
INHERITANCE, SUBTYPING,
PROTOTYPES

in Object-Oriented Languages

Orlin Grigorov
McMaster University
CAS 706, Fall 2006

ogrigorov@gmail.com

Two kinds of OO programming
languages

CLASS-BASED PROTOTYPE-BASED
No distinction between
classes and instances
Objects (similar to
instances)
Prototypes (cloning
existing objects)

Classes
Instances
Inheritance

e.g. Java, C++, C# e.g. JavaScript, Lua

Outline

Inheritance
– Single
– Multiple
– Interfaces
– Mixins

Subtyping
Prototypes

Inheritance

Inheritance (definition)

Refers to the fact that the definition of a new class can assume
(or rely upon the existence of) another definition. Alternatively,
it makes a previously defined structure available for
incorporation in a new one.

– A method of code sharing;
If one class inherits from another, the inheriting class
specializes a class which is more general.

– Logical relationship between classes
(specialization/generalization);

Enables subtypes to be produced given a definition of a
supertype.

– Type-based account;

Inheritance (terminology)

Subclass or child class or derived class: inherits all
properties of its parent class, as well as adds other
properties of its own. Think of it as:

– An extension of the parent class (larger set of properties);
– A contraction of the parent class (more specialized)

Superclass or parent class or base class: a class
that is one level higher in the class hierarchy than its
child classes.

Inheritance is “is a kind of” relation

Food

Fruit

Apple Orange

Meat

Chicken Pork

* The relation applies to classes, not instances!

Reasons to use inheritance

Code reuse
– Because a child class can inherit behaviour from

a parent class, the code does not need to be
rewritten for the child.

Concept reuse
– If a child overrides behaviour defined in the

parent, although no code is shared, they share
the definition of the method

Object Pascal

Python

Ruby

C++

C#

CLOS

JAVA

Inheritance in various languages

class B : public A { .. }

class B : A { .. }

(defclass B (A) ())

class B extends A {
..
}

type
B = object (A)
...
end;

class B(A):
def __init__(self):
...

class B < A
...
end

Inheritance in various languages
(cont.):

Java, Smalltalk, Objective-C, Delphi Pascal:
TREES
– Require every class to inherit from an existing

parent class;
– A single root that is ancestor to all objects (termed

Object in Smalltalk and Objective-C, TObject in
Delphi Pascal);

– Any behaviour provided by the root inherited in
all objects;

– Thus, every object is guaranteed to possess a
common minimal level of functionality.

-continues-

Inheritance in various languages
(cont.):

– DISADVANTAGE: combines all classes into a
tightly coupled unit.

C++ and Apple Pascal: FOREST
– Do not require every class to inherit from a parent;
– Not forced to carry a large library of classes, only a

few of which may be used in any one program;
– ..but no programmer-defined functionality that all

objects are guaranteed to possess.

Tree vs. Forest

Tree
Advantages:

– Single class hierarchy;
– Standardization: the

functionality of the root is
inherited by all objects—
all have some basic
functionality.

Disadvantages:
– Tight coupling;
– Larger libraries.

Forest
Advantages:

– Many smaller
hierarchies;

– Smaller libraries of
classes for application,
less coupling possible.

Disadvantages:
– No shared functionality

among all objects.

Single Inheritance

A class can have only a single superclass;
The data and behavior of a particular
superclass is available to the subclass;

Advantages:
– Simple to include in the design
– Code re-use is very simple to obtain

Single Inheritance (cont.)

There is only 1 root class

There is only a linear sequence of classes
between Apple and Food

Food
Fruit

Apple

Single Inheritance (cont.)

Property: it is always transitive

Food

Fruit Apple

Fruit

Single Inheritance (cont.)

Disadvantages:
– Some models cannot be accurately modeled

using Single Inheritance;
– Leads to duplicate code;

Electronic Device

DVD Player VCR Player

DVD buttons VCR buttons

Multiple Inheritance

A class can inherit from anywhere in a class
hierarchy;
A child class can have more than one parent;
Provides more realistic framework;
– e.g. A child has two biological parents.

Available in some OO languages, such as
C++ and Eiffel

Structure is a lattice or Directed Acyclic Graph
Problems:
– Replication of inherited slots;
– Meaning of the program of

the program can be different
depending on search
algorithm.

Multiple Inheritance (cont.)

A

B

D

C

…example (demonstrates concept, will
not compile)

A

B

D

C

class A {
abstract void printMe();

}

class B extends A {
void printMe() { --“B”-- }

}

class C extends A {
void printMe() { --”C”-- }

}

class D extends B, C {}

A d = new D();
d.printMe(); //problem, which one?!

C++, resolve manually: option 1

Explicitly qualify the call by prefixing it with
the name of the intended superclass using
the scope resolution operator:

d.B::printMe();

OR
d.C::printMe();

Add a new method foo to class D:

Similar solution in Eiffel: use feature
renaming, see next slide

class D : public B, public C {
void foo(void) {

B::printMe(); //one, the other,
C::printMe(); //both or neither

}
}

C++, resolve manually: option 2

Eiffel

class D inherit
B
rename

printMe as printMe_B
select

printMe_B
end;
C
rename

printMe as printMe_C
end
...

end

This makes
printMe_B as the
version of printMe
inherited from B. It
also becomes the
one that will be
used in D.

C++: virtual

Follows each inheritance path separately.
…so a D object would actually contain two
separate A objects;
If the inheritance from A to B and from A to C
are both marked “virtual”, creates only one A
object.

class B : virtual A

Uses of A's members work correctly.

Perl

Perl handles this by specifying the
inheritance classes as an ordered list.
Class B and its ancestors would be checked
before class C and its ancestors, so the
method in A would be inherited through B.

Python

Python had to deal with this upon the
introduction of new-style classes, all of which
have a common ancestor, object.
Python creates a list of the classes that
would be searched in left-first depth-first
order (D, B, A, C, A) and then removes all
but the last occurrence of any repeated
classes.
Thus, the method resolution order is:

D, B, C, A.

Interfaces: Java

Allows only single inheritance;
Allows the multiple inheritance of interfaces.
Interface ≠ Abstract class
– In interfaces you cannot attach any behaviour, but

can implement multiple interfaces;
– …whereas in abstract classes you can define

behaviour, but inherit only one abstract class.
Also in Objective-C (protocols), PHP, C#.

Interfaces: example in Java

interface B {
void printMe();

}

interface C {
void printMe();

}

class A { ... }

class D extends A implements B {
void printMe() { --”B”-- }

}

Alternative solution: Linearization

1. Flatten the inheritance structure into a linear chain
without duplicates;

2. Search the chain in order to find slots (like in single
inheritance);

The order, in which
the algorithm
encounters
superclasses is
important;

Programmer can set
the order though.

A

B

D

C
B and C both define

x ≡ printMe();

One will be masked
off by the algorithm.

* The selection is arbitrary
unless more information is
given.

x x

Linearization: problem

Inherited classes are not guaranteed communication
with their direct ancestors;
The algorithm can insert unrelated classes between
an inheriting class and one of its direct ancestors:

A

B

D

C

A B C D

Consequence: A cannot communicate directly
with C, and B cannot communicate directly
with D

Linearization: implementation

Visit each node and put it into a list;

Once the whole graph is traversed and all nodes
collected—remove all duplicates.

2 ways to remove them:
– Starting from the front
– ...or the back.

Mixins

Referred to as “abstract subclasses”;
They represent specification that may be
applied to various parent classes to extend
them with the same set of features.
Available in Lisp, Scala, Ruby, Smallscript
and CLOS.
– Has been ported to Java as well.

Alternative approach to multiple inheritance.

Mixins: example in Scala

class Point2D(xc: Int, yc: Int) {
val x = xc;
val y = yc; //plus methods for manipulating 2D points

}

class ColouredPoint2D(u: Int, v: Int, c: String)
extends Point2D(u, v) {

var colour = c;
def setColour(newCol: String): Unit = colour = newCol;

}

class Point3D(xc: Int, yc: Int, zc: Int)
extends Point2D(xc, yc) {

val z = zc; //plus methods for manipulating 3D points
}

class ColouredPoint3D(xc: Int, yc: Int, zc: Int, col: String)
extends Point3D(xc, yc, zc)
with ColouredPoint2D(xc, yc, col);

ColouredPoint3D

Mixins: example in Scala (cont.)

Point2D

ColouredPoint2D Point3D

ColouredPoint2D

Subtyping

Subtyping

Subtyping consists of the rules by which
objects of one type (class) are determined to
be acceptable in contexts that expect
another type (class).
– The rules determine the legality of programs

Subtyping should be based on the behaviour
of objects.

Subtyping

• RULES:
1) If instances of class B meet the external

interface of class A, then B should be a subtype
of A.

2) One can use an instance of class B whenever
an instance of class A is needed.

• Guarantee: always the same behaviour!

Subtyping vs. Interface Inheritance

Subtyping
– If B is a subtype of A,

safe to use B instead of
A always the same
behaviour.

Interface Inheritance
– If B has simply inherited

the interface of A, then it
is legal to use B instead
of A, but no guarantee
that it will do what you
want.

Subtyping should not be equated with
Inheritance

• In Trellis/Owl, Simula and Sather, class Stack is a
subtype of DEQueue iff Stack is a subclass of
DEQueue.

• If Stack is re-implemented, so that it becomes self-
contained and inherits from no parent class, then the
assumption that Stack is a subtype of DEQueue will
no longer be legal.
Implementation hierarchy need not be the same as
the type hierarchy.

DEQueueStack

Consider Stack as a subtype of DEQueue (double-ended queue)

Subtyping should not be equated with
Inheritance (cont.)

Stack inherits from DEQueue, but is not a subtype of it
(excludes the operation that adds elements to the back of the
queue).
DEQueue is a subtype of Stack, but does not inherit from
Stack.

Stack
(abstraction)

DEQueue
(abstraction)

Stack
(implementation)

DEQueue
(implementation)

subtype of

subtype of

inherits from

implements implements

Subtyping in various languages

Statically typed languages: subtyping rules
are extremely important as they determine
the legality of programs.
– e.g. C++, Java

Dynamically typed languages: subtyping
rules affect the result of type predicates.
– e.g. CLOS, Smalltalk

Prototypes

Prototypes

Object-Oriented programming without classes!
No distinction between classes and instances.
There are only objects, which are similar to
instances.
e.g.Javascript, Lua, Self, Kevo, NewtonScript, Mica,
Obliq, Factor, Io, Lisaac, REBOL, Agora, Cecil and
many others.
“prototype-based programming” ≡ “object-based
programming”

Prototypes (cont.)

Create new objects by cloning, not
instantiation.
Analogy:
– Building an object in a class-based language is

like building a house from a plan, while building
an object in a prototype-based language is like
building a house like the neighbors.

Side by side: Java and JavaScript
public class Employee {

public String name;
public String dept;
public Employee () {

this.name = "";
this.dept = "general"; }

}
public class Manager extends Employee {

public Employee[] reports;
public Manager () {

this.reports = new
Employee[0]; }

}
public class WorkerBee extends

Employee {
public String[] projects;
public WorkerBee() {

this.projects = new String[0];
}

}

function Employee () {
this.name = "";
this.dept = "general";

}

function Manager () {
this.reports = [];

}

Manager.prototype = new Employee;

function WorkerBee() {
this.projects = [];

}

WorkerBee.prototype= new Employee;

Java JavaScript

Java vs. JavaScript

Class and instance are distinct entities. All objects are instances.
Define a class with a class definition;
instantiate a class with constructor
methods.

Define and create a set of objects with
constructor functions.

Create a single object with the new
operator.

The same.

Construct an object hierarchy by using
class definitions to define subclasses of
existing classes.

Construct an object hierarchy by
assigning an object as the prototype
associated with a constructor function.

Inherit properties by following the class
chain.

Inherit properties by following the
prototype chain.

Class definition specifies all properties
of all instances of a class. No way to
add properties dynamically at runtime.

Constructor function or prototype
specifies an initial set of properties. Can
add or remove properties dynamically to
individual objects or to the entire set of
objects.

Prototype-basedClass-based

References

Budd, Timothy. An Introduction to Object-Oriented
Programming. 3rd ed. Addison-Wesley, 2002.
Craig, Iain. The Interpretation of Object-Oriented Programming
Languages. Springer, 1999.
"Multiple Inheritance." Wikipedia. 13 Nov. 2006
<http://en.wikipedia.org/wiki/Multiple_inheritance>.
"Prototype-Based Programming." Wikipedia. 13 Nov. 2006
<http://en.wikipedia.org/wiki/Prototype-based_programming>.
Merizzi, Nicholas. "Object Oriented, Classes, Objects,
Inheritance, and Typing." Jan. 2005. 13 Nov. 2006.
Sykes, Ed. "Object Oriented Languages." 13 Nov. 2006.

END

Time for questions and
discussions…

Cut slides follow..

Abstract Classes

Cannot be instantiated!
e.g. AST for expressions

Expression

Constant Variable
Application

Intconst

Floatconst Stringconst…..

Unaryop

Binaryop ….
Boolconst

abstract

• Serve as place holders in an
inheritance graph;
• Define only properties and
behaviours required by many other
classes;

: doesn’t make sense to
instantiate

Some languages, like Java and Dylan, allow abstract classes
(and methods) to be explicitly marked.

– Java:

– Similar marking scheme in Dylan.

In Eiffel: distinction achieved by means of the deferred
annotation, which means that implementation of a feature is
deferred until a later class.

Abstract Classes in various languages

public abstract class A {
public abstract void b(..);
.
.

}

Abstract Classes in various languages
(cont.)

In C++, a method can be defined as being
virtual void.
– The method is a virtual void, but..
– its implementation is deferred to the subclasses of

the class.

– The “=0” is the “void” part of “virtual void”.
No class annotation for an abstract class in
C++.

virtual int add1(int y) = 0

	INHERITANCE, SUBTYPING, PROTOTYPES�in Object-Oriented Languages
	Two kinds of OO programming languages
	Outline
	Inheritance
	Inheritance (definition)
	Inheritance (terminology)
	Inheritance is “is a kind of” relation
	Reasons to use inheritance
	Inheritance in various languages
	Inheritance in various languages (cont.):
	Inheritance in various languages (cont.):
	Tree vs. Forest
	Single Inheritance
	Single Inheritance (cont.)
	Single Inheritance (cont.)
	Single Inheritance (cont.)
	Multiple Inheritance
	Multiple Inheritance (cont.)
	…example (demonstrates concept, will not compile)
	C++, resolve manually: option 1
	C++, resolve manually: option 2
	Eiffel
	C++: virtual
	Perl
	Python
	Interfaces: Java
	Interfaces: example in Java
	Alternative solution: Linearization
	Linearization: problem
	Linearization: implementation
	Mixins
	Mixins: example in Scala
	Mixins: example in Scala (cont.)
	Subtyping
	Subtyping
	Subtyping
	Subtyping vs. Interface Inheritance
	Subtyping should not be equated with Inheritance
	Subtyping should not be equated with Inheritance (cont.)
	Subtyping in various languages
	Prototypes
	Prototypes
	Prototypes (cont.)
	Side by side: Java and JavaScript
	Java vs. JavaScript
	References
	END
	Cut slides follow..
	Abstract Classes
	Abstract Classes in various languages
	Abstract Classes in various languages (cont.)

