
Computer Science 1MD3
Lab 1 – An introduction to Pascal for C programmers.

 There are a few subtle, yet important, differences between C and Pascal. It is the intention of this
lab to familiarize you with Pascal syntax and concepts introduced to you in C.

BASIC PROGRAM STRUCTURE:

Pascal:

program program_name;

include units;
global variable declarations;

procedures and functions;

begin
 {main program}
end.

C:

include standard libraries;
global variable declarations;
procedure and function protocols;

int main (void) {
 opt local declariations;
 {main program}
};

procedures and functions;

 The first difference we may observe is the use of begin and end instead of { and } which are
used for commenting. The period (.) following end is used to denote the end of the main program, any
code after this will not be executed.

VARIABLE DECLARATION:

 In Pascal, it is not possible to declare local variables in your main program. Instead, you may
declare global variables, or, if you prefer, create a procedure mainProgram and declare local variables
there.

Pascal:

var
label : type;

x : integer; {-32768 to +32767}
y : real;
z : string; {up to 255 letters}
w : char; {1 letter}

const
 label=anything

C:

type label;

int x;
float y;
char z[];
char w;

#define label anything

Arrays
Pascal: C:

var
arrayname : array[1..x] of type;

var
arrayname : array[1..x][1..y] of type;

type arrayname[x];

type arrayname[x][y];

An array can be extended to any dimension you desire in this fashion. Array access is done by
arrayname[x] , it is also very important to note that Pascal is not a zero referencing language. This
means all arrays in Pascal will start at array element 1.

OUTPUT: “Hello, World!”

Pascal:

write(‘hello, world!’);

writeln(‘hello, world!’);
writeln(‘hello,’,x,’world!’);

C:

printf(“hello, world!”);

printf(“hello, world!\n”);
printf(“hello %d world!\n”,x);

 The only difference between a write and a writeln is where the cursor will be placed after.
The write places the cursor directly after the outputted text (hello, world!_) , whereas writeln
places the cursor on the next line (hello, world!
 _).

 Pascal’s writeln is a lot more versatile then C’s printf since it allows the use of fields. A
field is the amount of spaces that a variable is allowed to be printed in. For instance:

x:=4.5;
writeln(x:7);

output:
_ _ _ _ 4 . 7

 Note that a decimal place takes up an entire space, and also, that the field will fill from the right. If
your number requires more spaces then the field you defined, the field length will be overridden to the
length of your number.

In general:

writeln(var: field);

 It is also possible to define the accuracy to which a real number is printed to the screen. For
instance:

x:=4.657;
writeln(x:0:2);

y:=4.5;
writeln(y:0:5);

output:
4.66

4.50000

 When defining accuracy it is necessary to define a field length, the convention is to use zero when
no field is desired. It should also be noted that the last number was rounded with respect to the following
number (>=5 round up).

 Finally it is possible to have a combination of both field length and accuracy.

x:=3.14159;
writeln(x:7:2);

output:
_ _ _ 3 . 1 4

In general, for real numbers:

writeln(var: field: accuracy);

CONDITIONAL STATEMENTS:

 A conditional statement is something that evaluates to true or false, this is also called a binary
statement. Conditional statements are used in any control structure to trigger the start or an end to the
process. i>6, i=5, i>=7 are examples of simple control structures.

The following is a list of binary operators that we may use.

Operation Pascal C equivalent
x greater then y x>y x>y
x less then y x<y x<y
x greater then or equal to y x>=y x>=y
x less then or equal to y x<=y x<=y
x is equal to y x=y x==y
Not not !
x is not equal to y x<>y x!=y
alt x is not equal to y not(x=y) !(x=y)

 As in C, it is possible to bind two binary statements together using ‘and’ and ‘or’.

Operation Pascal C equivalent
cond1 and cond2 cond1 and cond2 cond1 && cond2
cond1 or cond2 cond1 or cond2 cond1 || cond2
not cond1 not(cond1) !(cond1)

Truth tables:

con1 con2 con1 and con2

T T T
T F F
F T F
F F F

con1 con2 con1 or con2
T T T
T F T
F T T
F F F

CONTROL STATEMENTS

If/then/else

Pascal C
if condition then
begin
 {code}
end;

if (condition) {
 //code
};

if condition then
begin
 {code}
end
else if condition then
begin
 {code}
end
else
begin
 {code}
end;

if (condition) {
 //code
} else if (condition) {
 //code
} else {
 //code
};

 Please note that in Pascal a semicolon (;) is only placed after the final end in an if statement.

Looping

Pascal C

for

for var:= start to end do
begin
 {code}
end;

for(var=start; var<=end; var++) {
 //code
};

for var:= end downto start do
begin
 {code}
end;

for(var=end; var>=start; var--) {
 //code
};

while/do

while condition do
begin
 {code}
end;

while (condition) {
 //code
};

repeat/until

repeat
 {code}
until condition;

do {
 //code
} while (condition);

ABSTRACTION

Procedures

Pascal C

procedure name;
var declarations;
begin
 { code}
end;

void name() {
 variable declarations;
 //code
 return void;
};

 There is no need for function/procedure protocols in Pascal. All your procedure are written before
your main program.

Functions

Pascal C

function name : returnType;
var declarations;
begin
 {code}
 name:= desired return;
end;

returnType name() {
 variable declarations;
 //code
 return desired return;
};

 There is no return statement in Pascal as there is in C. Instead we treat the name of the function as
the variable being returned, giving it a value on the last line of the function.

Passing values to functions and procedures

procedure name (var1:type; var2:type; . . . varN:type);

function name (var1:type; var2:type; . . . varN:type) : returnType;

Invoking procedures

name(x,y,z. . .);

Invoking functions

x:= name(x,y,z. . .);

POINTERS

Declaration

Pascal C

var
label : ^dataType;

dataType * label;

Use

operation Pascal C
the address of x @x; &x;
what x is pointing to x^; *x;
point x at m x:=@m; x=&m;
change the value x is pointing to x^:=7; *x=7;

ABSTRACT DATA TYPES

User Defined Types

type
 label = { anything, anything} ;

var
 x : label;

For example suppose we needed a variable to hold the type of a school.

type
 schoolType = {kindergarten, elementary, highschool , university};

var
 kindOfSchool : schoolType;

 You may also increment a user defined data type in the same manner that you would in C.
However we do not have the shorthand ++ and --, so we must say:

kindOfSchool:=kindOfSchool+1;

Records

Records are the Pascal equivalent of structures in C.

type
 label = record
 label1 : type;
 label2 : type;
 .
 .
 labelN : type;
 end;

var
 x : label;

Accessing record elements

x.label1:= type;
x.label2:= type;

COMPLETE PASCAL PROGRAM STRUCTURE

Pascal C

program program_name;

uses unit1. . .unitN;

type
 {type and record
 declarations}

var
 {global declarations}

{procedures and functions}

begin
 {code}
end.

#include < library>

#define

enum

typedef

struct

dataType //global variables;

int main (void) {
 //code;
}

PASCAL QUICK REFERENCE

Command syntax command syntax
set x equal to y x:=y; x plus y x+y;
x multiplied by y x*y; x divided by y x/y;
x modulus y x mod y; x to the power of y x**y;
is x equal to y (x=y) is x not equal to y x<>y
is x greater then y x>y is x less then y x<y

SELF TEST QUESTIONS

convert the following C code into Pascal code

1)

int fact (int n) {

 if (n==1) return 1;
 return n*(n-1);

}

2)

#include <stdio.h>

enum week {sun, mon, tue, wed, thu, fri, sat};
typedef enum week day_type;

int main(void) {
 day_type day=sat;
 printf("Day: %d\n",day);
 day++;
 if(day==sun) printf("True");
 return 0;
}

convert the following Pascal code into C code

procedure sort(var r : ArrayToSort; lo, up : integ er);
var i, j : integer;
 tempr : ArrayEntry;
 flag : boolean;
begin
 for i:=up-1 downto lo do begin
 tempr := r[i];
 j := i+1;
 flag := true;
 while (j<=up) and flag do
 if tempr.k > r[j].k then begin
 r[j-1] := r[j];
 j := j+1
 end
 else flag := false;
 r[j-1] := tempr
 end
end;

