Computer Science 1MD3

Lab 1: An introduction to the Python environment

Basic Input and the Interpreter

One of the first things you will notice about Python is that it is an "interactive" and "interpreted" language. Most of the languages you have already dealt with have likely been driven by some some body of code or script with a definite compile time or point at the end where the lines are read all at once and then prepared for the end user. While Python can read pre-fabricated text files and determine the program's output in this conventional manner, it can also use the Python "interpreter" to read code entered line by line from the user, not unlike DOS does, or the consoles included in most modern first person games.

Let's test this out, open your Python interpreter and look at the bottom line. You should see a set of 3 chevrons (like these: >>>) signaling that the program is waiting for user input. Make sure the window is in focus so that the cursor is flashing. Now type in the operation 3+4 and hit enter. You don't need to create a variable to store the result in or tell the interpreter specifically to print the value, it will just display the result 7 and return you to the command line. Python will do the same for any similar operation (including when calling functions) and show you the answer, making it very useful for testing on-the-fly or as a desktop calculator.

These instantly evaluated statements aren't limited to just being arithmetical functions. Try entering the expression 3==5 (double equals is a boolean operator which tests for equality). 3 does not equal 5 so naturally this should return False.

Try entering the following lines of code individually before continuing. See if you can predict the output each time before you hit enter:

· 5-(4+3)

· 7/5

· 7.0/5.0

· True|False

· True&False

· not True

· “Something”==“Something else”

· “A”=='A'

· 'Testing'==“Testing”

Were there any results that you couldn't explain? Remember, we want to use two equals symbols (==) for a True/False test because a single equals symbol (=) means to make something equal. 3=5 would be an attempt to assign the value 5, to the number 3, which doesn't make any sense. Try entering this now to see how Python handles error messages.

This experiment introduced some important differences Python has from other languages. You may have noticed already that Python does not require a special character for sequencing, meaning that there are no semicolons at the end of commands. The boolean operators AND and OR are represented by a single ampersand for AND, and a single vertical bar for OR, instead of having two of each like in C (&& and ||).

Also, strings (which are a series of characters, such as letters and numbers) can be enclosed in either single or double quotes. Single characters can be enclosed by either single or double quotes as well. Python treats characters like they are strings of length 1.

Variables

Working in the interpreter doesn't have to consist entirely of single-line transient statements either. You can assign variables, make control statements (like if and else), and even write functions line-by-line. The interpreter will record everything you have done in that session which has a lasting effect. For example if you wanted to assign the variable x to contain the value 12, simply type x=12 and hit enter. If at any time you want to check what value x is currently at, just type x and hit enter. Python does not require any special I/O manipulation or print statements to output values like these. Also, you may have noticed that we didn't have to declare x ahead of time, allocate any memory for it, or specify what type of value it was going to hold. We could redefine the same x variable to contain the string "Hello there." for example. Try this now. Remember that the quotes around any strings you write are necessary, otherwise Python won't know that you are creating a string, and will think you're referring to a variable or function name that doesn't exist.

· See if you can figure out how to assign and print a new variable with a new name (not x). Make this new variable contain the result of some expression, like a mathematical operation or equality test. If you are having trouble ask your TA for an example and then try to mimic it.

Once you are comfortable with that we can try something more complex.

Try entering the following code, typing one line at a time and hitting enter after each one:

first=5

second=7

third=10.2

av=(first+second+third)/3

final=(av==(3+10+9.2)/3)

· See if you can predict the value of final, then print it to see if you were correct.

· Bonus: Which variables in this example are integers and which are not?

Control structure

A fundamental component of any language is how it handles conditional statements. The Python interpreter is designed so that you can implement multiple-line if/else structures inside its single-line system of input. To begin an if statement, type if at the command line, followed by a space, followed by the condition you are wanting to test, and ending with a colon. The result looks something like this:

if condition:

Where condition can be anything that results in a boolean value. If the condition turns out to be True, then the indented commands you list after the colon will be executed (indentation groups statements in Python the way curly braces do in some other languages). The indenting is done automatically once you hit enter after writing this first line. If you want to stop entering commands to store in the statement at any point, press enter with nothing typed on the current line. For example:

>>>
if 5==5:
User presses enter

 var=7
User presses enter

 var

User presses enter

User presses enter without typing anything, ending the if statement

Once this has been entered completely, the program runs and the statement is read. First it checks to see if 5==5 equals True. It does, so the commands indented after the condition are run. var is set to equal 7. Then var is printed, outputting the integer 7.

If on the last line instead of hitting enter without typing anything, the user hit backspace to remove the current indent, typed else: and hit enter, then that would begin writing an else clause for this structure. The else clause is a series of commands which are performed if the previous condition is not True. In this case, the commands grouped below the if statement are skipped until the else clause is found. If there is no else clause and the initial if condition evaluates to False, then the program does nothing. For example, enter the program again like this:

>>>
if 5==5:
User presses enter

 var=7
User presses enter

 var

User presses enter, then backspace to remove the indent

else:

User presses enter

 “ABC”
User presses enter

User presses enter without typing anything, ending the if statement

This program is identical to the last one except if the initial condition were not True, then the string “ABC” would be printed to the screen. 5==5 however is always True, so the command listed in this else clause will not execute. If the program's first line were altered to read like this:

>>> if 5==4:

...Then the statement would be False and “ABC” would be printed to the screen instead of “7”. Try writing the program again with this line replacing the first one.

Exercises:

Solve the output of the following programs without running them. Use the interpreter to check your answers after.

· >>> y=3

>>> z=7

>>> if z<y:

 hi=y

 lo=z

 else:

 hi=z

 lo=y

>>> lo-hi

· >>> int=4

>>> nint=3.5

>>> int*nint+2*nint

· >>> one=3

>>> another=5

>>> if one/another>0:

 “Yes”

 else:

 “No”

· >>> if not (“something”=='something'):

 “Correct”

In addition to adding numbers, the + operator can also be used to concatenate strings (adding the second one on to the end of the first). Solve the output of the following programs:

· >>> str=“Ab”+“bC”

>>> if str==“AbC”:

 str+“CbA”

 else:

 str+str

· >>> s1=”1”

>>> s2=”3”+s1

>>> s3=”2”+”65”

>>> s4=”59”

>>> s5=s2+”41”+s4+s3

>>> s5

· >>> “2+2==”+4

