
Computing and Software Department, McMaster University

Normalization and References

Wen Yu

October, 2006

Wen Yu:

Normalization & References(slide 1)

Today’s Agenda

I Normalization

• Logical Relations
• Proof Outline

I References

• Introduction
• Typing
• Evaluation
• Store Typings
• Safety

Wen Yu:

Normalization & References(slide 2)

Normalization

Wen Yu:

Normalization & References(slide 3)

Introduction

I Evaluation of a well-typed program is guaranteed to halt in a
finite number of steps — that is, every well-typed term is
normalizable

I The simply typed lambda–calculus over a single base type A is
considered here.

I Logical relations is used for proving normalization.

Wen Yu:

Normalization & References(slide 4)

Problems with Induction on the Size

Example: proof that t1 t2 is normalizing.

I Assume both t1 and t2 are normalized and have normal forms
v1 and v2 respectively.

I By the inversion lemma: v1 has type T11 → T12 for some T11

and T12.

I By the canonical forms lemma: v1 has the form λx : T11.t12
I Then, we get [x 7→ v2]t12.

I However, if there are more than on occurrences of x in t12,
[x 7→ v2]t12 is bigger than the original term t1 t2.

I We get stuck.

Wen Yu:

Normalization & References(slide 5)

Logical Relations

Prove some property P of all closed terms of type A by induction
on types

I all terms of type A possess property P

I all terms of type A → A preserve property P

I all terms of type (A → A) → (A → A) preserve the property
of preserving property P

I and so on

Wen Yu:

Normalization & References(slide 6)

Definitions

For each type T , define a set RT of closed terms of type T ,
written as RT (t) for t ∈ RT .

I RA(t) iff t halts.

I RT1→T2(t) iff t halts and, whenever RT1(s), we have RT2(ts).

Wen Yu:

Normalization & References(slide 7)

Proof Outline

I Theorem [Normalization]: If ` t : T , then t is normalizable.
I Steps of Proof

1. Every element of every set RT is normalizable
2. Every well-typed term of type T is an element of RT .

Wen Yu:

Normalization & References(slide 8)

Proof Outline (Cont.) I

1. The first step is immediate from the definition of RT .

Lemma: If RT (t), then t halts.

2. The second step is broken into two lemmas.

Lemma: If t : T and t → t ′, then RT (t) iff RT (t ′)

Proof: by induction on the structure of the type T .
For “only if” direction (=⇒):

• If T = A, there is nothing more to show.
• Suppose that T = T1 → T2 for some T1 and T2, and that

RT (t) and that RT1(s) for some arbitrary s : T1.
I By definition: RT2(t s)
I By induction hypothesis: RT2(t

′ s) since t s → t′ s

Wen Yu:

Normalization & References(slide 9)

Proof Outline (Cont.) II

Since this holds for an arbitrary s, we have RT (t ′).
The proof of “if” direction (⇐=) is similar.

Lemma: if x1 : T1, ..., xn : Tn ` t : T and v1, ..., vn

are closed values of types T1, ...,Tn with RTi
(vi) for

each i , then RT ([x1 7→ v1] · · · [xn 7→ vn]t).

Proof: by induction on a derivation of x1 : T1, ..., xn : Tn.
(See the proof of Lemma 12.1.5.)

Wen Yu:

Normalization & References(slide 10)

References

Wen Yu:

Normalization & References(slide 11)

Introduction

I Basics
The basic operations on references are allocation,
dereferencing, and assignment.
• To allocate a reference, we use the ref operator, providing an

initial value for the new cell.

r = ref 5;
. r: Ref Nat

• To change the value stored in the cell, we use the assignment
operator.

r := 7;
. unit: Unit

• If we dereference r again, we see the updated value.

!r;
. 7 : Nat

Wen Yu:

Normalization & References(slide 12)

Introduction (Cont.)

I Side Effects and Sequencing
The fact that the result of an assignment expression is that
the trivial value unit fits nicely with the sequencing notation.

t1 → t ′1
t1; t2 → t ′1; t2

unit; t2 → t2

We can write (r := succ(!r); !r); instead of the equivalent, but
more cumbersome, (λ : Unit.!r)(r := succ(!r)); to evaluate
two expressions in order and return the value of the second.

Wen Yu:

Normalization & References(slide 13)

Introduction (Cont.)

I References and Aliasing
If we make a cope of r (s = r), what gets copied if only the
reference, not the cell.
The references r and s are said to be aliases for the same cell.

I Shared State
For example,

c = ref 0;
incc = λx:Unit. (c := succ (!c); !c);
decc = λx:Unit. (c := pred (!c); !c);
o = { i = incc, d = decc } ;

The whole structure can be passed around as a unit. Its
components can be used to perform incrementing and
decrementing operations on theshared piece of state in c .

Wen Yu:

Normalization & References(slide 14)

Introduction (Cont.)

I References to Compound Types
An example: an implementation of arrays of numbers

NatArray = Ref (Nat → Nat);
newarray = λ :Unit. ref (λn:Nat.0);
lookup = λa:NatArray. λn:Nat. (!a) n;
update = λa: NatArray. λm:Nat. λv:Nat

let oldf = !a in
a := (λa:NatArray. if equal m n then v
else oldf n);

I No garbage collection primitives for freeing reference cells

Wen Yu:

Normalization & References(slide 15)

Typing Rules for ref, :=, and !

Γ ` t1 : T1

Γ ` ref t1 : Ref T1

Γ ` t1 : Ref T1

Γ ` !t1 : T1

Γ ` t1 : Ref T1 Γ ` t2 : T1

Γ ` t1 := t2 : Unit

Wen Yu:

Normalization & References(slide 16)

Evaluation
In most programming language implementations

I The run-time store is a big array of bytes.
I A new reference cell is a large enough segment form the free

region of the store(4 bytes for integer cells, 8 bytes for cells
storing Float, tec.)

I A reference is the index of the start of the newly allocated
region

Abstraction
I The store is an array of values.
I Each value is a reference cell.
I A reference is an element of some uninterpreted set L of store

locations.
I A store becomes a partial function from locations l to values.
I The metavariable µ is used to range over stores

Wen Yu:

Normalization & References(slide 17)

Change of syntax

v ::= · · ·
l

t ::= · · ·
ref t
!t
t := t
l

Wen Yu:

Normalization & References(slide 18)

Augmenting existing evaluation rules

(λx : T11.t12)v2|µ → [x 7→ v2]t12|µ
t1|µ → t ′1|µ′

t1t2|µ → t ′1t2|µ′

t2|µ → t ′2|µ′

v1t2|µ → v1t ′2|µ′

Wen Yu:

Normalization & References(slide 19)

New Evaluation rules

t1|µ → t ′1|µ′

!t1|µ →!t ′1|µ′

µ(l) = v

!l |µ → v |µ

t1|µ → t ′1|µ′

t1 := t2|µ → t ′1 := t2|µ′

Wen Yu:

Normalization & References(slide 20)

New Evaluation rules (Cont.)

t2|µ → t ′2|µ′

v1 := t2|µ → v1 := t ′2|µ′

l := v2|µ → unit|[l 7→ v2]µ

t1|µ → t ′1|µ′

ref t1|µ → ref t ′1|µ′

l /∈ dom(µ)

ref v1|µ → l |(µ, l 7→ v1)

Wen Yu:

Normalization & References(slide 21)

Store Typings

I First attempt
Γ ` µ(l) : T1

Γ ` l : Ref T1

I Second attempt
Γ|µ ` µ(l) : T1

Γ|µ ` l : Ref T1

Wen Yu:

Normalization & References(slide 22)

Store Typings (Cont.)

I Problems

• Inefficient

(l1 7→ λx : Nat. 999,
l2 7→ λx : Nat. (!l1),
l3 7→ λx : Nat. (!l2),
l4 7→ λx : Nat. (!l3),
l5 7→ λx : Nat. (!l4)),

• The store may contains cycle

(l1 7→ λx : Nat. (!l2) ,
(l2 7→ λx : Nat. (!l1)),

Wen Yu:

Normalization & References(slide 23)

Store Typings (Cont.)

I Solution

• Every location has a single, definite type in the store.
• Store typing Σ is defined as a finite function mapping locations

to types.

Wen Yu:

Normalization & References(slide 24)

Typing Rules

Typing rules

Σ(l) = T1

Γ|Σ ` l : Ref T1

Γ|Σ ` t1 : T1

Γ|Σ ` ref t1 : Ref T1

Γ|Σ ` t1 : Ref T11

Γ|Σ `!t1 : T11

Γ|Σ ` t1 : Ref T11 Γ|Σ ` t2 : T11

Γ|Σ ` t1 := t2 : Unit

Wen Yu:

Normalization & References(slide 25)

Safety

I Defintion: A store µ is said to be well typed with respect to a
typing context Γ and a store typing Σ, written Γ|Σ ` µ, if
dom(µ) = dom(Σ) and Γ|Σ ` µ(l) : Σ(l) for every
l ∈ dom(µ).

I Lemma [Substitution]: If Γ, x : S |Σ ` t : T and Γ|Σ ` s : S ,
then Γ|Σ ` [x 7→ s]t : T .

I Lemma: If

Γ|Σ ` µ
Σ(l) = T
Γ|Σ ` v : T

then, Γ|Σ ` [l 7→ v]µ

I Lemma: If Γ|Σ ` t : T and Σ′ ⊇ Σ, then Γ|Σ′ ` t : T .

Wen Yu:

Normalization & References(slide 26)

Safety (Cont.)

I Theorem [Preservation]: If

Γ|Σ ` t : T
Γ|Σ ` µ
t|µ → t ′|µ′

then, for some Σ′ ⊇ Σ,

Γ|Σ′ ` t ′ : T
Γ|Σ′ ` µ′

I Theorem [Progress]: Suppose t is a closed, well-typed term
(that is ∅|Σ ` t : T for some T and Σ). Then either t is a
value or else, for any store µ such that ∅|Σ ` µ, there is some
term t ′ and store µ′ with t|µ → t ′|µ′.

Wen Yu:

Normalization & References(slide 27)

