
Computer Science 1MD3 
Lab 11 – A Quick Introduction To Predicate Logic 
 
Predicate logic is the foundation of mathematics and computer sciences. You have already done some basic 
logic when dealing with Boolean expressions. The AND and OR operators allowed you to combine 
conditions to give you greater control, and you have also seen logical definitions of big-oh and big-omega. 
The purpose of this lab is to give you a formal introduction to predicate logic. 
 
UNARY AND BINARY OPERATORS 
 
Operations like ‘-’ or ‘ × ’ take element(s) from a set and manipulate them in a certain manner. For instance 
multiplication takes two numbers x and y and adds x repeatedly to a sum y-many times, and negation, –, 
takes x and negates it so that   x | −x→ x+ (−x) = 0 . Multiplication and negation are examples of a binary 
and unary operators, respectively. A binary operator, as you may have guessed, operates on two elements 
from a set ( �x y) and a unary operator operates on only one (� x). 
 
In logic we have the set   T,F{ } that represent true and false. The basic unary operator that we will use is 
negation, which has the following definition 
 
Negation 
 

 
  
¬x→

T  if  x = F
F  if  x = T
� 
� 
� 

 

 

Truth Table 
 

x ¬x 
T F 
F T  

 
The basic binary operators are AND and OR. 
 
AND 
 
   x∧ y  
 
 
 
 
 

Truth Table 
 

x   y   x∧ y 
T T T 
F T F 
T F F 
F F F  

  
OR 
 
   x∨ y  
 
 
 
 
 

Truth Table 
 

x   y   x∨ y 
T T T 
F T T 
T F T 
F F F  

 
IMPLICATION AND BI-IMPLICATION 
 
Implication and bi-implication are binary operators that we haven’t seen before. We will first deal with 
implication, which is represented by →.   x→ y  reads x implies y, and may be understood in any of the 
following ways: 
If p, then q p implies q If p, q 
p is sufficient for q p only if q P is sufficient for q 
q if p q whenever p q when p 
q when p q is necessary for p q follows from p 
 



IMPLIES 
 
   x→ y  
 
 
 
 
 

Truth Table 
 

x   y   x→ y 
T T T 
F T T 
T F F 
F F T  

 
Bi-implication, represented by ↔, where   x↔ y  reads x bi-implies y. Bi-implication may be understood in 
the following ways: 
 
p is necessary and sufficient for q If p then q, and conversely p if q 
 
BI-IMPLIES 
 
   x↔ y  
 
 
 
 
 

Truth Table 
 

x   y   x↔ y 
T T T 
F T F 
T F F 
F F T  

 
LOGICAL EQUIVLANCES  
 
  x∧ y,  x→ y,  ¬x  are all examples of unary or binary operations, when one or two symbols are being 
operated on, we call the expression a proposition. We say that the propositions p, and q are logically 
equivalent if   p↔ q is a tautology, or in other words, it will always evaluate to true. The notation   p ≡ q  
denotes that p and q are logically equivalent. 
 
One way to determine whether two propositions are equivalent is to use a truth table. In particular, the 
propositions p and q are equivalent if and only if the columns giving their truth-value agree. The following 
example illustrates this method. 
 
Example 1 
Show that   ¬ p∨q( ) and   ¬p∧¬q are logically equivalent. 

 
p Q 

  ¬ p∨q( )   ¬p∧¬q 
  ¬ p∨q( )↔ ¬p∧¬q 

T T   ¬(T) ≡ F 
  

¬T∧¬T= F∧F
= F

   F↔ F ≡ T 

T F   ¬(T) ≡ F 
  

¬T∧¬F = F∧T
= F

   F↔ F ≡ T 

F T   ¬(T) ≡ F 
  

¬F∧¬T= T∧F
= F

   F↔ F ≡ T 

F F   ¬(F) ≡ T 
  

¬F∧¬F = T∧T
= T

   T↔ T≡ T 

 
Since   ¬ p∨q( )↔ ¬p∧¬q always evaluates to True we say these propositions are logically equivalent. 
 
 
 
 
 
 
 



______________________________________________________________________________________ 
QUANTIFIERS 
 
It is possible to have binary statements that are true only sometimes, consider P(x): x > 6, this must 
evaluate to either true or false. In order to evaluate this statement, we employ the quantifiers ∀,  ∃ , which 
respectively read for all and there exists.  
 
So what does   ∀xP(x) = ∀x  (x > 6)evaluate too? In plain English it reads: for all x, x is greater then 6, so it 
clearly evaluates to false since 5 isn’t greater then 6. How about   ∃x  (x > 6) , which reads: there exists an x 
where x>6. Well if x=7, 7 is greater then 6, so this must be true.  
 
Statement When True When False 

  ∀xP(x) P(x) is true for every x There is an x for which P(x) 
is false 

  ∃xP(x) There is an x for which P(x) 
is true 

P(x) is false for every x 

 
It is also possible to negate these quantifiers. Just think of it as whenever you move a negation “past” a 
quantifier that you must switch it from there exits to a for all and vise versa. 
 
Negation Equivalent 

Statement 
When Is Negation True When False 

  ¬∃P(x)   ∀x¬P(x) For every x, P(x) is 
false. 

There is an x for which 
P(x) is true. 

  ¬∀xP(x)   ∃x¬P(x) There is an x for which 
P(x) is false. 

P(x) is true for every 
x. 

 
It is also possible to use more then one quantifier on several variables. This is called nesting the quantifier. 
 
Statement When True When False 

  ∀x∀yP(x,y) 

  ∀y∀xP(x,y) 
P(x,y) is true for every 

pair x,y 
There is a pair x, y for 
which P(x,y) is false. 

( , )x yP x y∀ ∃  For every x there is a y for 
which P(x,y) is true 

There is an x such that 
P(x,y) is false for every y. 

  ∃x∀yP(x,y) There is an x for which 
P(x,y) is true for every y. 

For every x there is a y for 
which P(x,y) is flase. 

  ∃x∃yP(x,y) 

  ∃y∃xP(x,y)  
There is a pair x,y for 
which P(x,y) is true. 

P(x,y) is false for every 
pair x, y. 

 
Examples. 
 
For the proposition   P(x,y) :x > y  where   x,y ∈ Ζ what do the following expression evaluate too? 
 
  ∀x∀yP(x,y) = F  since for any x I can choose a y where this fails. 
 
  ¬∀x∃yP(x,y) ≡ ∃x¬∃yP(x,y) ≡ ∃x∀y¬P(x,y) = F  since there does not exist x for all y such that 
P(x,y) always fails. 
 
  ∀y∃xP(x,y) = T  since for any selection of y I can select x where P(x,y) evaluates to true. 
 
 
 
 
 
 



Self test problems: 
 
 
Let p and q be the propositions 
 
 p: It is below freezing 
 q: It is snowing 
 
Write the propositions using p and q and logical connectives. 
 

a) It is below freezing and snowing. 
b) It is below freezing but not snowing. 
c) It is not below freezing and it is not snowing. 
d) It is either not snowing or below freezing (or both) 
e) It is below freezing or it is snowing, but it is not snowing if it is below freezing. 
f) That it is below freezing is necessary and sufficient for it not to be snowing. 

 
 
Construct a truth table for each of the these compound propositions. 
 

a)   p→ ¬q∨r( ) 
b)   ¬p→ q→r( ) 
c)  p→ q( )∧ ¬p→r( ) 

 
 
Use a truth table to verify logical equivalence 
 

  ¬ p∧q( )≡ ¬p∨¬q  
 
 
Use a truth table to show that the following are tautologies (always evaluate to true). 
 

a)   p∧q( )→ p  
b)   p→ p∨q( ) 
c)   ¬p→ p→ q( ) 

 
 
Determine the truth of the following, assuming that in all instances   n∈ Ζ . 
 

a)   ∀n(n = 1 >n)  
b)   ∃n 2n = 3n( ) 
c)   ∃n n = −n( ) 

d) 
  
∀n n2 ≥n( ) 

 
 
Translate these statements into English, where the universe of discourse for each variable consists of all 
real numbers. 
 

a)   ∃x∀y xy = y( ) 

b) 
  
∀x∀y x ≥ 0( )∧ y < 0( )( )→ x− y > 0( )( ) 

c)   ∀x∀y∃z(x = y +x)  


