Hashing – Introduction

Hashing – Introduction

· Dictionary = a dynamic set that supports the operations INSERT, DELETE, SEARCH

· Examples:

· A symbol table created by a compiler

· A phone book

· An actual dictionary

· Hash table = a data structure good at implementing dictionaries

Hashing – Introduction

· Why not just use an array with direct addressing (where each array cell correspsonds to a key)?

· Direct-addressing guarantees O(1) worst-case time for Insert/Delete/Search

· BUT sometimes, the number k of keys actually stored is very small compared to the number N of possible keys. Using an array of size N would waste space.

· We’d like to use a structure that takes up
[image: image1.wmf]Q

(K) spaced and 0(1) average-case time for Insert/Delete/Search

Hashing

· Hashing =

· Use a table (array/vector) of size m to store elements from a set of much larger size

· Given a key k, use a function h to computer the slot h(k) for that key.

· Terminology:

· h is a hasch function
· k hashes to slot h(k)
· the hash value of k is h(k)
· collision: when two keys have the same hash value

Hashing

· What makes a good hash function?

· It is easy to computer

· It satisfies uniform hashing

· Hash
= to chop into small pieces (Merriam-Webster)

= to chop any patterns in the kyes so that the results are uniformly distributed (cs311)

Hashing

· What if the key is not a natural number?

· We must find a way to represent it as a natural number.

· Examples:

· Key i (Use its ascii decimal value, 105

· Key inx (Combine the individual ascii values in some way, for example,
105*1282+110*128+120=1734520

Hashing – hash functions

Truncation

· Ignore part of the key and use the remaining part directly as the index

· Example: if the keys are 8-digit numbers and the hash table has 1000 entries, then the first, fourth and eighth digit could make the hash function.

· Not a very good method: does not distribute keys uniformly

Hashing

Folding

· Break up the key in parts and combine them in some way.

· Example: if the keys are 8 digit numbers and the hash table has 1000 entries, break up a key into three, three and two digits, add them up and, if necessary, truncate them.

· Better than truncation

Hashing

Division

· If the hash table has m slots, define h(k)=kmodm
· Fast

· Not all values of m are suitable for this. For example powers of 2 should be avoided.

· Good values for m are prime numbes that are not very close to powers of 2.

Hashing

Multiplication

·
[image: image2.wmf]()*(**,01

hkmkckcc

=ë-ëû<<

· In english

· Multiply the key k by a constant c, 0<c<1

· Take the fractional part of k*c
· Multiply that by m
· Take the floor of the result

· The value of m does not make a difference

· Some values of c work better than others

· A good value is
[image: image3.wmf](51)/2

-

Hashing

Multiplication

· Example:
Suppose the size of the table, m, is 1301.

For k=1234, h(k)=850

For k=1235, h(k)=353

For k=1236, h(k)=115

For k=1237, h(k)=660

For k=1238, h(k)=164

For k=1239, h(k)=968

For k=1240, h(k)=471

Hashing

Universal Hashing

· Worst-case scenario: The chosen keys all ahsh to the same slot. This can be avoided if the hash function is not fixed:

· Start with a collection of hash functions

· Select one in random and use that

· Good performance on average: the probability that the randomly chosen hash function exhibits the worst-case bahavior is very low.

Hashing

Universal Hashing

· Let H be a collection of hash functions that map a given universes U of keys into the range {0, 1, . . ., m-1}.

· If for each pair of distinct keys k,
[image: image4.wmf]lU

Î

 the number of hash functions
[image: image5.wmf]hH

Î

for which h(k)==h(l) is | H |/m, then H is called universal.
Hashing

· Given a hash table with m slots and nasdlaksdj elements stored in it, we define the load factor of the table as
[image: image6.wmf]/

nm

l

=

· The load factor gives us an indication of how full the table is.

· The possible values of the load factor depend on the method we use for resolving collisions.

Hashing – resolving collisions

Chaining a.k.a. closed addresing

· Idea: put all elements that hash to the same slot in a linked list (chain) The slot contaings a pointer to the head of the list.

· The load factor indicates the average number of elements stored in a chaing. It could be less than, equal to, or larger than 1.

Hashing – resolving collisions

Chaining

· Insert: O(1)

· Worst case

· Delete: O(1)

· Worst case

· Assuming doubly-linked list

· It’s O(1) after the element has been found

· Search: ?

· Depends on length of chaing.

Hashing – resolving collisions

Chaining

· Assumption: simple uniform hashing
· Any given key is equally likely to hash into any of the m slots

· Unsuccesful search:

· Average time to search unsuccessfully for key k= the average time to search to the end of a cahin.

· The average length of chain is (.

· Total (average) time required:
[image: image7.wmf](1)

l

Q+

Hashing – resolving collisons

Chaining

· Successful search:

· Expected number e of elements examined during a successful search for key k =1 more than the expected number of elements examined when k was inserted

· It makes no difference whether we insert at the beginning or the end of the list

· Take the average, over the n items in the table, of 1 plus the expected length of the chain to which the ith element was added.

Hashing – resolving collisions

Chaining

[image: image8.wmf]1

111

1...1

22

n

i

i

e

nmm

l

=

-

æö

=+==+-

ç÷

èø

å

-Total time:
[image: image9.wmf](1)

l

Q+

Hashing – resolving collisions

Chaning

· Both types of search take
[image: image10.wmf](1)

l

Q+

 time on average.

· If n=O(m), then (=O(1) and the total time for

Search is O(1) on average

· Insert: O(1) on the worst case

· Delete: O(1) on the worst case

· Another idea: Link all unused slots into a free list

Hashing – resolving collisions

Open addressing

· Idea:

· Store all elements in the hash table itself.

· If a collision occurs, find another slot. (How?)

· When searching for an element examine slots until the element is found or it is clear that it is not in the table.

· The sequence of slots to be examind (probed) is computer in a systematic way.

· It is possible to fill up the table so that you can’t insert any more elements

· Idea: extendible hash tables?

Hashing – resolving collisons

Open addressing

· Probing must be done in a systematic way (why?)

· There are several ways to determine a probe sequence:

· Linear probing

· Quadratic probing

· Double hashing

· Random probing

_1112202945.unknown

_1112203238.unknown

_1112203720.unknown

_1112203829.unknown

_1112203925.unknown

_1112203512.unknown

_1112202978.unknown

_1112202588.unknown

_1112202638.unknown

_1112201146.unknown

