LOGIC PROGRAMMING

e Chapter 9 of the book

Logic

e Propositional Logic

— Propositions:

*

*

*

true and false are propositions.
Propositional variables are propositions.
If p and ¢ are propositions, then:

-pPANg, PVg, p—q pgand —p
are propositions.

Precedence on connectives: = > A >V >—>«

Examples: How do you formalize the follow-
ing English sentences?

- Provided that Marvin stays Nancy leaves.
- Marvin stays but Nancy leaves.

- Marvin stays although Nancy leaves.

— Each proposition can be interpreted as either
true or false.

*

*

Semantics methods

Syntactic methods

— Propositional logic is decidable.

Paradigm

e Declarative programming paradigm

The programmer declares the goals of the com-
putation rather than the detailed algorithm by
which these goals can be achieved.

e Logic programming is based on:

unification (Robinson, 1965) and

resolution (Robinson, 1965)

e Two important features of logic programming are:

non-determinism and

backtracking

e Popular in artificial intelligence

e Applications:

Natural language processing
Theorem proving
Databases

Expert systems

e PROLOG is a logic programming language (Colmer-
auer, 1972)

o Predicate Logic - First order predicate calculus

A predicate "“is a quantified proposition with
variables” .

Quantifiers are V (for all) and 3 (exists).

A predicate is satisfiable if for some particular
assignment of values to its variables the predi-
cate is true.

A predicate is valid if for all assignment of val-
ues to its variables the predicate is true.

Examples:

* parentof(z,y) is the same as Vz, Vy, parentof(z,y)

* fatherof(z,y)

* speaks(z,y)

* prime(n)

* Vz(speaks(x, Japanese))
* Jx(speaks(xz, Japanese))
* VzIy(speaks(z,y))

* “Not every child can read” is equivalent to
“There is at least one child who cannot read.”

The Incompleteness Theorem of Goedel, proven
in 1930, demonstrates that first-order logic is in
general undecidable.



Normal Forms

e Equivalences can often be used to simplify formu-

las, to obtain equivalent formulas of a certain syn-
tactic form, also called normal forms.

An advantage of normal forms is that certain ques-
tions can often be easier answered. Conjunctive
and disjunctive forms are especially useful in this
sense.

A propositional formula is said to be in conjunctive
form if

1. it contains only the logical connectives -, A and
v,

2. no logical connective occurs inside of a nega-
tion.

3. no conjunction occurs inside of a disjunction.

We speak of a disjunctive form if the last condi-
tion is replaced by the condition that no disjunction
occur inside any conjunction.

For example, —(p A q) is neither in disjunctive nor
conjunctive form, whereas pV (gAr) is in disjunctive
form, but not in conjunctive form.

Logic Programming

e A Horn clause —p;1V---V—p,Vq is logically equivalent

to the implication (p1 A--- Apn) — q.

If the implication is known to be true, and one
wishes to prove q, then it sufficient to show that
p1,...,pn are all true; an observation that provides
the logical basis for logic programming.

A logic program is a set of Horn clauses, each
containing exactly one positive literal (and zero or
more negative literals). Such Horn clauses are usu-
ally written as backward implications

q < PpPily,---,Pn
and called program rules. More specifically, q is

called the head of the rule, and the sequence p1,...,pn

the body of the rule. (Each rule must have a head,
but the body may be empty and in that case the
rule is called a fact. For instance g « is a fact.)

Clauses

e A literal is either a predicate or the negation of a

predicate.

Disjunctions of literals, Ly V---V L,, are also called
clauses.

Since a conjunction a1 A---Aay is true under a given
truth assignment if, and only if, each formula «; is
true, and each formula is equivalent to a conjunc-
tive (normal) form, we may conclude that each
formula can be represented in logically equivalent
form as a collection of clauses.

— For example, p <= ¢ can be represented by
the two clauses, —-pV g and pV —gq.

If a clause contains at most one positive literal, then
it is called a Horn clause.

— For example, -pV —g and —pV —q V r are Horn
clauses, but p V¢ is not a Horn clause.

An interesting aspect of Horn clauses is that they
can be interpreted as program rules and used for
computation, as is done in logic programming.

Notations

e A Horn clause is written as:

q <4 P1,---3Pn

It means the same as:

—p1V:--V-pa Vg

e If n =20, the clause is: ¢q +.

q < is the same as gq.

e  pis the same as —p.



Unification

e Unification is a pattern-matching process that de-
termines what particular instantiation can be made
to variables to make two predicates equal. This
instantiation is called a substitution.

Unification algorithm

See the handout.
e Examples:

— How to make brotherof(John, z) and brotherof (y, Bill)

equal?
With the substitution: z +— Bill, y — John

— How to make b and b equal?
With the substitution: id (identity)

Logic program

Propositional case

e
f+«
b+
c 4+ a,b
a+e,f

is a propositional logic program of five rules. The
first three rules have an empty body and represent
facts.

In addition to the program rules one needs to spec-
ify a goal (or a list of goals) that we want to prove.

Example: If we want to prove ¢, the goal is c.

A computation with a logic program represents an
attempt to derive the goal from the program rules
(in an indirect way by deriving a contradiction in
the form of the “empty clause " (represented by O)
from the negation of the goal).

The logical inference rule underlying such compu-
tations is called resolution.

Logic program

With variables

P(Edward VII, George V) «+
P(Victoria, Edward VII)«
P(Alexandra, George V)<«
P(George VI, Elizabeth II)«+
P(George V, George VI)«+
G(z,y) + P(z,2), P(z,y)

is a logic program of six rules. The first five rules
have an empty body and represent facts (about the
British royal family).

The last rule defines the grandparent relation in
terms of the parent relation: a person z is a grand-
parent of y if there is a third person z, such that =z
is the parent of z, and z the parent of y.

The use of variables, such as z, y, and z, which
denote individuals goes beyond the scope of propo-
sitional logic, but is crucial for the usefulness of
logic programming.

Informally, the rule G(z,y) + P(z,z),P(z,y) may
be thought of as a schema representing all clauses



obtained by substituting specific values for the vari-
ables, e.g.,

G(Vict,G.V) + P(Vict, E.VII), P(E.VII,G.V)
x = Vict,y = E.VII, z = G. V

e In addition to the program rules one needs to spec-
ify a goal (or a list of goals) that we want to prove.

Example: If we want to prove that the grandfather
of George V is Victoria then the goal is G(Victoria,
George V).

e A computation with a logic program represents an
attempt to derive the goal from the program rules
(in an indirect way by deriving a contradiction in
the form of the “empty clause” (O) from the nega-
tion of the goal).

e The logical inference rule underlying such compu-
tations is called resolution.

e Example: Assume we want to prove c.

The negation of the goal ¢ is written as a neg-
ative clause

«— C.

We have also seen that ¢ is the head of a rule
(c+ a,b).

This indicates that the given goal may be re-
duced to subgoals (by the resolution rule)

<+~ a,b.

We have also seen that a is the head of a rule

(a e, f).

This indicates that the given goal may be re-
duced to subgoals (by the resolution rule)

e, f,b.
where a is replaced by e, f.

e The three subgoals are present as facts and hence
can be deleted, which results in the empty clause

().

e We conclude that the original goal logically follows
from the program clauses.

e But much of the power of logic programming de-
rives from the fact that resolution can be general-
ized to effectively handle clauses with variables.

Resolution

Propositional case

The propositional version of resolution for Horn
clauses is:

From < p1,...,pp and p1 < q1,...,q
derive < qi,...,qk,02,---,Pn-

<~ Ply---3DPn
P14 q1,---,4k
S Qe Gks P2y -5 P

— What is the rule if n =1 and k = 27

Ay %1
P1 < q1,92
S q1,92

— What is the rule if n =1 and k£ = 07

— p1
pP1 <
|

Resolution

With variables

Assume we want to prove that Victoria is the grand-
mother of George.

The negation of the above goal is written as a neg-
ative clause

«— G(Victoria, George V).
We have also seen that suitable values may be sub-
stituted for the variables in the last program rule,

so that the head is G(Victoria, George V) (x=Vict
andy = G. V).

This indicates that the given goal may be reduced
to subgoals
« P(Victoria, EdwardVII), P(EdwardVII,George V).

Both subgoals are present as facts and hence can
be deleted, which results in the empty clause (O).

We conclude that the original goal logically follows
from the program clauses.



PROLOG

e SWI prolog.
e Goals with variables are also possible. e On matrix:
Example: If one specifies the goal — Save your PROLOG programs in files.

« G(Victoria, z) Example: Let's consider the likes.pl file.

the result of the computation will be a list of all i?iesgphn’marg')'
grandchildren of Victoria. A discussion of these 1xesimary,sue).
likes (mary,tom) .

aspects of logical programming is beyond the scope
of this course. We just defined 3 facts in the Jikes.pl file.

— To run PROLOG type: p/, then

— To load the likes.pl file, type: [likes]. or con-
sult(likes)..

— You can now play with prolog:
Who are the people Mary likes?
likes (mary,X) .
X is a variable and must be written using a
capital letter.

To have all the solutions to the likes(mary, X)
goal, type n (for next) after each solution.

Examples of programs

— In PROLOG:
Explici finition 1:
* A variable begins with a capital letter in PRO- ¢ plicit definitio
LOG. f(x) = if x=0 then 1 else 5
* A predicate is written in lower cases.
PROLOG:
* Underscore characters are taken as variables. £(0,1).

. \ . f£(X,5) :- X>0.
* All facts, rules and queries end with a period. ( )

e Explicit definition 2:

f(x) = 2%x

PROLOG:
g(X,Y) :— Y is 2#X.



e Example: Tracing in PROLOG

PROLOG:
speaks(allen,russian) .
speaks (bob,english).
speaks (mary,russian). e To trace a particular function f use:
speaks (mary,wnglish) .
talkswith(Personl,Person2) : -speaks(Personi,L), trace(£/2).
speaks (Person2,L), Personl \= Person2.

e Example:
How to know who talks with who?

trace(factorial/2).

e Recursive definition 1:

fact(n) = if n=0 then 1 else nxfact(n-1)

?7- factorial(4, X). N M P Result
PROLOG: Call: ( 7) factorial(4, _G173) 4 3 _GI73 4*p
factorial(0,1). Call: ( 8) factorial(3, _L131) 3 2 _L131 3*p
factorial (N,Result) :- N>0, M is N-1, Call: ( 9) factorial(2, _L144) 2 1 _L144 2*p
factorial (M,SubResult), Result is N*SubResult. Call: ( 10) factorial(l, _L157) 1 0 _L157 1*P
Call: ( 11) factorial(0, _L170) 0 _L170
e Recursive definition 2: Exit: ( 11) factorial(0, 1) 1
Exit: ( 10) factorial(l, 1) 11 =1
fib(n) = if n=0 then 1 else if n=1 then 1 Exit: ( 9) factorial(2, 2) 2%] = 2
else fib(n-1)+fib(n-2) Exit: ( 8) factorial(3, 6) 32 = 6
Exit: ( 7) factorial(4, 24) 4*6 = 24
PROLOG:
£ib(0,1).
fib(1,1).

fib(N,R) :- N>1, N1 is N-1, N2 is N-2, fib(Ni,R1),
fib(N2,R2), R is R1+R2.

Unification, Evaluation, Backtracking

Unification, Evaluation, Backtracking

Goal without variables . ]
Goal with variables
talkswith(bob,allen) .
talkswith(Who,allen).

talkswith(baob, allen)

talkswith(Who, allen)

6 fail ’ Fail
1
1 1 speaks(Who, L) speaks(allen, L) Who \= allen
Who=allen 3 5 7
speaks(bob, L) spgaks(aﬂen, L) fho=allen
L=english 5 2 4 B
speaks(allen, russian) speaks(allen, russian) fail
2 4
Y

speaks(bab, english) fail



Lists in PROLOG

— append:

e The basic data structure in PROLOG is the list. append1([],X,X).
append1([H|T],Y,[HIZ]) :- appendi(T,Y,Z).

[] is the empty list

[X,Y] is a list with 2 elements

. . . append([english, russian], [spanish], L).
— [, ., Y] is a list with 3 elements P P

[X|Y] denotes a list with head X and tail Y. H = english, T = [russianl, Y = [spanishl, L = [english | Z]

1
e Some built-in functions on lists: append(frussian], [spanish], [Z1).
— append(?Listl,?List2, 7 List3)
— length(?Listl,?Int)

— reverse(+Listl,—List2)

ES

= russian, T =[], Y = [spanish], [Z] = [russian | Z']
2
append([1, [spanishl, [Z']).

><

= [spanish], Z' = spanish

— member(?Elem, ? List) 3

. . . append([1, [spanishl, [spanishl).
— sort(+List,—Sorted) (to sort a list — it removes

the duplicates)

e Definition of functions on lists:

— member:

memberl (X, [X]_]1).
member1(X,[ |Y]) :- memberi(X,Y).



