and why?

Figure 2
Figure 1

class base {

public:
int i;

};

class derived : public base{
public:

int j;

};
int main() {

derived ob;

base *p;
p = &ob;
return 0;

}

int main() {
A objecta;

objecta.i = 1;
B *objectb;

objectb = &objecta;
return 0;

}

Exercise#2
abstract class Base{

abstract public void myfunc();
public void another(){

System.out.println("Another method");
} }

public class Abs extends Base{
public static void main(String argv[]){

Abs a = new Abs();
a.amethod();

}
public void myfunc(){

System.out.println("My func");
}
public void amethod(){

myfunc();
}

}

1) The code will compile and run, printing out the words "My Func“
2) The compiler will complain that the Base class has non abstract methods
3) The code will compile but complain at run time that the Base class has non

abstract methods
4) The compiler will complain that the method myfunc in the base class has no

body, nobody at all to love it

Extra: Types of Inheritance
(If time Permits)

Types of Inheritance

Inheritance used in a variety of ways:
(List is not complete)

• Subclassing for Specialization
• Subclassing for Specification
• Subclassing for Construction
• Subclassing for Generalization
• Subclassing for Extension

Subclassing for Specialization

• The new class is a specialized form of the parent
class but satisfies the specifications of the
parent in all relevant respects. It’s a subtype of
the parent.

• Most common form of inheritance
• Preserves substitutability
• Example:

– Professor is a specialized form of Employee

Subclassing for Specification

• This can be seen when the parent class does not
implement actual behavior but simply defines the
behavior that will be implemented in child
classes.

• Preserves substitutability
• Goal is to define a common interface for a group

of related classes
• Example:

– class StackInArray gives implementations for method
signatures defined in abstract class Stack Java:
StackInArray extends Stack

Subclassing for Construction

• Parent class is used only for its behavior. In this
case the child class is not a subtype.

• No is-a relationship to the parent.

• Frowned upon
• Example:

– Extending List class to develop Set BUT without
“hiding” unneeded method

Subclassing for Generalization

• The opposite of subclassing for specialization.
• Here the subclass extends the behavior of the

parent class in order to create a more general
kind of object.

• Does not change any of the inherited behavior.
• Try to avoid (solution: invert the class hierarchy)
• Example:

– graphics display system which has a black&white
based window class called Window. You can extend
Window to ColoredWindow.

Subclassing for Extension

• In subclassing for generalization we modify or
expand on something already there.

• Whereas in subclassing for extension we add
completely new functionality.

• We aren’t changing inherited behavior we are
simply adding new ones.

• Example:
– StringSet extends Set, adding string-related methods

(I.E. search by name)

References

• Prata, Stephen “C++ Primer Plus” SE, Waite Group, 1995.
• Liskov Barbara, Guttag Barbara “Program Development in

Java”, Addison Wesley, 2000.
• Blaschek, Gunther, Object-Oriented Programming with

Prototypes.
• Budd, Timothy “Understanding Object-Oriented

Programming”, Second Edition.
• Scharli, Ducasse, Nierstrasz, Black, Traits: Composable Units

of Behavior, Technical Report # CSE 02-012, November 2002
• Scharli, Ducasse, Nierstrasz, “Classes = Traits + States +

Glue-Beyond mixins and multiple inheritance”, The Inheritance
Workshop at ECOOP 2002.

• Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith
Playford, and P. Tucker Withington, “A Monotonic Superclass
Linearization for Dylan.” presented on 12 October 1996 at the
1996 Object-Oriented Programming Systems, Languages and
Applications (OOPSLA '96) conference in San Jose, California

