
Typed Lambda Calculus and
Exception Handling

Dan Zingaro

zingard@mcmaster.ca

McMaster University

Typed Lambda Calculus and Exception Handling – p. 1/24

Untyped Lambda Calculus

Goal is to introduce typing rules that are realistic, and
satisfy the preservation and progress theorems

First attempt: claim that all lambda-abstractions are of
the same type, called→

This would assert that (λx.x), and (λx.λy.xy) are of the
same type

If we claim this is true, what does the type become
under application?

May become a value (first example), or another function
(second example). More information necessary.

Typed Lambda Calculus and Exception Handling – p. 2/24

Family of Types

Replace→ with T1 → T2, representing functions that
take type T1 as argument and return type T2

This is of course what we see in functional languages;
for example, Ocaml’s filter function:

filter : (’a -> bool) -> ’a list -> ’a list

The→ constructor is right-associative, so filter takes a function
mapping alpha to boolean, and a list of alphas, and returns a list of
alphas

Typed Lambda Calculus and Exception Handling – p. 3/24

Type of Argument

How do we know which type of argument a function
expects?

Option 1 : type annotations...

let addFive x : int = x + 5

Option 2: infer the type...

Since x is added to 5, we know something about x
without the annotation - namely that it must be a
number

Type annotations are used in TAPL

The type that the function returns is the type of its body,
using the additional annotation from the head

Typed Lambda Calculus and Exception Handling – p. 4/24

Rule for Abstractions

This gives the first attempt for the abstraction rule in the
typing relation.

x : T1 ` t2 : T2

` λx : T1.t2 : T1 → T2

In words: “if, under the assumption that x has type T1,
we can deduce that t2 has type T2, then we know that
λx : T1.t2 has type T1 → T2”

This only helps us with the assumption given for the
type of the head of the inner-most lambda abstraction,
though

For example, if we had (λx : int.λy : int.x), and we wanted
the type of the inner function, we’d be asking for the
type of (λy.x) by knowing just the fact that y has type int

Typed Lambda Calculus and Exception Handling – p. 5/24

Typing Contexts

A typing context Γ is a sequence of variables and their
types, containing the free variables of a term

Now the (λx : int.λy : int.x) example is trivial: the type of
x can just be looked up

Refined typing rule for abstractions is the same as
before, plus Γ:

Γ, x : T1 ` t2 : T2

Γ ` λx : T1.t2 : T1 → T2

Typed Lambda Calculus and Exception Handling – p. 6/24

Other Typing Rules

Variables:
x : T ∈ Γ

Γ ` x : T

Application (if t1 has type X → Y , and we apply it to
something of type X, we get type Y):
Γ ` t1 : T11 → T12

Γ ` t2 : T11

Γ ` t1t2 : T12

Typed Lambda Calculus and Exception Handling – p. 7/24

Typing Example

We’ll show that (λx : Bool.x)true has type Bool in the
empty context

First, under context [x : Bool], we know that x : Bool
(wow!)

Next we use the abstraction rule: We know that under
the empty context concatenated with [x : Bool], we have
x : Bool from above

Therefore under the empty context, we have
` λx : Bool.x : Bool→ Bool

Finally, since True is of type Bool, applying (λx : Bool.x)
to true yields a Bool, by the application rule

Typed Lambda Calculus and Exception Handling – p. 8/24

Easy Exercises

What’s the type of f(if false then true else false) under
context [f : Bool→ Bool]?

Find a context so that f x y has type Bool.

Typed Lambda Calculus and Exception Handling – p. 9/24

Inversion Lemma

By reversing the typing relation, we have some basic
statements of the form “if t has any type, then its type is
. . . ”. A few examples:

If Γ ` x : R, then x : R ∈ Γ

If Γ ` t1t2 : R, then there is some type T11 such that
Γ ` t1 : T11 → R and Γ ` t2 : T11

If Γ ` true : R, then R = Bool

Typed Lambda Calculus and Exception Handling – p. 10/24

Other Lemmas

We also have the following (just like for integers and
booleans):

A term whose free variables are all in the context Γ, has
at most one type

Progress theorem for closed terms (not open ones): if
its well-typed, then its a value or can take an evaluation
step

Types are preserved under substitution: if Γ, x : S ` t : T

and Γ ` s : S, then Γ ` (x← s)t : T

I.E., if x and s have the same type, and we replace x for
s in t, then t still has the same type

Preservation of types: if its well-typed and it takes a
step, its still well-typed

Typed Lambda Calculus and Exception Handling – p. 11/24

Erasure

In compilers, type annotations are used during
typechecking and code generation, but not at runtime
(I.E. they get dropped from generated code)

This takes our typed lambda calculus back to untyped
form (using an erasure function), prior to evaluation

Erasure and evaluation commute: we get the same
thing if we erase and then evaluate (like above), or we
evaluate and then erase (carry type info along to the
end, then get rid of it and print the result)

Typed Lambda Calculus and Exception Handling – p. 12/24

Exception Handling

Two possibilities for what to do when a function can’t
execute:

Return a value of type Option, which contains None or
Some. Caller has to check the return of every function
(*puke*)

Use exceptions, which may abort the program entirely,
or be caught by an exception handler somewhere along
the call stack

Typed Lambda Calculus and Exception Handling – p. 13/24

Exceptions that Terminate the Program

Assume that programs that terminate exceptionally
result in the error term

We add a new syntactic construct:

t ::= error

New evaluation rules (when error is evaluated, it aborts
evaluation of its enclosing term):

error t2 → error

v1 error→ error

Finally, a new typing rule:

Γ ` error : T

Typed Lambda Calculus and Exception Handling – p. 14/24

Some Considerations

Why isn’t error a Value?

Consider term (λx : nat.0)error

If error is a value, then we can perform a beta-reduction
to arrive at 0, or use the second rule above to result in
error; nondeterministic choice!

The typing rule allows error to have any type at all, so it
can be inserted in any context

What about the type preservation theorem?

Typed Lambda Calculus and Exception Handling – p. 15/24

Handling Exceptions

Activation records are popped off the call stack until an
exception handler is encountered; evaluation continues
at this point

We introduce a new syntactic construct try t with t, where
the first subexpression is evaluated and, if it aborts with
an exception, the second is evaluated instead

Typed Lambda Calculus and Exception Handling – p. 16/24

Evaluation Rules

When we have a value in the “try”, we can throw
everything else out:

try v1 with t2 → v1

When “trying” an error, we start evaluating the “with”:

try error with t2 → t2

Otherwise, we keep evaluating the “try”:

t1 → t′
1

try t1 with t2 → try t′
1

with t2

Typed Lambda Calculus and Exception Handling – p. 17/24

Typing Rule

Both branches of the “try” have to be the same type,
and this is the type of the whole construct:

Γ ` t1 : T

Γ ` t2 : T

Γ ` try t1 with t2 : T

Typed Lambda Calculus and Exception Handling – p. 18/24

Exceptions with Values

With the previous mechanisms, all we know is that
something bad happened

Its useful to send some meaningful information along
with the exception, so the handlers have more
information for how to deal with it

The type of these values will be denoted Texn

This now closely approximates Ocaml exceptions, for
example:

exception Result of string;;

Typed Lambda Calculus and Exception Handling – p. 19/24

Evaluation Rules

Replace error with raise, which takes a term; the
rules are then similar to those for error:

(raise v11)t2 → raise v11

v1(raise v21)→ raise v21

raise(raise v11)→ raise v11

t1 → t′
1

raise t1 → raise t′
1

Typed Lambda Calculus and Exception Handling – p. 20/24

Remaining Evaluation Rules

Like before, we have:

try v1 with t2 → v1

When we reach an exception, we pass the value to the
exception handler:

try raise v11 with t2 → t2 v11

t1 → t′
1

try t1 with t2 → try t′
1

with t2

Typed Lambda Calculus and Exception Handling – p. 21/24

Typing Rules

Raise, like error, can have any type, as long as the value is
Texn:

Γ ` t1 : Texn

Γ ` raise t1 : T

The “with” has to have the same type as “try”, after the
value is passed:

Γ ` t1 : T

Γ ` t2 : Texn → T

Γ ` try t1 with t2 → T

Typed Lambda Calculus and Exception Handling – p. 22/24

What’s this Tmathrmexn?

Type Nat (error codes)

Type String (more descriptive info, but may require
parsing)

A variant type (but requires fixed set of choices)

Extensible variant type (lets user add exceptions; ML)

Similar idea in Java, where new exceptions are classes
extending Throwable

Typed Lambda Calculus and Exception Handling – p. 23/24

Exception Example

When is an exception thrown in the below example? What
does the exception handler do?
sub = (λx.if x <= 0 then raise “negative result” else x− 1)
safeSub = (λx.try sub x with λy : string.0)
safeSub − 3

Typed Lambda Calculus and Exception Handling – p. 24/24

	Untyped Lambda Calculus
	Family of Types
	Type of Argument
	Rule for Abstractions
	Typing Contexts
	Other Typing Rules
	Typing Example
	Easy Exercises
	Inversion Lemma
	Other Lemmas
	Erasure
	Exception Handling
	Exceptions that Terminate the Program
	Some Considerations
	Handling Exceptions
	Evaluation Rules
	Typing Rule
	Exceptions with Values
	Evaluation Rules
	Remaining Evaluation Rules
	Typing Rules
	What's this $T_{mathrm{exn}}$?
	Exception Example

