LOGIC PROGRAMMING

• Chapter 9 of the book

Logic

Propositional Logic

- Propositions:
 - * true and false are propositions.
 - * Propositional variables are propositions.
 - * If p and q are propositions, then:
 - $p \land q, \ p \lor q, \ p \to q, \ p \leftrightarrow q \ \text{and} \ \neg p$ are propositions.
 - * Precedence on connectives: $\neg > \land > \lor > \rightarrow > \leftrightarrow$
 - * Examples: How do you formalize the following English sentences?
 - Provided that Marvin stays Nancy leaves.
 - · Marvin stays but Nancy leaves.
 - Marvin stays although Nancy leaves.
- Each proposition can be interpreted as either true or false.
 - * Semantics methods
 - * Syntactic methods
- Propositional logic is decidable.

Paradigm

- Declarative programming paradigm
 - The programmer declares the goals of the computation rather than the detailed algorithm by which these goals can be achieved.
- Logic programming is based on:
 - unification (Robinson, 1965) and
 - resolution (Robinson, 1965)
- Two important features of logic programming are:
 - non-determinism and
 - backtracking
- Popular in artificial intelligence
- Applications:
 - Natural language processing
 - Theorem proving
 - Databases
 - Expert systems
- PROLOG is a logic programming language (Colmerauer, 1972)

• Predicate Logic - First order predicate calculus

- A predicate "is a quantified proposition with variables".
- Quantifiers are ∀ (for all) and ∃ (exists).
- A predicate is satisfiable if for some particular assignment of values to its variables the predicate is true.
- A predicate is valid if for all assignment of values to its variables the predicate is true.
- Examples:
 - * parentof(x,y) is the same as $\forall x, \forall y, parentof(x,y)$
 - * fatherof(x, y)
 - * speaks(x, y)
 - * prime(n)
 - * $\forall x(speaks(x, Japanese))$
 - * $\exists x(speaks(x, Japanese))$
 - * $\forall x \exists y (speaks(x,y))$
 - * "Not every child can read" is equivalent to "There is at least one child who cannot read."
- The Incompleteness Theorem of Goedel, proven in 1930, demonstrates that first-order logic is in general undecidable.

Normal Forms

- Equivalences can often be used to simplify formulas, to obtain equivalent formulas of a certain syntactic form, also called normal forms.
- An advantage of normal forms is that certain questions can often be easier answered. Conjunctive and disjunctive forms are especially useful in this sense.
- A propositional formula is said to be in conjunctive form if
 - 1. it contains only the logical connectives \neg , \land and \lor ,
 - no logical connective occurs inside of a negation.
 - 3. no conjunction occurs inside of a disjunction.
- We speak of a **disjunctive form** if the last condition is replaced by the condition that *no disjunction occur inside any conjunction*.
- For example, $\neg(p \land q)$ is neither in disjunctive nor conjunctive form, whereas $p \lor (q \land r)$ is in disjunctive form, but not in conjunctive form.

Logic Programming

- A Horn clause $\neg p_1 \lor \cdots \lor \neg p_n \lor q$ is logically equivalent to the implication $(p_1 \land \cdots \land p_n) \to q$.
- If the implication is known to be true, and one wishes to prove q, then it sufficient to show that p_1, \ldots, p_n are all true; an observation that provides the logical basis for logic programming.
- A logic program is a set of Horn clauses, each containing exactly one positive literal (and zero or more negative literals). Such Horn clauses are usually written as backward implications

$$q \leftarrow p_1, \ldots, p_n$$

and called **program rules**. More specifically, q is called the **head** of the rule, and the sequence p_1, \ldots, p_n the **body** of the rule. (Each rule must have a head, but the body may be empty and in that case the rule is called a **fact**. For instance $q \leftarrow$ is a fact.)

Clauses

- A literal is either a predicate or the negation of a predicate.
- Disjunctions of literals, $L_1 \lor \cdots \lor L_n$, are also called clauses
- Since a conjunction $\alpha_1 \wedge \cdots \wedge \alpha_n$ is true under a given truth assignment if, and only if, each formula α_i is true, and each formula is equivalent to a **conjunctive (normal) form**, we may conclude that each formula can be represented in logically equivalent form as a collection of clauses.
 - For example, $p \iff q$ can be represented by the two clauses, $\neg p \lor q$ and $p \lor \neg q$.
- If a clause contains at most one positive literal, then it is called a Horn clause.
 - For example, $\neg p \lor \neg q$ and $\neg p \lor \neg q \lor r$ are Horn clauses, but $p \lor q$ is not a Horn clause.
- An interesting aspect of Horn clauses is that they can be interpreted as program rules and used for computation, as is done in logic programming.

Notations

• A Horn clause is written as:

$$q \leftarrow p_1, \ldots, p_n$$

It means the same as:

$$\neg p_1 \lor \cdots \lor \neg p_n \lor q$$

- If n = 0, the clause is: $q \leftarrow$. $q \leftarrow$ is the same as q.
- $\leftarrow p$ is the same as $\neg p$.

Unification

- Unification is a pattern-matching process that determines what particular instantiation can be made to variables to make two predicates equal. This instantiation is called a substitution.
- Examples:
 - How to make brotherof(John, x) and brotherof(y, Bill) equal?

With the substitution: $x \mapsto Bill, y \mapsto John$

How to make b and b equal?
 With the substitution: id (identity)

Logic program

Propositional case

 $\begin{array}{l} e \leftarrow \\ f \leftarrow \\ b \leftarrow \\ c \leftarrow a, b \\ a \leftarrow e, f \end{array}$

- is a propositional logic program of five rules. The first three rules have an empty body and represent facts.
- In addition to the program rules one needs to specify a goal (or a list of goals) that we want to prove.

Example: If we want to prove c, the goal is c.

- A computation with a logic program represents an attempt to derive the goal from the program rules (in an indirect way by deriving a contradiction in the form of the "empty clause" (represented by □) from the negation of the goal).
- The logical inference rule underlying such computations is called resolution.

Unification algorithm

See the handout.

Logic program

With variables

 $P(\text{Edward VII, George V}) \leftarrow P(\text{Victoria, Edward VII}) \leftarrow P(\text{Alexandra, George V}) \leftarrow P(\text{George VI, Elizabeth II}) \leftarrow P(\text{George V, George VI}) \leftarrow G(x,y) \leftarrow P(x,z), P(z,y)$

- is a logic program of six rules. The first five rules have an empty body and represent facts (about the British royal family).
- The last rule defines the grandparent relation in terms of the parent relation: a person x is a grandparent of y if there is a third person z, such that x is the parent of z, and z the parent of y.
- The use of variables, such as x, y, and z, which
 denote individuals goes beyond the scope of propositional logic, but is crucial for the usefulness of
 logic programming.
- Informally, the rule $G(x,y) \leftarrow P(x,z), P(z,y)$ may be thought of as a schema representing all clauses

obtained by substituting specific values for the variables, e.g.,

$$G(Vict, G.V) \leftarrow P(Vict, E.VII), P(E.VII, G.V)$$

 $x = Vict, y = E.VII, z = G.V$

• In addition to the program rules one needs to specify a **goal** (or a list of goals) that we want to prove.

Example: If we want to prove that the grandfather of George V is Victoria then the goal is G(Victoria, George V).

- A computation with a logic program represents an attempt to derive the goal from the program rules (in an indirect way by deriving a contradiction in the form of the "empty clause" (□) from the negation of the goal).
- The logical inference rule underlying such computations is called resolution.

- ullet Example: Assume we want to prove c.
 - The negation of the goal \boldsymbol{c} is written as a negative clause

$$\leftarrow c$$
.

- We have also seen that c is the head of a rule $(c \leftarrow a, b)$.
- This indicates that the given goal may be reduced to subgoals (by the resolution rule)

$$\leftarrow a.b.$$

- We have also seen that a is the head of a rule $(a \leftarrow e, f)$.
- This indicates that the given goal may be reduced to subgoals (by the resolution rule)

$$\leftarrow e, f, b.$$

where a is replaced by e, f.

- The three subgoals are present as facts and hence can be deleted, which results in the empty clause (□).
- We conclude that the original goal logically follows from the program clauses.
- But much of the power of logic programming derives from the fact that resolution can be generalized to effectively handle clauses with variables.

Resolution

Propositional case

• The propositional version of resolution for Horn clauses is:

From
$$\leftarrow p_1, \dots, p_n$$
 and $p_1 \leftarrow q_1, \dots, q_k$ derive $\leftarrow q_1, \dots, q_k, p_2, \dots, p_n$.

$$\begin{array}{c}
\leftarrow p_1, \dots, p_n \\
p_1 \leftarrow q_1, \dots, q_k \\
\vdots \leftarrow q_1, \dots, q_k, p_2, \dots, p_n
\end{array}$$

- What is the rule if n = 1 and k = 2?

- What is the rule if n = 1 and k = 0?

$$\begin{array}{c} \leftarrow p_1 \\ p_1 \leftarrow \\ \hline \vdots \quad \Box \end{array}$$

Resolution

With variables

- Assume we want to prove that Victoria is the grandmother of George.
- The negation of the above goal is written as a negative clause

$$\leftarrow G(Victoria, George V).$$

- We have also seen that suitable values may be substituted for the variables in the last program rule, so that the head is $G(Victoria, George\ V)$ (x=Vict and y = G. V).
- This indicates that the given goal may be reduced to subgoals

$$\leftarrow P(Victoria, Edward VII), P(Edward VII, George V).$$

- Both subgoals are present as facts and hence can be deleted, which results in the empty clause (□).
- We conclude that the original goal logically follows from the program clauses.

PROLOG

• Goals with variables are also possible.

Example: If one specifies the goal

 $\leftarrow G(Victoria, x)$

the result of the computation will be a list of all grandchildren of Victoria. A discussion of these aspects of logical programming is beyond the scope of this course.

- In PROLOG:

- * A variable begins with a capital letter in PRO-
- * A predicate is written in lower cases.
- * Underscore characters are taken as variables.
- * All facts, rules and queries end with a period.

• SWI prolog.

- On matrix:
 - Save your PROLOG programs in files.

Example: Let's consider the *likes.pl* file.

likes(john,mary).
likes(mary,sue).
likes(mary,tom).

We just defined 3 facts in the likes.pl file.

- To run PROLOG type: pl, then
- To load the likes.pl file, type: [likes]. or consult(likes)..
- You can now play with prolog:Who are the people Mary likes?

likes(mary,X).

 \boldsymbol{X} is a variable and must be written using a capital letter.

To have all the solutions to the likes(mary,X) goal, type n (for next) after each solution.

Examples of programs

• Explicit definition 1:

```
f(x) = if x=0 then 1 else 5
```

PROLOG: f(0,1). f(X,5) :- X>0.

• Explicit definition 2:

f(x) = 2*x

PROLOG:
g(X,Y) :- Y is 2*X.

• Example:

```
PROLOG:
speaks(allen,russian).
speaks(bob,english).
speaks(mary,russian).
speaks(mary,wnglish).
talkswith(Person1,Person2):-speaks(Person1,L),
speaks(Person2,L), Person1 \= Person2.
```

How to know who talks with who?

• Recursive definition 1:

```
fact(n) = if n=0 then 1 else n*fact(n-1)

PROLOG:
factorial(0,1).
factorial(N,Result) :- N>0, M is N-1,
factorial(M,SubResult), Result is N*SubResult.
```

• Recursive definition 2:

```
fib(n) = if n=0 then 1 else if n=1 then 1
else fib(n-1)+fib(n-2)

PROLOG:
fib(0,1).
fib(1,1).
fib(N,R) :- N>1, N1 is N-1, N2 is N-2, fib(N1,R1),
fib(N2,R2), R is R1+R2.
```

Unification, Evaluation, Backtracking

Goal without variables

talkswith(bob,allen).

Tracing in PROLOG

- To trace a particular function f use:
 trace(f/2).
- Example:

trace(factorial/2).

```
?- factorial(4, X).
                               N M P
Call: ( 7) factorial(4, \_G173) 4 3 \_G173 4*P
Call: ( 8) factorial(3, _L131) 3 2 _L131 3*P
Call: ( 9) factorial(2, \_L144) 2 1 \_L144 2*P
Call: ( 10) factorial(1, _L157) 1 0 _L157 1*P
Call: ( 11) factorial(0, _L170) 0
Exit: ( 11) factorial(0, 1)
Exit: ( 10) factorial(1, 1)
                                           1*1 = 1
Exit: ( 9) factorial(2, 2)
                                           2*1 = 2
Exit: ( 8) factorial(3, 6)
                                           3*2 = 6
Exit: ( 7) factorial(4, 24)
                                           4*6 = 24
```

Unification, Evaluation, Backtracking

Goal with variables

talkswith(Who,allen).

Lists in PROLOG

- The basic data structure in PROLOG is the list.
 - [] is the empty list
 - -[X,Y] is a list with 2 elements
 - [$_{-}$, $_{-}$, $_{-}$] is a list with 3 elements
 - [X|Y] denotes a list with head X and tail Y.
- Some built-in functions on lists:
 - append(?List1,?List2,?List3)
 - length(?List1,?Int)
 - reverse(+List1, -List2)
 - member(?Elem,?List)
 - $-\ sort(+List, -Sorted)$ (to sort a list it removes the duplicates)
- Definition of functions on lists:
 - member:

```
member1(X,[X|_{\_}]).
member1(X,[_{\_}|Y]) :- member1(X,Y).
```

```
- append:
    append1([],X,X).
    append1([H|T],Y,[H|Z]) :- append1(T,Y,Z).

append([english, russian], [spanish], L).

H = english, T = [russian], Y = [spanish], L = [english | Z]

append([russian], [spanish], [Z]).

H = russian, T = [], Y = [spanish], [Z] = [russian | Z']

append([], [spanish], [Z']).

X = [spanish], Z' = spanish

append([], [spanish], [spanish]).
```