
Root

descendants

ancestor

children

parent

a leaf node

Computer Science 1MD3
Lab 4 – An Introduction to Graphs and Trees

A graph is much like a roadmap but instead of cities being connected by roads you have nodes connected
by edges. There is a specific type of graph called a tree which has very distinct characteristics. It is the
purpose of this lab to introduce trees and the methods to traverse through them.

GRAPHS

A graph is a collection of nodes which are connected together by edges.

 (1.1) (1.2) (1.3) (1.4)

Are all examples of graphs.

TREE

A walk in a graph is to move from one node to another node along an edge. In graph 2, A-B-C would be a
legal walk, but C-A-B would be an illegal walk. If a walk ends at a node which is connected to the node
that you started from this is called a cycle. In graph 1.2, A-B-A would be a cycle, and in graph 1.3, A-B-C-
D-A would be as cycle as well as A-E-B-A, and so on.

A tree is a graph which does not contain any cycles, graph 1.1 and graph 1.4 are examples of trees.

There is also some terminology which goes along with tree graphs. A position in the tree () is called a
node, the node at the top is called the root node, and the nodes at the bottom are called the terminal or leaf
nodes. We will also refer to proper ancestors and descendants which are respectively all nodes above or
below a given node. Immediate ancestors and descendants, or a position one edge up or down from a node,
is a parent or a child to that node. Finally, the depth of a tree is the number of nodes in the longest walk
that may be taken from the root to any leaf.

 Graph (2.1)

The depth of Graph 2.1 is four.

E D

C

B
B

A

C A A

l.c r.c. l.c

l.c r.c.

root

root

A B

C D E

root

A B

C D E

BINARY TREES

A binary tree is a tree such that every node in the tree has at most two children. These children are called
the left-child (l.c.) and right-child (r.c.), if a node only has one child it is the left-child.

There are two standard methods for storing binary trees in computers. The
first uses a recursive structure, and the second an array. The contrast of these
two methods is the structure method uses a lot less memory whereas the
array implementation is much easier to program. Lets investigate these two
methods.

structure implementation

 struct node {
 int val;
 node *lc;
 node *rc;
 }

This definition will make a lot more sense after we have done linked lists. However this is the general idea:
you declare a pointer tree which points to the root node. The root node has a value, and also two pointers
to its left and right child, which have a similar structure. The leafs nodes will have left and right child
pointing to nil.

Consider the following tree and its structure implementation.

There is some C syntax for traversing the tree which we will cover when we do linked lists.

array implementation

An array implementation is much simplier.

The nodes are put into the array breadth first meaning that you just go left to right down each level
inserting into the array the value of the node. We may also observe that the left child of array position x, is
at 2*x+1 and its corresponding right child is at 2*x+2.

tree root

A nil B

C nil nil
E nil nil

D nil nil

root A B C -- D E

0 1 2 3 4 5 6 array position

1

2 3

4 5 6

7 8 9

1

2 3

4 5 6

7 8 9

TREE TRAVERSAL

A traversal is the same thing as a walk, and there are a lot ways we can traverse a graph. For all the
following examples we will use this graph.

Tree 1.2 demonstrates a traversal which some other traversals use to define themselves. The traversal is as
this: imagine we walk around the outside of the tree, starting at the root, moving counterclockwise, and
staying as close to the tree as possible; the path we have is like the one in Tree 1.2.

 Tree 1.1 Tree 1.2

Breadth First Search:
List a node as you pass left to right down every level of the graph

1-2-3-4-5-6-7-8-9

Depth First Search:
Traverse the tree as in Tree 1.2
List a node the first time you pass it.

1-2-4-7-8-5-9-3-6

Preorder Listing
Traverse the tree as in Tree 1.2
List a node the first time we pass it.

1-2-4-7-8-5-9-3-6

Inorder Listing
Traverse the tree as in Tree 1.2
List an interior node the second time we pass it and leaf nodes the first time we pass it.

7-8-4-2-9-5-1-6-3

Postorder Listing
Traverse the tree as in Tree 1.2.
List a node the last time we pass it.

7-8-4-9-5-2-6-3-1

You should familiarize yourselves with these trees for they will become very important in binary search
tress.

1

2 3

3 5 4

6 7

Self-Test Problems

1.) Produce every listing possible for the following graph:

2.) What is the array representation of the graph presented in 1?

3.) What is the linked list representation of the graph presented in 1?

4.) In your own words, define graph.

