
(Co)Monads for DummiesGrad Students

Math’s answer to ‘It Depends’

Paul Hachmann

hachmap@mcmaster.ca

Outline� Review of Monads� The Dual Link� Programming with Co-Monads

(Co)Monads for Grad Students — slide #2

Monads - what are they good for?

In a world without monads . . .� All programs (λ-expressions) would reduce to a single ‘unit’.� The result of these programs would be the same no matter what input is given to the
program (Since ‘reading in inputs’ requires monads in the first place)� This is boring.

We want something to handle the vagaries of life.

(Co)Monads for Grad Students — slide #3

Enter Monads - Spice up your life!� Monads are a mathematical structure which can abstractly handle “uncertainty” (at
compile time)� You use them in your everyday programs without even knowing!� It’s time to bring them to light!

(Co)Monads for Grad Students — slide #4

Example 1 : The Maybe Monad� Haskell definition of ‘Maybe’:

data Maybe a = Nothing | Just a� But which is it?

Knowing that an object is of type Maybe a does not tell you which of the above two it
actually represents, just as we cannot tell from the outside of the box enclosing Schrdinger’s

cat if it holds a live cat or a dead one

(Co)Monads for Grad Students — slide #5

A Monad - From the Outside� Perspective 1 : View a monad as a ‘black box’

We cannot safely open up the box, as we don’t know for sure what’s in it� Perspective 2 : View a monad as a (delayed) ‘computation’

We cannot (in general) know the result of a monad until runtime

(Co)Monads for Grad Students — slide #6

A Monad - From the Inside

A monad has the following operations on it:� return : Monad m => a -> m a

Encloses a value into a monadic one. Note the similarity of this and the ‘hungry’ type� join : Monad m => m (m a) -> m a

Allows us to ‘flatten’ multi-layer monadic values into single-layer ones (the internal ma-
chinery gets composed (somehow - it depends on the monad in question)� bind :

Monad m => m a -> (a -> m b) -> m b

Allow us to transform monadic values of one type into another

‘bind’ is also written infix as ‘>>=’

Also helpful is fmap with signature:
Functor f => (a -> b) -> (f a -> f b)

This allows us to modify the ‘value’ inside a monad without (unsafely) extracting it
Note: Monads are functors

(Co)Monads for Grad Students — slide #7

Monad satisfaction laws

The previous operations just had signatures - how do we know what they mean?� Monads must satisfy the following three laws:� (return x) >>= f == f x - Left identity� m >>= return == m Right identity� (m >>= f) >>= g

==

m >>= (\ x -> f x >>= g) Associativity

(Co)Monads for Grad Students — slide #8

Example 1 revisited : Maybe?

Let’s see how ‘Maybe’ is a monad!� return = Just� Just x >>= k = k x

Nothing >>= k = Nothing� or, join x = case x of

(Just y) -> y

Nothing -> Nothing� xs >>= f = join (fmap f xs)

How to get a value from a ‘Maybe’? Use ‘fromJust’ (not safe!)

(Co)Monads for Grad Students — slide #9

Exapmle 2: The List Monad

Yes, lists are Monads!
They plainly express non-determinism (consist of a varying number of ‘results’)
How to implement as a monad?� return x = [x]� >>= = flip concatMap

How to get a value from a List? Use ‘head’ or ‘lookup’ (not safe!)

(Co)Monads for Grad Students — slide #10

Example 3 : A State Monad

Let us define a type such as :
State s a = {runState :: s -> (a,s)}
This is a monad!� return x = State (λs -> (x,s))

Given a value, creates a state monadic value which always just outputs that value and
stays in the same state� fmap f (State m) = State (onVal f . m)

where onVal f (x, s) = (f x, s)

Allows us to modify a state monadic value by applying a function to what would be its
output� join xss = State (

λs -> uncurry runState (runState xss s)

)

Join ‘flattens’ two layers of state monads (transitions) by running the two transitions in
sequence

(Co)Monads for Grad Students — slide #11

A final example : The IO Monad

Finally, something worth writeing about!
For IO we have do notation which allows us to bypass the use of ‘bind’.
One can think of an IO monad as a state monad where the state is the state of the machine.
(With the exception that you can’t backtrack)

(Co)Monads for Grad Students — slide #12

Comonads at last!� Comonads are the dual of monads.� While monads push things into a ‘box’, comonads allow one to pull things out of a box.� Simple example: Streams
Stream s = s × Stream s� This allows one to pull out items from a stream, while still retaining a stream.

(Co)Monads for Grad Students — slide #13

Comonads defined

Comonads have the following operations in Haskell:� extract :: w a -> a (a.k.a. coeval) Dual of return� duplicate :: w a -> w (w a) Dual of join� extend :: (w a -> b) -> w a -> w b A flipped kind of =>>� (=>>) :: w a -> (w a -> b) -> w b Dual of bind� (.>>) :: w a -> b -> w b A kind of ‘seq’

(Co)Monads for Grad Students — slide #14

Comonad operation Rules� (=>> coeval) = id Right identity� coeval . (=>> f) = f Left identity� (=>> f).(=>> g) = (=>> (f . (=>> g))) Associativity

(Co)Monads for Grad Students — slide #15

Monads vs. Comonads

Operation Monads Comonads
Extracting values unsafe safe

Creating safe unsafe
return / coeval a -> m a w a -> a

(Co)Monads for Grad Students — slide #16

Using Stream comonads

data Stream a = S b (b -> a) (b -> b)

The first function generates an object from the current stream, wheras the second function
modifies it
Then we have
coeval (S s f g) = f s

extend h (S s f g) = S s (λ s’ . h (S s’ f g)) g

Can use two seperate operations on streams:

shd : Stream a -> a

stl : Stream a -> Stream a

Alternatively,

counit (v :<) = v

cobind f val@(x :< xs) =

f val :< cobind f xs

(Co)Monads for Grad Students — slide #17

Anticipation and Delay

Can’t wait for the rest of the stream?

next (:< xs) = xs

Want to wait a bit?

a ‘fby‘ b = a :< b

One can construct streams (unsafely!) via ‘produce’:

produce :: (a -> a) -> a -> Stream a

produce fun init =

let x = fun init in x :< produce fun x

(Co)Monads for Grad Students — slide #18

Using aniticipation and delay

pos = 0 fby (pos + 1)

fact = 1 fby (fact * (pos + 1))

sum x = (0 fby sum x) + x

avg x = ((0 fby x) + x + next x) / 3

fib = 0 fby (fib + (1 fby fib))

Example: A stream of fibs
0 fby (fib + (1 fby fib)) 0 1 1 2 3 5 . . .
1 fby fib 1 0 1 1 2 3 5 . . .
fib + (1 fby fib) 1 1 2 3 5 . . .

In Haskell, we would define fib as a function which takes a comonad as an argument, e.g.
fib x = 0 ’fby’ cobind (e -> fib e + (1 ’fby’ cobind fib e)) d

As a somewhat simpler example, we would write sum as
sum x = (0 ’fby’ cobind sum x) + counit x

(See reference 4 for details, if interested)

(Co)Monads for Grad Students — slide #19

The OI Comonad

We can have a ‘comain’ function with type:

main :: OI () -> ()

With operations such as:

hGetChar’ :: OI Handle -> Char

hPutChar’ :: OI Handle -> OI Char -> ()

In the IO monad, the resultant value of these functions carried the ‘monadic baggage’ along
with them. When using the OI comonad, it is the objects that ‘interact’ with the outside world
which carry state information with them (and thus must be enclosed in the OI comonad).

(Co)Monads for Grad Students — slide #20

Using Context comonads

We construct a context:

data Context c a = Context (c -> a) c

Then we can use the following operations:

get :: Context c a -> c

modify :: (c -> c) -> Context c a -> a

experiment ::

[c -> c] -> Context c a -> [a]

liftCtx :: (a -> b) -> Context c a -> b

(Co)Monads for Grad Students — slide #21

Context comonad example

We define a function within the ‘context’ of having an argument of 3:

> let x = Context (λ n -> take n [1..10]) 3

> get x

Result: 3
We can then modify that context later on, before the function uses it:

> modify (+1) x

Result: [1,2,3,4]
> modify (*3) x

Result: [1,2,3,4,5,6,7,8,9]
> experiment (fmap (+) [1..5]) x

Result: [[1,2,3,4],[1,2,3,4,5],[1,2,3,4,5,6],[1,2,3,4,5,6,7],[1,2,3,4,5,6,7,8]]

(Co)Monads for Grad Students — slide #22

References

1. All About Monads, Jeff Newbern (ed.), (September 2005) link

2. Codata and Comonads in Haskell, Richard B. Kieburtz, Oregon Garduate Institute (June
1999) link

3. The Essence of Dataflow Programming, Tarmo Uustalu and Varmo Vene, APLAS 2005,
LNCS 3780 (2005) link

4. Comonadic functional attribute evaluation, Tarmo Uustalu and Varmo Vene, in 6th Sym-

posium on Trends in Functional Programming (September 2005) link

5. Comonad Dataflow Programming, Tarmo Uustalu (November 2005) link

6. Haskell Comonad Wiki : http://www.haskell.org/hawiki/CoMonad

7. Haskell Comonads (& Context Comonad) APIs :

8. http://www.eyrie.org/ zednenem/2004/hsce/Control.Comonad.Context.html

9. http://www.eyrie.org/ zednenem/2004/hsce/Control.Comonad.html

10. Comonads and Haskell, Einar Karttunen (September 2005) link

11. Arrows : A general Interface to Computation, Ross Paterson (August 2006) link
(Co)Monads for Grad Students — slide #23

http://www.nomaware.com/monads/html/index.html
http://www.cse.ogi.edu/PacSoft/publications/phaseiiiq10papers/codata.pdf
http://cs.ioc.ee/~tarmo/papers/essence.pdf
http://www.cs.ioc.ee/tfp-icfp-gpce05/tfp-proc/03num.pdf
http://www.haskell.org/hawiki/CoMonad
http://www.eyrie.org/~zednenem/2004/hsce/Control.Comonad.Context.html
http://www.eyrie.org/~zednenem/2004/hsce/Control.Comonad.html
http://www.cs.helsinki.fi/u/ekarttun/comonad/
http://haskell.cs.yale.edu/arrows/

