
Dynamically-typed
Languages

David Miller

Dynamically-typed Language
Everything is a value
No type declarations
Examples of dynamically-typed languages

APL, Io, JavaScript, Lisp, Lua, Objective-C, Perl, PHP, Python,
Ruby, Scheme, Smalltalk

Dynamic vs. Static

Type checking often done at run-timeType checking done at compile time

Often no variable declarationVariable types declared or inferred

Variables may point to values of
differing types during their lifetime

Each variable is of only one type
during its lifetime

Types are associated with runtime
values

Types are associated with variables

DynamicStatic

Dynamic vs. Static
(In Practice)

Well suited for meta-programmingMeta-programming more
cumbersome to write

Code generally more succinctCode generally more verbose

More difficult to optimizeEasier to optimize

May allow compilers and interpreters
to run faster, but produces slower
(compiled) code

Usually results in faster compiled
code, but often takes longer to
compile

Well suited for prototype-based OO
programming

Well suited for class-based OO
programming

Most often occurs in interpreted
languages

Most often occurs in compiled
languages

DynamicStatic

Dynamic vs. Static
(In Practice)
Double Layered Hash Table:

C# 1.0

Python

Hashtable ht = new Hashtable();
ht["something"] = new Hashtable();
((Hashtable)ht["something"])["someObj"] = new SomeObj();
((SomeObj)((Hashtable)ht["something"])["someObj"]).SomeMethod();

ht = {}
ht["something"] = {}
ht["something"]["someObj"] = SomeObj()
ht["something"]["someObj"].SomeMethod();

Type Inference
Optional type declaration

Allow variables to be declared so as to enable optimization of the
(compiled) code

Standard type inference
Use standard type inferencing techniques to determine static
type information

Type prediction
Use usage patterns to “guess” what type a variable (an object?)
is based on what operation it is used in

Python
Supports structured and prototype based(?) object
oriented programming
Uses Duck Typing

No type checking at compile time. Instead, an operation on an
object fails at runtime if it does not support that operation

Strongly typed

PyPy – Python Compiler
Compiler analyses “live” programs

Programs are read into the Python interpreter and initialized
Flow Object Space used to construct the control flow graphs by
running through each possible control path of the code and
recording operations performed on abstract objects
Flow graphs are in Static Single Information (SSI) form

Extension of Static Single Assignment form in which each variable is
used in only one basic block
All variables that are not dead at the end of a block are explicitly carried
over and renamed

Resulting flow graphs are passed to the annotator that performs
type inferencing

PyPy’s Type Annotator
Assigns annotations to each variable in the control flow
graph

Annotations describe the possible run-time objects that a
variable can contain

Flows annotations forward
Type of a variable in Python can only be deduced by how it is
produced, not by how it is used
Starting from an entry function, with user-specified annotations
for it’s arguments, annotations are flowed through the blocks
following calls recusively
Used fixed point algorithm in situation of loops – if previously
annotated variables are too restrictive, generalize them and
process the loop again

PyPy’s Type Annotator
Lattice of annotations

PyPy’s Type Annotator
Lattice of annotations

Self
Prototype based Object Oriented language
Implements full messages passing
Objects consist of named slots, each of which contain a reference to
another object
Objects with source code associated with them are called methods
When a message is sent to an object (called a “receiver”) the slots
of the object (and recursively, parents of the object) are search for a
match

If found, its content is evaluated and returned as the result of the
message send

Primitive operations have succeed and fail cases
Flow of control normally rejoins after the result is computed

Self Code Example
Self code:

C code:

sumTo: upperBound = (
| sum <- 0 |
to: upperBound Do: [

| :index |
sum: sum + index].

sum)

int sumTo(int self, int upperBound) {
int sum = 0;
int index;
for (index = self; index <= upperbound; index++)

sum = sum + index;
return sum;

}

SELF Compiler
Extracts static type information
Compiles several copies of a procedure, each
customized for a specific receiver type
Splits calls after a join, placing a copy on each control
path optimized for a particular receiver type
Predicts types that are likely but unknown by static type
inference and inserts run-time tests to verify predictions
Implements other standard optimization techniques

compile-time message lookup, aggressive procedure inlining,
etc. …

SELF Compiler – Customized
Compilation

Provides type information for any calls to self (assuming
no dynamic inheritance)
Compiles copies of a method customized by
characteristics of the calling site
All subsequent calls to the method sharing the same
characteristic, call the copy optimized for that calling site

SELF Compiler – Message
Splitting

Provides type information for the successful results of
primitive operations
When control paths merge with different result types for
each path, a subsequent message can be “split”

The messages send is “push” up past the merge point
Each copy of the message send can then be further optimized

SELF Compiler – Type
Prediction

Provides type information for some messages not covered by
customized compilations or message splitting
Certain messages are more likely to be sent to some types of
receivers than others
From benchmarking measurements, types of receivers can be
predicted

eg. 90% of the time operators +, -, and < have integer arguments
A run-time type check is inserted and the message is split with a
copy compiled on each branch

The “success” message is inlined while the “fail” message remains a full
message send

	Dynamically-typed Languages
	Dynamically-typed Language
	Dynamic vs. Static
	Dynamic vs. Static (In Practice)
	Dynamic vs. Static (In Practice)
	Type Inference
	Python
	PyPy – Python Compiler
	PyPy’s Type Annotator
	PyPy’s Type Annotator
	PyPy’s Type Annotator
	Self
	Self Code Example
	SELF Compiler
	SELF Compiler – Customized Compilation
	SELF Compiler – Message Splitting
	SELF Compiler – Type Prediction

