Overloading, Overriding

Jessie LI
2006-11-10

Outline

Polymorphism, Method binding
Overloading

Overloading Based on Scopes
Overloading based on Type Signatures
Coercion and Conversion

Redefinition

Polyadicity

Multi-Methods

Overriding

Notating Overriding
Replacement vs. Refinement
Deferred Methods

Overriding vs. Shadowing
Covariance and Contravariance
Variations on Overriding

Polymorphism

* Polymorphism translates from Greek as many forms

(poly: many morph: forms)
» Polymorphic variable: a variable that is declared as one type but holds a
value of a different type.

Example :

 Java: all variables can be polymorphic.
« C++: only pointers and references can be polymorphic.

Method Binding

» Determining the method to execute in response to a message.
* Binding can be accomplished either statically or dynamically.

Static Binding

» Also known as “Early Binding”.

» Resolved at compile time.

» Resolution based on static type of the objects.

Dynamic Binding

 Also known as “Late Binding”.

» Resolved at run-time.

» Resolution based on the dynamic type of the objects.

Scopes and Type Sighatures

* What is Scope?

— A scope defines the portion of a program in which a name can be used or
the way in which the name can be used.

*What is Type Signature?

— Is a description of the argument types associated with a function, the order
of arguments, and the return type.

Overloading Based on Scopes

« same method name in different scopes.

 the scopes cannot overlap.

» No restriction on semantic similarity.

* NO restriction on type signatures.

» Resolution of overloaded names based on class of receiver.

Example

Overloading Based on Type Signatures

« same method name with different implementations having different type
signatures.

» Resolution of overloaded names is based on type signhatures.
» Occurs in object-oriented languages (C++, Java, C#, Delphi Pascal)
» Occurs in imperative languages (Ada), and many functional languages.

« C++ permits any method, procedure, or operator to be overloaded
parametrically.

« Java does not allow operators to be overloaded.
 In Delphi Pascal “overload” must be explicitly declared.

Delphi Pascal: explicitly declare overload

Type
example = class
pubic
function sum(a:Integer): Interger; overload;
function sum(a,b:Integer): Integer; overload;
end;

Overloading and Method Binding

Resolution of Overloaded Methods

* Method binding at compile time.

» Based on static types of argument values.

* Methods can’t be overloaded based on different return types alone.

Coercion and Conversion

» Used when actual arguments of a method do not match the formal
parameter specifications, but can be converted into a form that will match

« Coercion — an implicitly change in type
Example

« Conversion — a change in type explicitly requested by the programmer
Example

 When do Overloading and Coercion happen?
Example:

Substitution as Conversion

Resolution rules (when substitution is used as conversion in overloaded
methods)

* If there is an exact match, execute that method.

* If there are more than one matching methods, execute the method that
has the most specific formal parameters.

* If there are two or more methods that are equally applicable, the method
Invocation is ambiguous, and a compiler error will be reported.

* If there is no matching method, a compiler error will be reported.

Substitution as Conversion

» Used when there is parent-child relationship between formal and actual
parameters of a method

Dessert voild order (Dessert d, Cake c);
void order (Pie p, Dessert d);
void order (ApplePie a, Cake c);

Pie Cake
ApplePie ChocolateCake

order (aDessert, aCake);

order (anApplePie, aDessert)

order (aDessert, aDessert); // compiler error, no match
order (aPie, aCake); // compiler error, two match
order (anApplePie, aChocolateCake)

Redefinition

When a child class defines a method using the same name as a method
In the parent class but with a different type signature.

How is it different from overloading?
Different type signature in Child class.

Redefinition

Two approaches to resolution

Merge model
- used by Java, C#

* method implementations found in all currently active scopes are merged into a
single collection and the closest match from this list is executed.

* in the example, parent class method will be executed.

Hierarchical model

* used by C++

» each currently active scope is examined in turn to find the closest matching
method

* in the example, compilation error in Hierarchical model
(redefining both methods in the child class solve the error)

Delphi Pascal - can choose which model is used

merge model - if overload modifier is used with child class method.
Hierarchical model - otherwise.

type

Parent = class

Public
procedure Example(A: Integer);
end;
ChildWwithOneMethod = class (Parent)
public
procedure Example (A, B: Integer);
end;
ChildWithTwoMethod = class (Parent)
public
procedure Example (A, B: Integer); overload;
end;
var
Cl: ChildWithOneMethod; C2: ChildWithTwoMethod;
begin

end

Cl = ChildWithOneMethod.Create;

C2 = ChildWithTwoMethod.Create;
Cl.Example(42); // error:not enough parameters
C2.Example(42); // OK

Polyadicity
 What is Polyadicity?
Polyadic function: that can take a variable number of arguments.

« Easy to use, difficult to implement

 Example:
— printf in C and C++;

— writeln in Pascal;
— + operator in CLOS

(+23)
(+23456)

Optional Parameters

One technigue for writing Polyadic functions.
* Provide default values for some parameters.

« |If values for these parameters are provided then use them, else use the
default values.

* Found in C++ and Delphi Pascal

Multi-Methods

» combines the concepts of overloading and overriding.

» Method resolution based on the types of all arguments and not just the
type of the receiver.

 Resolved at runtime.

Resolution of overloaded function by the types of all arguments would introduce problem:

Multi-Methods

How to solve the problem? Double dispatch
e amessage can be used to determine the type of a receiver.

* To determine the types of two values, the same message is sent twice,
using each value as receiver in turn.

* Then execute the appropriate method.

Overloading Based on Values

» overload a method based on argument values and not just types.
» Occurs only in Lisp-based languages - CLOS, Dylan.
» High cost of method selection algorithm.

Example

The second method will be executed if the first argument is the constant
value zero, otherwise the first method will be executed.

Overloading Summary

» Overloading is the compile time matching of a function invocation to one
of many similar named methods

* Two categories of overloading: scope based, type signature based
« Similar concepts: conversion and redefinition

« An alternative to overloading is the creation of polyadic functions

Overriding

A method in child class overrides a method in parent class if they have the
same name and type signature.

Overriding

 classes in which methods are defined must be in a parent-child
relationship.

* Type signatures must match.
 Dynamic binding of messages.
* Runtime mechanism based on the dynamic type of the receiver.

» Contributes to code sharing (non-overriding classes share same
method).

Overriding Notation

Java (smalltalk, object-c)

class Parent {
public Int test (int a) { .. }
+
class Child extends Parent {
public int test (int a) { .. }

+
C++

class Parent {
public:
virtual int test (int a) { .. }
+
class Child : public Parent {
public:
Int test (int a) { .. }

Overriding Notation

Object Pascal

type
Parent = object
function test(int) : iInteger;
end;
Child = object (Parent)
function test(int) : iInteger; override;
end;

C# (Delphi Pascal)

class Parent {

public virtual Int test (int a) { .. }
}
class Child : Parent {

public override Int test (int a) { .. }

}

Replacement vs. Refinement

Overriding as Replacement
 child class method totally overwrites parent class method.

 Parent class method not executed at all.

 Smalltalk, C++.

Overriding as Refinement
 Parent class method executed within child class method.

» Behavior of parent class method is preserved and augmented.

 Simula, Beta

Constructors always use the refinement semantics of overriding.

Replacement

Two major reasons for using replacement:

 In support of code reuse

« as a technique for optimization

Replacement in SmallTalk

In support of code reuse

Person
GenerateReport
Director Manager Trainee
GenerateReport
ommmmmmmmmm e Code Reuse ----------------mmnmmo- > Commmmmmm e ee >

Overriden method
as replacement

Replacement in SmallTalk

In support of code optimization

Boolean

& right

A

True

& right

False

& right

Refinement in Beta

» Always code from parent class is executed first.

 When ‘inner’ statement is encountered, code from child class is
executed.

 |f parent class has no subclass, then ‘inner’ statement does nothing.

Example

inner Inner;

Simulation of Refinement using Replacement

C++

Parent: :example(12); //do parent action

Java

super.example(12); //super refers to parent class

Java: super refers to parent class, (Smalltalk, Object-C)
C#: uses keyword base.
Object Pascal, Delphi Pascal: use keyword inherited

Refinement Vs Replacement

Refinement
» Conceptually very elegant mechanism
* Preserves the behavior of parent.
(impossible to write a subclass that is not also a subtype)
« Cannot simulate replacement using refinement.

Replacement

* No guarantee that behavior of parent will be preserved.
(it is possible to write a subclass that is not also a subtype).

» Can be used to support code reuse and code optimization

« Can simulate refinement using replacement.

Deferred Methods

» Defined but not implemented in parent class.
» Also known as abstract method (Java) and pure virtual method (C++)

« Associates an activity with an abstraction at a higher level than it
actually is.

Shape
virtual Draw() =0

A

Circle Triangle Square

Draw() Draw() Draw()

» Used to avoid compilation error in statically typed languages.

Deferred Method Example

C++

virtual void Draw () = O;

Java (C# and Delphi are similar)
abstract
abstract

Smalltalk (Objective-C is similar)

N self subclassResponsibility

(Smalltalk does implement the deferred method in parent class but when
iInvoked will raise an error)

Shadowing

What is shadowing?

class Silly {
private int x; // an instance variable named X

public void example (int x) { // x shadows iInstance variable
inta=x+ 1;
while (a > 3) {
int x = 1; // local variable shadows parameter
a=a— X;

Shadowing vs. Overriding

Child class implementation shadows the parent class implementation of a method.
» A shadowing performed if no keyword provided for indication of overloading
» Resolution is at compile time based on static types

// be careful here!

Overriding, Shadowing and Redefinition

Overriding
e Same type signature and method name in both parent and child classes.

» Method declared with language dependent keywords indicating
overriding.

Shadowing
« Same type signature and method name in both parent and child classes.

» Method not declared with language dependent keywords indicating
overriding.

Redefinition
« Same method name in both parent and child classes.
« Type signature in child class different from that in parent class.

Covariance and Contravariance

* An overridden method in child class has a different type signature than
that in the parent class.

» Difference in type signature is in moving up or down the type hierarchy.

e Covariant change - when the type Parent
moves down the type hierarchy in Test(covar:Mammal,
the same direction as the child class. contravar:Mammal):boolean

A

« Contravariant change - when the
type moves in the direction opposite
to the direction of subclassing.

Child

Test(covar:Cat,
contravar:Animal):boolean

Covariance and Contravariance

« Covariant change to a by-value parameter

« Contravariance change to a by-value parameter

Covariance and Contravariance

» Covariant change in return type

» Contravariant change in return type

o C++ allows covariant change in return type.
 Eiffel allows both covariant and contravariant overriding
» Most other languages employ novariance to avoid this problem.

Variation on Overriding

Java
» ‘final’ keyword applied to functions prohibits overriding.
 ‘final’ keyword applied to classes prohibits subclassing.

Example:

C#
» ‘sealed’ keyword applied to classes prohibits subclassing.
» ‘sealed’ keyword cannot be applied to individual functions.

Overriding Summary

* Method in Child class use the same name and type signhature as that in parent
class

» Overriding is resolved at run time. (overloading at compile time)
* Replacement replaces the parent’s code; Refinement combines the code.

» Deferred method is a form of overriding where no implementation in parent and
implementation in child.

* A name can shadow another use of the same name if it temporarily hides
access to the previous meaning.

» A covariant change in parameter or return type is a change the moves down the
class hierarchy in the same direction as the child class.

» A contravariant change moves a parameter or return type up the class hierarchy
in the opposite direction from the child class.

Reference

An Introduction to Object-Oriented Programming, Third
Edition
by Timothy A. Budd

Thanks!

